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Abstract 

 The hypothalamic paraventricular nucleus (PVN) is a key integrative site for the 

neuroendocrine control of the circulation and of the stress response. It is also a major source of 

the neuropeptide hormone vasopressin (VP), and co-expresses V1a receptors (V1aR). We thus 

sought to investigate the role of V1aR in PVN in cardiovascular control in response to stress. 

Experiments were performed in male Wistar rats equipped with radiotelemetric device. The 

right PVN was transfected with adenoviral vectors (Ads) engineered to over-express V1aR 

along with an enhanced green fluorescent protein (eGFP) tag. Control groups were PVN 

transfected with Ads expressing eGFP alone, or wild-type rats (Wt). Rats were recorded with 

and without selective blockade of V1aR (V1aRX) in PVN under both baseline and stressed 

conditions. Blood pressure (BP), heart rate (HR), their short-term variabilities, and baroreflex 

sensitivity (BRS) were evaluated using spectral analysis and the sequence method, 

respectively. Under baseline physiological conditions,V1aR rats exhibited reduced BRS and a 

marked increase of BP and HR variability during exposure to stress. These effects were all 

prevented by V1aRX pretreatment. In Wt rats, V1aRX did not modify cardiovascular 

parameters under baseline conditions, and prevented BP variability increase by stress. 

However, V1aRX pretreatment did not modify baroreflex desensitization by stress in either rat 

strain. It follows that increased expression of V1aR in PVN influences autonomic 

cardiovascular regulation and demarcates vulnerability to stress. We thus suggest a possible 

role of hypothalamic V1aR in cardiovascular pathology. 
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 Vasopressin, V1a receptor, paraventricular nucleus, adenoviral vector, baroreflex, 
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V1b receptor; V2R, vasopressin V2 receptor; V1aRX, vasopressin V1a receptor antagonist, 

PVN, paraventricular nucleus; NTS, nucleus of the solitary tract; RVLM; rostroventrolateral 

medulla; IML, intermediolateral column of the spinal cord. 
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1. Introduction 

It is well established that vasopressin (VP) is an important neuropeptide in 

cardiovascular homeostasis, both as a hormone and as a neurotransmitter / modulator 

(Japundžić-Žigon, 2013). VP is mainly synthesized in the paraventricular (PVN) and 

supraoptic (SON) nuclei of the hypothalamus. Neurosecretory neurons of SON and of the 

magnocellular part of the PVN project to neurohypophysis wherefrom VP is released in the 

systemic circulation, to act as a hormone in hydromineral homeostasis and blood pressure 

control (Swanson and Sawchenko, 1983; Burbach et al., 2001). Axons of VP containing 

neurons of the parvocellular part of the PVN project to eminentia mediana (Rivier and Vale, 

1983; Herman and Cullinan, 1997), the limbic system and amygdala, and to the brainstem and 

spinal cord where VP acts as a neurotransmitter / modulator influencing, respectively, ACTH 

release, emotions and autonomic functions (Sawchenko and Swanson, 1982; Geerling et al., 

2010). Although VP containing neurons in PVN that participate in neuroendocrine and 

autonomic cardiovascular control are anatomically segregated, they act in concert in response 

to physiological challenges requiring a multimodal homeostatic response. This neuronal 

coordination, at least for hyperosmotic challenges, has been shown to involve intranuclear, 

somato-dendritic release of VP and activation of V1a receptors on somata and dendrites of pre-

sympathetic neurons of the PVN (Stern, 2001; Son et al., 2013; Stern, 2015). 

 Emotional stress is another challenge that demands complex behavioral reaction 

requiring coordinated adjustments of neuroendocrine and autonomic responses. We have 

previously reported that central V1a receptors are important in the modulation of the 

cardiovascular response to stress (Milutinović et al., 2006; Stojičićet al., 2008; Milutinović-

Smiljanić et al., 2013). Here we investigate the role of PVN V1a receptors in autonomic 

adjustment of the cardiovascular system to emotional stress. We hypothesized that, by 

increasing the number of V1aR in PVN or by selectively blocking their activity, we could alter 

autonomic cardiovascular control and, even more importantly, influence the stress response. 

The findings show for the first time that over-expression of V1aR in PVN demarcates a rat 

phenotype vulnerable to emotional stress.  

 

2. Methods 

All experimental procedures in this study conformed to European Communities 

Council Directive of November 24, 1986 (86/609/EEC) and comply with the ARRIVE 

guidelines (Kilkenny et al., 2010; McGrath and Lilley, 2015). The experimental protocol was 

approved by the Faculty of Medicine University of Belgrade Ethics review board. 

http://onlinelibrary.wiley.com/enhanced/doi/10.1111/bph.13453#bph13453-bib-0021
http://onlinelibrary.wiley.com/enhanced/doi/10.1111/bph.13453#bph13453-bib-0025
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2.1. Animals 

Twelve week old male Wistar rats (280-320g) bred at the local animal facility were 

used in the experiments. Rats were housed individually in a controlled environment (12h/12h 

light dark-cycle, temperature 21±2°C and humidity 60± 5%) with access to standard pelleted 

chows (0.2 % w/v sodium content, Veterinarski zavod, Subotica) and tap water ad libitum. The 

number of rats in each protocol was calculated statistically taking into account intra-group 

variability, using the ‘Power Sample Size Calculation’ software freely available at: 

http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize for power of 90% and 

type I error probability of 0.05. At the end of the experiment, the rats were euthanized using 

injection of three anesthetics (0.1ml, i.p. of T61® solution). 

 

2.2. Surgery  

Under combined ketamine (100 mg/kg, i.m.) and xylazine (10 mg/kg, i.m.) anesthesia 

rats underwent two surgical procedures at ten days interval. A 3 cm-long medial abdominal 

incision was made and the intestine retracted to expose the abdominal aorta. The tip of the 

catheter of the radiotelemetric probe (TA11-PA C40, DSI, St. Paul, MN, USA) was inserted 

into the abdominal aorta using a 21G needle. The inserted catheter was fixed with 3M 

VetbondTM and tissue cellulose patch (DSI, St. Paul, MN, USA). The transmitter was attached 

to the anterior abdominal wall and the wound was closed by suture. In order to prevent 

infection, neomycin and bacitracin were sprayed topically, and the rats received gentamicin 

parenterally  (25 mg/kg i.m.) three days before, and again on the day of surgery. Pain was 

reduced by carprofen (5 mg/kg/day, s.c.) on the day of surgery and for the next two days. Each 

rat was housed in a Plexiglas cage (30 cm x 30 cm x 30 cm) and left to recover fully for 10 

days.  

The second surgery was performed in rats under the same combined anesthesia and 

postoperative care protocol. Rats head was mounted in stereotaxic frame and the skin was 

incised 3 mm to expose the scull. A hole was opened with dental drill to position 23G guide 

above right PVN (AP = 1.8 mm caudal from bregma, LAT = 0.4 mm from midline, 6.5 mm 

beneath the scull; Paxinos and Watson, 2005) and fixed with dental cement. On the day of 

experimentation 7.5 mm-long 30G needle was used for microinfusion of drugs into the PVN. 

At the end of experiment, rats’ brain was removed and dissected at microinfusion site. The 5 

μm sections were then dried and stained with cresyl violet acetate (0.1% w/v) and cover-slipped 

with DPX mountant (VWR International Ltd, Lutterworth, UK). 

http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize
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2.3. Adenoviral vector production 

The cDNA clone of the rat V1aR in pcD2 was generously provided by Dr. Stephen 

Lolait, University of Bristol (Morel et al., 1992). The V1aR sequences were amplified from 

pcD2 using Phusion High-Fidelity DNA polymerase (New England Biolabs Ltd, Hitchin, UK) 

and primers (5’-GCCTCGAGGGCTCTGTACGGACA-3’) and (5’-

CTGGATCCAAAAGTCCCTCCCAAGAGTC-3’). The PCR product was digested with XhoI 

and BamHI and ligated into compatible restriction sites of adenoviral vector 

pacAd5.CMV.IRES.GFP (Cambridge Bioscience Ltd., Cambridge, UK). Adenoviral vector 

pacAd5.CMV.GFP was used as a control (eGFP). The adenoviruses were generated by co-

transfection of viral shuttle and backbone (pacAd5 9.2-100) vectors in HEK293T cells by 

calcium phosphate method in accordance with manufacturer’s guidelines (Cambridge 

Bioscience Ltd., Cambridge, UK). Adenoviruses were purified by two rounds of CsCl 

ultracentrifugation and desalted using Slide-A-Lyzer dialysis cassettes (Pierce). The purified 

viruses were aliquoted and stored at -80oC. The virus titers were determined in triplicate by 

standard plaque assay. 

 

2.4. Transfection 

 Ten days after fitting the telemetry device, injection of Ads into the right PVN of rats 

was performed under combined ketamine xylazine anesthesia. The head of the rat was mounted 

in the stereotaxic frame and the skin was incised 3 mm to expose the scull. The stereotaxic 

coordinates of PVN (AP = 1.8 mm caudal from bregma, LAT = 0.4 mm from midline) were 

derived from the rat brain atlas (Paxinos and Watson, 2005). A glass micropipette was slowly 

positioned at 7.6 mm beneath the skull for infusion of virus (titer 4·1010 pfu/ml) in 50 nl, 

pressure injected in one minute. In sham rats, a glass micropipette was slowly positioned at 7.6 

mm beneath the skull. After removal of micropipette a chronic guide cannula was positioned 

as described in the section 2.2 surgery. Rats were left to recover for seven days. This time is 

necessary for maximal expression of transfected gene (Lonergan T et al., 2005). 

 

 

 

2.5. Tissue preparation & collection 

 Hypothalamic PVN were identified using Toluidine blue (Sigma Aldrich; Sigma 

Aldrich Company LTD, Poole, Dorset, UK; 0.1% in 70% EtOH) staining, in conjunction with 
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a brain map (Paxinos and Watson, 2005) for reference. Following identification, 60 µm caudal-

rostral slices were taken from PVN using a cryostat (Leica Microsystems CM1900, Leica 

Microsystems Nussloch GmbH, Nussloch, Germany) maintained between -18ºC and -20ºC. 

Bilateral tissue punches of Left and Right PVN were obtained using a micro-punch (1mm 

diameter; Item Number. 18035-01, 15G, Fine Science Tools (USA) Inc., Foster City, CA, 

USA) and stored in RNase-free microcentrifuge tube on dry ice, or at -80ºC, until extraction. 

 

2.6. RNA extraction 

 To each sample tube, 1ml TRIzolLysis Reagent (Life Technologies, Paisley, UK; Cat 

No. 15596-018) was added and samples were mixed by vortexing for 10 s. Samples were then 

allowed to stand at room temperature for 5min prior to centrifugation (10300 rpm, 4ºC) for 

10min, in order to pellet any cellular debris. The resulting supernatant was collected, and added 

into a new microcentrifuge tube containing200 μl of chloroform with amylenes as stabilizer ≥ 

99% (v/v) (Sigma Aldrich). Samples were then mixed by vortex for 20 s and then allowed to 

stand for 5 min at room temperature. To separate organic and aqueous phases, samples were 

centrifuged for 15min (11200 rpm, 4ºC), and the aqueous phase (350 µl from approx. total 500 

µl) was collected and added into a new microcentrifuge tube containing1volume (350 µl) of 

70% (v/v) EtOH, in order to precipitate total RNA. Further purification was performed via the 

use of the RNeasy Mini Kit according to manufacturer’s protocol (Qiagen; Qiagen LTD., 

Manchester, UK; Cat No. 74104). Purified RNA was then quantitatified using an Implen Gene 

flow Nanophotometer, and then stored at - 20ºC until cDNA synthesis. 

 

2.7. cDNA synthesis 

 Using a QuantiTect Reverse Transcription Kit (Qiagen, Cat No. 205313), 100 ng RNA 

was reverse transcribed to produce cDNA, which was then diluted to a concentration of 2ng/µl 

for use in qPCR. 

 

 

 

2.8. RT-qPCR& Expression Analysis 

 Primers for the housekeeping gene Rpl19 (Ribosomal protein L19 - Fwd: 

GCGTCTGCAGCCATGAGTA, Rev: TGGCATTGGCGATTTCGTTG) & eGFP (enhanced 

Green fluorescent protein – Fwd: ATCATGGCCGACAAGCAGAAGAAC Rev: 

GTACAGCTCGTCCATGCCGAGAGT) were obtained online from Eurofins MWG Operon 
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(Eurofins MWG Synthesis GmbH., Ebersberg, Germany; http://www.eurofinsgenomics.eu/), 

with primer for V1aR (Rn_Avpr1a_1_SG QuantiTect Primer Assay, QT00402990, 

NM_053019) obtained from Qiagen. Expression via qPCR was analyzed for all genes on a 96 

well PCR plate (MicroAmp Fast 96-Well Reaction Plate (0.1 mL), Ref; 4346907, Applied 

Biosystems, Foster City, CA, USA), with each well containing; 2 ng of cDNA (1µl per well) 

along with 11 µl of Mastermix (Sybr Green (FastStart Universal Sybr Green Master (with 

ROX), Roche Diagnostics - Ref. 04913914001), Forward & Reverse Primers and RNase-free 

water). All samples were run in duplicate. Following sample & Mastermix addition, the plate 

was covered with a clear adhesive seal (Micro Amp Optical Adhesive Film, Ref; 210404056, 

Applied Biosystems) and centrifuged for 30s to ensure proper mixing of reagents and to remove 

air bubbles. RT-qPCR analysis was performed using an Applied Biosystems ViiATM Real Time 

PCR System for High Resolution Melt experiments in conjunction with the ViiATM 7 Software 

v1.2. All qRT-PCR reactions were followed by dissociation curve analysis. Relative 

quantification of gene expression was performed using the 2ΔΔCT method (Livak and 

Schmittgen, 2001). 

 All procedures were carried out in an RNase-free environment and all solutions made 

up using RNase-free water/reagents. 

 

2.9. Tissue preparation and immunohistochemistry 

At the end of experiments anesthetized rats were perfused transcardially with 150 ml 

of 0.1 M phosphate-buffered saline (PBS pH 7.4) followed by 300 ml of 4% (w/v) 

paraformaldehyde (PFA) in 0.1 M PBS. The brains were removed, post-fixed overnight in 4% 

paraformaldehyde followed by three-day-incubation in gradually increasing sucrose solutions 

(10-30% (w/v)) and frozen over liquid nitrogen. Free-floating coronal sections (35μm) of the 

forebrain were collected in 24-well tissue culture plates and washed in PBS (3x10min). 

Sections were then incubated in animal-free blocking solution (Vector Laboratories Ltd., 

Peterbourough, UK) for 30 minutes, washed in PBS (3 x 10minutes) and incubated in primary 

antibodies diluted in 0.1M PBS and 0.3% (v/v) Triton X-100 (Sigma-Aldrich Co. Ltd., Poole, 

Dorset, UK). Primary antibodies used were goat polyclonal anti-V1aR antibody (1:50, Santa-

Cruz Biotechnology, Heidelberg, Germany catalogue number: sc-18096), mouse monoclonal 

anti-neuron nuclear antigen (NeuN) antibody (1:100) and mouse monoclonal anti-glial 

fibrillary acidic protein (GFAP) (1:100) (both from Chemicon International, Temecula, CA, 

USA). Sections were incubated in primary antibodies for 48 hours at 4ºC and rinsed three times 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641828/#bib22
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641828/#bib22
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in PBS (10 minutes each). After incubation in biotinylated anti-mouse IgG raised in horse 

(1:500, Vector Laboratories Ltd, Peterborough, UK, catalogue number: BA 2001) for one hour, 

sections were transferred in wells containing secondary donkey anti-goat CF594 antibody 

(1:500, Sigma-Aldrich Co. Ltd., Poole, Dorset, UK) and streptavidin conjugated Alexa Fluor 

647 (1:500, Invitrogen Ltd, Paisley UK) diluted in PBS containing 0.3% (v/v) Triton X-100 

for one hour. Following further rinses (3 x 10 min), sections were mounted onto slides in 0.5% 

gelatin, air-dried and cover slipped with antifade mounting medium for fluorescence 

(VectashieldTM, Vector Laboratories Ltd., Peterborough, UK). Images were observed using 

Zeiss Axioskop 20 fluorescent microscope. ImageJ software, freely available 

athttps://imagej.nih.gov/ij/download.html was used to observe colocalization of V1aR, eGFP, 

NeuN or GFAP. 

 

2.10. Vasopressin dose response and V1aR antagonist dose determination 

 Experiments were performed to determine the selective dose of V1aX microinjected in 

PVN of conscious, freely moving rats (n=6). Following vehicle application (200 nL/min 0.9% 

w/v NaCl), increasing doses of VP (30 ng, 100 ng and 300 ng) in a volume of 200 nL were 

microinfused in PVN for 1 minute, at 2 hours interval. Arterial pulse pressure was recorded for 

60 minutes after drug administration. Five days later, V1aRX and VP were co-administered in 

the PVN of rats to test their blocking efficacy. 

 

2.11. Experimental design 

 All experiments started around 10 a.m. in quiet surrounding under controlled 

environmental conditions, in rats housed individually in Plexiglas cages (30 cm x 30 cm x 30 

cm). Cardiovascular parameters were recorded for 20 minutes under baseline conditions and 

10 minutes during exposure of rats to stress as well as during recovery. Stress was induced by 

directing air-jet (compressed in a bottle under 1 bar) to the top of rats’ head avoiding the snout. 

Wild type rats were microinfused with 200 nL/min of pyrogen-free saline in the PVN (Wt 

group, n=6) or with 300 ng/200 nL of V1aR antagonist (V1aRXWt group n=6); eGFP rats were 

not micoinfused in PVN (n=6) and rats over-expressing V1aR in PVN received either 200 

nL/min saline (V1aR group, n=6) or 300 ng/200 nL of V1aR antagonist (V1aRXV1aR group, 

n=6). 

 

2.12. Cardiovascular signal processing and analysis 

https://imagej.nih.gov/ij/download.html
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Arterial blood pressure was digitalized at 1000 Hz in Dataquest A.R.T. 4.0 software, 

(DSI, St. Paul, MN, USA). Systolic BP (SBP), diastolic BP (DBP), mean BP (MBP) and pulse 

interval (PI) or its inverse, heart rate (HR), were derived from the arterial pulse pressure as 

maximum, minimum, integral of the arterial pulse pressure wave and inter-beat interval of the 

arterial pulse pressure wave, respectively. For each registration period mean value of SBP, 

MBP, DBP, HR and PI was calculated, and again averaged for the whole experimental group 

(values shown in tables and graphs). 

 

2.13. Evaluation of the spontaneous baroreflex by the method of sequences.  

 The method is explained in details elsewhere (Bajić et al. 2010). Briefly, a spontaneous 

baroreflex sequence is a stream of consecutively increasing/decreasing SBP samples, followed 

by a stream of increasing/decreasing PI interval samples delayed by 3, 4 or 5 beats in respect 

to SBP. A threshold for sequence length was set to four beats (Lončar-Turukalo et al., 2011). 

The sensitivity of baroreflex [BRS, ms/mmHg] was assessed as a linear regression coefficient 

averaged over all identified sequences (PI=BRS·SBP+const, where fitting of the curve is done 

in a least square sense). 

 

2.14. Spectral analysis of BP and HR 

Before spectral analysis was performed, SBP, DBP and HR signals were re-sampled at 

20 Hz and subjected to nine-point Hanning window filter and linear trend removal (Milutinović 

et al,. 2006; Stojičić et al., 2008). Spectra were obtained using a fast Fourier transform 

algorithm on 30 overlapping  2048 point time series involving in 410-s registration period of 

SBP, DBP and HR. The power spectrum of BP (mmHg2) and HR (bpm2) for 30 FFT segments 

was calculated for the whole spectrum (total volume, TV: 0.019-3 Hz) and in three frequency 

ranges: very low frequency (VLF: 0.019-0.2 Hz), low frequency (LF: 0.2-0.8 Hz) and high 

frequency (HF: 0.8-3 Hz) range. The LF oscillation of SBP and DBP spectrum (LF-SBP and 

LF-DBP) and the LF/HF ratio of the HR spectrum are recognized markers of sympathetic 

activity directed to blood vessels and the sympatho-vagal balance to the heart, respectively 

(Japundzic-Žigon, 1998). 

 

2.15. Drugs 

Vasopressin ([Arg8]-vasopressin acetate) was purchased from Sigma-Aldrich 

(Unichem Belgrade, RS) and dissolved in pyrogen-free saline. Selective vasopressin V1a 

receptor antagonist d(CH2)5[Tyr(Me)2,Dab5]AVP was kindly donated by professor Maurice 
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Manning from the University of Toledo, Ohio, USA, and was dissolved in pyrogen-free saline 

(Manning et al., 2012). Ketamine (Ketamidor®), xylazine (Xylased®), carprofen (Rimadyl®) 

and combination of embutramide plus mebezonium plus tetracaine (T61®) injections were 

purchased from Marlo Farma (Belgrade, RS). Gentamicin injections (Gentamicin®) and 

bacitracin plus neomycin spray (Bivacyn®) were purchased from Hemofarm (Vršac, RS). 

 

2.16. Statistics 

 Cardiovascular parameters are presented as mean ± standard error of the mean. Multiple 

comparisons between experimental groups were performed by ANOVA for repeated measures 

followed by post hoc Bonferroni test using GraphPad Prism 6 software (GraphPad Software 

Inc., San Diego, CA, USA). Statistical significance was considered at p<0.05. 

 

3. Results 

3.1. Verification of microinjection sites and Ads expression 

The position of the micropipette and of the guide cannula in the PVN at the end of each 

experiment was verified histologically (Figure 1). The extent of virus spread was carefully 

examined and quantified. We observed that the dorsoventral, mediolateral and rostrocaudal 

extent of the injection covers a sphere of approximately 400-500 μm in diameter. The efficacy 

of Ad transduction and expression was verified by quantification of V1aR mRNA expression 

(Figure 2) and eGFP fluorescence (Figure 3B, 4B) at the site of transfection. We found that 

V1aRs are over-expressed in both neurons (Figure 3) and astrocytes (Figure 4). 

 

3.2. Vasopressin dose response and V1aR antagonist dose determination 

 VP microinfused in PVN in a dose of 30 ng/200nL/min did not affect SBP, DBP, MBP 

and HR, while VP in doses of 100 ng / 200 nL/min and 300 ng / 200 nL/min induced statistically 

significant increases in SBP, DBP, MBP, and statistically significant decreases in HR that 

lasted up to 20 minutes (Table 1). Both the hypertensive and bradycardic responses induced by 

100 ng of VP were prevented by co-administration of 300 ng/200nL/min V1aRX (Table 1). 

3.3. Cardiovascular parameters in rats over-expressing V1aR in the PVN 

Under baseline conditions, mean values of SBP, MBP, DBP, HR did not differ between 

sham injected Wt, eGFP and V1aR rats (Table 2). BRS was decreased in rats over-expressing 

V1aR in respect to sham injected Wt and eGFP control rats. Spectral analysis of BP and HR 

under basal physiological conditions revealed that SBP and DBP short-term variability (Figure 
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5), and HR short-term variability (Figure 6), were comparable between V1aR over-expressing 

rats, sham injected Wt rats and e-GFP rats. 

Exposure of rats to stress increased mean values of SBP, MBP, DBP, HR and decreased 

sBRS in sham injected Wt and eGFP transfected rats (table 2). Rats over-expressing V1aR in 

PVN exposed to stress exhibited similar increases in SBP, DBP and MBP compared to controls, 

and sBRS was also decreased (Table 2). Total BP variability increased in all experimental 

groups of rats exposed to stress due to an increase in variability in the LF and HF spectral 

bands. The increase of HF-SBP and HF-DBP variability was more pronounced in rats over-

expressing V1aR (Figure 5). In these rats, stress also induced a marked increase in LF-HR and 

HF-HR variability as well as in the LF/HF HR ratio (Figure 6).  

 

3.5. Effect of V1aRX microinjected in the PVN on cardiovascular parameters of 

 Wild type rats  

Under baseline physiological condition, microinfusion of V1aRX into the PVN of 

conscious Wt rats had no effect on mean levels of SBP, DBP, MBP, HR (Table 3, their 

variabilities (Figure 7 and Figure 8),and on BRS (Table 3). 

V1aRX pre-treatment of Wt rats did not modify the stress-induced increases in SBP, 

DBP, MBP, HR and baroreflex desensitization (table 3). Nonetheless, in these rats, LF-SBP 

and LF-DBP variability did not increase during stress, and stress also failed to enhance HF-

SBP and HF-DBP variability (Figure 7). V1aRX pre-treatment did not modify HR variability 

in Wt rats exposed to stress (Figure 8).   

 

3.6. Effect of V1aRX microinjected in the PVN on cardiovascular parameters of rats 

 over-expressing V1aR  

 Under baseline physiological conditions, microinjection of V1aRX to rats over-

expressing V1aR in PVN did not affect basal values of SBP, DBP, HR and their variabilities 

(Figure 7 and Figure 8). However, V1aRX restored the decrease in BRS observed under 

baseline conditions in rats over-expressing V1aR, but did not modify baroreflex desensitization 

by stress (Table 3). 

 Moreover, V1aRX pretreatment reduced the increases in LF-SBP, HF-SBP, LF-DBP, 

HF-DBP variabilities seen with stress (Figure 7), and prevented the increase in LF-HR 

variability and LF/HF HR ratio (Figure 8) observed in stressed rats over-expressing V1aR in 

the PVN.  
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4. Discussion  

The present study shows, for the first time, that rats over-expressing V1aR under 

baseline physiological conditions exhibit reduced BRS and, when exposed to stress, they 

respond with a marked increase in both BP and HR variability. Our results also show that, 

under baseline physiological conditions, V1aRs in PVN do not modify cardiovascular short-

term variability and BRS of Wt rats, but rather appear to mediate a stress-induced increase in 

BP variability. These findings suggest that a rat phenotype of increased expression of V1aR in 

the PVN demonstrate cardiovascular vulnerability compared to wild type controls.   

 Increased cardiovascular variability is a recognized risk factor for cardiovascular 

diseases (Lombardi, 2002; Narkiewicz and Grassi, 2008; Parati et al., 2012) and its 

complications such as stroke (Lattanzi et al. 2015a). Furthermore, Lattanzi and colleagues 

reported in aseries of clinical studies (Lattanzi et al., 2014a; 2014b, 2015b) that patients 

suffering from Alzheimer disease exhibit greater BP variability compared to age-matched 

controls, and that greater SBP variability in this patient population predicted faster cognitive 

decline, supporting the concept that vascular disease aggravates cognitive impairment. 

Therefore, elucidating the underpinning central mechanism/s could help identify new 

therapeutic target/s. Our results point to the importance of brain V1aR, particularly the level of 

expression/density of V1aR in the PVN, in relation to BP variability. In wild type rats, V1aR 

in the PVN mediates an increase of BP variability following stress, and this was augmented in 

rats over-expressing V1aRs in PVN. Moreover, in rats over-expressing V1aR in PVN, stress 

also increased HR variability. Accumulated evidence indicates that BP short-term variability 

arises from the coordinated activity of numerous homeostatic mechanisms (Japundžić-Žigon, 

1998). The low frequency oscillations in the spectra of BP are the result of sympathetic nervous 

system and the baroreceptor reflex activity, whilst very low frequency oscillations are 

generated by vasoactive mechanisms, mainly the renin-angiotensin system, and are opposed 

by baroreflex activation (Grichois et al., 1992). Conditions with increased sympathetic activity, 

such as hemorrhage and stress, are characterized by enhanced LF-BP variability that can be 

prevented by sympatholytic drugs (Ponchon and Elghozi, 1997; Kanbar et al., 2007). Thus has 

been proposed that LF-BP may be a marker of sympathetic activity directed to blood vessels. 

A number of neurons from the parvocellular division of the PVN project to the rostral part of 

the ventrolateral medulla (RVLM) where sympathetic outflow to the vasculature and, in part, 

to the heart originates (Hallbeck et al., 2001; Geerling et al., 2010). It can be assumed that 

neurons projecting from PVN to RVLM modulate peripheral vascular resistance and the 

magnitude of LF-BP oscillation during stress. Morphological studies indicate an abundance of 
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V1a receptors in the PVN (Ostrovski et al., 1994; Hernando et al., 2001). Using a dual 

immunocytochemical labeling procedure, it has been shown that those receptors are located on 

somata and dendrites of magnocellular neurons in PVN (Berlove and Piekut, 1990; Hurbin et 

al., 1998) and that during osmotic challenge, intranuclear release of VP increases or inhibits 

the firing of magnocellular neurons to optimize the systemic release of VP (Neumann et al., 

1993; Gouzène et al.,1998; Ludwig et al., 1994; Ota et al., 1994; Ludwig and Leng, 2006). In 

the present study, we did not apply an osmotic or a hypovolemic challenge to induce 

intranuclear and systemic release of VP from neurons located in the magnocellular part of the 

PVN. Moreover, the increase in BP variability observed in rats over-expressing V1aR in this 

study cannot be attributed to any peripheral effect of VP since peripherally released VP exerts 

the opposite effect and buffers BP variabilityby enhancing BRS (Japundzic-Zigon, 2001). The 

present finding, that selective vasopressin V1a receptor antagonist microinjected in PVN of 

wild type rats and rats over-expressing V1a receptors respectively, prevented or reduced the 

increase in LF BP variability by stress, suggests that V1a receptors in the PVN participate in 

the genesis of stress-induced increases in LF-BP variability. Moreover, we observed that in rats 

over-expressing V1aR in PVN there was a marked increase in cardiac LF-HR variability and 

also in the LF/HF-HR ratio, suggesting a shift in the autonomic control of the heart towards 

the sympathicus. This effect was antagonized by vasopressin V1aR antagonist microinjected 

in PVN, confirming that ectopic V1aRs are functional and increase sympathetic drive to blood 

vessels and to the heart during stress. Increased sympathetic responsiveness to stress may 

trigger cardiovascular and cerebral events. Altogether, our findings show that the V1aR over-

expressing rat phenotype is more susceptible to stress than wild type controls. 

 An interesting finding of this study is that the V1aR mediates an increase in HF-BP 

oscillations in wild type rats. This increase was more pronounced in rats over-expressing 

V1aRs in the PVN, and could be prevented by V1aR antagonist pre-treatment. The HF-BP 

oscillation is created by negative intra-thoracic pressure during breathing (Japundzic et al., 

1990). It may increase as a result of thoracic vessels unloading either by blood loss (Ponchon 

and Elghozi, 1997) or by blood redistribution due to vasodilatation (Japundzic et al., 1990). 

Since the rats in present experiments were well hydrated and eupnoic (as judged by the position 

of the respiratory HF peak at 1.6 Hz - 1.8 Hz in both HR and BP spectra), we believe that the 

increase of HF-BP can be attributed to stress-induced changes in respiratory pattern. Deeper 

inspiration imposed by stress may have induced greater distension of thoracic vessels and 

unloading that could increase the HF-BP oscillations (Elghozi et al., 1991). It is well 

established that PVN neurons project to brainstem areas that affect breathing pattern, primarily 



14 
 

the pre-Bötzinger complex in the medulla (PreBötC; Koizumi et al., 2013). The PreBötC 

generates and transmits the rhythmic activity producing inspiration (Smith et al., 1991; Rekling 

and Feldman, 1998). Microinjections of vasopressin into the PreBötC have been reported to 

stimulate respiration, an effect that involvesV1a receptors (Kc et al., 2002). Similar effects on 

respiration were obtained with microinjections of the excitatory transmitter L-glutamate into 

the PVN (Yeh et al., 1997). Also intracerebroventricular injection of VP has been shown to 

increase HF-BP variability (Milutinović et al., 2006). In our study, the effect of V1aR over-

expression in PVN on HF-BP magnitude could reflect an increase in the alveolar surface for 

blood oxygenation to support the active coping strategy observed in present experiments. In 

rats over-expressing V1aR in PVN, stress also increased cardiac HF-HR oscillations. HF-HR 

depicts respiratory sinus arrhythmia (RSA), a natural phenomenon that characterizes healthy 

young hearts. HF-HR can be abolished by atropine or vagotomy, (Akselrod et al., 1985; 

Japundzic et al., 1990) and its diminution has been found to be a bad prognostic sign in heart 

disease (Huikuri and Stein, 2013). This discovery is intriguing and implies that V1aR over-

expressed in PVN gives rise to a new trait in the transfected rats that improves RSA. The 

finding that vasopressin enhances vagal activity to the heart is not new and has been described 

in hemorrhagic shock (Peuler et al., 1990). However, the site of action of VP has yet to be 

determined, but it might involve the PVN, since microinjcetions of L-glutamate into caudal 

PVN produce bradycardia (Darlington et al., 1989).  

 Another important finding is that only in rats over-expressing V1aR in the PVN we 

observed modulation of baroreflex sensitivity under baseline but not stressed conditions. The 

effects of V1aR were suppressed by microinjection of the V1aR antagonist into the PVN, again 

showing that ectopic V1aRs are functional. This also confirms the principle that the receptor 

response to the ligand depends upon receptor density, which may affect both the quantity and 

the quality of the response (Kenakin, 1997). It is well known that VP modulates BRS both 

peripherally and centrally. Peripherally, VP has been shown to increase BRS via the area 

postrema, whislt centrally VP suppress the BRS via the NTS (Unger et al., 1986; Brattström et 

al., 1990; Dufloth et al., 1997). Morphological studies indicate that parvocellular neurons 

containing VP have direct projections to NTS and that the NTS expresses theV1aR (Ostrovski 

et al., 1994). In our experiments, selective blockade of V1aR in PVN did not prevent baroreflex 

desensitization by stress. This is not surprising since emotional stress is not associated with 

intranuclear or peripheral release of VP. Stress was found to increase intranuclear release of 

oxytocin (OT) (Callahan et al., 1989; Callahan et al., 1992; Nishioka et al., 1998), and a role 

for the oxytocin receptor (OTR) in the stress response was further supported by 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707631/#B38
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707631/#B32
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707631/#B32
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pharmacological and genetic modulation of OTR in the PVN (Lozić et al., 2014). Also, we 

have shown that during exposure of rats to air-jet stress, selective blockade of central VP 

receptors do not affect the response of the hypothalamo-pituitary axis as judged by the 

concentration of blood corticosterone (Stojičić et al., 2008), suggesting that VP released into 

the portal circulation during air-jet stress does not modulate ACTH release into the blood 

stream. Nonetheless, physiological stimuli know to increase VP release into the blood stream, 

such as hyperosmotic challenge, have been reported to increase intranuclear release of VP (Son 

et al., 2013) and that its role is to coordinate the optimal firing rate of the whole population of 

magnocellular neurons (Gouzènes et al., 1998), and also to activate pre-sympathetic neurons 

in the parvocellular division of PVN. This inter-neural cross-talk has been shown to involve 

V1aRs in PVN (Son et al., 2013), supporting the present findings.  

 It is important to emphasize that the ectopic V1aR could be localized on any neuron in 

the PVN. The PVN synthesizes over 30 different neurotransmitters (Pyner, 2009), including 

GABA, NO and glutamate produced by neurons involved in tonic inhibition of pre-ganglionic 

sympathetic neurons under baseline physiological conditions, as well as in OT-, and dopamine-

producing neurons that selectively modulate this tonic inhibitory signal (Pyner, 2009). 

Furthermore, we have shown that ectopic V1aRs are expressed on both neurons and astrocytes. 

Thus, there is a possibility that ectopic V1aR located on astrocytes could be involved (Doherty 

et al., 2011; Tasker et al., 2012) in the modulation of neuronal activity in the PVN.  

 

4.1. Conclusion 

 The present findings show for the first time that over-expression of V1aRs in PVN of 

rats decreases BRS under baseline conditions, and induces a marked increase in BP and HR 

short-term variability during exposure to emotional stress. In contrast, V1aRs in PVN of Wt 

rats do not affect baseline BRS, but mediate BP variability increase induced by stress. These 

findings suggest that somato-dendritically released VP and the level of expression (i.e. density) 

of the V1aR in the PVN modulate autonomic cardiovascular control during baseline and 

stressful physiological conditions and demarcate vulnerability to stress. This implies a possible 

role of the level of expression of the V1aR in the PVN in cardiovascular pathology, especially 

hypertension and heart failure, whose poor prognosis is associated with baroreflex 

desensitization and augmentation of cardiovascular short-term variability. 
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Table 1. Effects of vasopressin and vasopressin co-administered with V1a receptor 

antagonist on blood pressure and heart rate 

 

 SBP 

(mmHg) 

MBP  

(mmHg) 

DBP  

(mmHg) 

HR  

(bpm) 

0.9% NaCl (200 nL) 118 ± 2 92 ± 1 79 ± 3 375 ± 5 

AVP (30 ng · 200 nL-1) 125 ± 5 98 ± 5* 85 ± 3 405 ± 33 

AVP (100 ng · 200 nL-1) 169 ± 13*** 134 ± 11*** 117±13** 289 ± 16** 

AVP (300 ng · 200 nL-1) 172 ± 10 *** 138 ± 9 *** 121 ± 9** 281 ± 8*** 

V1aRX (300 ng · 200 nL-1) 

plus AVP (100 ng · 200 nL-1) 

116 ± 2 96 ± 3 86 ± 4 360 ± 10 

 

Values are mean of six experiments ± s.e.m.. In this and the following tables SBP stands for 

systolic blood pressure, MBP for mean blood pressure, DBP for diastolic blood pressure and 

HR for heart rate. V1aRX is a selective vasopressin V1a receptor antagonist. *p<0.05, 

**p<0.01, ***p<0.001 vs. 0.9% NaCl. 
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Table 2. Cardiovascular parameters in rats over-expressing V1a receptors in PVN 

  SBP  

(mmHg) 

MBP 

(mmHg) 

DBP 

(mmHg) 

HR   

(bpm) 

BRS  

(ms/mmHg) 

Wt Baseline 116 ± 3 98 ± 4 89 ± 3 350± 16 2.1 ± 0.1 

Stress 136 ± 2*** 115 ± 5*** 105 ± 3*** 425± 22*** 1.5 ± 0.2* 

eGFP Baseline 116 ± 5 97 ± 3 88 ± 2 338± 21 2.0 ± 0.1 

Stress 139 ± 3*** 118 ± 3*** 108 ± 3 *** 428 ± 15*** 1.3 ± 0.4* 

V1aR Baseline 112 ± 2 94 ± 3 84 ± 3 323 ± 13 1 ± 0.1 ††‡ 

Stress 135 ± 3 *** 116 ± 3 *** 103 ± 5 *** 389 ± 12 **†‡ 1.5 ±0.5 

 

Values are mean of six experiments ± s.e.m.. Wt: wild type rats; eGFP: enhanced green 

fluorescent protein transfected rats; V1aR: rats over-expressing V1a receptor in PVN. *p<0.05, 

**p<0.01, ***p<0.001 vs. baseline; †p<0.05 ††p<0.01 vs. Wt and ‡p<0.05 vs. eGFP. 
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Table 3. Cardiovascular parameters in Wild type rats and rats over-expressing V1a 

receptors in PVN, treated with selective V1aR antagonist 

 

 SBP 

(mmHg) 

MBP  

(mmHg) 

DBP 

(mmHg) 

HR  

(bpm) 

BRS 

(ms/mmHg) 

Wt Baseline  116 ± 3 98 ± 4 89 ± 3  350 ± 16 2.1  ± 0.1 

Stress 136 ± 2*** 115 ± 5*** 105 ± 3*** 425 ± 22*** 1.5 ± 0.2* 

V1aRXWt Baseline 115± 4 94 ± 5 84 ± 4 365 ± 6 2.3 ± 0.2  

Stress 130 ± 5* 107 ± 6*† 96 ± 4*† 423 ± 18** 1.5 ± 0.4 * 

V1aR  Baseline 112 ± 2 94 ± 3 84 ± 3  323 ± 13 1 ± 0.1†† 

Stress 135 ± 3 *** 116 ± 3 *** 103 ± 5 *** 389 ± 12**† 1.3 ± 0.5 

V1aRXV1aR Baseline 119 ± 3 96 ± 2 85 ± 3 322 ± 7 1.8 ± 0.3@ 

Stress 143 ± 3** 120 ± 3** 109 ± 3** 448 ± 6@*** 1.1 ± 0.1* 

 

Values are mean of six experiments ± s.e.m.. Wt: wild type sham injected rats; V1aRXWt: 

vasopressin V1a receptor antagonist treated Wt rats. V1aR:  rats over-expressing V1a 

receptors; V1aRXV1aR: rats over-expressing V1a receptors in PVN treated with vasopressin 

V1a receptor antagonist. *p<0.05, **p<0.01, ***p<0.001 vs. baseline; †p<0.05 ††p<0.01 vs. Wt 

and @p<0.05, @@p<0.01 vs. V1aR. 
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FIGURE 1 Verification of microinfusion site in PVN (-1.8 mm from Bregma). 

Representative picture. The arrow points to the mark made by chronic cannulation. Cresyl 

Violet, Magnification 4 x. Scale bar 500µm. 

 

FIGURE 2 V1aR mRNA expression in the left and the right PVN of Ads transfected rats 

and wild type sham transfected rats. Note statistically significant increase of mRNA 

expression at the site of transfection with Ads. 

 

FIGURE 3 Adenoviral vector transfections site in PVN neurons. Immunostaining to V1aR 

(A, A’), eGFP fluorescence (B, B’), neuron nuclear antigen - NeuN (C, C’), merged A and B 

and C (D, D’). A, B, C, D show transfected and A’ B’ C’ D’ non-transfected slices. 

Magnification 10 x. Scale bar indicates 100 μm. 

 

FIGURE 4 Adenoviral vector transfections site in PVN astrocytes. Immunostaining to 

V1aR (A, A’), eGFP fluorescence (B, B’), glial fibrillary acidic protein - GFAP (C, C’), merged 

A and B and C (D, D’). A, B, C, D show transfected and A’ B’ C’ D’ non-transfected slices. 

Magnification 10 x. Scale bar indicates 100 μm. 

 

FIGURE 5 Components of BP short-term variability in rats over-expressing V1aR in 

PVN   

Under baseline physiological conditions, V1aR over-expressing rats exhibited similar 

SBP and DBP short-term variability to Wt and eGFP rats. Air-jet stress induced comparable 

increases in LF-SBP and LF-DBP variability in all rats. The stress-induced increases in HF-

SBP and HF-DBP was accentuated in V1aR over-expressing rats. Empty bars indicate baseline 

values, black bars indicate stress values. Wt: wild-type rats; eGFP: rats transfected with 

enhanced green fluorescent protein in PVN; V1aR: rats over-expressing V1a receptors in PVN; 

LF-SBP: low frequency systolic blood pressure variability; HF-SBP: high frequency systolic 

blood pressure variability; LF-DBP: low frequency diastolic blood pressure variability; HF-

DBP: high frequency diastolic blood pressure variability. Values are mean of 6 rats ± s.e.m.. 

*p<0.05; **p<0.01; ***p<0.001 vs. baseline; †p<0.05; ††p<0.01vs. eGFP; ‡p<0.05; 

‡p<0.05;‡‡p<0.01 vs. Wt 
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FIGURE 6 Components of HR short-term variability in rats over-expressing V1aR in 

PVN   

Under baseline conditions, HR short-term variability was similar in V1aR rats, Wt and eGFP 

rats. Note however that air-jet stress induced marked increases in LF-HF, HF-HR and LF/HF-

HR variability only in V1aR over-expressing rats. Empty bars indicate baseline values, black 

bars indicate stress values. Wt: wild-type rats; eGFP: rats transfected in PVN with enhanced 

green fluorescent protein; V1aR: rats over-expressing vasopressin V1a receptors in PVN; LF-

HR: low frequency heart rate variability; HF-HR: high frequency heart rate. Values are mean 

of 6 rats ± s.e.m.. *p<0.05 vs. baseline; †p<0.05 vs. eGFP rats; ‡p<0.05 vs. Wt rats. 

 

FIGURE 7 Effects of selective vasopressin V1a receptor antagonist microinjected in PVN 

on the components of BP short-term variability of Wild type rats and rats over-expressing 

V1a receptors in PVN. 

Under baseline physiological conditions BP variability did not differ between V1aRX treated 

and non-treated rats. However, during exposure of Wt rats to stress, V1aRX prevented stress-

induced LF-SBP, LF-DBP, HF-SBP and HF-DBP increases. In V1aR rats exposed to stress, 

the V1aRX reduced the LF-SBP, LF-DBP, HF-SBP and HF-DBP increases induced by stress. 

Empty bars indicate baseline values, black bars indicate stress values. Wt: wild-type rats; 

eGFP: rats transfected with enhanced green fluorescent protein; V1aR: rats over-expressing 

vasopressin V1aR in PVN and V1aRX: rats treated with selective vasopressin V1aR antagonist 

in PVN. LF-SBP: low frequency systolic blood pressure variability; HF-SBP: high frequency 

systolic blood pressure variability; LF-DBP: low frequency diastolic blood pressure variability; 

HF-DBP: high frequency diastolic blood pressure variability. Values are mean of 6 rats ± 

s.e.m.. *p<0.05; **p<0.01; ***p<0.001 vs. baseline conditions; †p<0.05; ††p<0.05 vs. Wt; 

@p<0.05 @@@p<0.001 vs. V1aR. 

 

FIGURE 8 Effects of selective vasopressin V1a receptor antagonist microinjected in PVN 

on the components of HR short-term variability of Wild type rats and rats over-

expressing V1a receptors in PVN. 

Under baseline conditions, V1aRX did not affect HR short-term variability in Wt rats and V1aR 

over-expressing rats. However, in stressed V1aR rats, the V1aRX prevented the LF-HR 

increase, reduced the HF-HR increase, and abolished the LF/HF-HR increase. Empty bars 

indicate baseline values, black bars indicate stress values. Wt: wild-type rats; eGFP: rats 

transfected with enhanced green fluorescent protein; V1aR: rats over-expressing vasopressin 
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V1a receptors; V1aRX: rats treated with selective vasopressin V1aR antagonist in PVN. LF-

HR: low frequency heart rate variability; HF-HR: high frequency heart rate variability. Values 

are mean of 6 rats ± s.e.m.. *p<0.05 vs. baseline; †p<0.05 vs. Wt rats; @p<0.05; @@p<0.01 vs. 

V1aR rats. 
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