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Abstract 

Ultra-high molecular weight polyethylene (UHMWPE) fibre reinforced composite materials are 

widely used in ballistic impact and collision scenarios due to their extremely high specific strength 

and stiffness. Exceptional levels of protection are provided by controlling the damage and 

deformation mechanisms over several length scales. In this study, the role of UHMWPE fibre 

architecture (cross-ply, quasi-isotropic and rotational “helicoidal” layups) is considered on the 

damage and deformation mechanisms arising from low velocity impacts with 150 J impact energy 

and clamped boundary conditions. Dyneema® panels approximately 2.2 mm thick were impacted 

with a fully instrumented hemi-spherical impactor at velocities of 3.38 m/s. Full field deformation of 

the panels was captured through digital image correlation (DIC). The results indicate that the cross-

ply laminate [0°/90°] had the largest back face deflection, whilst quasi-isotropic architectures 

restricted and reduced the central deflection by an average of 43%. In the case of the [0°/90°] panel, 
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the deformation mechanisms were dominated by large amounts of in-plane shear with limited load 

transfer from primary fibres. Conversely, the failure of the quasi-isotropic panels were dominated by 

large amounts of panel buckling over various length scales. The observed mechanisms of deformation 

with increasing length scale were; through thickness fibre compression, fibre micro-buckling, fibre 

re-orientation with large matrix deformation, lamina kink band formation, and laminate buckling. The 

helicoidal panels showed that bend-twist and extension-twist coupling were important factors in 

controlling clamped boundary conditions and the laminate buckling/wrinkling shape. Further 

examination of the impact zone indicated that the damage mechanisms appear to be fibre orientation 

dependent, with quasi-isotropic laminates having up to 37.5% smaller impact damage zones 

compared with [0°/90°]. The experimental observations highlight the importance of fibre orientation 

in controlling the deformation mechanisms under dynamic impact, in particular limiting the shear 

deformation of Dyneema® panels. 
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1   Introduction 

Ultra-high molecular weight polyethylene (UHMWPE) fibre composites are widely used in impact 

protection scenarios as they have an extremely high specific strength and stiffness, providing 

exceptional levels of perforation resistance [1-2]. UHMWPE fibres were developed in the 1960’s by 

DSM and were trademarked as Dyneema®, and are typically supplied as a composite material 

comprising unidirectional (UD) cross-plied [0°/90°/0°/90°] layup pre-impregnated with a 

thermoplastic matrix. Several publications on the ballistic impact of Dyneema® laminates have been 

reported [3–5], however the mechanisms of perforation and deformation are only just starting to be 

understood [6-7]. Under ballistic impact there are typically two regimes of damage and deformation, 

separated by a large delamination: front face penetration with local (proximal) deformation until the 

impactor is decelerated to a critical velocity, followed by membrane stretching (distal) after 

delamination. It is reported that the distal mode of deformation can absorb up to 6.5 times more energy 

than the proximal mode, leading to excellent efficiency in this region for cross-ply laminates [6]. In 

the distal mode the laminate is no longer failing locally around the projectile but instead has large 

amounts of panel deformation, extending to the boundary [8]. This current study focuses on the 

deformation mechanisms of the distal region (the second phase in an unperforated laminate) at low 

speed and the effect that fibre orientation has on these mechanisms.  

Several high speed impact studies of UHMWPE on relatively thin laminates have been reported in 

the literature and a brief overview is given here. The theoretical deformation response at high speed 

stems from 1D Smith theory of ballistic impact on a single fibre, yarn, or strips of UD composite [9-

10]. Upon transverse impact of a single fibre (1D) an axial tensile wave propagates along the fibre at 

constant velocity whilst a transverse wave develops at a much slower speed producing a cone like 

shape [11]. Progressing on from this, an elastic membrane model, which can be utilized for laminates, 

shows similar deformation mechanisms that can be used in 2D [12]. This supports a simplified 
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dimensionless parameterization, the Cuniff velocity c* [1], that the ballistic limit of a laminate scales 

with the tensile wave speed and the mass specific tensile energy absorption of the fibre:  

𝑐∗ =
𝐸
𝜌	
  
𝜎𝜀
2𝜌

*/,

 (1) 

Where E, ρ, σ, and Ɛ are the Young’s modulus, density, tensile strength, and tensile failure strain of 

the fibre. This analysis however does not consider several effects such as the matrix properties [13], 

the influence of fibre orientation [14], and strain rate dependency of the fibres [8]. It has recently been 

shown that the layup orientation can have a large effect on not only the velocity to 50% chance of 

perforation (V50), but also in limiting back face deflection (BFD) [14-15]. Reducing BFD for an 

impact that does not cause laminate perforation is particularly important for applications such as 

helmets that have stringent design specifications to limit the amount of transverse deflection in order 

to prevent blunt trauma injuries. A rotational helicoidal fibre architecture has shown that BFD can be 

significantly reduced for a given impact and areal density; however typically at the expense of 

reducing V50 [15]. Currently there have been very few studies into low velocity impact of UHMWPE 

fibre composite panels, which may provide useful insight into the deformation mechanisms of varying 

fibre oriented laminates. In this study, a fully instrumented drop weight testing program with digital 

image correlation (DIC) has captured the full field deformation of the panels under impact. Optical 

microscopy and scanning electron microscopy (SEM) were employed to confirm the deformation 

mechanisms. The information should prove useful for numerical modelling techniques and also help 

bridge the gap between quasi-static and high-speed test regimes. The low-speed/high energy impact 

in the viscoelastic regime of the panels may also be of interest for civil applications such as cargo 

containers and protective helmets. At higher velocities, panels are expected to respond at a higher 

stiffness, however the mechanisms of deformation due to the fibre orientation prior to failure are 

similar [15].  
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2   Materials and Method 

In this study HB25 and HB26 Dyneema® pre-preg materials, supplied by DSM, were used. HB25 and 

HB26 contain identical SK76 fibres with a diameter of approximately 17 µm and use the same 

polyetherdiol-aliphatic diisocyanate polyurethane (PADP) thermoplastic matrix; however HB25 has 

only a single cross ply [0°/90°] layup and HB26 contains four plies [0°/90°/0°/90°]. The pre-preg 

sub-laminates were cut to 200 mm squares and then stacked and hot pressed to form the laminate 

structure with a UD layer thickness of approximately 67 µm and a fibre volume fraction of 87% [16]. 

The hot press consolidation was performed in a 50 ton Hare hot press, with the time, temperature, 

and pressure cycle given in Fig. 1. 

 

Fig. 1: Consolidation cycle used in the production of Dyneema® laminates. 

2.1   Angled Ply Laminates  

UD composite plies display high anisotropy between the longitudinal fibre direction (E11) and the 

tangential non-fibre direction (E22), with Dyneema® being an extreme case due to the low matrix 

strength and stiffness. A laminate’s stiffness in a particular direction is dependent on the angle of 

orientation of the ply relative to a fixed axis, θ, and one can quantify the laminate stiffness through 

classical laminate theory at the angle of in-plane loading, φ, see Fig. 2. Dyneema® is extremely 

anisotropic compared structural composites such as carbon fibre epoxy as E11/E22 can be 10 times 
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higher. Off axis loading of these plies therefore contributes considerably less to the in-plane stiffness 

for Dyneema® (Fig. 2a) compared with carbon fibre epoxy (Fig. 2b). When the laminate properties 

are the same in all in-plane directions, the laminate is termed quasi-isotropic. Quasi-isotropic stiffness 

relative to UD stiffness is lower for Dyneema® than for carbon fibre epoxy, due to the near zero 

contribution of the off axis stiffness’s, E22 and G12. Quasi-Isotropic laminates can have several layup 

orientations, and one type used here is termed helicoidal, where fibre orientation rotates through the 

thickness of the laminate in a consistent manner. Reducing the angle mismatch between plies, θn-θn-

1, where θn is the ply angle of the nth ply through the thickness, can help reduce the tendency for 

composites to delaminate through minimizing the stiffness mismatch between the highly anisotropic 

layers of the composite material. For a helicoidal layup to be quasi-isotropic (Fig. 2), a full rotation 

of UD plies must occur through the thickness. Note from Fig. 2 the extreme anisotropy of Dyneema® 

compared with carbon fibre epoxy due to lower off-axis properties of the UD ply and that helicoidal 

laminates are quasi-isotropic.  

 

Fig. 2. Comparison of in-plane stiffness relative to the fibre direction UD stiffness, E11, as a function of in-plane loading 

angle, φ, for UD, 0°/90°, helicoidal, and quasi-isotropic layups for a) Dyneema® [8] and b) carbon fibre epoxy.  

2.2   Selection of Fibre Architectures 

Five architectures were selected for drop weight impact testing, with three test repeats for each one. 

A traditional cross-ply [0°/90°]16 layup was tested with HB25 and HB26 to compare batch 

performance. A quasi-isotropic layup [[0°/90°]2/[±45°]2]8 using HB26 sub-laminates was also tested. 
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Due to the extremely low strength and stiffness properties of Dyneema® in its UD form, it is difficult 

to produce helicoidal laminates that use a UD pre-preg and maintain a low ply thickness. To overcome 

this, 3 helicoidal layups, that were also quasi-isotropic and of varying angle mismatch, were produced 

using HB25 sub-laminates with an angle mismatch of 22.5°, 11.25°, 5.625° named HC1, HC2, and 

HC3 respectively. Angled pre-preg was cut with a laser cutter to provide an accuracy of ±1°. All 

layups are summarized in Table 1 together with nomenclature and material type. For helicoidal 

laminates, the angle mismatch relates to the variation in angle between the top ply of each adjacent 

[0°/90°] sub-laminate (Fig. 3). All laminates are the equivalent of 32 UD plies thick. 

Table 1. Test matrix of layups investigated. It is important to note that angle mismatch is between individual lamina for 

[0°/90°] cases and individual sub-laminates for helicoidal cases.  

Nomenclature Layup Angle Mismatch Material 
26-090 [(0°/90°)2]8 90°  HB26 
25-090 [0°/90°]16 90° HB25 
26-QI [(0°/90°)2/(±45)2]4 90° & ±45° HB26 

25-HC1 [(0°/90°)/(22.5/-67.5)/(45/-45)/(67.5/-22.5)]4  22.5° HB25 
25-HC2 [(0°/90°)/(11.25/-78.75)/(22.5/-67.5)…(78.75/-11.25)]2 12.25° HB25 
25-HC3 [(0°/90°)/(5.625/-84.375)…(84.375/-5.625)]1 5.625° HB25 

	
   	
   	
   	
  

 

Fig. 3. Example schematic of helicoidal layup 25-HC2 with a sub-laminate angle mismatch of 11.25°. Note that the 

smaller the angle mismatch of the sub-laminates, the more closely related to [0°/90°] they become.  
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2.3   Drop Weight Impact Setup 

Drop weight impact experiments were performed using a fully instrumented Instron Dynatup 

9250HV with 150 J of impact energy, a velocity of 3.38 m/s, and a mass of 26.3 kg. The velocity was 

confirmed through a laser gate at the point of impact, triggering the recording of force data. A custom 

clamping device was used to hold the panels in place during impact, with no bolting through the 

laminate (Fig. 4). The impactor used was a hardened steel hemisphere 20 mm in diameter which made 

contact at the centre of the 125 mm diameter aperture. The schematic of this setup in Fig. 4 shows 

the purely frictional contact between the clamp and the plate, controlled by 8 equally spaced 

surrounding bolts. The axial force, controlled by bolt torque, was estimated by:  

𝐹 =
𝑇
𝐾.𝐷 (2) 

Where T is the applied torque, K is the coefficient of friction or “nut factor” which was assumed to 

be 0.2 [17], D is the bolt diameter, and F is the applied axial force. All bolts were torqued twice to 

account for any relaxation due to any initial non-symmetric loading of the clamp. Bolts were torqued 

to induce a clamping pressure of 1 MPa, 2 MPa, and 4 MPa respectively for initial boundary condition 

investigations using 26-090 laminates. Following this all clamp pressures were maintained at 2 MPa 

for direct comparison between different fibre architectures.   

 

Fig. 4. Schematic of custom clamping plate highlighting the key impactor properties.  
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The experimental setup included two high-speed Photron Fastcam SA-Z video cameras recording in 

stereo via a first surface mirror in order to capture the full field back face deformation through DIC 

(Fig. 5). The characteristics of measurements and analyses performed through DIC are given in Table 

2. A speckle pattern was manually sprayed on to the back of the Dyneema® laminates using black 

and white spray paint and was illuminated by 4 LED lights during testing. The first ply orientation of 

all laminates was 0°, which appears vertically in all DIC analyses.  

 

Fig. 5. Drop-weight impact tower final setup with two SA-Z high-speed cameras working in stereo to capture the full 

field deformation of the panels during impact.  

Table 2. Stereo DIC characteristics.  

Attribute Characteristic 
Camera Photron SAZ 

Lens Tokina 100mm F2.8-22 D 
Software LaVision DaVis 8.3.0 

Resolution 988 х 1032 pixels 
Field of View 174 х 165 mm 
Frame Rate 10 kHz 
Subset Size 19 pixels 
Step Size 5 pixels 

Spatial Resolution 0.83944 mm 
Displacement Resolution 0.76 µm 

Strain Resolution 156 µƐ 
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3   Results and Discussion 

3.1   Boundary Conditions  

The BFD of the centre of the laminate was assumed to be equivalent to the measured displacement 

of the drop weight. BFD vs. time was investigated for the boundary pressure variations of 1 MPa, 2 

MPa, and 4 MPa with a 26-090 layup (Fig. 6). The initial transverse velocity was similar for all 

samples, illustrated by the initial linear region, which was estimated to be equal to the impact velocity 

of 3.38 m/s, as measured via the laser gate upon impact. After a time of 10 ms greater deceleration 

started to occur, and there seemed to be no correlation between clamping pressure and BFD. 

Following the maximum deflection, the BFD then reduced as some spring back occurred. Here the 

displacement of the drop weight will likely differ from the BFD due to rebound of the impactor. The 

coefficient of variation of the maximum BFD for the 9 tests, 3 at each clamp pressure, was 3.8%; 

indicating that the deviation between laminates with different clamping pressures was small. The 

coefficient of friction of Dyneema® is extremely low which makes the material difficult to clamp 

effectively, with large amounts of boundary slip and pull-in where fibres in contact with the impactor 

(termed the ‘primary fibres’) reach the edge of the laminate (Fig. 7). Fibre splitting was also evident 

at the boundary in the regions of pull-in, however fibre failure did not occur. As clamping pressure 

had little effect, all further tests were performed with 2 MPa of clamping pressure.  
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Fig. 6. Comparison of BFD with impact time of 26-090 panels with varying clamping pressures of 1 MPa, 2 MPa, and 4 

MPa.   

 

Fig. 7. 26-090 with 4MPa clamping pressure post impact a) impactor view, b) rear DIC view with speckle pattern, and 

c) side view. Note the pull-in located where primary fibres reach the edge of the laminate in this [0°/90°] layup.  

3.2   Back Face Deflection and Contact Force 

Contact force and displacement of the drop weight were continuously monitored throughout each 

impact and a single representative result for each layup is given in Fig. 8. Energies absorbed by the 

laminates, calculated through the integration of the force displacement curves, were within 4% of the 
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150 J impact energy as no perforation occurred. As expected 25-090 and 26-090 panels behave 

identically, meaning there is no difference between HB25 and HB26 sub-laminate stacks. Panel’s 26-

QI, 25-HC1, 25-HC2, and 25-HC3, which are all quasi-isotropic, all have a reduced BFD and a higher 

contact force, indicating that the impactor comes to rest over a much shorter distance. Whilst [0°/90°] 

layups have a relatively constant increase of BFD with increasing contact force, quasi-isotropic 

laminates had a sharper increase in contact force until a maximum BFD of around 7.5 mm. After this 

it was found that boundary slip reduced the contact force loading rate (Fig. 9). Boundary slip was 

caused through pull-in of the fibres at the boundary, and increases throughout the impact as friction 

is overcome at 7.5 mm BFD until approaching the maximum BFD where spring-back occurred. 

During this phase BFD starts to reduce due to the elastic portion of the deformation, however some 

slip increase was still seen due to boundary relaxation, particularly in the Y direction (Fig. 9). The 

contact force at maximum BFD has slightly higher variation for [0°/90°] laminates than for quasi-

isotropic (Fig. 10). The amount of pull-in for [0°/90°] laminates was higher than for quasi-isotropic, 

indicating that higher boundary slip may have a large effect in the reduced contact force in [0°/90°] 

laminates. This is believed to be due to the large amount of in-plane shear deformation making the 

[0°/90°] panels harder to constrain at the boundary. This method of deformation caused the smoother 

force displacement curves captured in Fig. 8. 26-QI laminates on average gave the lowest BFD, the 

lowest amount of pull-in, and the highest contact force. Helicoidal laminates with decreasing angle 

mismatch tended to have a small increase in pull-in relative to the other quasi-isotropic laminates, but 

still lower than [0°/90°], as bend-twist and extension-twist coupling of the laminates becomes greater. 

All helicoidal laminates have a degree of non-symmetry about their mid-plane, which is intrinsic to 

the architecture. This is greatest for 25-HC3, which has increased bend-twist and extension-twist 

coupling. Although difficult to quantify, this is believed to promote buckling/wrinkling of the 

helicoidal laminates, particularly under the clamped boundary, which is clearly evident after testing 

(Fig. 11).  
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Fig. 8: Representative impacts for each laminate architecture comparing maximum BFD across the laminate with 

measured contact force during an impact. 

 

Fig. 9. Maximum BFD across the laminate with maximum X and Y pull-in (slip) from boundary measured via DIC.  
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Fig. 10. Contact force at maximum deflection for a) [0°/90°] laminates with maximum measured maximum BFD, b) 

[0°/90°] laminates with the maximum pull-in for either the X or Y direction at maximum BFD, c) quasi-isotropic 

laminates with maximum BFD, and d) quasi-isotropic laminates with the maximum pull-in for either the X or Y 

direction at maximum BFD. Note the amount of pull-in for [0°/90°] laminates is much higher than for quasi-isotropic.  

 

Fig. 11.  A quarter view of a 25-HC3 impacted laminate. Note the wrinkling under the boundary.  
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3.3   Contour Map Comparison 

3.3.1   0°/90° Laminates 

Observations regarding the mechanisms of deformation were further analyzed through comparisons 

of displacement contour maps obtained from the DIC. Laminate 26-090 contour maps showed a four 

sided pyramid type of deformation, where large amounts of pull-in is evident (Fig. 12a). In-plane x 

direction strain Ɛxx only seems to be positive in the primary fibres, those in contact with the impactor, 

with strain peaking at the impact zone and approaching the failure strain of the fibres (Fig. 12b).  

There was also little load transfer to neighboring regions of primary fibres, with these regions actually 

in compression. Prior to maximum BFD, there was an increase in tension neighbouring the primary 

fibres as spring-back had not started to occur, however the amount of tension was still limited. 

Although not shown, in-plane y direction strain Ɛyy was similar, but positive strains were observed in 

the primary fibres in the y direction due to the [0°/90°] layup. The panels were dominated by large 

amounts of in-plane shear deformation, reaching strains just below γxy ≈ 0.1. The largest shear 

deformations occurred close to the primary fibres as some tensile load is transferred via this 

mechanism to neighboring fibres (Fig. 12c). In these zones, grid markings on the top surface, initially 

positioned in a square grid following the fibre orientation, clearly show re-alignment of 90° fibres 

toward the point of impact (Fig. 7a). This is also known as scissoring, as the rotation of the fibres 

causes the angle between the [0°/90°] lamina to reduce. The in-plane shear deformation under the 

boundary led to an increase in the amount of boundary slip, and as this mechanism was gradual, no 

clear change in the rate of contact force loading can be seen in 26-090 laminates. This mechanism of 

boundary slip may also have been the cause for slightly higher variation in [0°/90°] laminates BFD 

compared with quasi-isotropic laminates (Fig. 10a-b).  
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Fig. 12. Contour maps showing full field deformation of a 26-090 panel during impact. a) BFD at 0 ms, 6 ms, 12 ms, 

and 18 ms after impact, b) in-plane strain Ɛxx at maximum BFD and c) in-plane shear strain γxy at maximum BFD.  

3.3.2   Quasi-isotropic and Helicoidal Laminates 

Quasi-isotropic laminates deformed in a different manner from 26-090 laminates. 25-HC1, 25-HC2, 

25-HC3, and 26-QI all had lower maximum back face deflections, and were dominated by wrinkling 

and buckling of the laminates. Here wrinkling has been used to define out of plane waviness that was 

under 2 mm in width that can occur throughout the laminate, and buckling is a larger global response 

where the buckle initiates from the impact zone and propagates to the boundary, with a typical width 

of 16-20 mm. Due to the scale difference, contour maps only show the large scale global buckling of 

25-HC1, 25-HC2, 25-HC3 (Fig. 13), and 26-QI (Fig. 14). All showed fairly similar amounts of 

buckling, however the amount of wrinkling tended to increase with reduced angle mismatch. In-plane 

x direction strain Ɛxx showed a greater tensile distribution over the panel, with less of the panel being 

in compression. The peak strain below the impact zone was also slightly reduced (Fig. 13-14b). 
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Compressive zones were limited to smaller areas, particularly in the troughs of buckles, however they 

tended to be slightly larger in magnitude. In-plane y direction strain Ɛyy was similar but again oriented 

in the y direction, represented in Fig. 9. In-plane shear strain, γxy, was reduced, however large shear 

strains did tend to occur locally in the buckled regions, particularly in the horizontal and vertical 

directions, with the magnitude not varying much amongst the quasi-isotropic laminate configurations 

(Fig. 13-14c). From the in-plane shear contour plots it is also noticeable that with a reduction in the 

angle mismatch of helicoidal laminates, buckles tended to rotate from vertical positions, and 

following visual inspection, buckles would occasionally twist/fold over (Fig. 13c, 14c). It was thought 

that bend-twist and extension-twist coupling were the cause, and may have contributed to the 

increased slippage of these laminates under the clamped boundary.  

 

Fig. 13. Contour maps showing full field deformation of 25-HC3 panel during impact a) BFD at 0 ms, 4 ms, 8 ms, and 

10.8 ms after impact, b) in-plane strain Ɛxx at maximum BFD and c) in-plane shear strain γxy at maximum BFD. 
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Fig. 14. Contour maps showing full field deformation of 26-QI panel during impact a) BFD at 0 ms, 4 ms, 8 ms, and 

10.4 ms after impact, b) in-plane strain Ɛxx at maximum BFD and c) in-plane shear strain γxy at maximum BFD. 

3.4   Microscopy 

Fractography was performed in order to visualize the mechanisms of deformation and damage at the 

micro-scale through optical microscopy, surface scanning, and SEM. Dyneema® composites are 

difficult to image due to their soft nature, as mechanical cutting of the laminates tends to interfere 

with and amplify the original damage zones, if not undertaken with considerable care. For cross 

sectional microscopy, the laminates were sectioned approximately 10 mm from the zone of interest 

and then embedded in epoxy resin to provide additional support to the sample. Following curing at 

room temperature, the samples were ground down to the zone of interest and then polished for 

imaging. For top down imaging via SEM, a single UD layer was peeled off by hand to investigate 

any damage that had been caused. Note that SEM images and cross-sectional images were from two 

separate samples of the same layup. Surface scanning was performed on the same specimen that was 
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used prior to SEM and the top layer was removed prior to surface scanning. Comparisons to virgin 

material post-manufacture are referred to throughout, and the reader is directed to available literature 

for reference [4,14]. The focus in this section was on the impact zone itself (Fig. 11).  

3.4.1   0°/90° 

Microscopy on laminates 26-090 in the impact zone showed a large indentation approximately 12 

mm in diameter with surrounding wrinkles following the [0°/90°] fibre orientation to form a square, 

much larger at 16 mm across (Fig. 15). From surface scanning some fibres appeared loose from the 

peeling back process of the top UD layer, prior to SEM. As surface scanning image composition was 

composed 50/50 from imagery/depth contours, pen markings on the top surface to identify large areas 

of deformation can be seen throughout. Directly underneath the impact, the laminate cross section 

was similar to that seen prior to impact, however the degree of waviness was slightly reduced (Fig. 

16a). Top down SEM shows that fibres themselves appear flattened with micro-indentations from the 

layer above, larger in size than produced from the hot-pressing process alone (Fig. 16b). This indicates 

that during the impact event large compressive stresses were imparted onto the laminate under the 

impactor tip, leading to a combined stress state of through thickness compression and in-plane 

tension; with the latter indicated by in-plane strain contour mapping. Wrinkling in primary fibres 

particularly in the area surrounding the impact zone was prominent, and cross sectional microscopy 

showed symmetric kink-band formation (Fig. 17a). This was thought to be caused by in-plane 

compression due to Poisson contraction from primary fibres in tension, initiating micro-buckling of 

the fibres followed by kink-band formation at the ply level leading to wrinkling of the laminate. 

Surrounding the kink-band, 90° fibres running perpendicular to the wrinkle re-aligned toward the 

point of impact due to the low stiffness and strength, allowing large in-plane shear deformations. Due 

to the low shear strength of the PAPD matrix material combined with the ability of UHMWPE fibres 
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to bend, the matrix material becomes highly deformed and the fibres can rotate toward the point of 

loading.   

 

Fig. 15. Surface scan of a 26-090 specimen prior to SEM imaging.  

 

Fig. 16. Centre of the impact zone of a 26-090 a) cross sectional optical microscopy of impact zone centre, and b) top 

down SEM image.  
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Fig. 17. Wrinkling in a 26-090 laminate a) cross sectional optical microscopy of kink-band formation, and b) top down 

SEM image showing wrinkling and re-aligned of fibres. 

3.4.2   Quasi-Isotropic/Helicoidal 

Microscopy examination of quasi-isotropic and helicoidal laminates showed different deformation 

and damage mechanisms. Helicoidal laminate impact zones were surrounded by circular wrinkling 

around the impactor, whilst 26-QI tended to have less wrinkling and more similarities to 26-090 

laminates (Fig. 18a-c). The size of the damage zone compared with 26-090 laminates was also 

reduced by 37.5% to approximately 10 mm across and the indentation depth reduced compared with 

the surrounding laminate. Cross section images highlighted the layup of the quasi-isotropic 

configurations, with examples 25-HC1, 25-HC3, and 26-QI provided (Fig. 18d-f). As the layup 

orientation departs from [0°/90°], the layers tend to become more blurred in optical microscopy and 

layers can become difficult to differentiate. Optical cross section microscopy of the wrinkles showed 

that helicoidal laminate kink band formations were no longer symmetric about a central mid-plane 
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given in Fig. 17, however 26-QI still appeared symmetrical (Fig. 18g-i). Top down SEM imaging 

also proved more difficult for quasi-isotropic laminates as the layer imaged was easily separated 

during the peel-off process of the layer above (Fig. 18j-l). This may have been caused by an increase 

in the amount of ply damage during the impact itself compared with 26-090 laminates. In the impact 

zone there was also clear evidence of fibre flattening, although it was more difficult to locate due to 

the disturbed fibres in this zone. The top down imaging of the wrinkles showed much less fibre re-

orientation toward the point of impact compared with that of the 26-090 laminates. This was due to 

the increase in the laminate shear stiffness, and local wrinkles were caused more by micro-buckling 

of fibres rather than large in-plane fibre curvatures (Fig. 18j-l).  
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Fig. 18. Microscopy for quasi-isotropic laminates with columns representing 25-HC1, 25-HC3, and 26-QI from left to 

right. a-c) provide surface scans of the impact zones, d-f) cross sectional microscopy of the full laminate thickness 

highlighting fibre orientation, g-i) cross sectional microscopy highlighting kink-band formation that is non-symmetrical 

for helicoidal laminates, j-l) top down SEM images of wrinkling in the laminates with dashed line indicating 

approximate cross section image location. 

4   Conclusion and Discussion 

This study presented the low-speed impact behavior of thin Dyneema® composite laminates through 

impact testing at 150 J of energy with a 20 mm diameter blunt hemi-spherical impactor. A custom 

clamping device with a 125 mm diameter aperture was used to hold the 2.2 mm thick laminates in 

place during the impact event. The highly instrumented setup allowed for vast amounts of data to be 
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collected, with the thorough analysis of the full field deformation expected to contribute towards 

ongoing numerical modelling techniques. Several fibre architectures were investigated to assess the 

varying mechanisms of deformation, followed by microscopy to understand these processes of 

deformation and damage formation at the micro-scale.  

The results clearly showed that quasi-isotropic laminates had on average a 43% lower maximum back 

face deflection compared with [0°/90°] laminates, with the time taken to maximum back face 

deflection also greatly reduced. The effect of angle mismatch between HB25 sub-laminates for quasi-

isotropic layups was also investigated. The difference in BFD was minimal, however helicoidal 

laminates had slightly larger BFD with an increase in slip at the boundary. This was thought to be 

caused by the non-symmetrical layup, causing bend-twist and extension-twist coupling, leading to 

increased slip under the clamped boundary conditions due to laminate wrinkling. This observation 

may prove to be important in future structural design of alternate laminate architectures to minimize 

BFD. Varying the clamping pressure on the boundary conditions also seemed to have little effect on 

the maximum BFD due to the low coefficient of friction of Dyneema®.  

The resulting deformation shape for [0°/90°] panels appeared to be a four sided pyramid, controlled 

through large amounts of in-plane shear deformation. DIC showed that tensile strains were located in 

primary fibres in contact with the impactor, however load was not transferred to surrounding regions, 

which were often in compression. Analysis through visual inspection, optical microscopy and SEM 

showed that during in-plane shear deformations, large amounts of fibre re-alignment occurred. 

Assuming that the fibres in the primary direction were 0°, 90° fibres shifted due large in-plane shear 

and started to re-align toward the point of impact causing large curvatures. This was observed at a 

global level in the region of primary fibre transfer load to neighboring fibres, through visual 

inspection, as well as at a local level with wrinkling of groups of fibres, through SEM. By comparison, 

quasi-isotropic panels were dominated by large amounts of panel buckling that initiated from the 

impact zone and progressed to the boundary. DIC showed this type of deformation reduced the 
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distribution of in-plane shear strain throughout the panel but instead localized this to the edge of 

buckle regions. Similarly tensile strains were better dispersed and the peak strain beneath the impact 

zone appeared to be reduced. Compressive strains were confined to regions of large out of-plane 

buckling displacements, particularly in the troughs of buckles.  

The impact zone size and shape altered depending on the layup. Surface scans showed a circular 

indent surrounded by an outer square of wrinkling for [0°/90°] laminates, quasi-isotropic helicoidal 

laminates showed circular wrinkling surrounding the impact zone, whilst the traditional [0°/90°/±45°] 

quasi-isotropic laminate showed a combination of the two, with less wrinkling. These observations 

clearly highlight how the various fibre orientations influence the local damage mechanisms. All 

laminates showed fibre compressive damage under SEM through fibre crushing, and cross section 

imaging of buckled regions showed an increase in the non-symmetry of wrinkles with higher bend-

twist and extension twist-coupling.  

These observations show that fibre orientation is important for controlling the deformation 

mechanisms under impact, in particular limiting the in-plane shear deformation of Dyneema® panels. 

Helicoidal fibre orientations showed a small difference in back face deflection compared with 

traditional [0°/90°/±45°] quasi-isotropic layups, thought to be due to the non-symmetrical layup 

which allowed for increased bend-twist and extension twist coupling, causing slip under the boundary 

clamp. In the future, further investigation of these laminate architectures is required in order to 

determine other failure mechanisms, particularly for front face armour design in the local penetration 

(proximal) zone where the membrane stretching mode is no longer the dominant mode of 

deformation. This work will also be utilized in future for the verification and validation of numerical 

modelling techniques.  
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