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Glacial fronts are important summer habitat for narwhals (Mornodon mono-
ceros); however, no studies have quantified which glacial properties attract
whales. We investigated the importance of glacial habitats using telemetry
data from 7 =15 whales tagged in September of 1993, 1994, 2006 and
2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers,
we estimated (i) narwhal presence/absence, (ii) number of 24 h periods
spent at glaciers and (iii) the fraction of narwhals that visited each glacier
(at 5, 7 and 10 km) in autumn. We also compiled data on glacier width,
ice thickness, ice velocity, front advance/retreat, area and extent of iceberg
discharge, bathymetry, subglacial freshwater run-off and sediment flux.
Narwhal use of glacial habitats expanded in the 2000s probably due to
reduced summer fast ice and later autumn freeze-up. Using a generalized
multivariate framework, glacier ice front thickness (vertical height in the
water column) was a significant covariate in all models. A negative relation-
ship with glacier velocity was included in several models and glacier front
width was a significant predictor in the 2000s. Results suggest narwhals
prefer glaciers with potential for higher ambient freshwater melt over gla-
ciers with silt-laden discharge. This may represent a preference for
summer freshwater habitat, similar to other Arctic monodontids.

1. Introduction

Arctic and subarctic glacial fjords are characterized by high rates of pro-
ductivity that lead to rich marine ecosystems, including high densities of
seabirds, marine mammals and fishes [1]. High productivity in Greenland’s gla-
cial fijords and their downstream regions has been attributed to glacial
meltwater, with a strong correlation between the presence of meltwater nutri-
ents and phytoplankton blooms [2]. These plumes may aggregate plankton
or stun plankton via freshwater osmotic shock [3], making them easy prey
for larger surface-feeding predators and multiple trophic levels. Nutrient
fluxes at the glacier fronts are also used for post-bloom plankton production,
lengthening overall feeding opportunities in summer. In some areas of the
Arctic where the permanent multi-year sea ice has vanished, glacial fjords are
replacing sea ice habitat for ice-breeding species [3].

The West Greenland narwhal (Monondon monoceros) subpopulation, with a
mean subpopulation abundance estimated at approximately 6000 animals in
2007 [4], occurs in Melville Bay and frequents glacial fronts in summer and
autumn [5,6]. It is unknown why narwhals have an affinity for glaciers; phys-
ical properties of fjords may offer enhanced feeding opportunities, though to
date there has been little evidence of summertime feeding. Narwhals may

© 2016 The Author(s) Published by the Royal Society. Al rights reserved.
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Figure 1. Map of study area in Greenland showing observed narwhal and glacier locations. Inset: glacier front detail north of Kullorsuaq (red lines are front
locations) with yellow lines representing 7 km buffer zones. Imagery from https:/nsidc.org/data/NSIDC-0633.

also be attracted to subsurface freshwater melt at the glacier
face which may resemble estuarine habitat used by other
Arctic odontocetes, e.g. beluga (Delphinapterus leucas) [7].

Using satellite remote sensing data collected over two
decades, we examined the suite of glaciers visited by nar-
whals in Melville Bay. We developed quantitative
covariates to describe individual glaciers and used proximity
analyses in statistical models to examine relationships
between narwhal occurrence and glacier fjord covariates.
We examined narwhal use of the ’‘near-glacier’ region
(within approx. 7 km of the ice front); however, we refer to
this generally as the “glacier front’ for lack of pre-existing ter-
minology. This study sheds light on what glacier features
may be selected by narwhals and improves our understand-
ing of how future changes in freshwater melt [8] may
influence narwhal habitat.

Narwhals were captured and instrumented with satellite-linked
time—depth—temperature recorders in September of 1993, 1994,
2006 and 2007 in Melville Bay, West Greenland [6,9-11]. We
included locations with ArGos classes of less than or equal to
1.5 km accuracy and positions between September and Novem-
ber, including the start of the southbound migration [5].
Locations were removed using speed (greater than or equal to
1.8ms™ ') and angular (default) filters in R v. 2.13.2 [12] using
the package ‘argosfilter’ [13]. Resulting whale locations were
reduced to a single position per whale per day during peak of
satellite passage to decrease autocorrelation bias, standardize
temporal sampling and address the effects of different duty
cycles. We used a correlated random walk model to estimate
locations based on observed filtered locations and associated
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Figure 2. (a) Glacier schematic with covariate labels, adapted from [23], (b) modelled relationships (and 95% ClI) among covariates from top models in the 2000s at
7 km, explaining the number of visits, proportion of narwhals and probability of visits by narwhals at glaciers.

ARGOs error (‘crawl’ package [14]). The result was a dataset of pre-
dicted and observed locations across all days of the study
containing 815 predicted and 763 observed locations (figure 1).
We also confirmed narwhal presence at each glacier by manually
checking each individual’s locations.

(b) Glacier and fjord data

We focused on 41 northwest Greenland glaciers (figure 1), cover-
ing the coastal region of narwhal activity. Table 1 provides
information on the suite of glacier variables. For each glacier, we
created a single ‘glacier point’ by computing the terminus line cen-
troids and spatially joined narwhal presence or visits to each
glacier point and glacier covariates ([15,16], table 1, figure 2).
Bathymetry was from Oceans Melting Greenland (http://dx.doi.
org/10.5067 /OMGEV-BTYSS) and gravity data [20].

() Narwhals and glaciers proximity analysis

We created three proximity buffers around each glacier centroid
point (at 5, 7 and 10 km to serve as a sensitivity analysis) and
quantified whale visits within these regions on decadal (1990s,
2000s) and combined (1990s plus 2000s) time periods. We esti-
mated (i) whale presence or absence, (ii) the total number of
visits by whales in a 24 h period, and (iii) the fraction of
whales that visited a glacier in each decade.

(d) Statistical methods

We assessed collinearity among predictors by calculating Pear-
son’s correlation coefficients, resulting in a reduced set of
variables (with pairwise correlations <0.6) to estimate the

relationship between narwhals and glacial predictors. We used
generalized linear models (GLMs) to identify physical predictors
associated with narwhal attendance for each proximity buffer
and time period. The total number of visits by whales was mod-
elled with a Poisson’s error structure, while the fraction of whales
visiting glaciers and probability that a whale visited a glacier
were modelled as binomial GLMs. We used stepwise model
selection based on the lowest Akaike’s Information Criteria
value [24].

3. Results and discussion

We tracked the autumn movements of 15 adult narwhals over
4 years in Melville Bay (1993 and 1994: n = 8, 3M : 5F; 2006
and 2007: n =7, 2M:5F). Tracking durations between Sep-
tember and November ranged from 21 to 88 days in the
1990s and 48 to 90 days in the 2000s. Across both decades
there were two clusters of common glaciers that were visited
by whales: north of Cape Seddon and the Fisher Islands
(figure 1). Additionally, in the 2000s, whales visited glaciers
north of Kullorsuaq. At the largest distances (10 km),
whales visited twice as many unique glaciers in the 2000s
as the 1990s (21 glaciers and 10 glaciers, respectively), yet
differences between decades declined with declining distance
radii. In the 2000s, whales visited a larger numbers of glaciers
owing to the loss of autumn fast ice and increased availability
of habitat as demonstrated by an expanded range along the
coast (figure 1). Changes in the timing of sea ice advance
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Table 2. Final GLM results for response metrics in all years pooled at three radii from glacial fronts. Bold numbers indicate p << 0.05. GLMs at 10 km were estimated with quasi-likelihood model structures to account for overdispersion

for sum total visits (all time periods) and proportion of narwhals visiting glaciers. Dashes indicate covariate was not included in the final model; blanks indicate models fail to converge at the smaller radii.
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and retreat have been profound in Baffin Bay and Melville
Bay [1]. Sea ice freezes up 3.5 weeks later than in 1979 [25]
and fast ice at the glacier fronts in summer is now rarely present.

It is unknown at what distances glacier fjords attract nar-
whals; thus sensitivity analysis examined predictors at
multiple scales. The set of significant predictor variables
was consistent across all scales (5, 7 and 10 km) and for the
three visitation metrics (table 2). Sensitivity analyses were
important because observation and modelling studies at
Greenland outlet glaciers have demonstrated notable spatial
differences in fjord water properties across scales used in
this study (5-10 km), including variations in salinity, temp-
erature and sediment from subglacial water plumes [26,27].
We did not include subsistence hunting pressure in our ana-
lyses because it was difficult to quantify. Glaciers close to
Savissivik and Kullorsuaq have higher hunting pressure
than glaciers inside Melville Bay, where no hunting is sup-
posed to occur because the area is protected. There may be
an avoidance response around these communities owing to
hunting pressure regardless of glacial features and this may
impact habitat selection. Finally, some models at 5km in
the 1990s did not converge owing to low sample sizes.

Ice front thickness, or vertical glacier height from the seafloor,
was a significant covariate in all models with narwhals consist-
ently visiting thicker glaciers (figure 2). Most glaciers are at
approximately 90% flotation owing to the density of glacier ice,
so this metric provides an estimated height of the submerged
ice front face. In the 2000s, the front width also entered the
models as a significant variable, with narwhals using wider
(longer) ice fronts. The consistent use of thicker fronts and,
when significant, wider ice faces may represent an attraction to
ambient freshwater melt across the wall of underwater ice,
with narwhals choosing maximal freshwater areas.

Surprisingly run-off, though included in some models,
was never significant. When included, the relationship was
negative, indicating narwhals prefer low subglacial run-off
glaciers. Combined with the preference for thick fronts, the
data suggest narwhals prefer glaciers with higher ambient
melt from freshwater ice over glaciers with silt-laden dis-
charge. Although research suggests subglacial discharge
rises in buoyant plumes and increases glacier ice melt along
the plume path [28], the subglacial discharge plumes may
change water properties so they are not as attractive to nar-
whals as ambient melt.

Finally, a negative relationship with glacier velocity was
included in several models but was often not significant.
When included, narwhals used slower moving glaciers (low
velocity). Glacier velocity represents both speed and iceberg
calving activity (assuming a stable front location). Thus, use
of lower velocity glaciers may suggest a preference for gla-
ciers with less calving activity. Given use of thick glaciers,
the preference for lower velocities was surprising. Thicker
glaciers generally have higher velocities (e.g. [29]). High gla-
cier velocities are also often associated with larger drainage
basins, with larger subglacial discharge and fjord sediment
flux, elements our models suggest narwhals select against.
Our data suggest there may be unique glacier fjords preferred
by narwhals—those with sufficiently thick ice fronts but low
to moderate calving activity.

Ethics. Narwhal tagging was conducted under permits provided by
the Greenland Government and IACUC protocol (no. 4155-01) from
the University of Washington.
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