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Glacial fronts are important summer habitat for narwhals (Monodon mono-
ceros); however, no studies have quantified which glacial properties attract

whales. We investigated the importance of glacial habitats using telemetry

data from n ¼ 15 whales tagged in September of 1993, 1994, 2006 and

2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers,

we estimated (i) narwhal presence/absence, (ii) number of 24 h periods

spent at glaciers and (iii) the fraction of narwhals that visited each glacier

(at 5, 7 and 10 km) in autumn. We also compiled data on glacier width,

ice thickness, ice velocity, front advance/retreat, area and extent of iceberg

discharge, bathymetry, subglacial freshwater run-off and sediment flux.

Narwhal use of glacial habitats expanded in the 2000s probably due to

reduced summer fast ice and later autumn freeze-up. Using a generalized

multivariate framework, glacier ice front thickness (vertical height in the

water column) was a significant covariate in all models. A negative relation-

ship with glacier velocity was included in several models and glacier front

width was a significant predictor in the 2000s. Results suggest narwhals

prefer glaciers with potential for higher ambient freshwater melt over gla-

ciers with silt-laden discharge. This may represent a preference for

summer freshwater habitat, similar to other Arctic monodontids.
1. Introduction
Arctic and subarctic glacial fjords are characterized by high rates of pro-

ductivity that lead to rich marine ecosystems, including high densities of

seabirds, marine mammals and fishes [1]. High productivity in Greenland’s gla-

cial fjords and their downstream regions has been attributed to glacial

meltwater, with a strong correlation between the presence of meltwater nutri-

ents and phytoplankton blooms [2]. These plumes may aggregate plankton

or stun plankton via freshwater osmotic shock [3], making them easy prey

for larger surface-feeding predators and multiple trophic levels. Nutrient

fluxes at the glacier fronts are also used for post-bloom plankton production,

lengthening overall feeding opportunities in summer. In some areas of the

Arctic where the permanent multi-year sea ice has vanished, glacial fjords are

replacing sea ice habitat for ice-breeding species [3].

The West Greenland narwhal (Monondon monoceros) subpopulation, with a

mean subpopulation abundance estimated at approximately 6000 animals in

2007 [4], occurs in Melville Bay and frequents glacial fronts in summer and

autumn [5,6]. It is unknown why narwhals have an affinity for glaciers; phys-

ical properties of fjords may offer enhanced feeding opportunities, though to

date there has been little evidence of summertime feeding. Narwhals may
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Figure 1. Map of study area in Greenland showing observed narwhal and glacier locations. Inset: glacier front detail north of Kullorsuaq (red lines are front
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also be attracted to subsurface freshwater melt at the glacier

face which may resemble estuarine habitat used by other

Arctic odontocetes, e.g. beluga (Delphinapterus leucas) [7].

Using satellite remote sensing data collected over two

decades, we examined the suite of glaciers visited by nar-

whals in Melville Bay. We developed quantitative

covariates to describe individual glaciers and used proximity

analyses in statistical models to examine relationships

between narwhal occurrence and glacier fjord covariates.

We examined narwhal use of the ‘near-glacier’ region

(within approx. 7 km of the ice front); however, we refer to

this generally as the ‘glacier front’ for lack of pre-existing ter-

minology. This study sheds light on what glacier features

may be selected by narwhals and improves our understand-

ing of how future changes in freshwater melt [8] may

influence narwhal habitat.
2. Methods
(a) Narwhal data
Narwhals were captured and instrumented with satellite-linked

time–depth–temperature recorders in September of 1993, 1994,

2006 and 2007 in Melville Bay, West Greenland [6,9–11]. We

included locations with ARGOS classes of less than or equal to

1.5 km accuracy and positions between September and Novem-

ber, including the start of the southbound migration [5].

Locations were removed using speed (greater than or equal to

1.8 m s21) and angular (default) filters in R v. 2.13.2 [12] using

the package ‘argosfilter’ [13]. Resulting whale locations were

reduced to a single position per whale per day during peak of

satellite passage to decrease autocorrelation bias, standardize

temporal sampling and address the effects of different duty

cycles. We used a correlated random walk model to estimate

locations based on observed filtered locations and associated

https://nsidc.org/data/NSIDC-0633
https://nsidc.org/data/NSIDC-0633
http://rsbl.royalsocietypublishing.org/
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ARGOS error (‘crawl’ package [14]). The result was a dataset of pre-

dicted and observed locations across all days of the study

containing 815 predicted and 763 observed locations (figure 1).

We also confirmed narwhal presence at each glacier by manually

checking each individual’s locations.

(b) Glacier and fjord data
We focused on 41 northwest Greenland glaciers (figure 1), cover-

ing the coastal region of narwhal activity. Table 1 provides

information on the suite of glacier variables. For each glacier, we

created a single ‘glacier point’ by computing the terminus line cen-

troids and spatially joined narwhal presence or visits to each

glacier point and glacier covariates ([15,16], table 1, figure 2).

Bathymetry was from Oceans Melting Greenland (http://dx.doi.

org/10.5067/OMGEV-BTYSS) and gravity data [20].

(c) Narwhals and glaciers proximity analysis
We created three proximity buffers around each glacier centroid

point (at 5, 7 and 10 km to serve as a sensitivity analysis) and

quantified whale visits within these regions on decadal (1990s,

2000s) and combined (1990s plus 2000s) time periods. We esti-

mated (i) whale presence or absence, (ii) the total number of

visits by whales in a 24 h period, and (iii) the fraction of

whales that visited a glacier in each decade.

(d) Statistical methods
We assessed collinearity among predictors by calculating Pear-

son’s correlation coefficients, resulting in a reduced set of

variables (with pairwise correlations �0.6) to estimate the
relationship between narwhals and glacial predictors. We used

generalized linear models (GLMs) to identify physical predictors

associated with narwhal attendance for each proximity buffer

and time period. The total number of visits by whales was mod-

elled with a Poisson’s error structure, while the fraction of whales

visiting glaciers and probability that a whale visited a glacier

were modelled as binomial GLMs. We used stepwise model

selection based on the lowest Akaike’s Information Criteria

value [24].
3. Results and discussion
We tracked the autumn movements of 15 adult narwhals over

4 years in Melville Bay (1993 and 1994: n ¼ 8, 3M : 5F; 2006

and 2007: n ¼ 7, 2M : 5F). Tracking durations between Sep-

tember and November ranged from 21 to 88 days in the

1990s and 48 to 90 days in the 2000s. Across both decades

there were two clusters of common glaciers that were visited

by whales: north of Cape Seddon and the Fisher Islands

(figure 1). Additionally, in the 2000s, whales visited glaciers

north of Kullorsuaq. At the largest distances (10 km),

whales visited twice as many unique glaciers in the 2000s

as the 1990s (21 glaciers and 10 glaciers, respectively), yet

differences between decades declined with declining distance

radii. In the 2000s, whales visited a larger numbers of glaciers

owing to the loss of autumn fast ice and increased availability

of habitat as demonstrated by an expanded range along the

coast (figure 1). Changes in the timing of sea ice advance

http://dx.doi.org/10.5067/OMGEV-BTYSS
http://dx.doi.org/10.5067/OMGEV-BTYSS
http://dx.doi.org/10.5067/OMGEV-BTYSS
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and retreat have been profound in Baffin Bay and Melville

Bay [1]. Sea ice freezes up 3.5 weeks later than in 1979 [25]

and fast ice at the glacier fronts in summer is now rarely present.

It is unknown at what distances glacier fjords attract nar-

whals; thus sensitivity analysis examined predictors at

multiple scales. The set of significant predictor variables

was consistent across all scales (5, 7 and 10 km) and for the

three visitation metrics (table 2). Sensitivity analyses were

important because observation and modelling studies at

Greenland outlet glaciers have demonstrated notable spatial

differences in fjord water properties across scales used in

this study (5–10 km), including variations in salinity, temp-

erature and sediment from subglacial water plumes [26,27].

We did not include subsistence hunting pressure in our ana-

lyses because it was difficult to quantify. Glaciers close to

Savissivik and Kullorsuaq have higher hunting pressure

than glaciers inside Melville Bay, where no hunting is sup-

posed to occur because the area is protected. There may be

an avoidance response around these communities owing to

hunting pressure regardless of glacial features and this may

impact habitat selection. Finally, some models at 5 km in

the 1990s did not converge owing to low sample sizes.

Ice front thickness, or vertical glacier height from the seafloor,

was a significant covariate in all models with narwhals consist-

ently visiting thicker glaciers (figure 2). Most glaciers are at

approximately 90% flotation owing to the density of glacier ice,

so this metric provides an estimated height of the submerged

ice front face. In the 2000s, the front width also entered the

models as a significant variable, with narwhals using wider

(longer) ice fronts. The consistent use of thicker fronts and,

when significant, wider ice faces may represent an attraction to

ambient freshwater melt across the wall of underwater ice,

with narwhals choosing maximal freshwater areas.

Surprisingly run-off, though included in some models,

was never significant. When included, the relationship was

negative, indicating narwhals prefer low subglacial run-off

glaciers. Combined with the preference for thick fronts, the

data suggest narwhals prefer glaciers with higher ambient

melt from freshwater ice over glaciers with silt-laden dis-

charge. Although research suggests subglacial discharge

rises in buoyant plumes and increases glacier ice melt along

the plume path [28], the subglacial discharge plumes may

change water properties so they are not as attractive to nar-

whals as ambient melt.

Finally, a negative relationship with glacier velocity was

included in several models but was often not significant.

When included, narwhals used slower moving glaciers (low

velocity). Glacier velocity represents both speed and iceberg

calving activity (assuming a stable front location). Thus, use

of lower velocity glaciers may suggest a preference for gla-

ciers with less calving activity. Given use of thick glaciers,

the preference for lower velocities was surprising. Thicker

glaciers generally have higher velocities (e.g. [29]). High gla-

cier velocities are also often associated with larger drainage

basins, with larger subglacial discharge and fjord sediment

flux, elements our models suggest narwhals select against.

Our data suggest there may be unique glacier fjords preferred

by narwhals—those with sufficiently thick ice fronts but low

to moderate calving activity.

Ethics. Narwhal tagging was conducted under permits provided by
the Greenland Government and IACUC protocol (no. 4155-01) from
the University of Washington.
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