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Abstract: We investigate a supply chain in which a retailer is supplied by two manufacturers 

with differentiated brands, a good brand and an average brand. The customers in the market are 

segmented based on value and brand preference, namely the customer acceptance of the 

average brand and the customer surplus for each brand. Both horizontal competition (between 

the two competing manufacturers) and vertical competition (between the manufacturers and the 

retailer) are considered through an exploration of different power structure combinations. 

Multiple-stage game models are developed to examine the impact of different power structures 

on the pricing decisions and the profits of the manufacturers and the retailer. We find that 

intensified competition between the two manufacturers hurts the manufacturers and benefits 

the retailer. No dominance among supply chain members (the two manufacturers and the 

retailer) leads to the highest profit for the entire supply chain. We also find that for the two 

competing manufacturers, being first to announce the pricing decision results in lower profit – 

the second to announce benefits from knowing the rival’s price. This explains why rivals prefer 

not to reveal decisions on prices, bid rates, and contracts, as this information represents 

bargaining power. The impact of customer acceptance of the average brand is also analyzed. 
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1. Introduction 

Many retailers sell multiple brands of a single type of product (Krishna, 1992; Baltas, 2004; 

Teng et al., 2007). It is common to see several brands of similar goods on the shelf, such as 

cigarettes supplied by Marlboro, Kent, and 555, or soda produced by Coca-Cola and Pepsi. 

Furthermore, most people prefer shopping in large malls, supermarkets, and big-box stores 

offering a variety of brands for many products like Macy’s, Wal-Mart, and Carrefour, rather 

than in direct-sale stores of particular brands or exclusive shops, for more choices of goods. 

Unpopular brands, however, may not only take up shelf space but also increase purchasing 

costs and tie up available funds if they cannot be sold quickly. Therefore, it is critical for a 

distributor or a retailer who sells several similar goods in different brands to decide which 

brands should be purchased (one brand, or some brands, or many brands) and how to set prices 

for them, to better meet customer demand and increase profit (Kalwani et al., 1990; Bucklin 

and Lattin, 1991; Besanko, 2005; Hall et al., 2010; Chen et al., 2012; Luo et al., 2016). To 

address the above issues, we study pricing models based on the customer’s valuation of the 

goods and brand preference in a supply chain consisting of two manufacturers and a retailer, in 

different power structures. The two manufacturers produce substitutable products with different 

brands, a good brand and an average brand. The retailer may sell either of them or both of 

them.  

Segmenting a market based on product attributes and customer’s behavior, and deciding a 

corresponding pricing strategy, can be an effective way to respond to demand in the market. In 

this paper, market segmentation based on the positioning of goods and price, considering 

customer preference, is discussed first. The optimal prices under competition then can be 

derived.  

Market segmentation has been well studied (Hotelling, 1990, Vandenbosch and Weinberg, 

1995). Mussa and Rosen (1978) investigated a monopoly pricing problem with a 

quality-differentiated class of goods. The goods are offered in an imperfect market on a 

take-it-or-leave-it basis, and the seller exploits the possibilities for a pricing policy to allocate 

customers along the quality spectrum by a process of self-selection. The optimal policy is to 

assign different customer types to different classes of goods. Thus, it permits partial 
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discrimination among consumers with various intensities of demand. Shaked and Sutton (1982) 

described the perfect equilibrium of a three-stage game. First, firms choose (or not) to enter an 

industry; second, firms choose the quality of goods; and third, firms choose their prices. Prices 

were found to depend on both the number of entrants and the quality of their respective goods. 

Moorthy (1984) developed a theory of market segmentation based on consumer self-selection, 

which is an extension of the third-degree price discrimination model of Pigou (1920). He used 

a monopoly’s product line design problem as a generic example of such segmentation. 

Moorthy (1988) examined two identical firms competing on product quality and price. He 

assumed that the customer prefers the high quality product to the low quality. The quality-price 

equilibrium strategies of both a simutaneous-product-choice model and 

sequential-product-choice model were obtained. Motta (1993) developed a pricing strategy 

based on quality and the cusomer taste in a Bertrand duopoly model. Desai (2001) examined 

the problem of quality segmentation in spatial markets. He developed a model in which the 

market has two segments, assuming that one segment values quality more than the other. Li et 

al. (2013) examined customers’ self-selection among multiple versions of an information 

product and clarified the inability of the linear valuation function to exactly capture the 

customers’ valuation on information products. Optimal quality levels and prices for multiple 

versions were obtained for a given number of versions. Abbey et al. (2015) studied the optimal 

pricing of the new and remanufactured products using a model of consumers’ preferences, 

based on extensive experimentation. Two distinct segments of consumers were revealed and 

optimal prices were examined in several scenarios. Hu et al. (2015) investigated optimal 

pricing and product decisions in a crowdfunding mechanism. They found that when the buyers 

are sufficiently heterogeneous in their product valuations, the creator should offer a line of 

products with different levels of product quality and prices.  

Our work is similar to the above studies on pricing decisions based on quality and 

consumer behavior. We assume, however, that the customers are heterogeneous in their 

valuation of the product. That is, each customer has an individual “willingness-to-pay” or 

reservation price. It is assumed that the good brand is generally valued higher than the average 

brand (Martin, 1996). The market is segmented thus into three segments based on customer 

acceptance of the average brand and the customer surplus of each brand: average brand only, 
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good brand only, and both. In addition, in this paper, unlike other studies, we focus on pricing 

policies based on the customer’s valuation and brand preference. 

In practice, a firm’s operating performance depends not only on its operation strategies but 

also on its position or bargaining power in the market. Different power structures in the vertical 

supply chain and horizontal business partner/competitor relationships have become important 

factors in decision-making and profit margin (Choi, 1991; Choi, 1996; Trivedi, 1998; Choi and 

Fredj, 2013; Cai, 2010; Chen et al., 2014; Jie and Jing, 2014; Sang, 2014; Chen and Wang, 

2015). In the vertical competition between supply chain members, suppliers may be in the 

leading position (e.g. a stronger competitive position in the supply chain). Thus, Microsoft and 

Intel play a more dominant role than downstream members in their supply chains. Some 

retailers, however, such as Wal-Mart and Carrefour (Ertek and Griffin, 2002), may be in a 

relatively strong competitive position and play a more dominant role than upstream members. 

In many cases, supply chain members may be engaged in vertical Nash competition in a local 

market (see examples in Cotterill and Putsis, 2001; Zhao et al., 2012). Members at the same 

echelon of a supply chain may also compete horizontally, and this will influence their decisions 

in strategic actions and timing. Timing will depend on the power structures in the supply chain. 

For example, Coca-Cola entered the Chinese market very early, while Pepsi entered late. In 

practice, Pepsi had to follow the retail price of Coca-Cola in the Chinese market.  

Several channel power structures have been studied in the literature. Ingene and Parry 

(1995) examined one manufacturer supplying multiple exclusive retailers, and focused on the 

channel coordination. The monopoly manufacturer needs to set a single wholesale price that 

can be applied to all retailers. Among the work that is very relevant to the present study, Choi 

(1991) studied the pricing decisions of a supply chain that consists of two manufacturers and a 

retailer, considering linear demand and nonlinear demand. He discussed three non-cooperative 

games of different power structures, namely Manufacturer-Stackelberg, Retailer-Stackelberg, 

and Nash games between the manufacturers and the retailer. He assumed that the two 

manufacturers are symmetric and play a Nash game in setting prices. Choi (1996) extended this 

research by examining two manufacturers supplying a product to two differentiated retailers. 

He assumed that each manufacturer sets his wholesale price and supplies the same product to 

both retailers. In addition, each manufacturer determines his wholesale price based on the 
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observed retail price of the competing product. He found that horizontal product differentiation 

helps the retailers but hurts the manufacturers. He did not consider the retailer’s choice in 

selecting the manufacturer. Ertek and Griffin (2002) discussed the impact of the power 

structure in a two-stage supply chain. They developed Supplier-Stackelberg and 

Retailer-Stackelberg structures, in order to analyze the pricing scheme for the retailer. Raju and 

Zhang (2005) studied a Retailer-Stackelberg channel model and discussed the coordination 

mechanism for the manufacturer. They found that this type of channel structure can be 

coordinated by either quantity discounts or a menu of two-part tariffs. Yang and Zhou (2006) 

analyzed a two-echelon system with a manufacturer and two competing retailers. The 

Manufacturer-Stackelberg model with two retailers’ competitive behaviors was discussed in 

their study. From the Supplier-Stackelberg, Retailer-Stackelberg, and Nash game theoretic 

perspectives, Cai et al. (2009) discussed the effect of the price discount contracts and found 

that the scenarios with the price discount contracts may be superior to the non-contract 

scenarios. Wu et al. (2012) analyzed competitive pricing decisions in a supply chain consisting 

of two retailers and a supplier. They discussed six game models including vertical competition 

and horizontal competition. In contrast to their paper, our study examines a supply chain 

consisting of two manufacturers and a retailer. Fan et al. (2013) analyzed a dynamic pricing 

and production planning problem using a one-leader-multiple-follower Stackelberg differential 

game with unknown demand parameters. They found that the leader outperforms the followers 

and each firm can improve its revenue by demand learning. Chen and Wang (2015) 

investigated the smart phone supply chain, which consists of a handset manufacturer and a 

telecom service operator. Different power structures were considered and the corresponding 

impacts were discussed. They showed that the smart phone supply chain would choose a 

bundled channel in the telecom service operator Stackelberg as well as in the manufacturer 

Stackelberg power structure under certain conditions, while it would select a free channel in a 

vertical Nash power structure.  

The above studies focused mainly on the supply chain’s vertical competition between 

supply chain members. Very limited studies have attempted to examine the impact of 

horizontal competition on the supply chain’s decisions and performance. Furthermore, they did 

not consider the customer’s valuation on the product as a factor in the pricing decision. A few 
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studies, however, have considered the customer’s valuation, to capture individual preference in 

selecting the product for a dual-channel supply chain (for example, Chiang et al., 2003; Chen 

and Bell, 2012), but these studies only considered vertical price competition. Here, we study 

the pricing problem in a supply chain consisting of two manufacturers and a retailer. Both the 

vertical price competition (between the manufacturers and the retailer) and the horizontal 

competition (between two competing manufacturers) are considered under different power 

structures. 

This paper contributes to the literature in several ways. First, our study considers that 

customers have heterogeneous valuations on different brands. The market is segmented based 

on the customer’s acceptance of the brand and the customer’s surplus in each brand. Second, 

we clearly identify the conditions under which the retailer should purchase both brands or a 

single brand, and the corresponding pricing strategies of the manufacturers and the retailer. 

Third, we consider all possible power structures for the supply chain with two manufacturers 

and a retailer, which captures all possible market competition scenarios that could present in 

practice. To the best of our knowledge, there are very limited studies that combine brand 

preference and customer valuation in the pricing model. Here, our research aims to fulfill this 

gap in the literature through addressing the following key questions: 

(1) Under what conditions will the retailer sell either both brands or one of them, based on 

the customer’s valuation and brand preference? 

(2) In each power structure, how can the two manufacturers and the retailer develop 

pricing policies to maximize their profits when the retailer sells both brands or sells 

single brand? 

(3) What are the impacts of power structure (including horizontal power structure and 

vertical power structure) on the optimal pricing policies and profits of the retailer and 

the manufacturers, and on the performance of the entire supply chain? What is the 

impact of customer acceptance of the average brand? 

The rest of this paper is organized as follows. In Section 2, the model formulation and 

assumptions are presented, and a piecewise demand function is analyzed and derived. In 

Section 3, we investigate the two manufacturers’ and retailer’s pricing decisions and obtain 

equilibrium solutions from two cases under different market competition scenarios. In Section 
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4, we discuss the effect of customer acceptance of the average brand and the power structure 

on the manufacturers’ and retailer’s optimal pricing policies and profits, as well as on the 

performance of the entire supply chain. The numerical examples, which complement Section 4, 

are presented to provide new managerial insight in Section 5. In Section 6, we conclude our 

research findings and propose possible extensions of this work. All proofs are in the Appendix. 

2 The model 

We consider a retailer who sells two substitutable products supplied by two manufacturers: a 

good-brand manufacturer 1 with a high-brand value, and an average-brand manufacturer 2 with 

an average-brand value. The retailer sets the retail prices for both brands, while the 

manufacturers determine the wholesale prices independently. Manufacturer i’s unit production 

cost is 𝑐𝑖, wholesale price is 𝑤𝑖, and the retail price is 𝑝𝑖 for two products (𝑖 = 1, 2). Without 

loss of generality, we assume that 𝑐1 > 𝑐2. 

Customers are heterogeneous in their valuation on the product, depending on customers’ 

values, views, income or level of knowledge of the product. To describe customers’ 

heterogeneity, we model that the customer reservation price 𝑣 is uniformly distributed over 

[0,1] within the customer population from 0 to 1 with density of 1, which catches the 

individual difference in product valuation (Chiang et al., 2003). Considering one product that is 

priced at 𝑝, the customer with a net surplus 𝑣 − 𝑝 ≥ 0 will buy it (Chen and Bell, 2012). 

From Figure 1, all the customers with valuations in the interval [𝑝, 1] will buy the product. 

Therefore, the demand of the product is 𝑄 = ∫ 𝑑𝑣
1

𝑝
= 1 − 𝑝 for 0 ≤ 𝑝 ≤ 1.  

 

Intuitively, for similar products, the good brand is always perceived by the customer to be 

made from a higher quality raw material and more advanced manufacturing process, and offer 

𝑄 

1 

1 𝑝 0 

Customer value (𝑣) 

Number of customers 

Figure 1. Distribution of customer value 
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better customer experience and excellent after-sales service, as compared to the average brand. 

In addition, an individual customer has a higher reservation price for the good brand than for 

the average brand (Martin, 1996). To capture this preference, we introduce a term called 

‘customer acceptance’ of a brand. We assume that the customer perceives the good brand as 

perfect, and define the customer acceptance of the good brand as equal 1. Meanwhile, we 

introduce a parameter 𝜃 to denote customer acceptance of the average brand, where 𝜃 ∈

(0,1). Thus, we use 𝑣  and 𝜃 to capture individual difference in valuing brands: a customer 

perceives the good brand to be worth 𝑣 and the average brand to be worth 𝜃𝑣, respectively. A 

customer with a valuation of 𝑣 may purchase a good brand product if it has a nonnegative 

surplus 𝑣 − 𝑝1 ≥ 0, and it may buy an average-brand product if 𝜃𝑣 − 𝑝2 ≥ 0. The customer 

will choose an average brand product rather than a good brand one only if 𝜃𝑣 − 𝑝2 >  𝑣 − 𝑝1. 

We denote the indifferent values in whether the customer purchases (or not) the product of each 

brand as 𝑣1 = 𝑝1 and 𝑣2 =
𝑝2

𝜃
, respectively. The indifferent value of purchasing a good brand 

or an average brand is 𝑣21 =
𝑝1−𝑝2

1−𝜃
. Through the discussion, the analysis of customer 

reservation price, and three indifferent values, the demand function can be modelled as follow. 

Proposition 1: The piecewise demand function of the good-brand product 𝑫𝟏(𝒑𝟏, 𝒑𝟐) and 

the average-brand product 𝑫𝟐(𝒑𝟏, 𝒑𝟐) can be modelled as: 

𝑫𝟏(𝒑𝟏, 𝒑𝟐) = {

𝟏 − 𝒑𝟏          𝟎 < 𝜽 ≤
𝒑𝟐

𝒑𝟏
                   

𝟏 −
𝒑𝟏−𝒑𝟐

𝟏−𝜽
      

𝒑𝟐

𝒑𝟏
< 𝜽 < 𝟏 − 𝒑𝟏 + 𝒑𝟐

    𝟎                  𝟏 − 𝒑𝟏 + 𝒑𝟐 ≤ 𝜽 < 𝟏

      (1) 

𝑫𝟐(𝒑𝟏, 𝒑𝟐) =

{
 
 

 
        𝟎               𝟎 < 𝜽 ≤

𝒑𝟐

𝒑𝟏
                    

 
𝒑𝟏−𝒑𝟐

𝟏−𝜽
−

𝒑𝟐

𝜽
    

𝒑𝟐

𝒑𝟏
< 𝜽 < 𝟏 − 𝒑𝟏 + 𝒑𝟐

 𝟏 −
𝒑𝟐

𝜽
         𝟏 − 𝒑𝟏 + 𝒑𝟐 ≤ 𝜽 < 𝟏

      (2) 

Proposition 1 gives us an intuitive insight that the product demand depends on customer 

acceptance of the average brand 𝜃. That is, the customer acceptance of the average brand 𝜃 

lies in different ranges, namely (0,
𝑝2

𝑝1
] and [1 − 𝑝1 + 𝑝2, 1). In Corollary 1 we summarize the 

retailer’s sales strategy for a brand. 

Corollary 1: The retailer’s sales strategy for a brand is highly dependent on customer 
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acceptance of the average brand 𝜽: (a) 𝟎 < 𝜽 ≤ 𝜽, the retailer will sell the good brand only; 

(b) 𝜽 < 𝜽 < 𝜽, the retailer will sell both brands; (c) 𝜽 ≤ 𝜽 < 𝟏, the retailer will sell the 

average brand only, where 𝜽 =
𝒑𝟐

𝒑𝟏
 and 𝜽 = 𝟏 − 𝒑𝟏 + 𝒑𝟐. 

This Corollary implies that if the customer acceptance of the average brand is sufficiently 

low (0 < 𝜃 ≤ 𝜃), it is optimal for the retailer to purchase only the good brand from the 

manufacturer, because there is no demand for the average brand. If the customer acceptance of 

the average brand is sufficiently high (𝜃 ≤ 𝜃 < 1), no customer will purchase the product in 

the good brand, and selling the average-brand product is the optimal choice for the retailer to 

maximize its profit. When the customer acceptance of the average brand is moderate (𝜃 < 𝜃 <

𝜃), the retailer’s optimal sales strategy is to sell both brands. This choice requires that the 

retailer estimates the customer acceptance of the average brand accurately based on historical 

data, expertise, or industrial reports on similar brands; the retailer must be able to assess 

whether it should choose either both brands, or the good brand only, or the average brand only. 

In addition, we assume that both the manufacturers and the retailer are rational and 

self-interested, that is, each of them aims to maximize its own profit. The model framework 

can be described as in Figure 2. 

 

Let subscripts 𝑚 and 𝑟 represent the manufacturers and the retailer, respectively. The 

manufacturers’ profit functions are: 

𝜋𝑚1(𝑤1) = (𝑤1 − 𝑐1)𝐷1(𝑝1, 𝑝2)            (3) 

𝜋𝑚2(𝑤2) = (𝑤2 − 𝑐2)𝐷2(𝑝1, 𝑝2)            (4) 

The retailer’s profit function is: 

𝜋𝑟(𝑝1, 𝑝2) = (𝑝1 − 𝑤1)𝐷1(𝑝1, 𝑝2) + (𝑝2 − 𝑤2)𝐷2(𝑝1, 𝑝2)      (5) 

Manufacturer1 

Manufacturer 2 

Retailer 

𝐷1 𝑝1
, 𝑝

2
  

𝐷2 𝑝1
, 𝑝

2
  

Figure 2. The model framework 

𝑤1 

𝑤2 

𝑝1, 𝑝2 
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3. Equilibrium 

In this section, we will examine the pricing decisions of the two manufacturers and the retailer. 

Consider the heterogeneous customer acceptance of the average brand 𝜃. Two cases are 

discussed in this section: Case 1: retailer sells both brands for 𝜃 < 𝜃 < 𝜃, and Case 2: retailer 

sells single brand only for 0 < 𝜃 ≤ 𝜃 or 𝜃 ≤ 𝜃 < 1. 

3.1 Case 1: retailer sells both brands 

When 𝜃 < 𝜃 < 𝜃, selling both brands is the retailer’s optimal policy. To capture the decisions 

of the two manufacturers and the retailer in the supply chain under different power structures, 

we model both the horizontal competition (between the two manufacturers with different 

brands) and the vertical competition (between the manufacturers and the retailer) as either a 

Stackelberg game or a Nash game, as summarized in Table 1. 

Table 1. Seven game models with different power structures 

Vertical competition 

Horizontal competition 

Nash (N) 
Good-brand 

Stackelberg (G) 

Average-brand 

Stackelberg (A) 

Manufacturer Stackelberg (MS) MNS MGS MAS 

Retailer Stackelberg (RS) RNS RGS RAS 

Vertical Nash (VN) VNN - - 

Table 1 shows that there are seven game models with different power structures. We use 

𝑘 to represent a model type, where 𝑘 ∈ {𝑀𝑁𝑆,𝑀𝐺𝑆,𝑀𝐴𝑆, 𝑉𝑁𝑁, 𝑅𝑁𝑆, 𝑅𝐺𝑆, 𝑅𝐴𝑆}. We now 

discuss the decision sequence of each horizontal game under each vertical competition game.  

I. Manufacturer Stackelberg (MS) model 

In the case of the MS model, the manufacturers are Stackelberg leaders while the retailer is the 

follower. The two manufacturers may have different channel powers. So we now analyse the 

two manufacturers’ and the retailer’s pricing decisions in the MS model with balanced power 

and with imbalanced power.  

MS model with balanced power between manufacturers (MNS) 

In the case of the MS model with balanced power between manufacturers (𝑘 = 𝑀𝑁𝑆), the 

decision sequence of the manufacturers and the retailer is as follows. In the first-stage game, 
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the two manufacturers simultaneously announce the wholesale prices to the retailer, 

anticipating the retailer’s prices for the products in the two brands. In the second-stage game, 

given the manufacturers’ wholesale prices, the retailer decides the retail prices for the two 

brands.  

MS model with good-brand manufacturer as Stackelberg leader (MGS) 

In the case of the MS model with the good-brand manufacturer as Stackelberg leader (𝑘 =

𝑀𝐺𝑆), the decision sequence of the manufacturers and the retailer becomes: in the first-stage 

game, the good-brand manufacturer announces the wholesale price, anticipating the retail 

prices of the two brands and the wholesale price of the average brand; in the second-stage 

game, given the wholesale price of the good brand and anticipating the retail prices of the two 

brands, the average-brand manufacturer chooses its wholesale price; in the third-stage game, 

the retailer decides its optimal retail prices, given the two manufacturers’ wholesale prices.  

MS model with the average-brand manufacturer as Stackelberg leader (MAS) 

In the case of the MS model with the average-brand manufacturer as Stackelberg leader (𝑘 =

𝑀𝐴𝑆), the decision sequence is as follows. In the first-stage game, the manufacturer with the 

average brand announces its wholesale price, anticipating the wholesale price of the good 

brand and the retail prices of the two brands. In the second-stage game, given the wholesale 

price of the average brand and anticipating the retail prices of the two brands, the good-brand 

manufacturer decides its wholesale price. In the third-stage game, the retailer chooses its 

optimal retail prices for both brands, given the two manufacturers’ wholesale prices. 

II. Vertical Nash (VN) Model  

Under the vertical Nash model, the manufacturers and the retailer make their pricing decisions 

simultaneously (𝑘 = 𝑉𝑁𝑁). The decision sequence is: the two manufacturers decide their 

wholesale prices simultaneously to maximize their profits, anticipating the retailer’s margin 

profits, while the retailer decides its retail prices for the two brands to maximize its profit, 

anticipating the manufacturers’ wholesale prices.  

III. Retailer Stackelberg (RS) model 

In the case of the RS model, the retailer will be the Stackelberg leader while the two 

manufacturers are the followers in deciding prices. As with the MS model, we now analyse the 

retailer’s brand choice in the RS model with balanced and imbalanced power. As in the 
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manufacturer Stackelberg leader models, we present the decision sequence for each game 

model.  

RS model with balanced power between the manufacturers (RNS) 

In the case of the RS game model with manufacturers’ balanced power (𝑘 = 𝑅𝑁𝑆), the 

decision sequence of the manufacturers and the retailer is as follows: in the first-stage game, 

the retailer announces the retail prices of the two brands to the two corresponding 

manufacturers, anticipating the manufacturers’ wholesale prices; in the second-stage game, the 

manufacturers decide the wholesale prices simultaneously, anticipating the retailer’s margin 

profits for the two brands.  

RS model with the good-brand manufacturer as Stackelberg leader (RGS) 

In the case of the RS model with the good-brand manufacturer as Stackelberg leader (𝑘 =

𝑅𝐺𝑆), the decision sequence is: in the first-stage game, anticipating the wholesale prices of 

both manufacturers, the retailer announces retail prices for the two brands; in the second-stage 

game, anticipating the wholesale price of the average brand, margin profit of the good brand, 

and given the retail price of the average brand, the good-brand manufacturer chooses its 

wholesale price. In the third-stage game, the manufacturer with the average brand decides its 

optimal wholesale price given the wholesale price and the retail price of the good brand, and 

anticipating the margin profit of the average brand.  

RS model with the average-brand manufacturer as Stackelberg leader (RAS) 

In the case of the RS model with the average-brand manufacturer as Stackelberg leader (𝑘 =

𝑅𝐴𝑆), the decision sequence for the manufacturers and the retailer is similar to the case of 𝑘 =

𝑅𝐺𝑆, except that the average-brand manufacturer acts in the second-stage game and the 

good-brand manufacturer in the third.  

3.2 Case 2: retailer sells a single brand only 

When 0 < 𝜃 ≤ 𝜃 or 𝜃 ≤ 𝜃 < 1, it is optimal for the retailer to sell either the good-brand 

product only or the average-brand product only, respectively. However, in this case, the upper 

and bottom lines keep the two manufacturers and the common retailer remaining a three 

players game, and the solutions give zero demand for good-brand product and average-brand 

product respectively.  

3.3 Equilibrium solutions 
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To obtain equilibrium, we start by resolving the last-stage game and move back to the 

first-stage game for all seven game models (see Table 1). In all seven cases, the optimal 

solutions to the retailer’s retail prices (𝑝1
𝑘, 𝑝2

𝑘) and the manufacturers’ wholesale prices 

(𝑤1
𝑘, 𝑤2

𝑘) can be summarized in Proposition 2. Further, we can decide the boundary values 

(𝜃𝑘 , 𝜃
𝑘
) for each game model, where 𝜃𝑘 =

𝑝2
𝑘

𝑝1
𝑘 and 𝜃

𝑘
= 1 − 𝑝1

𝑘 + 𝑝2
𝑘. 

Proposition 2: For 𝜽𝒌 < 𝜽 < 𝜽
𝒌

, 𝟎 < 𝜽 ≤ 𝜽𝒌  and 𝜽
𝒌
≤ 𝜽 < 𝟏, there exists a unique 

optimal solution to the retailer’s retail prices (𝒑𝟏
𝒌, 𝒑𝟐

𝒌) and to the manufacturers’ wholesale 

prices (𝒘𝟏
𝒌, 𝒘𝟐

𝒌) respectively, which are summarized in Table 2 and 3 (Page 14). The 

boundary values for each game model are summarized in Table 4 (Page 15). 

From Table 4, we see that the boundary values 𝜃𝑘 and 𝜃
𝑘
 in each game model are 

dependent only on the unit production costs 𝑐1 and 𝑐2 of the two brands. This suggests that 

the retailer can make the brand selection decision according to Corollary 1, when it can obtain 

information on the unit production costs of the two manufacturers (𝑐1,𝑐2) and estimate 

customer acceptance of the average brand based on historical data, expertise, or industrial 

reports. This will not only meet the needs of specific consumer groups, but also reduce the 

costs of stocking and save shelf space. 
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Table 2. Equilibrium solutions for 𝜽𝒌 < 𝜽 < 𝜽
𝒌
 

Game 

models 
𝑝1
𝑘 𝑝2

𝑘 𝑤1
𝑘 𝑤2

𝑘 

MNS 1 −
2(1 − 𝑐1) + (𝜃 − 𝑐2)

2(4 − 𝜃)
 𝜃 −

𝜃(1 − 𝑐1) + 2(𝜃 − 𝑐2)

2(4 − 𝜃)
 1 −

2(1 − 𝑐1) + (𝜃 − 𝑐2)

4 − 𝜃
 𝜃 −

𝜃(1 − 𝑐1) + 2(𝜃 − 𝑐2)

4 − 𝜃
 

MGS 1 −
(2 − 𝜃)(1 − 𝑐1) + (𝜃 − 𝑐2)

4(2 − 𝜃)
 𝜃 −

𝜃(2 − 𝜃)(1 − 𝑐1) + (4 − 𝜃)(𝜃 − 𝑐2)

8(2 − 𝜃)
 1 −

(2 − 𝜃)(1 − 𝑐1) + (𝜃 − 𝑐2)

2(2 − 𝜃)
 𝜃 −

𝜃(2 − 𝜃)(1 − 𝑐1) + (4 − 𝜃)(𝜃 − 𝑐2)

4(2 − 𝜃)
 

MAS 1 −
(4 − 𝜃)(1 − 𝑐1) + (2 − 𝜃)(𝜃 − 𝑐2)

8(2 − 𝜃)
 𝜃 −

𝜃(1 − 𝑐1) + (2 − 𝜃)(𝜃 − 𝑐2)

4(2 − 𝜃)
 1 −

(4 − 𝜃)(1 − 𝑐1) + (2 − 𝜃)(𝜃 − 𝑐2)

4(2 − 𝜃)
 𝜃 −

𝜃(1 − 𝑐1) + (2 − 𝜃)(𝜃 − 𝑐2)

2(2 − 𝜃)
 

VNN 1 −
3(1 − 𝑐1) + (𝜃 − 𝑐2)

9 − 𝜃
 𝜃 −

𝜃(1 − 𝑐1) + 3(𝜃 − 𝑐2)

9 − 𝜃
 1 −

2[3(1 − 𝑐1) + (𝜃 − 𝑐2)]

9 − 𝜃
 𝜃 −

2[𝜃(1 − 𝑐1) + 3(𝜃 − 𝑐2)]

9 − 𝜃
 

RNS 1 −
2(1 − 𝑐1) + (𝜃 − 𝑐2)

2(4 − 𝜃)
 𝜃 −

𝜃(1 − 𝑐1) + 2(𝜃 − 𝑐2)

2(4 − 𝜃)
 1 −

2(1 − 𝑐1) + (𝜃 − 𝑐2)

2(4 − 𝜃)
 𝜃 −

𝜃(1 − 𝑐1) + 2(𝜃 − 𝑐2)

2(4 − 𝜃)
 

RGS 1 −
2(1 − 𝜃)(1 − 𝑐1) + (𝜃 − 𝑐2)

2(4 − 3𝜃)
 𝜃 −

𝜃(1 − 𝜃)(1 − 𝑐1) + (2 − 𝜃)(𝜃 − 𝑐2)

2(4 − 3𝜃)
 1 −

(6 − 5𝜃)(1 − 𝑐1) + (𝜃 − 𝑐2)

2(4 − 3𝜃)
 𝜃 −

𝜃(1 − 𝜃)(1 − 𝑐1) + 2(3 − 2𝜃)(𝜃 − 𝑐2)

2(4 − 3𝜃)
 

RAS 1 −
(2 − 𝜃)(1 − 𝑐1) + (1 − 𝜃)(𝜃 − 𝑐2)

2(4 − 3𝜃)
 𝜃 −

𝜃(1 − 𝑐1) + 2(1 − 𝜃)(𝜃 − 𝑐2)

2(4 − 3𝜃)
 1 −

2(3 − 2𝜃)(1 − 𝑐1) + (1 − 𝜃)(𝜃 − 𝑐2)

2(4 − 3𝜃)
 𝜃 −

𝜃(1 − 𝑐1) + (6 − 5𝜃)(𝜃 − 𝑐2)

2(4 − 3𝜃)
 

Table 3. Equilibrium solutions, demands and profits for 𝟎 < 𝜽 ≤  𝜽𝒌 and 𝜽
𝒌
≤ 𝜽 < 𝟏 

Game 

models 

0 < 𝜃 ≤  𝜃𝑘 𝜃
𝑘
≤ 𝜃 < 1 

𝑝1
𝑘 𝑤1

𝑘 𝐷1
𝑘 𝜋𝑚1

𝑘  𝜋𝑟
𝑘 𝑝2

𝑘 𝑤2
𝑘 𝐷2

𝑘 𝜋𝑚2
𝑘  𝜋𝑟

𝑘 

MNS 1 −
1 − 𝑐1

2(2 − 𝜃)
 1 −

1 − 𝑐1
2 − 𝜃

 
1 − 𝑐1

2(2 − 𝜃)
 

(1 − 𝜃)(1 − 𝑐1)
2

2(2 − 𝜃)2
 

(1 − 𝑐1)
2

4(2 − 𝜃)2
 𝜃 −

𝜃 − 𝑐2
2(2 − 𝜃)

 𝜃 −
𝜃 − 𝑐2
2 − 𝜃

 
𝜃 − 𝑐2

2𝜃(2 − 𝜃)
 

(1 − 𝜃)(𝜃 − 𝑐2)
2

2(2 − 𝜃)2𝜃
 

(𝜃 − 𝑐2)
2

4(2 − 𝜃)2𝜃
 

MGS 1 −
𝜃 − 𝑐2
2𝜃

 
𝑐2
𝜃

 
𝜃 − 𝑐2
2𝜃

 
(𝜃 − 𝑐2)(𝑐2 − 𝜃𝑐1)

2𝜃2  
(𝜃 − 𝑐2)

2

4𝜃2  𝜃 −
𝜃 − 𝑐2

2(2 − 𝜃)
 𝜃 −

𝜃 − 𝑐2
2 − 𝜃

 
𝜃 − 𝑐2

2𝜃(2 − 𝜃)
 

(1 − 𝜃)(𝜃 − 𝑐2)
2

2(2 − 𝜃)2𝜃
 

(𝜃 − 𝑐2)
2

4(2 − 𝜃)2𝜃
 

MAS 1 −
1 − 𝑐1

2(2 − 𝜃)
 1 −

1 − 𝑐1
2 − 𝜃

 
1 − 𝑐1

2(2 − 𝜃)
 

(1 − 𝜃)(1 − 𝑐1)
2

2(2 − 𝜃)2
 

(1 − 𝑐1)
2

4(2 − 𝜃)2
 𝜃 −

1 − 𝑐1
2

 𝑐1 − 1 + 𝜃 
1 − 𝑐1
2𝜃

 
(1 − 𝑐1)(𝑐1 − 1 + 𝜃 − 𝑐2)

2𝜃
 

(1 − 𝑐1)
2

4𝜃
 

VNN 1 −
1 − 𝑐1
3 − 𝜃

 1 −
2(1 − 𝑐1)

3 − 𝜃
 

1 − 𝑐1
3 − 𝜃

 
(1 − 𝜃)(1 − 𝑐1)

2

(3 − 𝜃)2
 

(1 − 𝑐1)
2

(3 − 𝜃)2
 𝜃 −

𝜃 − 𝑐2
3 − 𝜃

 𝜃 −
2(𝜃 − 𝑐2)

3 − 𝜃
 

𝜃 − 𝑐2
(3 − 𝜃)𝜃

 
(1 − 𝜃)(𝜃 − 𝑐2)

2

(3 − 𝜃)2𝜃
 

(𝜃 − 𝑐2)
2

(3 − 𝜃)2𝜃
 

RNS 1 −
1 − 𝑐1

2(2 − 𝜃)
 
1 − 𝜃 + 3𝑐1 − 𝜃𝑐1

2(2 − 𝜃)
 

1 − 𝑐1
2(2 − 𝜃)

 
(1 − 𝜃)(1 − 𝑐1)

2

4(2 − 𝜃)2
 

(1 − 𝑐1)
2

4(2 − 𝜃)
 𝜃 −

𝜃 − 𝑐2
2(2 − 𝜃)

 
𝜃 − 𝜃2 + 3𝑐2 − 𝜃𝑐2

2(2 − 𝜃)
 

𝜃 − 𝑐2
2𝜃(2 − 𝜃)

 
(1 − 𝜃)(𝜃 − 𝑐2)

2

4(2 − 𝜃)2𝜃
 

(𝜃 − 𝑐2)
2

4(2 − 𝜃)𝜃
 

RGS 1 −
1 − 𝑐1

4
 1 −

3(1 − 𝑐1)

4
 

1 − 𝑐1
4

 
(1 − 𝑐1)

2

16
 

(1 − 𝑐1)
2

8
 𝜃 −

𝜃 − 𝑐2
2(2 − 𝜃)

 
𝜃 − 𝜃2 + 3𝑐2 − 𝜃𝑐2

2(2 − 𝜃)
 

𝜃 − 𝑐2
2𝜃(2 − 𝜃)

 
(1 − 𝜃)(𝜃 − 𝑐2)

2

4(2 − 𝜃)2𝜃
 

(𝜃 − 𝑐2)
2

4(2 − 𝜃)𝜃
 

RAS 1 −
1 − 𝑐1

2(2 − 𝜃)
 
1 − 𝜃 + 3𝑐1 − 𝜃𝑐1

2(2 − 𝜃)
 

1 − 𝑐1
2(2 − 𝜃)

 
(1 − 𝜃)(1 − 𝑐1)

2

4(2 − 𝜃)2
 

(1 − 𝑐1)
2

4(2 − 𝜃)
 𝜃 −

𝜃 − 𝑐2
4

 𝜃 −
3(𝜃 − 𝑐2)

4
 

𝜃 − 𝑐2
4𝜃

 
(𝜃 − 𝑐2)

2

16𝜃
 

(𝜃 − 𝑐2)
2

8𝜃
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Table 4. Boundary values 𝜽𝒌 and 𝜽
𝒌
 

Game models 𝜃𝑘 𝜃
𝑘
 

MNS 1 + 𝑐1 + 𝑐2 −√(1 + 𝑐1 + 𝑐2)
2 − 8𝑐2

2
 1 −

𝑐1 − 𝑐2
2 − 𝑐1

 

MGS 
2 + 2𝑐1 + 3𝑐2 −√(2 + 2𝑐1 + 3𝑐2)

2 − 16(2 + 𝑐1)𝑐2
2(2 + 𝑐1)

 1 −
𝑐1 − 𝑐2
2 − 𝑐1

 

MAS 1 + 𝑐1 + 𝑐2 −√(1 + 𝑐1 + 𝑐2)
2 − 8𝑐2

2
 

5 − 3𝑐1 + 𝑐2 − √(3 − 3𝑐1 + 𝑐2)
2 + 4(𝑐1 − 𝑐2)

2
 

VNN 1 + 2𝑐1 + 𝑐2 − √(1 + 2𝑐1 + 𝑐2)
2 − 12𝑐2

2
 1 −

2𝑐1 − 2𝑐2
3 − 𝑐1

 

RNS 1 + 𝑐1 + 𝑐2 −√(1 + 𝑐1 + 𝑐2)
2 − 8𝑐2

2
 1 −

𝑐1 − 𝑐2
2 − 𝑐1

 

RGS 
2𝑐2

1 + 𝑐1
 1 −

𝑐1 − 𝑐2
2 − 𝑐1

 

RAS 1 + 𝑐1 + 𝑐2 −√(1 + 𝑐1 + 𝑐2)
2 − 8𝑐2

2
 min[1,2 − 2𝑐1 + 𝑐2] 

 

4 Impact of customer acceptance of the average brand and the power 

structure 

In this section, we discuss the impact of customer acceptance of the average brand and 

horizontal and vertical power structures in the decisions and performance of the supply chain. 

4.1 Impact of the customer acceptance of the average brand 𝜽 on pricing decisions 

Corollary 1 and Proposition 2 show that when 𝜃𝑘 < 𝜃 < 𝜃
𝑘
, the retailer sells both brands. 

From Table 2, we can obtain the following proposition. 

Proposition 3: For any game model 𝒌 ∈ {𝑴𝑵𝑺,𝑴𝑮𝑺,𝑴𝑨𝑺, 𝑽𝑵𝑵,𝑹𝑵𝑺,𝑹𝑮𝑺, 𝑹𝑨𝑺}, when 

𝜽 ∈ ( 𝜽𝒌, 𝜽
𝒌
), then 𝒘𝟏

𝒌 > 𝒘𝟐
𝒌 and 𝒑𝟏

𝒌 > 𝒑𝟐
𝒌. 

Proposition 3 indicates that in all the power structures we have discussed above, when 

the retailer sells both good and average brands, the optimal wholesale prices and optimal 

retail prices of the good brand are higher than that of the average brand. Since the customer 

perceives the good brand as higher value, the retailer thus can charge a higher retail price, 

which leaves a room for the good-brand manufacturer to charge a higher wholesale price. On 

the other hand, due to low customer acceptance of the average-brand product, the retailer 

should set a lower retail price to attract more lower-value customers, and this leads to a lower 

wholesale price from the average-brand manufacturer. In addition, from the proof in the 
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Appendix, we find that this Proposition still holds when 𝑐1 = 𝑐2. If and only if the customer 

acceptance of the average brand approaches one, the retail and wholesale prices of the good 

brand and the average brand will merge, which implies that when the customer becomes 

brand insensitive, the manufacturers and the retailer will not need to differentiate their prices, 

when 𝑐1 = 𝑐2. 

4.2 Impact of horizontal power structure 

Define the profit of the entire supply chain and the total sales volume as 𝜋𝑠 = 𝜋𝑚1 + 𝜋𝑚2 +

𝜋𝑟 and 𝐷 = 𝐷1 + 𝐷2, respectively. Furthermore, we denote the proportions of good-brand 

and average-brand product sold as 𝛼1 = 𝐷1/𝐷 and 𝛼2 = 𝐷2/𝐷, respectively. The impact of 

the horizontal power structure can be summarized in Propositions 4 (for the MS game) and 5 

(for the RS game). Since 𝜃𝑀𝐺𝑆 < 𝜃𝑀𝐴𝑆 = 𝜃𝑀𝑁𝑆  and 𝜃
𝑀𝑁𝑆

= 𝜃
𝑀𝐺𝑆

< 𝜃
𝑀𝐴𝑆

 through 

graphical analysis for 0 < 𝑐2 < 𝑐1 < 1, the result in Proposition 4 is given when the retailer 

sells both brands in all MNS, MGS, and MAS game models.  

Proposition 4: In MS model, if the customer acceptance of the average brand 𝜽 ∈

(𝜽𝑴𝑵𝑺, 𝜽
𝑴𝑵𝑺

), the following properties hold: 

(a) 𝒘𝟏
𝑴𝑵𝑺 < 𝒘𝟏

𝑴𝑮𝑺 and 𝒘𝟏
𝑴𝑵𝑺 < 𝒘𝟏

𝑴𝑨𝑺; 𝒘𝟐
𝑴𝑵𝑺 < 𝒘𝟐

𝑴𝑮𝑺 and 𝒘𝟐
𝑴𝑵𝑺 < 𝒘𝟐

𝑴𝑨𝑺. 

(b) 𝒑𝟏
𝑴𝑵𝑺 < 𝒑𝟏

𝑴𝑮𝑺 and 𝒑𝟏
𝑴𝑵𝑺 < 𝒑𝟏

𝑴𝑨𝑺; 𝒑𝟐
𝑴𝑵𝑺 < 𝒑𝟐

𝑴𝑮𝑺 and 𝒑𝟐
𝑴𝑵𝑺 < 𝒑𝟐

𝑴𝑨𝑺. 

(c) 𝑫𝑴𝑵𝑺 > 𝑫𝑴𝑮𝑺 and 𝑫𝑴𝑵𝑺 > 𝑫𝑴𝑨𝑺; 𝜶𝟏
𝑴𝑮𝑺 < 𝜶𝟏

𝑴𝑵𝑺 < 𝜶𝟏
𝑴𝑨𝑺 and 𝜶𝟐

𝑴𝑮𝑺 > 𝜶𝟐
𝑴𝑵𝑺 > 𝜶𝟐

𝑴𝑨𝑺. 

(d) 𝝅𝒎𝟏
𝑴𝑮𝑺 > 𝝅𝒎𝟏

𝑴𝑵𝑺  and 𝝅𝒎𝟐
𝑴𝑨𝑺 > 𝝅𝒎𝟐

𝑴𝑵𝑺 . When 𝜽 ∈ ( 𝜽𝑴𝑵𝑺, 𝜽𝟏] , 𝝅𝒓
𝑴𝑮𝑺 ≤ 𝝅𝒓

𝑴𝑨𝑺  and 

𝝅𝒔
𝑴𝑮𝑺 ≤ 𝝅𝒔

𝑴𝑨𝑺 ; when 𝜽 ∈ (𝜽𝟏, 𝜽
𝑴𝑵𝑺

) , 𝝅𝒓
𝑴𝑮𝑺 > 𝝅𝒓

𝑴𝑨𝑺  and 𝝅𝒔
𝑴𝑮𝑺 > 𝝅𝒔

𝑴𝑨𝑺 , where 

𝜽𝟏 =
(𝟏−𝒄𝟏)

𝟐+𝟐𝒄𝟐+(𝟏−𝒄𝟏)√(𝟏−𝒄𝟏)𝟐+𝟒𝒄𝟐

𝟐
. 

Parts (a) and (b) in Proposition 4 show that the imbalanced power between the two 

manufacturers leads to a higher optimal wholesale price as well as a higher retail price. This 

implies that the power imbalance between the two manufacturers facilitates a higher margin 

for both manufacturers because it softens the price competition between the two 

manufacturers. As a result, both manufacturers gain more profit although one may sell fewer 

products if it acts as the leader between the two manufacturers. The power imbalance between 
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the two manufacturers, however, results in reduced total demand for the retailer since the 

retailer has to increase prices for both brands, and may lose some lower-value customers. 

Further analysis also shows that if the gap in unit production cost between the two 

manufacturers is larger, the optimal wholesale prices and retail price of the MAS model are 

always higher than that of the MGS model. This implies that if the weaker manufacturer acts 

as the leader, both manufacturers gain more profit margins. Part (c) also shows that if the 

competing manufacturer acts as the leader, the other manufacturer can sell more products to 

the retailer. In part (d), it is interesting to see that when customer acceptance of the average 

brand is relatively low (𝜃 ∈ ( 𝜃𝑀𝑁𝑆, 𝜃1]), both the retailer and the entire supply chain gain 

more profits if the average-brand manufacturer is the leader and the good-brand manufacturer 

is the follower. When customer acceptance of the average brand is relatively high (𝜃 ∈ (𝜃1,

𝜃
𝑀𝑁𝑆

)), both the retailer and the entire supply chain gain more profit if the good-brand 

manufacturer is the leader and the average-brand manufacturer is the follower. Proposition 4 

provides decision-makers important enlightenments to make accurate management decisions. 

Using Microsoft and Apple as an example. Surface Pro 4 and iPad Pro are similar portable 

personal computers manufactured by Microsoft and Apple, respectively. It is hard to say 

which company dominates the other as a whole, but these two competitive electronic products 

were launched at different times, which may bring a competitive edge to the first. That is, the 

timing of product coming into the market and the initial price will have a significant effect on 

product sales volume and profit gain. Therefore, our analysis offers some oligopolies 

important decision support on when and how to make pricing policies under different 

horizontal power structure. The retailer, such as retail giant Amazon in the United States, 

SUNING and JD Mall in China, may face a variety of competition scenarios between 

upstream enterprises and different consumer preference in product. Our findings offer 

suggestions on how to price Surface Pro and iPad Pro to improve retail profit under each 

scenarios. In addition, it is also interesting that when the customer acceptance of average 

brand is relatively low, the retailer would like the average brand manufacturer to move first to 

push out a new product, because this can bring the retailer more profit.  

As for the RS model, since 𝜃𝑅𝐺𝑆 < 𝜃𝑅𝐴𝑆 = 𝜃𝑅𝑁𝑆 and 𝜃
𝑅𝑁𝑆

= 𝜃
𝑅𝐺𝑆

< 𝜃
𝑅𝐴𝑆

 through 
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graphical analysis for 0 < 𝑐2 < 𝑐1 < 1, the result in Proposition 5 is given when the retailer 

sells both brands in the RNS, RGS, and RAS game models. 

Proposition 5: In the RS model, if the customer acceptance of the average brand 𝜽 ∈

(𝜽𝑹𝑵𝑺, 𝜽
𝑹𝑵𝑺

), the following properties hold: 

(a) 𝒘𝟏
𝑹𝑵𝑺 < 𝒘𝟏

𝑹𝑮𝑺 and 𝒘𝟏
𝑹𝑵𝑺 < 𝒘𝟏

𝑹𝑨𝑺. 𝒘𝟐
𝑹𝑵𝑺 < 𝒘𝟐

𝑹𝑮𝑺 and 𝒘𝟐
𝑹𝑵𝑺 < 𝒘𝟐

𝑹𝑨𝑺. 

(b) 𝒑𝟏
𝑹𝑵𝑺 < 𝒑𝟏

𝑹𝑮𝑺 and 𝒑𝟏
𝑹𝑵𝑺 < 𝒑𝟏

𝑹𝑨𝑺. 𝒑𝟐
𝑹𝑵𝑺 < 𝒑𝟐

𝑹𝑮𝑺 and 𝒑𝟐
𝑹𝑵𝑺 < 𝒑𝟐

𝑹𝑨𝑺. 

(c) 𝑫𝑹𝑵𝑺 > 𝑫𝑹𝑮𝑺 and 𝑫𝑹𝑵𝑺 > 𝑫𝑹𝑨𝑺. 𝜶𝟏
𝑹𝑮𝑺 < 𝜶𝟏

𝑹𝑵𝑺 < 𝜶𝟏
𝑹𝑨𝑺 and 𝜶𝟐

𝑹𝑮𝑺 > 𝜶𝟐
𝑹𝑵𝑺 > 𝜶𝟐

𝑹𝑨𝑺. 

(d) 𝝅𝒎𝟏
𝑹𝑵𝑺 > 𝝅𝒎𝟏

𝑹𝑮𝑺  and 𝝅𝒎𝟏
𝑹𝑨𝑺 > 𝝅𝒎𝟏

𝑹𝑮𝑺 . 𝝅𝒎𝟐
𝑹𝑵𝑺 > 𝝅𝒎𝟐

𝑹𝑨𝑺  and 𝝅𝒎𝟐
𝑹𝑮𝑺 > 𝝅𝒎𝟐

𝑹𝑨𝑺 . When 𝜽 ∈

( 𝜽𝑹𝑵𝑺, 𝜽𝟏], 𝝅𝒓
𝑹𝑵𝑺 > 𝝅𝒓

𝑹𝑨𝑺 ≥ 𝝅𝒓
𝑹𝑮𝑺 and 𝝅𝒔

𝑹𝑨𝑺 ≥ 𝝅𝒔
𝑹𝑮𝑺; When 𝜽 ∈ (𝜽𝟏, 𝜽

𝑹𝑵𝑺
), 𝝅𝒓

𝑹𝑵𝑺 >

𝝅𝒓
𝑹𝑮𝑺 > 𝝅𝒓

𝑹𝑨𝑺 and 𝝅𝒔
𝑹𝑨𝑺 < 𝝅𝒔

𝑹𝑮𝑺, where 𝜽𝟏 =
(𝟏−𝒄𝟏)

𝟐+𝟐𝒄𝟐+(𝟏−𝒄𝟏)√(𝟏−𝒄𝟏)𝟐+𝟒𝒄𝟐

𝟐
. 

The results of (a), (b), and (c) in Proposition 5 are similar to those in Proposition 4 (MS 

game). However, these conclusions can explain some typical cases in the retail industry. Take 

Wal-Mart and Carrefour as an example, these two giant retailers are always in a strong 

competitive position thus having more power than their suppliers. Given the marginal profits, 

Wal-Mart and Carrefour would like their upstream suppliers to be in relatively fierce 

competition, which results in a low wholesale price and triggers high product demand. Most 

noteworthy is that conclusion part (d) confirms the benefits of fierce competition between 

upstream suppliers, the retailer, e, g. Wal-Mart and Carrefour, will gain more profits in these 

scenarios. And both upstream suppliers and the retailer can be better off if the upstream 

suppliers have equal power. The most interesting in part (d) is that when the retailer is the 

Stackelberg leader in the supply chain, the manufacturer that acts as the follower in 

competition with the other manufacturer will be more profitable. Based on this conclusion, 

neither manufacturers wishes to be first to announce its wholesale price. This can be 

explained by that the price information is regarded as trade secret. Once it leaks, it will have 

an extremely serious impact on its own financial benefit. From (a) and (c), we see that when 

the two manufacturers have equal power, their low wholesale prices allow the retailer to 

attract more customers, and more customers will choose their brands, as compared to cases in 

which one manufacturer acts as the leader in competition with the other. The factor of demand 
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attraction dominates the factor of higher wholesale price, so both manufacturers are more 

profitable. When the two manufacturers are in competition, being a follower allows the 

manufacturer to attract more customers, and, as a result, enhance its profit. When the 

customer acceptance of the average brand is lower, the system-wide profit and the retailer’s 

profit can be higher if the average brand manufacturer has more power, and vice versa.  

4.3 Impact of vertical power structure 

4.3.1 Retailer sells single brand 

When the retailer sells the good-brand product only, if 0 < 𝜃 ≤ 𝜃𝑘, the profit of the entire 

supply chain is 𝜋𝑠1 = 𝜋𝑚1 + 𝜋𝑟; when the retailer sells the average-brand product only, if 

𝜃
𝑘
≤ 𝜃 < 1, the profit of the entire supply chain is 𝜋𝑠2 = 𝜋𝑚2 + 𝜋𝑟. With Table 3, the 

following proposition indicates the impact of vertical power structure for cases in which the 

retailer sells one brand only. 

Proposition 6: (a) When the retailer sells the good-brand product only，namely 𝜽 ∈ (𝟎,  𝜽𝒌], 

we have 𝒘𝟏
𝑴𝑵𝑺 > 𝒘𝟏

𝑽𝑵𝑵 > 𝒘𝟏
𝑹𝑵𝑺, 𝒑𝟏

𝑴𝑵𝑺 = 𝒑𝟏
𝑹𝑵𝑺 > 𝒑𝟏

𝑽𝑵𝑵, 𝑫𝟏
𝑴𝑵𝑺 = 𝑫𝟏

𝑹𝑵𝑺 < 𝑫𝟏
𝑽𝑵𝑵, 𝝅𝒎𝟏

𝑴𝑵𝑺 >

𝝅𝒎𝟏
𝑽𝑵𝑵 > 𝝅𝒎𝟏

𝑹𝑵𝑺, 𝝅𝒓
𝑴𝑵𝑺 < 𝝅𝒓

𝑽𝑵𝑵 < 𝝅𝒓
𝑹𝑵𝑺 and 𝝅𝒔𝟏

𝑴𝑵𝑺 = 𝝅𝒔𝟏
𝑹𝑵𝑺 < 𝝅𝒔𝟏

𝑽𝑵𝑵. 

(b) When the retailer sells the average-brand product only, namely 𝜽 ∈ [𝜽
𝒌
, 𝟏), then 

𝒘𝟐
𝑴𝑵𝑺 > 𝒘𝟐

𝑽𝑵𝑵 > 𝒘𝟐
𝑹𝑵𝑺 , 𝒑𝟐

𝑴𝑵𝑺 = 𝒑𝟐
𝑹𝑵𝑺 > 𝒑𝟐

𝑽𝑵𝑵 , 𝑫𝟐
𝑴𝑵𝑺 = 𝑫𝟐

𝑹𝑵𝑺 < 𝑫𝟐
𝑽𝑵𝑵 , 𝝅𝒎𝟐

𝑴𝑵𝑺 > 𝝅𝒎𝟐
𝑽𝑵𝑵 >

𝝅𝒎𝟐
𝑹𝑵𝑺, 𝝅𝒓

𝑴𝑵𝑺 < 𝝅𝒓
𝑽𝑵𝑵 < 𝝅𝒓

𝑹𝑵𝑺 and 𝝅𝒔𝟐
𝑴𝑵𝑺 = 𝝅𝒔𝟐

𝑹𝑵𝑺 < 𝝅𝒔𝟐
𝑽𝑵𝑵. 

If the customer acceptance of the average brand is lower (𝜃 ∈ (0,  𝜃𝑘]) or higher (𝜃 ∈

[𝜃
𝑘
, 1)), results in Proposition 6 are consistent with studies in the literature (for example, 

Choi, 1991; Chen and Wang, 2015; Chen et al., 2016). Both the retailer and the manufacturer 

will gain more profit when they have more market power in the supply chain. The entire 

supply chain, as well as the customer, however, will benefit from higher profits and lower 

retail prices when there is no dominant channel member. Thus this conclusion explains why 

the individual firm wants more power and the whole supply chain system wants to stay in a 

balanced competition environment. From the perspective of individual manufacturer or 

retailer, more power over its supply chain counter parties will enable it to capture more profit. 

Therefore, for the manufacturer they can gain more power by expanding production scale, 
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technical upgrade and product differentiation. And for the retailer, he can focus on product 

marketing and extending distribution channel to enhance his power. In contrast, from the 

perspective of the entire supply chain, it will gain more profits if there is a more balanced 

power relationship vertically. Therefore, on the one hand, it is important for individual 

manufacturer or retailer to seek solutions in enhancing their market and supply chain power in 

order to acquire more economic benefits. On the other hand, strategically, it is crucial for 

industry leaders to create a more power balanced supply chain environment that promotes fair 

and effective competition to improve its supply chain competitiveness, which is significant in 

chain to chain competition. 

4.3.2 Retailer sells both brands 

When the retailer sells both brands and the two manufacturers have equal market power, since 

𝜃𝑀𝑁𝑆 = 𝜃𝑅𝑁𝑆 < 𝜃𝑉𝑁𝑁 and 𝜃
𝑉𝑁𝑁

< 𝜃
𝑀𝑁𝑆

= 𝜃
𝑅𝑁𝑆

 through graphical analysis for 0 < 𝑐2 <

𝑐1 < 1, the following proposition can be obtained. 

Proposition 7: In the MNS, RNS, and VNN game models, if the customer acceptance of the 

average brand 𝜽 ∈ (𝜽𝑽𝑵𝑵, 𝜽
𝑽𝑵𝑵

), the following properties hold: 

(a) 𝒘𝟏
𝑴𝑵𝑺 > 𝒘𝟏

𝑽𝑵𝑵 and 𝒘𝟏
𝑴𝑵𝑺 > 𝒘𝟏

𝑹𝑵𝑺; 𝒘𝟐
𝑴𝑵𝑺 > 𝒘𝟐

𝑽𝑵𝑵 and 𝒘𝟐
𝑴𝑵𝑺 > 𝒘𝟐

𝑹𝑵𝑺. 

(b) 𝒑𝟏
𝑴𝑵𝑺 = 𝒑𝟏

𝑹𝑵𝑺 > 𝒑𝟏
𝑽𝑵𝑵 and 𝒑𝟐

𝑴𝑵𝑺 = 𝒑𝟐
𝑹𝑵𝑺 > 𝒑𝟐

𝑽𝑵𝑵. 

(c) 𝑫𝑴𝑵𝑺 = 𝑫𝑹𝑵𝑺 < 𝑫𝑽𝑵𝑵 . When 𝜽 ∈ ( 𝜽𝑽𝑵𝑵, 𝜽𝟏], 𝜶𝟏
𝑴𝑵𝑺 = 𝜶𝟏

𝑹𝑵𝑺 ≤ 𝜶𝟏
𝑽𝑵𝑵  and 𝜶𝟐

𝑴𝑵𝑺 =

𝜶𝟐
𝑹𝑵𝑺 ≥ 𝜶𝟐

𝑽𝑵𝑵 ; when 𝜽 ∈ (𝜽𝟏, 𝜽
𝑽𝑵𝑵

) , 𝜶𝟏
𝑴𝑵𝑺 = 𝜶𝟏

𝑹𝑵𝑺 > 𝜶𝟏
𝑽𝑵𝑵  and 𝜶𝟐

𝑴𝑵𝑺 = 𝜶𝟐
𝑹𝑵𝑺 <

𝜶𝟐
𝑽𝑵𝑵, where 𝜽𝟏 =

(𝟏−𝒄𝟏)
𝟐+𝟐𝒄𝟐+(𝟏−𝒄𝟏)√(𝟏−𝒄𝟏)𝟐+𝟒𝒄𝟐

𝟐
. 

(d) 𝝅𝒎𝟏
𝑴𝑵𝑺 > 𝝅𝒎𝟏

𝑹𝑵𝑺 and 𝝅𝒎𝟐
𝑴𝑵𝑺 > 𝝅𝒎𝟐

𝑹𝑵𝑺; 𝝅𝒔
𝑴𝑵𝑺 = 𝝅𝒔

𝑹𝑵𝑺. 

Part (a) illustrates that when a manufacturer has more power than the retailer, it will set a 

higher wholesale price. The imbalanced vertical power, however, will result in the same retail 

prices, which are higher than that in a balanced vertical power structure. Part (c) shows that 

when the retailer and the manufacturers have equal power, the total number of products sold is 

higher than the case in which the retailer and the manufacturers have imbalanced power, 

which can attract more low-value customers. Facing relatively low customer acceptance of the 
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average-brand product, however, the retailer tends to increase the order proportion of the 

good-brand product and decrease the order proportion of the average-brand product in the 

VNN model, and vice versa. Part (d) shows that the two manufacturers will benefit from the 

Stackelberg leader model (MNS model) as compared with the RNS model. The profit of the 

entire supply chain is the same whether the manufacturers or the retailer is the leader in the 

supply chain. Therefore, combining with Proposition 7, no matter single brand or multiple 

brands, for each member in the supply chain, they all want to gain more power to enhance 

their financial benefits. However, the whole supply chain system would like to be in a 

balanced power environment to optimize the chain-wide performance.  

In summary, as mentioned in Section 1, imbalanced power relationships among supply 

chain members are very common. The seven power structures discussed in this section can be 

observed in the retailing and manufacturing industries. Our findings provide guidance for 

decision-making on pricing policies based on customer value and brand differentiation within 

different power structures. 

5 Numerical examples 

To illustrate the main results and obtain additional insight into the differences among the 

power structures, we use a numerical example to show the impact of power structure and 

customer acceptance of the average brand when the retailer sells both brands for 𝜃𝑘 < 𝜃 <

𝜃
𝑘
. We set 𝑐1 = 0.6 and 𝑐2 = 0.25, which gives 𝜃𝑉𝑁𝑁 = 0.359 and 𝜃

𝑉𝑁𝑁
= 0.708 (from 

Table 4). Notice that maximum profits can be obtained and compared in closed-form solutions, 

as wholesale prices and retail prices have been presented in Table 2. 

Figures 3 and 4 show the manufacturers’ maximal profit for game model 𝑘, where 𝑘 ∈

{𝑀𝑁𝑆,𝑀𝐺𝑆,𝑀𝐴𝑆, 𝑉𝑁𝑁, 𝑅𝑁𝑆, 𝑅𝐺𝑆, 𝑅𝐴𝑆}. In general, an increase in the customer acceptance 

of the average brand drives the profit of the average-brand manufacturer up, and reduces the 

profit of the good-brand manufacturer. In the horizontal power structure, in the MS model, 

intensified competition between manufacturers will hurt both. Thus, in the MS model, the 

horizontal Nash game generates the worst financial performance. In the RS model, however, 

the financial performance in the horizontal Nash game is neither the worst nor the best. 
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Figures 3 and 4 also show that in either the MS or the RS model, for the two manufacturers, 

the one who makes decisions after his rival will be more profitable. This is inconsistent with 

the statement of first-mover advantage, but it is also very reasonable to explain some practical 

phenomena. For instance, a firm’s operation decisions, including choice of action and timing 

of implementation are always regarded as trade secrets, which are very important and should 

not be leaked. Thinking about that two firms compete in an open bidding. Before the biding, 

each firm’s bid price is an important trade secret. Once it is leaked, other rivals will know and 

make responses. Thus less benefit can be gained than that when the bid price is not leaked. 

Therefore, our conclusions confirm that due to low profit levels, it is not wise to leak firms’ 

decisions to their rivals in business competition. In the vertical power structure, the 

manufacturer with more power gains more profit. Manufacturers are better off when they are 

leaders and the retailer is the follower. 

 

Figure 3. Maximal profits of manufacturer 1 
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Figure 4. Maximal profits of manufacturer 2 

Figure 5 shows the maximal profit of the retailer. As the customer acceptance of the 

average brand increases, the retailer is more profitable. In terms of the horizontal power 

structure of the two manufacturers, Figure 5 indicates that as in the RS model, the retailer will 

always gain the most profit if the two manufacturers have equal power in the MS model. In 

addition, the retailer is more profitable when it is a Stackelberg leader and the manufacturers 

are followers in the supply chain. 

 

Figure 5. Maximal profit of the retailer 

Figure 6 shows the chain-wide profit. The supply chain is more profitable as customer 
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equilibrium between the manufacturers and the retailer). That is, a supply chain in which all 

the members have balanced power and are in perfect competition will result in the highest 

chain-wide profit. 

 

Figure 6. Maximal profit of the entire supply chain 
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estimate customer acceptance of the average brand based on historical data, expertise, or 

industrial reports on similar product brands, it can be in the position to assess whether it 

should choose both brands, the good brand only, or the average brand only (based on 

Corollary 1). When the retailer decides to sell both brands, the wholesale price and the retail 

price of the good brand are always higher than those of average brand, for all power structures 

(based on Proposition 3). This result is not affected by the unit production cost and will hold 

even when the unit production costs of the good brand and the average brand are equal. 

Observation 2. The horizontal power structures have significant impact on the 

manufacturers’ and retailer’s pricing decisions and profits, as well as on the chain-wide profit. 

In either a manufacturers Stackelberg supply chain (where the retailer is the follower) or a 

retailer Stackelberg supply chain (where the manufacturers are followers), intensified 

competition between the good-brand manufacturer and the average-brand manufacturer (when 

they have equal power) will lead to lower wholesale prices, lower retail prices, and more sales 

for the retailer than the case in which the two manufacturers have imbalanced power. The 

retailer orders a larger proportion of product from the weaker manufacturer. When the 

manufacturers are leaders, they are more profitable in conditions of imbalanced power, due to 

softened wholesale price competition between the manufacturers as well as retail price 

competition between the two brands. When customer acceptance of the average brand is 

relatively lower, the retailer and the chain-wide are more profitable when the average-brand 

manufacturer is the leader. When customer acceptance of the average brand is relatively 

higher, the retailer and the entire chain are more profitable when the good-brand manufacturer 

is the leader (based on Proposition 4). When the retailer is leader, the manufacturers and the 

retailer are more profitable when there is a balanced power relationship between the 

manufacturers, due to the intensified wholesale price competition between the manufacturers 

and retail price competition between the two brands, which can enhance the overall demand 

of the retailer (based on Proposition 5). Whether either the retailer or the manufacturers are 

Stackelberg leader in the supply chain, the manufacturer who acts as the follower and makes 

decisions after his rival will be more profitable (based on Proposition 5, Figures 3 and 4). It is 

possible that in a game of perfect information, no one wants to move first, which would result 

in a lower profit level as decisions are exposed to the rival. Therefore, in practice, the 
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wholesale price or bid rate is always considered a trade secret between rivals, and leaks 

should be avoided. 

Observation 3. Our findings also show the effect of vertical power structures. When the 

retailer sells both brands, we see that the more powerful firm always makes higher profits, but 

for the entire supply chain, a balanced power relationship among the two manufacturers and 

retailer is the best strategy (based on Proposition 7). Therefore, perfect competition helps 

improve the performance of the entire system through setting low prices to attract more 

customers. 

This study provides a general analytical framework for pricing policies based on 

customer value and brand preference in a supply chain structure with two competing 

manufacturers and a retailer. We analyze the retailer’s brand selection behavior with different 

power structures, and discuss the effect of power structures and customer acceptance of the 

average brand. Our study provides manufacturers and retailers with decision support that can 

help them develop accurate pricing strategies to improve their profits in various market 

positions. 

As in other models used in the literature, the present model is also based on some 

assumptions. For example, our model assumes that a retailer sells two substitutable products 

with different brands purchased from different manufacturers. One meaningful extension of 

this work would be to consider two or multiple retailers who sell both brands, in which the 

chain-to-chain competition can be studied. Another extension is to consider stochastic demand 

based on customer value theory, to examine the impact of demand uncertainty on pricing 

decisions and channel structure. 
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Appendix 

Proof of Proposition 1: 

From Section 2, we have 𝑣1 = 𝑝1, 𝑣2 =
𝑝2

𝜃
 and 𝑣21 =

𝑝1−𝑝2

1−𝜃
. There are two conditions: 

Condition 1: if 𝑣1 > 𝑣2 or 𝑝1 >
𝑝2

𝜃
, we can derive 

𝑝1−𝑝2

1−𝜃
> 𝑝1 (or equivalently, 𝑣21 > 𝑣1).  

(1) If 1 > 𝑣21 > 𝑣1 > 𝑣2 (or equivalently,   𝑝2 + 1 − 𝜃 > 𝑝1 >
𝑝2

𝜃
), namely 

𝑝2

𝑝1
< 𝜃 < 1 − 𝑝1 + 𝑝2, then 

the customer whose reservation price 𝑣 is in the range [0, 𝑣2] will buy neither brand, while the customer 

will purchase the average brand product for 𝑣 in the range [𝑣2, 𝑣21] and the good brand product for 𝑣 in 

the range [𝑣21, 1]. Therefore, the demands for the good brand product and for the average brand product 

are 𝐷1(𝑝1, 𝑝2) = ∫ 𝑑𝑣
1

𝑣21
= 1 − 𝑣21 = 1 −

𝑝1−𝑝2

1−𝜃
 and 𝐷2(𝑝1, 𝑝2) = ∫ 𝑑𝑣

𝑣21
𝑣2

= 𝑣21 − 𝑣2 =
𝑝1−𝑝2

1−𝜃
−

𝑝2

𝜃
, 

respectively.  

(2) If 𝑣21 ≥ 1 > 𝑣1 > 𝑣2, it is equivalent to 𝜃 ≥ 1 − 𝑝1 + 𝑝2. In this case, no customer will purchase the 

good brand product, and the customer will only purchase the average brand product if 𝑣 is in the range 

[𝑣2, 1]. Therefore, the demands of the good brand product and the average brand product are 𝐷1(𝑝1, 𝑝2) =

0 and 𝐷2(𝑝1, 𝑝2) = ∫ 𝑑𝑣
1

𝑣2
= 1 − 𝑣2 = 1 −

𝑝2

𝜃
. 

Condition 2: If 𝑣1 ≤ 𝑣2 or 𝑝1 ≤
𝑝2

𝜃
, suggesting 

𝑝1−𝑝2

1−𝜃
≤ 𝑝1, which is equivalent to 𝑣21 ≤ 𝑣1, then we 

have 𝑣21 ≤ 𝑣1 ≤ 𝑣2 < 1 or 𝜃 ≤
𝑝2

𝑝1
. This implies that no customer will purchase the average brand 

product and the customer will only purchase the good brand product if 𝑣 is in the range [𝑣1, 1]. Therefore, 

demands of the good brand product and the average brand product are 𝐷1(𝑝1, 𝑝2) = ∫ 𝑑𝑣
1

𝑣1
= 1 − 𝑣1 =

1 − 𝑝1 and 𝐷2(𝑝1, 𝑝2) = 0, respectively. This completes the proof.  

 

Proof of Corollary 1: 

With demand functions in Proposition 1, we define 𝜃 =
𝑝2

𝑝1
 and 𝜃 = 1 − 𝑝1 + 𝑝2. When 0 < 𝜃 ≤ 𝜃, 

𝐷1(𝑝1, 𝑝2) > 0 and 𝐷2(𝑝1, 𝑝2) = 0; when 𝜃 < 𝜃 < 𝜃, 𝐷1(𝑝1, 𝑝2) > 0 and 𝐷2(𝑝1, 𝑝2) > 0; and when 

𝜃 ≤ 𝜃 < 1, 𝐷1(𝑝1, 𝑝2) > 0 and 𝐷2(𝑝1, 𝑝2) = 0. This completes the proof. 

 

Proof of Proposition 2: 
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MNS model: 

Step one:  

Given 𝑤1  and 𝑤2 , considering three players game, 𝜋𝑟(𝑝1, 𝑝2) = (𝑝1 −𝑤1)(1 −
𝑝1−𝑝2

1−𝜃
) + (𝑝2 −

𝑤2)(
𝑝1−𝑝2

1−𝜃
−

𝑝2

𝜃
), we get 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
=

−1+𝜃+2𝑝1−2𝑝2−𝑤1+𝑤2

−1+𝜃
, 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
= −

2𝜃𝑝1−2𝑝2−𝜃𝑤1+𝑤2

(−1+𝜃)𝜃
, 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2 =

−
2

1−𝜃
< 0, 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2 = −

2

1−𝜃
−

2

𝜃
, and 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2
=

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1
=

2

1−𝜃
. Then |

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2

| =

4

(1−𝜃)𝜃
> 0. Therefore, 𝜋𝑟(𝑝1, 𝑝2) is joint concave in 𝑝1  and 𝑝2 . Let 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
=

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
= 0, we 

obtain 𝑝1 =
1+𝑤1

2
 and 𝑝2 =

𝜃+𝑤2

2
. The square {(𝑝1, 𝑝2)|0 ≤ 𝑝1 ≤ 1 ∩ 0 ≤ 𝑝2 ≤ 1} is divided into three 

regions, because of the customer acceptance of the average brand and the retail prices. Namely, 𝐵 =

{(𝑝1, 𝑝2)|
𝑝2

𝑝1
< 𝜃 < 1 − 𝑝1 + 𝑝2 ∩ 0 ≤ 𝑝1 ≤ 1 ∩ 0 ≤ 𝑝2 ≤ 1}, the demand is positive for both the good 

and average brand product; 𝐺 = {(𝑝1, 𝑝2)|0 < 𝜃 ≤
𝑝2

𝑝1
∩ 0 ≤ 𝑝1 ≤ 1 ∩ 0 ≤ 𝑝2 ≤ 1} , the demand is 

positive for the good-brand product only; and 𝐴 = {(𝑝1, 𝑝2)|1 − 𝑝1 + 𝑝2 ≤ 𝜃 < 1 ∩ 0 ≤ 𝑝1 ≤ 1 ∩ 0 ≤

𝑝2 ≤ 1}, the demand is positive for the average-brand product only. Thus, three cases are taken into 

account.  

Step two:  

Case B: 
𝒑𝟐

𝒑𝟏
< 𝜽 < 𝟏 − 𝒑𝟏 + 𝒑𝟐. 

Replacing 𝑝1 and 𝑝2, we can get 
𝑤2

𝑤1
< 𝜃 < 1 −𝑤1 +𝑤2,which makes three players game and positive 

demand for both products. Substituting 𝑝1 and 𝑝2 into (3) and (4), we get 𝜋𝑚1(𝑤1) = (𝑤1 − 𝑐1) [1 −

1

2
(1+𝑤1)−

1

2
(𝜃+𝑤2)

1−𝜃
]  and 𝜋𝑚2(𝑤2) = (𝑤2 − 𝑐2) [

1

2
(1+𝑤1)−

1

2
(𝜃+𝑤2)

1−𝜃
−

𝜃+𝑤2

2𝜃
] . Then we get 

𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
=

−1+𝜃−𝑐1+2𝑤1−𝑤2

2(−1+𝜃)
 and 

𝑑2𝜋𝑚1(𝑤1)

𝑑𝑤1
2 = −

1

1−𝜃
< 0. Therefore, 𝜋𝑚1(𝑤1) is concave in 𝑤1. Similarly, we get 

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

𝑐2+𝜃𝑤1−2𝑤2

2(1−𝜃)𝜃
 and 

𝑑2𝜋𝑚2(𝑤2)

𝑑𝑤2
2 = −

1

1−𝜃
−

1

𝜃
< 0 . Therefore, 𝜋𝑚2(𝑤2)  is concave in 𝑤2 . Let 

𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
=

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
= 0, we get 𝑤1

𝑀𝑁𝑆 = 1 −
2(1−𝑐1)+(𝜃−𝑐2)

4−𝜃
 and 𝑤2

𝑀𝑁𝑆 = 𝜃 −
𝜃(1−𝑐1)+2(𝜃−𝑐2)

4−𝜃
. Replacing 

𝑤1  and 𝑤2  with 𝑤1
𝑀𝑁𝑆  and 𝑤2

𝑀𝑁𝑆  into 𝑝1  and 𝑝2 , then we have 𝑝1
𝑀𝑁𝑆 = 1−

2(1−𝑐1)+(𝜃−𝑐2)

2(4−𝜃)
 and 

𝑝2
𝑀𝑁𝑆 = 𝜃 −

𝜃(1−𝑐1)+2(𝜃−𝑐2)

2(4−𝜃)
. Because of 𝜃𝑀𝑁𝑆 =

𝑝2
𝑀𝑁𝑆

𝑝1
𝑀𝑁𝑆  and 𝜃

𝑀𝑁𝑆
= 1 − 𝑝1

𝑀𝑁𝑆 + 𝑝2
𝑀𝑁𝑆 , we can get 
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𝜃𝑀𝑁𝑆 =
1+𝑐1+𝑐2−√(1+𝑐1+𝑐2)

2−8𝑐2

2
 and 𝜃

𝑀𝑁𝑆
= 1 −

𝑐1−𝑐2

2−𝑐1
. 

Case G: 𝟎 < 𝜽 ≤
𝒑𝟐

𝒑𝟏
.  

Replacing 𝑝1 and 𝑝2, we can get 0 < 𝜃 ≤
𝑤2

𝑤1
. Specially, 𝑝2 = 𝜃𝑝1 or 𝑤2 = 𝜃𝑤1 makes three players 

game and positive demand for good-brand product only. Substituting 𝑝1 and 𝑝2 into Eq. (3), we can get 

𝜋𝑚1(𝑤1) = (𝑤1 − 𝑐1) [1 −
1

2
(1+𝑤1)−

1

2
(𝜃+𝑤2)

1−𝜃
]. Then 

𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
=

−1+𝜃−𝑐1+2𝑤1−𝑤2

2(−1+𝜃)
 and 

𝑑2𝜋𝑚1(𝑤1)

𝑑𝑤1
2 = −

1

1−𝜃
<

0. Therefore, 𝜋𝑚1(𝑤1) is concave in 𝑤1. Let 
𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
= 0, we get 𝑤1 =

1−𝜃+𝑐1+𝑤2

2
. Therefore, combine 

𝑤1 =
1−𝜃+𝑐1+𝑤2

2
 and 𝑤2 = 𝜃𝑤1, we have 𝑤1

𝑀𝑁𝑆 = 1 −
1−𝑐1

2−𝜃
 and 𝑤2

𝑀𝑁𝑆 = (1 −
1−𝑐1

2−𝜃
)𝜃. Replacing 𝑤1 

and 𝑤2  with 𝑤1
𝑀𝑁𝑆  and 𝑤2

𝑀𝑁𝑆  into 𝑝1  and 𝑝2 , then we have 𝑝1
𝑀𝑁𝑆 = 1 −

1−𝑐1

2(2−𝜃)
 and 𝑝2

𝑀𝑁𝑆 =

[1 −
1−𝑐1

2(2−𝜃)
] 𝜃. 

Case A: 𝟏 − 𝒑𝟏 + 𝒑𝟐 ≤ 𝜽 < 𝟏.  

Replacing 𝑝1 and 𝑝2, we can get 1 − 𝑤1 +𝑤2 ≤ 𝜃 < 1. Specially, 1 − 𝑝1 + 𝑝2 = 𝜃 or 1 − 𝑤1 +𝑤2 =

𝜃 makes three players game and positive demand for average-brand product only. Substituting 𝑝1 and 𝑝2 

into Eq. (4), we can get 𝜋𝑚2(𝑤2) = (𝑤2 − 𝑐2) [
1

2
(1+𝑤1)−

1

2
(𝜃+𝑤2)

1−𝜃
−

𝜃+𝑤2

2𝜃
]. Then 

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

𝑐2+𝜃𝑤1−2𝑤2

2(1−𝜃)𝜃
 

and 
𝑑2𝜋𝑚2(𝑤2)

𝑑𝑤2
2 = −

1

1−𝜃
−

1

𝜃
< 0. Therefore, 𝜋𝑚2(𝑤2) is concave in 𝑤2 Let 

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
= 0, we get 𝑤2 =

𝑐2+𝜃𝑤1

2
. Therefore, combine 𝑤2 =

𝑐2+𝜃𝑤1

2
 and 𝑤1 = 1 + 𝑤2 − 𝜃 , we have 𝑤1

𝑀𝑁𝑆 = 1 −
𝜃−𝑐2

2−𝜃
 and 

𝑤2
𝑀𝑁𝑆 = 𝜃 −

𝜃−𝑐2

2−𝜃
. Replacing 𝑤1  and 𝑤2  with 𝑤1

𝑀𝑁𝑆  and 𝑤2
𝑀𝑁𝑆  into 𝑝1  and 𝑝2 , then we have 

𝑝1
𝑀𝑁𝑆 = 1 −

𝜃−𝑐2

2(2−𝜃)
 and 𝑝2

𝑀𝑁𝑆 = 𝜃 −
𝜃−𝑐2

2(2−𝜃)
. 

 

MGS model: 

Step one is the same with the proof of MNS model. 

Step two:  

Given 𝑤1, substituting 𝑝1 and 𝑝2, we can get 
𝑤2

𝑤1
< 𝜃 < 1 − 𝑤1 +𝑤2, which makes three players game 

and positive demand for both products. Substituting 𝑝2  into (4), we get 𝜋𝑚2(𝑤2) = (𝑤2 −

𝑐2) [
1

2
(1+𝑤1)−

1

2
(𝜃+𝑤2)

1−𝜃
−

𝜃+𝑤2

2𝜃
] . Then 

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

𝑐2+𝜃𝑤1−2𝑤2

2(1−𝜃)𝜃
 and 

𝑑2𝜋𝑚2(𝑤2)

𝑑𝑤2
2 = −

1

1−𝜃
−

1

𝜃
< 0 . Therefore, 
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𝜋𝑚2(𝑤2) is concave in 𝑤2. Let 
𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
= 0, we get 𝑤2 =

𝑐2+𝜃𝑤1

2
. Based on the customer acceptance of 

the average brand and the retail prices, three cases are taken into account.  

Case B: 
𝒑𝟐

𝒑𝟏
< 𝜽 < 𝟏 − 𝒑𝟏 + 𝒑𝟐.  

Substituting 𝑤2, 𝑝1 and 𝑝2 into (3), we get 𝜋𝑚1(𝑤1) = (−𝑐1 +𝑤1) [1 −
1

2
(1+𝑤1)−

1

2
𝜃+

1

4
(−𝑐2−𝜃𝑤1)

1−𝜃
]. Then 

𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
=

−2+2𝜃−2𝑐1+𝜃𝑐1−𝑐2+4𝑤1−2𝜃𝑤1

4(−1+𝜃)
 and 

𝑑2𝜋𝑚1(𝑤1)

𝑑𝑤1
2 = −

2−𝜃

2(1−𝜃)
< 0. Therefore, 𝜋𝑚1(𝑤1) is concave in 

𝑤1. Let 
𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
= 0, then 𝑤1

𝑀𝐺𝑆 = 1 −
(2−𝜃)(1−𝑐1)+(𝜃−𝑐2)

2(2−𝜃)
. Replacing 𝑤1

𝑀𝐺𝑆 with 𝑤1 into 𝑤2, 𝑝1, and 

𝑝2 , we get 𝑤2
𝑀𝐺𝑆 = 𝜃 −

𝜃(2−𝜃)(1−𝑐1)+(4−𝜃)(𝜃−𝑐2)

4(2−𝜃)
, 𝑝1

𝑀𝐺𝑆 = 1 −
(2−𝜃)(1−𝑐1)+(𝜃−𝑐2)

4(2−𝜃)
 and 𝑝2

𝑀𝐺𝑆 = 𝜃 −

𝜃(2−𝜃)(1−𝑐1)+(4−𝜃)(𝜃−𝑐2)

8(2−𝜃)
. Because 𝜃𝑀𝐺𝑆 =

𝑝2
𝑀𝐺𝑆

𝑝1
𝑀𝐺𝑆  and 𝜃

𝑀𝐺𝑆
= 1 − 𝑝1

𝑀𝐺𝑆 + 𝑝2
𝑀𝐺𝑆 , we get 𝜃𝑀𝐺𝑆 =

2+2𝑐1+3𝑐2−√(2+2𝑐1+3𝑐2)
2−16(2+𝑐1)𝑐2

2(2+𝑐1)
 and 𝜃

𝑀𝐺𝑆
= 1 −

𝑐1−𝑐2

2−𝑐1
. 

Case G: 𝟎 < 𝜽 ≤
𝒑𝟐

𝒑𝟏
.  

Given 𝑤1 , replacing 𝑝1  and 𝑝2 , we can get 0 < 𝜃 ≤
𝑤2

𝑤1
. Specially, 𝑝2 = 𝜃𝑝1  or 𝑤2 = 𝜃𝑤1  makes 

three players game and positive demand for good-brand product only. Therefore, combine 𝑤2 =
𝑐2+𝜃𝑤1

2
 

and 𝑤2 = 𝜃𝑤1 , we have 𝑤1
𝑀𝐺𝑆 =

𝑐2

𝜃
 and 𝑤2

𝑀𝐺𝑆 = 𝑐2 . Replacing 𝑤1  and 𝑤2  with 𝑤1
𝑀𝐺𝑆  and 𝑤2

𝑀𝐺𝑆 

into 𝑝1 and 𝑝2, then we have 𝑝1
𝑀𝐺𝑆 = 1 −

𝜃−𝑐2

2𝜃
 and 𝑝2

𝑀𝐺𝑆 = (1 −
𝜃−𝑐2

2𝜃
)𝜃. 

Case A: 𝟏 − 𝒑𝟏 + 𝒑𝟐 ≤ 𝜽 < 𝟏.  

Given 𝑤1, replacing 𝑝1 and 𝑝2, we can get 1 − 𝑤1 +𝑤2 ≤ 𝜃 < 1. Specially, 1 − 𝑝1 + 𝑝2 = 𝜃 or 1 −

𝑤1 +𝑤2 = 𝜃 makes three players game and positive demand for average-brand product only. Therefore, 

combine 𝑤2 =
𝑐2+𝜃𝑤1

2
 and 1 −𝑤1 +𝑤2 = 𝜃 , we have 𝑤1

𝑀𝐺𝑆 = 1 −
𝜃−𝑐2

2−𝜃
 and 𝑤2

𝑀𝐺𝑆 = 𝜃 −
𝜃−𝑐2

2−𝜃
. 

Replacing 𝑤1 and 𝑤2 with 𝑤1
𝑀𝐺𝑆 and 𝑤2

𝑀𝐺𝑆  into 𝑝1 and 𝑝2, then we have 𝑝1
𝑀𝐺𝑆 = 1 −

𝜃−𝑐2

2(2−𝜃)
 and 

𝑝2
𝑀𝐺𝑆 = 𝜃 −

𝜃−𝑐2

2(2−𝜃)
. 

 

MAS model: 

Step one is the same with the proof of MNS model. 

Step two:  



34 

Given 𝑤2, substituting 𝑝1 and 𝑝2, we can get 
𝑤2

𝑤1
< 𝜃 < 1 − 𝑤1 +𝑤2, which makes three players game 

and positive demand for both products. 

And substituting 𝑝1  into (3), we get 𝜋𝑚1(𝑤1) = (𝑤1 − 𝑐1) [1 −
1

2
(1+𝑤1)−

1

2
(𝜃+𝑤2)

1−𝜃
] . Then 

𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
=

−1+𝜃−𝑐1+2𝑤1−𝑤2

2(−1+𝜃)
 and 

𝑑2𝜋𝑚1(𝑤1)

𝑑𝑤1
2 = −

1

1−𝜃
< 0. Therefore, 𝜋𝑚1(𝑤1) is concave in 𝑤1. Let 

𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
= 0, 

we get 𝑤1 =
1−𝜃+𝑐1+𝑤2

2
. Based on the customer acceptance of the average brand and the retail prices, three 

cases are taken into account.  

Case B: 
𝒑𝟐

𝒑𝟏
< 𝜽 < 𝟏 − 𝒑𝟏 + 𝒑𝟐.  

Substituting 𝑤1 , 𝑝1  and 𝑝2  into (4), we get 𝜋𝑚2(𝑤2) = (−𝑐2 +𝑤2) [−
𝜃+𝑤2

2𝜃
+

1

2
(−𝜃−𝑤2)+

1

2
+

1

4
(1−𝜃+𝑐1+𝑤2)

1−𝜃
]. Then 

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

−𝜃+𝜃2−𝜃𝑐1−2𝑐2+𝜃𝑐2+4𝑤2−2𝜃𝑤2

4(−1+𝜃)𝜃
 and 

𝑑2𝜋𝑚2(𝑤2)

𝑑𝑤2
2 = −

2−𝜃

2(1−𝜃)𝜃
< 0. 

Therefore, 𝜋𝑚2(𝑤2)  is concave in 𝑤2 . Let 
𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
= 0 , we get 𝑤2

𝑀𝐴𝑆 = 𝜃 −
𝜃(1−𝑐1)+(2−𝜃)(𝜃−𝑐2)

2(2−𝜃)
. 

Replacing 𝑤2 with 𝑤2
𝑀𝐴𝑆 in 𝑤1, 𝑝1, and 𝑝2, we get 𝑤1

𝑀𝐴𝑆 = 1 −
(4−𝜃)(1−𝑐1)+(2−𝜃)(𝜃−𝑐2)

4(2−𝜃)
, 𝑝1

𝑀𝐴𝑆 = 1 −

(4−𝜃)(1−𝑐1)+(2−𝜃)(𝜃−𝑐2)

8(2−𝜃)
, and 𝑝2

𝑀𝐴𝑆 = 𝜃 −
𝜃(1−𝑐1)+(2−𝜃)(𝜃−𝑐2)

4(2−𝜃)
. Because 𝜃𝑀𝐴𝑆 =

𝑝2
𝑀𝐴𝑆

𝑝1
𝑀𝐴𝑆  and 𝜃

𝑀𝐴𝑆
= 1 −

𝑝1
𝑀𝐴𝑆 + 𝑝2

𝑀𝐴𝑆, we get 𝜃𝑀𝐴𝑆 =
1+𝑐1+𝑐2−√(1+𝑐1+𝑐2)

2−8𝑐2

2
 and 𝜃

𝑀𝐴𝑆
=

5−3𝑐1+𝑐2−√(3−3𝑐1+𝑐2)
2+4(𝑐1−𝑐2)

2
. 

Case G: 𝟎 < 𝜽 ≤
𝒑𝟐

𝒑𝟏
.  

Given 𝑤2 , replacing 𝑝1  and 𝑝2 , we can get 0 <
𝑤2

𝑤1
≤ 𝜃 . Specially, 𝑝2 = 𝜃𝑝1  or 𝑤2 = 𝜃𝑤1  makes 

three players game and positive demand for good-brand product only.  

Therefore, combine 𝑤1 =
1−𝜃+𝑐1+𝑤2

2
 and 𝑤2 = 𝜃𝑤1 ,  we have 𝑤1

𝑀𝐴𝑆 = 1 −
1−𝑐1

2−𝜃
 and 𝑤2

𝑀𝐴𝑆 = [1 −

1−𝑐1

2−𝜃
]𝜃. Replacing 𝑤1 and 𝑤2 with 𝑤1

𝑀𝐴𝑆 and 𝑤2
𝑀𝐴𝑆 into 𝑝1 and 𝑝2, then we have 𝑝1

𝑀𝐴𝑆 = 1 −
1−𝑐1

2(2−𝜃)
 

and 𝑝2
𝑀𝐴𝑆 = [1 −

1−𝑐1

2(2−𝜃)
] 𝜃. 

Case A: 𝟏 − 𝒑𝟏 + 𝒑𝟐 ≤ 𝜽 < 𝟏.  

Given 𝑤2, replacing 𝑝1 and 𝑝2, we can get 1 − 𝑤1 +𝑤2 ≤ 𝜃 < 1. Specially, 1 − 𝑝1 + 𝑝2 = 𝜃 or 1 −

𝑤1 +𝑤2 = 𝜃 makes three players game and positive demand for average-brand product only. Therefore, 

combine 𝑤1 =
1−𝜃+𝑐1+𝑤2

2
 and 𝑤1 = 1 + 𝑤2 − 𝜃 , we have 𝑤1

𝑀𝐴𝑆 = 𝑐1  and 𝑤2
𝑀𝐴𝑆 = 𝑐1 − 1 + 𝜃 . 

Replacing 𝑤1  and 𝑤2  with 𝑤1
𝑀𝐴𝑆  and 𝑤2

𝑀𝐴𝑆  into 𝑝1  and 𝑝2 , then we have 𝑝1
𝑀𝐴𝑆 = 1 −

1−𝑐1

2
 and 



35 

𝑝2
𝑀𝐴𝑆 = 𝜃 −

1−𝑐1

2
. 

 

VNN model: 

We denote the marginal profits of the good-brand product and the average-brand product as 𝑚1 = 𝑝1 −𝑤1 

and 𝑚2 = 𝑝2 −𝑤2, respectively, as in Choi (1991). Then the manufacturers’ profit functions in (3) and (4) 

become 

𝜋𝑚1(𝑤1) = (𝑤1 − 𝑐1) [1 −
(𝑚1+𝑤1)−(𝑚2+𝑤2)

1−𝜃
]   (P1) 

𝜋𝑚2(𝑤2) = (𝑤2 − 𝑐2) [
(𝑚1+𝑤1)−(𝑚2+𝑤2)

1−𝜃
−

𝑚2+𝑤2

𝜃
]  (P2) 

From (P1), we get 
𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
= 1 −

(𝑚1+𝑤1)−(𝑚2+𝑤2)

1−𝜃
−

𝑤1−𝑐1

1−𝜃
 and 

𝑑2𝜋𝑚1(𝑤1)

𝑑𝑤1
2 = −

2

1−𝜃
< 0 . Therefore, 

𝜋𝑚1(𝑤1) is concave in 𝑤1. From (P2), we get 
𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

(𝑚1+𝑤1)−(𝑚2+𝑤2)

1−𝜃
−

𝑚2+𝑤2

𝜃
+ (−

1

1−𝜃
−

1

𝜃
)(𝑤2 −

𝑐2) and 
𝑑2𝜋𝑚2(𝑤2)

𝑑𝑤2
2 = −

2

1−𝜃
−

2

𝜃
< 0. Therefore, 𝜋𝑚2(𝑤2) is concave in 𝑤2.  

Case B: 
𝒑𝟐

𝒑𝟏
< 𝜽 < 𝟏 − 𝒑𝟏 + 𝒑𝟐. 

Considering three players game, 𝜋𝑟(𝑝1, 𝑝2) = (𝑝1 −𝑤1)(1 −
𝑝1−𝑝2

1−𝜃
) + (𝑝2 −𝑤2)(

𝑝1−𝑝2

1−𝜃
−

𝑝2

𝜃
) , we get 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
=

−1+𝜃+2𝑝1−2𝑝2−𝑤1+𝑤2

−1+𝜃
, 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
= −

2𝜃𝑝1−2𝑝2−𝜃𝑤1+𝑤2

(−1+𝜃)𝜃
, 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2 = −

2

1−𝜃
< 0 , 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2 =

−
2

1−𝜃
−

2

𝜃
, and 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2
=

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1
=

2

1−𝜃
. Then |

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2

| =
4

(1−𝜃)𝜃
> 0 . Therefore, 

𝜋𝑟(𝑝1, 𝑝2) is joint concave in 𝑝1 and 𝑝2. Let 
𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
=

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
=

𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
=

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
= 0, we get 

𝑤1
𝑉𝑁𝑁 = 1 −

2[3(1−𝑐1)+(𝜃−𝑐2)]

9−𝜃
, 𝑤2

𝑉𝑁𝑁 = 𝜃 −
2[𝜃(1−𝑐1)+3(𝜃−𝑐2)]

9−𝜃
, 𝑝1

𝑉𝑁𝑁 = 1 −
3(1−𝑐1)+(𝜃−𝑐2)

9−𝜃
, and 𝑝2

𝑉𝑁𝑁 =

𝜃 −
𝜃(1−𝑐1)+3(𝜃−𝑐2)

9−𝜃
. Because 𝜃𝑉𝑁𝑁 =

𝑝2
𝑉𝑁𝑁

𝑝1
𝑉𝑁𝑁  and 𝜃

𝑉𝑁𝑁
= 1 − 𝑝1

𝑉𝑁𝑁 + 𝑝2
𝑉𝑁𝑁 , we can get 𝜃𝑉𝑁𝑁 =

1+2𝑐1+𝑐2−√(1+2𝑐1+𝑐2)
2−12𝑐2

2
 and 𝜃

𝑉𝑁𝑁
= 1 −

2𝑐1−2𝑐2

3−𝑐1
. 

Case G: 𝟎 < 𝜽 ≤
𝒑𝟐

𝒑𝟏
.  

Specially, 𝑝2 = 𝜃𝑝1 makes three players game and positive demand for good-brand product only, hence 

𝜋𝑟(𝑝1, 𝑝2) = 𝜋𝑟(𝑝1) = (𝑝1 −𝑤1)(1 − 𝑝1), we get 
𝑑𝜋𝑟(𝑝1)

𝑑𝑝1
= 1 − 2𝑝1 +𝑤1, 

𝑑2𝜋𝑟(𝑝1)

𝑑𝑝1
2 = −2 < 0. Therefore, 

𝜋𝑟(𝑝1) is concave in 𝑝1. Combine 
𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
=

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

𝑑𝜋𝑟(𝑝1)

𝑑𝑝1
= 0 and 𝑝2 = 𝜃𝑝1, we get 𝑤1

𝑉𝑁𝑁 =
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1 −
2(1−𝑐1)

3−𝜃
, 𝑤2

𝑉𝑁𝑁 = 𝑐2, 𝑝1
𝑉𝑁𝑁 = 1 −

1−𝑐1

3−𝜃
, and 𝑝2

𝑉𝑁𝑁 = (1 −
1−𝑐1

3−𝜃
)𝜃. 

Case A: 𝟏 − 𝒑𝟏 + 𝒑𝟐 ≤ 𝜽 < 𝟏.  

Specially, 1 − 𝑝1 + 𝑝2 = 𝜃 makes three players game and positive demand for average-brand product 

only, hence 𝜋𝑟(𝑝1, 𝑝2) = 𝜋𝑟(𝑝2) = (𝑝2 −𝑤2)(1 −
𝑝2

𝜃
), we get 

𝑑𝜋𝑟(𝑝1)

𝑑𝑝1
= 1 −

2𝑝2

𝜃
+𝑤2, 

𝑑2𝜋𝑟(𝑝1)

𝑑𝑝1
2 = −

2

𝜃
<

0. Therefore, 𝜋𝑟(𝑝2) is concave in 𝑝2. Combine 
𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
=

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

𝑑𝜋𝑟(𝑝2)

𝑑𝑝2
= 0 and 1 − 𝑝1 + 𝑝2 =

𝜃, we get 𝑤1
𝑉𝑁𝑁 = 𝑐1, 𝑤2

𝑉𝑁𝑁 = 𝜃 −
2(𝜃−𝑐2)

3−𝜃
, 𝑝1

𝑉𝑁𝑁 = 1 −
𝜃−𝑐2

3−𝜃
, and 𝑝2

𝑉𝑁𝑁 = 𝜃 −
𝜃−𝑐2

3−𝜃
. 

 

RNS model: 

Step one:  

Given 𝑝1 and 𝑝2, considering three players game, from (P1), we get 
𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
= 1 −

(𝑚1+𝑤1)−(𝑚2+𝑤2)

1−𝜃
−

𝑤1−𝑐1

1−𝜃
 and 

𝑑2𝜋𝑚1(𝑤1)

𝑑𝑤1
2 = −

2

1−𝜃
< 0. Therefore, 𝜋𝑚1(𝑤1) is concave in 𝑤1. From (P2), we get 

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

(𝑚1+𝑤1)−(𝑚2+𝑤2)

1−𝜃
−

𝑚2+𝑤2

𝜃
+ (−

1

1−𝜃
−

1

𝜃
)(𝑤2 − 𝑐2) and 

𝑑2𝜋𝑚2(,𝑤2)

𝑑𝑤2
2 = −

2

1−𝜃
−

2

𝜃
< 0. Therefore, 𝜋𝑚2(𝑤2) 

is concave in 𝑤2. Let 
𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
=

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
= 0, we get 𝑤1 = 1 − 𝜃 + 𝑐1 − 𝑝1 + 𝑝2 and 𝑤2 = 𝑐2 − 𝑝2 +

𝜃𝑝1.  

Step two:  

Case B: 
𝒑𝟐

𝒑𝟏
< 𝜽 < 𝟏 − 𝒑𝟏 + 𝒑𝟐. 

Substituting 𝑤1 and 𝑤2 into (5), we get 𝜋𝑟(𝑝1, 𝑝2) = (1 −
𝑝1−𝑝2

1−𝜃
)(−1 + 𝜃 − 𝑐1 + 2𝑝1 − 𝑝2) + (−𝑐2 −

𝜃𝑝1 + 2𝑝2)(
𝑝1−𝑝2

1−𝜃
−

𝑝2

𝜃
) . Then 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
=

−3+3𝜃−𝑐1+𝑐2+4𝑝1+2𝜃𝑝1−6𝑝2

−1+𝜃
, 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
=

−2𝜃+2𝜃2−𝜃𝑐1+𝑐2+6𝜃𝑝1−4𝑝2−2𝜃𝑝2

(1−𝜃)𝜃
, 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2 = −

4

1−𝜃
−

2𝜃

1−𝜃
< 0 , 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2 = 4(−

1

1−𝜃
−

1

𝜃
) −

2

1−𝜃
, and 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2
=

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1
=

5

1−𝜃
− (−

1

1−𝜃
−

1

𝜃
)𝜃 . Then |

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2

| =
4(4−𝜃)

(1−𝜃)𝜃
> 0 . Therefore, 

𝜋𝑟(𝑝1, 𝑝2)  is joint concave in 𝑝1  and 𝑝2 . Let 
𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
=

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
= 0 , we get 𝑝1

𝑅𝑁𝑆 = 1 −

2(1−𝑐1)+(𝜃−𝑐2)

2(4−𝜃)
 and 𝑝2

𝑅𝑁𝑆 = 𝜃 −
𝜃(1−𝑐1)+2(𝜃−𝑐2)

2(4−𝜃)
. Replacing 𝑝1 and 𝑝2 with 𝑝1

𝑅𝑁𝑆 and 𝑝2
𝑅𝑁𝑆 in 𝑤1 and 

𝑤2 , we get 𝑤1
𝑅𝑁𝑆 = 1−

2(1−𝑐1)+(𝜃−𝑐2)

2(4−𝜃)
 and 𝑤2

𝑅𝑁𝑆 = 𝜃 −
𝜃(1−𝑐1)+2(𝜃−𝑐2)

2(4−𝜃)
. Because 𝜃𝑅𝑁𝑆 =

𝑝2
𝑅𝑁𝑆

𝑝1
𝑅𝑁𝑆  and 
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𝜃
𝑅𝑁𝑆

= 1 − 𝑝1
𝑅𝑁𝑆 + 𝑝2

𝑅𝑁𝑆, we get 𝜃𝑅𝑁𝑆 =
1+𝑐1+𝑐2−√(1+𝑐1+𝑐2)

2−8𝑐2

2
 and 𝜃

𝑅𝑁𝑆
= 1 −

𝑐1−𝑐2

2−𝑐1
. 

Case G: 𝟎 < 𝜽 ≤
𝒑𝟐

𝒑𝟏
.  

Substituting 𝑤1 and 𝑤2 into (5), and 𝑝2 = 𝜃𝑝1 makes three players game and positive demand for 

good-brand product only, we get 𝜋𝑟(𝑝1, 𝑝2) = 𝜋𝑟(𝑝1) = (1 − 𝑝1)(−1 + 𝜃 − 𝑐1 + 2𝑝1 − 𝜃𝑝1) . Then 

𝑑𝜋𝑟(𝑝1)

𝑑𝑝1
= 3 − 2𝜃 + 𝑐1 − 4𝑝1 + 2𝜃𝑝1 and 

𝑑2𝜋𝑟(𝑝1)

𝑑𝑝1
2 = −4+ 2𝜃 < 0. Therefore, 𝜋𝑟(𝑝1) is concave in 𝑝1. 

Let 
𝑑𝜋𝑟(𝑝1)

𝑑𝑝1
= 0 , we get 𝑝1

𝑅𝑁𝑆 = 1 −
1−𝑐1

2(2−𝜃)
. Replacing 𝑝1  with 𝑝1

𝑅𝑁𝑆  in 𝑝2 , 𝑤1  and 𝑤2 , we get 

𝑝2
𝑅𝑁𝑆 = [1 −

1−𝑐1

2(2−𝜃)
] 𝜃, 𝑤1

𝑅𝑁𝑆 =
1−𝜃+3𝑐1−𝜃𝑐1

2(2−𝜃)
 and 𝑤2

𝑅𝑁𝑆 = 𝑐2. 

Case A: 𝟏 − 𝒑𝟏 + 𝒑𝟐 ≤ 𝜽 < 𝟏.  

Substituting 𝑤1 and 𝑤2 into (5), and 𝑝1 = 1 + 𝑝2 − 𝜃 makes three players game and positive demand 

for average-brand product only, we get 𝜋𝑟(𝑝1, 𝑝2) = 𝜋𝑟(𝑝2) =
(𝜃−𝑝2)(−𝜃+𝜃2−𝑐2+2𝑝2−𝜃𝑝2)

𝜃
. Then 

𝑑𝜋𝑟(𝑝2)

𝑑𝑝2
=

−
−3𝜃+2𝜃2−𝑐2+4𝑝2−2𝜃𝑝2

𝜃
 and 

𝑑2𝜋𝑟(𝑝2)

𝑑𝑝1
2 = −

2(2−𝜃)

𝜃
< 0. Therefore, 𝜋𝑟(𝑝2) is concave in 𝑝2. Let 

𝑑𝜋𝑟(𝑝2)

𝑑𝑝2
=

0, we get 𝑝2
𝑅𝑁𝑆 = 𝜃 −

𝜃−𝑐2

2(2−𝜃)
. Replacing 𝑝2 with 𝑝2

𝑅𝑁𝑆 in 𝑝1, 𝑤1 and 𝑤2, we get 𝑝1
𝑅𝑁𝑆 = 1 −

𝜃−𝑐2

2(2−𝜃)
, 

𝑤1
𝑅𝑁𝑆 = 𝑐1 and 𝑤2

𝑅𝑁𝑆 =
𝜃−𝜃2+3𝑐2−𝜃𝑐2

2(2−𝜃)
. 

 

RGS model 

Step one: 

Given 𝑝1 and 𝑝2, considering three players game, from (P2), we get 
𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

(𝑚1+𝑤1)−(𝑚2+𝑤2)

1−𝜃
−

𝑚2+𝑤2

𝜃
+ (−

1

1−𝜃
−

1

𝜃
)(𝑤2 − 𝑐2) and 

𝑑2𝜋𝑚2(,𝑤2)

𝑑𝑤2
2 = −

2

1−𝜃
−

2

𝜃
< 0. Therefore, 𝜋𝑚2(𝑤2) is concave in 𝑤2. 

Let 
𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
= 0, we get 𝑤2 = 𝑐2 − 𝑝2 + 𝜃𝑝1. Substituting 𝑤2 into (P1) and letting 𝑝𝑖 = 𝑤𝑖 +𝑚𝑖, we 

get 𝜋𝑚1(𝑤1) = (𝑤1 − 𝑐1) [1 −
(𝑚1+𝑤1)−(𝑐2−𝑤2+𝜃𝑚1+𝜃𝑤1)

1−𝜃
] . Then  

𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
= 1 −

(𝑚1+𝑤1)−(𝑐2−𝑤2+𝜃𝑚1+𝜃𝑤1)

1−𝜃
−𝑤1 + 𝑐1  and 

𝑑2𝜋𝑚1(𝑤1)

𝑑𝑤1
2 = −2 < 0. Therefore, 𝜋𝑚1(𝑤1) is concave in 𝑤1 . 

Let 
𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
= 0 and replace 𝑚𝑖 +𝑤𝑖 with 𝑝𝑖, we get 𝑤1 = 1 + 𝑐1 −

𝑝1−𝑝2

1−𝜃
. 

Step two:  

Case B: 
𝒑𝟐

𝒑𝟏
< 𝜽 < 𝟏 − 𝒑𝟏 + 𝒑𝟐. 
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Substituting 𝑤1  and 𝑤2  into (5), we get 𝜋𝑟(𝑝1, 𝑝2) = [𝑝1 − (1 + 𝑐1 −
𝑝1−𝑝2

1−𝜃
)] (1 −

𝑝1−𝑝2

1−𝜃
) + [𝑝2 −

(𝑐2 − 𝑝2 + 𝜃𝑝1)] (
𝑝1−𝑝2

1−𝜃
−

𝑝2

𝜃
). Then 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
=

3−4𝜃+𝜃2+𝑐1−𝜃𝑐1−𝑐2+𝜃𝑐2−4𝑝1+2𝜃2𝑝1+6𝑝2−4𝜃𝑝2

(1−𝜃)2
, 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
=

−2𝜃+2𝜃2−𝜃𝑐1+𝜃2𝑐1+𝑐2−𝜃𝑐2+6𝜃𝑝1−4𝜃2𝑝1−4𝑝2+2𝜃𝑝2

(1−𝜃)2𝜃
, 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2 = −

2(2−𝜃2)

(1−𝜃)2
< 0 , 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2 = −

2(2−𝜃)

(1−𝜃)2𝜃
, and 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2
=

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1
=

2(3−2𝜃)

(1−𝜃)2
. Then |

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2

| =
4(4−3𝜃)

(1−𝜃)2𝜃
> 0. Therefore, 𝜋𝑟(𝑝1, 𝑝2) is 

joint concave in 𝑝1 and 𝑝2. Let 
𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
=

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
= 0, we get 𝑝1

𝑅𝐺𝑆 = 1 −
2(1−𝜃)(1−𝑐1)+(𝜃−𝑐2)

2(4−3𝜃)
 and 

𝑝2
𝑅𝐺𝑆 = 𝜃 −

𝜃(1−𝜃)(1−𝑐1)+(2−𝜃)(𝜃−𝑐2)

2(4−3𝜃)
. Replacing 𝑝1 and 𝑝2 with 𝑝1

𝑅𝐺𝑆 and 𝑝2
𝑅𝐺𝑆 in 𝑤1 and 𝑤2, we get 

𝑤1
𝑅𝐺𝑆 = 1 −

(6−5𝜃)(1−𝑐1)+(𝜃−𝑐2)

2(4−3𝜃)
 and 𝑤2

𝑅𝐺𝑆 = 𝜃 −
𝜃(1−𝜃)(1−𝑐1)+2(3−2𝜃)(𝜃−𝑐2)

2(4−3𝜃)
. Because 𝜃𝑅𝐺𝑆 =

𝑝2
𝑅𝐺𝑆

𝑝1
𝑅𝐺𝑆  and 

𝜃
𝑅𝐺𝑆

= 1 − 𝑝1
𝑅𝐺𝑆 + 𝑝2

𝑅𝐺𝑆, we can get 𝜃𝑅𝐺𝑆 =
2𝑐2

1+𝑐1
 and 𝜃

𝑅𝐺𝑆
= 1−

𝑐1−𝑐2

2−𝑐1
. 

Case G: 𝟎 < 𝜽 ≤
𝒑𝟐

𝒑𝟏
.  

Substituting 𝑤1 and 𝑤2 into (5), and 𝑝2 = 𝜃𝑝1 makes three players game and positive demand for 

good-brand product only, we get 𝜋𝑟(𝑝1, 𝑝2) = 𝜋𝑟(𝑝1) = (2𝑝1 − 1 − 𝑐1)(𝑝1 − 1). Then 
𝑑𝜋𝑟(𝑝1)

𝑑𝑝1
= 3 +

𝑐1 − 4𝑝1 and 
𝑑2𝜋𝑟(𝑝1)

𝑑𝑝1
2 = −4 < 0. Therefore, 𝜋𝑟(𝑝1) is concave in 𝑝1. Let 

𝑑𝜋𝑟(𝑝1)

𝑑𝑝1
= 0, we get 𝑝1

𝑅𝐺𝑆1 =

1 −
1−𝑐1

4
. Replacing 𝑝1 with 𝑝1

𝑅𝐺𝑆 in 𝑝2, 𝑤1 and 𝑤2, we get 𝑝2
𝑅𝐺𝑆 = (1 −

1−𝑐1

4
)𝜃, 𝑤1

𝑅𝐺𝑆 = 1 −
3(1−𝑐1)

4
 

and 𝑤2
𝑅𝐺𝑆 = 𝑐2. 

Case A: 𝟏 − 𝒑𝟏 + 𝒑𝟐 ≤ 𝜽 < 𝟏.  

Substituting 𝑤1 and 𝑤2 into (5), and 𝑝1 = 1 + 𝑝2 − 𝜃 makes three players game and positive demand 

for average-brand product only, we get 𝜋𝑟(𝑝1, 𝑝2) = 𝜋𝑟(𝑝2) =
(𝜃−𝑝2)(−𝜃+𝜃2−𝑐2+2𝑝2−𝜃𝑝2)

𝜃
. Then 

𝑑𝜋𝑟(𝑝2)

𝑑𝑝2
=

−
−3𝜃+2𝜃2−𝑐2+4𝑝2−2𝜃𝑝2

𝜃
 and 

𝑑2𝜋𝑟(𝑝2)

𝑑𝑝1
2 = −

4−2𝜃

𝜃
< 0. Therefore, 𝜋𝑟(𝑝2) is concave in 𝑝2. Let 

𝑑𝜋𝑟(𝑝2)

𝑑𝑝2
= 0, 

we get 𝑝2
𝑅𝐺𝑆2 = 𝜃 −

𝜃−𝑐2

2(2−𝜃)
. Replacing 𝑝2  with 𝑝2

𝑅𝐺𝑆  in 𝑝1 , 𝑤1  and 𝑤2 , we get 𝑝1
𝑅𝐺𝑆 = 1 −

𝜃−𝑐2

2(2−𝜃)
, 

𝑤1
𝑅𝐺𝑆 = 𝑐1 and 𝑤2

𝑅𝐺𝑆 =
𝜃−𝜃2+3𝑐2−𝜃𝑐2

2(2−𝜃)
. 

 

RAS model: 

Step one: 



39 

Given 𝑝1 and 𝑝2, considering three players game, from (P1), we get 
𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
= 1 −

(𝑚1+𝑤1)−(𝑚2+𝑤2)

1−𝜃
−

𝑤1−𝑐1

1−𝜃
 and 

𝑑2𝜋𝑚1(𝑤1)

𝑑𝑤1
2 = −

2

1−𝜃
< 0. Therefore, 𝜋𝑚1(𝑤1) is concave in 𝑤1. Let 

𝑑𝜋𝑚1(𝑤1)

𝑑𝑤1
= 0 and replace 

𝑚𝑖 +𝑤𝑖 with 𝑝𝑖, we get 𝑤1 = 1 − 𝜃 + 𝑐1 − 𝑝1 + 𝑝2. 

Substituting 𝑤1  into (P2) and let 𝑝𝑖 = 𝑤𝑖 +𝑚𝑖 , we get 𝜋𝑚2(𝑤2) = (𝑤2 −

𝑐2) [
(1−𝜃+𝑐1+𝑚2−𝑤1+𝑤2)−(𝑚2+𝑤2)

1−𝜃
−

𝑚2+𝑤2

𝜃
] . Then 

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
=

(1−𝜃+𝑐1+𝑚2−𝑤1+𝑤2)−(𝑚2+𝑤2)

1−𝜃
−

𝑚2+𝑤2

𝜃
−

𝑤2−𝑐2

𝜃
and 

𝑑2𝜋𝑚2(𝑤2)

𝑑𝑤2
2 = −

2

𝜃
< 0. Therefore, 𝜋𝑚2(𝑤2) is concave in 𝑤2. Let 

𝑑𝜋𝑚2(𝑤2)

𝑑𝑤2
= 0 and replace 

𝑚𝑖 +𝑤𝑖 with 𝑝𝑖, we get 𝑤2 = 𝑐2 +
𝜃𝑝1−𝑝2

1−𝜃
. 

Step two:  

Case B: 
𝒑𝟐

𝒑𝟏
< 𝜽 < 𝟏 − 𝒑𝟏 + 𝒑𝟐. 

Substituting 𝑤1  and 𝑤2  into (5), we get 𝜋𝑟(𝑝1, 𝑝2) = [𝑝1 − (1 − 𝜃 + 𝑐1 − 𝑝1 + 𝑝2)] (1 −
𝑝1−𝑝2

1−𝜃
) +

[𝑝2 − (𝑐2 +
𝜃𝑝1−𝑝2

1−𝜃
)] (

𝑝1−𝑝2

1−𝜃
−

𝑝2

𝜃
). Then  

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
=

3−6𝜃+3𝜃2+𝑐1−𝜃𝑐1−𝑐2+𝜃𝑐2−4𝑝1+2𝜃𝑝1+6𝑝2−4𝜃𝑝2

(1−𝜃)2
, 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
=

−
2𝜃−4𝜃2+2𝜃3+𝜃𝑐1−𝜃2𝑐1−𝑐2+𝜃𝑐2−6𝜃𝑝1+4𝜃2𝑝1+4𝑝2−2𝜃2𝑝2

(1−𝜃)2𝜃
, 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2 = −

2(2−𝜃)

(1−𝜃)2
< 0 , 

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2 = −

2(2−𝜃2)

(1−𝜃)2𝜃
, 

and 
𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2
=

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1
=

2(3−2𝜃)

(1−𝜃)2
. Then |

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1𝜕𝑝2

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2𝜕𝑝1

𝜕2𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
2

| =
4(4−3𝜃)

(1−𝜃)2𝜃
> 0 . Therefore, 

𝜋𝑟(𝑝1, 𝑝2) is joint concave in 𝑝1  and 𝑝2 . Let 
𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝1
= 0 and 

𝜕𝜋𝑟(𝑝1,𝑝2)

𝜕𝑝2
= 0, we get 𝑝1

𝑅𝐴𝑆 = 1−

(2−𝜃)(1−𝑐1)+(1−𝜃)(𝜃−𝑐2)

2(4−3𝜃)
 and 𝑝2

𝑅𝐴𝑆 = 𝜃 −
𝜃(1−𝑐1)+2(1−𝜃)(𝜃−𝑐2)

2(4−3𝜃)
. Replacing 𝑝1 and 𝑝2 with 𝑝1

𝑅𝐴𝑆 and 𝑝2
𝑅𝐴𝑆 

in 𝑤1  and 𝑤2 , we get 𝑤1
𝑅𝐴𝑆 = 1 −

2(3−2𝜃)(1−𝑐1)+(1−𝜃)(𝜃−𝑐2)

2(4−3𝜃)
 and 𝑤2

𝑅𝐴𝑆 = 𝜃 −
𝜃(1−𝑐1)+(6−5𝜃)(𝜃−𝑐2)

2(4−3𝜃)
. 

Because 𝜃𝑅𝐴𝑆 =
𝑝2
𝑅𝐴𝑆

𝑝1
𝑅𝐴𝑆  and 𝜃

𝑅𝐴𝑆
= 1 − 𝑝1

𝑅𝐴𝑆 + 𝑝2
𝑅𝐴𝑆 , we get 𝜃𝑅𝐴𝑆 =

1+𝑐1+𝑐2−√(1+𝑐1+𝑐2)
2−8𝑐2

2
 and 

𝜃
𝑅𝐴𝑆

= min[1,2 − 2𝑐1 + 𝑐2].  

Case G: 𝟎 < 𝜽 ≤
𝒑𝟐

𝒑𝟏
.  

Substituting 𝑤1 and 𝑤2 into (5), and 𝑝2 = 𝜃𝑝1 makes three players game and positive demand for 

good-brand product only, we get 𝜋𝑟(𝑝1, 𝑝2) = 𝜋𝑟(𝑝1) =
(−1+𝑝1)(1−𝜃+𝑐1−2𝑝1+𝜃𝑝1)

2(−2+𝜃)(−1+𝜃)𝜃
. Then 

𝑑𝜋𝑟(𝑝1)

𝑑𝑝1
=

3−2𝜃+𝑐1−4𝑝1+2𝜃𝑝1

2(−2+𝜃)(−1+𝜃)𝜃
 and 

𝑑2𝜋𝑟(𝑝1)

𝑑𝑝1
2 =

1

(−1+𝜃)𝜃
< 0. Therefore, 𝜋𝑟(𝑝1) is concave in 𝑝1. Let 

𝑑𝜋𝑟(𝑝1)

𝑑𝑝1
= 0, we 
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get 𝑝1
𝑅𝐴𝑆 = 1 −

1−𝑐1

2(2−𝜃)
. Replacing 𝑝1  with 𝑝1

𝑅𝐴𝑆  in 𝑝2 , 𝑤1  and 𝑤2 , we get 𝑝2
𝑅𝐴𝑆 = [1 −

1−𝑐1

2(2−𝜃)
] 𝜃 , 

𝑤1
𝑅𝐴𝑆 =

1−𝜃+3𝑐1−𝜃𝑐1

2(2−𝜃)
 and 𝑤2

𝑅𝐴𝑆 = 𝑐2. 

Case A: 𝟏 − 𝒑𝟏 + 𝒑𝟐 ≤ 𝜽 < 𝟏.  

Substituting 𝑤1 and 𝑤2 into (5), and 𝑝1 = 1 + 𝑝2 − 𝜃 makes three players game and positive demand 

for average-brand product only, we get 𝜋𝑟(𝑝1, 𝑝2) = 𝜋𝑟(𝑝2) = −
(𝜃+𝑐2−2𝑝2)(𝜃−𝑝2)

2(−2+𝜃)(−1+𝜃)𝜃2 . Then 
𝑑𝜋𝑟(𝑝2)

𝑑𝑝2
=

3𝜃+𝑐2−4𝑝2

2(−2+𝜃)(−1+𝜃)𝜃2 and 
𝑑2𝜋𝑟(𝑝2)

𝑑𝑝1
2 = −

2

(2−𝜃)(1−𝜃)𝜃2 < 0. Therefore, 𝜋𝑟(𝑝2) is concave in 𝑝2. Let 
𝑑𝜋𝑟(𝑝2)

𝑑𝑝2
= 0, 

we get 𝑝2
𝑅𝐴𝑆 = 𝜃 −

𝜃−𝑐2

4
. Replacing 𝑝2 with 𝑝2

𝑅𝐴𝑆 in 𝑝1, 𝑤1 and 𝑤2, we get 𝑝1
𝑅𝐴𝑆 = 1 −

1−𝑐2

4
, 𝑤1

𝑅𝐴𝑆 =

𝑐1 and 𝑤2
𝑅𝐴𝑆 = 𝜃 −

3(𝜃−𝑐2)

4
. This completes the proof.  

 

Proof of Proposition 3: 

From Proposition 2, we get 𝑤1
𝑀𝑁𝑆 −𝑤2

𝑀𝑁𝑆 =
2−3𝜃+𝜃2+2𝑐1−𝜃𝑐1−𝑐2

4−𝜃
 and 𝑝1

𝑀𝑁𝑆 − 𝑝2
𝑀𝑁𝑆 =

6−8𝜃+2𝜃2+2𝑐1−𝜃𝑐1−𝑐2

2(4−𝜃)
. For 𝜃𝑀𝑁𝑆 < 𝜃 < 𝜃

𝑀𝑁𝑆
 and 1 > 𝑐1 > 𝑐2, we get 2 − 3𝜃 + 𝜃2 + 2𝑐1 − 𝜃𝑐1 − 𝑐2 >

0  and 6 − 8𝜃 + 2𝜃2 + 2𝑐1 − 𝜃𝑐1 − 𝑐2 > 0 . Therefore, 
2−3𝜃+𝜃2+2𝑐1−𝜃𝑐1−𝑐2

4−𝜃
> 0  and  

6−8𝜃+2𝜃2+2𝑐1−𝜃𝑐1−𝑐2

2(4−𝜃)
> 0. That is, 𝑤1

𝑀𝑁𝑆 > 𝑤2
𝑀𝑁𝑆 and 𝑝1

𝑀𝑁𝑆 > 𝑝2
𝑀𝑁𝑆. 

From Proposition 2, we get 𝑤1
𝑀𝐺𝑆 −𝑤2

𝑀𝐺𝑆 =
2−2𝜃+2𝑐1−𝜃𝑐1−𝑐2

4
 and 𝑝1

𝑀𝐺𝑆 − 𝑝2
𝑀𝐺𝑆 =

6−6𝜃+2𝑐1−𝜃𝑐1−𝑐2

8
. For 

𝜃𝑀𝐺𝑆 < 𝜃 < 𝜃
𝑀𝐺𝑆

 and 1 > 𝑐1 > 𝑐2 , we get 2 − 2𝜃 + 2𝑐1 − 𝜃𝑐1 − 𝑐2 > 0 and 6 − 6𝜃 + 2𝑐1 − 𝜃𝑐1 −

𝑐2 > 0. Therefore, 
2−2𝜃+2𝑐1−𝜃𝑐1−𝑐2

4
> 0 and 

6−6𝜃+2𝑐1−𝜃𝑐1−𝑐2

8
> 0. That is, 𝑤1

𝑀𝐺𝑆 > 𝑤2
𝑀𝐺𝑆 and 𝑝1

𝑀𝐺𝑆 >

𝑝2
𝑀𝐺𝑆.  

From Proposition 2, we get 𝑤1
𝑀𝐴𝑆 −𝑤2

𝑀𝐴𝑆 =
4−7𝜃+3𝜃2+4𝑐1−3𝜃𝑐1−2𝑐2+𝜃𝑐2

4(2−𝜃)
 and 𝑝1

𝑀𝐴𝑆 − 𝑝2
𝑀𝐴𝑆 =

12−19𝜃+7𝜃2+4𝑐1−3𝜃𝑐1−2𝑐2+𝜃𝑐2

8(2−𝜃)
. For 𝜃𝑀𝐴𝑆 < 𝜃 < 𝜃

𝑀𝐴𝑆
 and 1 > 𝑐1 > 𝑐2 , we get 4 − 7𝜃 + 3𝜃2 + 4𝑐1 −

3𝜃𝑐1 − 2𝑐2 + 𝜃𝑐2 > 0  and 12 − 19𝜃 + 7𝜃2 + 4𝑐1 − 3𝜃𝑐1 − 2𝑐2 + 𝜃𝑐2 > 0 . Therefore, 

4−7𝜃+3𝜃2+4𝑐1−3𝜃𝑐1−2𝑐2+𝜃𝑐2

4(2−𝜃)
> 0  and 

12−19𝜃+7𝜃2+4𝑐1−3𝜃𝑐1−2𝑐2+𝜃𝑐2

8(2−𝜃)
> 0 . That is, 𝑤1

𝑀𝐴𝑆 > 𝑤2
𝑀𝐴𝑆  and 

𝑝1
𝑀𝐴𝑆 > 𝑝2

𝑀𝐴𝑆. 

From Proposition 2, we get 𝑤1
𝑉𝑁𝑁 −𝑤2

𝑉𝑁𝑁 =
3−4𝜃+𝜃2+6𝑐1−2𝜃𝑐1−4𝑐2

9−𝜃
 and 𝑝1

𝑉𝑁𝑁 − 𝑝2
𝑉𝑁𝑁 =
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6−7𝜃+𝜃2+3𝑐1−𝜃𝑐1−2𝑐2

9−𝜃
. Because 𝜃𝑉𝑁𝑁 < 𝜃 < 𝜃

𝑉𝑁𝑁
 and 1 > 𝑐1 > 𝑐2, we get 3 − 4𝜃 + 𝜃2 + 6𝑐1 − 2𝜃𝑐1 −

4𝑐2 > 0  and 6 − 7𝜃 + 𝜃2 + 3𝑐1 − 𝜃𝑐1 − 2𝑐2 > 0 . Therefore, 
3−4𝜃+𝜃2+6𝑐1−2𝜃𝑐1−4𝑐2

9−𝜃
> 0  and 

6−7𝜃+𝜃2+3𝑐1−𝜃𝑐1−2𝑐2

9−𝜃
> 0. That is, 𝑤1

𝑉𝑁𝑁 > 𝑤2
𝑉𝑁𝑁 and 𝑝1

𝑉𝑁𝑁 > 𝑝2
𝑉𝑁𝑁.  

From Proposition 2, we get 𝑤1
𝑅𝑁𝑆 −𝑤2

𝑅𝑁𝑆 =
2−3𝜃+𝜃2+6𝑐1−2𝜃𝑐1−5𝑐2+𝜃𝑐2

2(4−𝜃)
 and 𝑝1

𝑅𝑁𝑆 − 𝑝2
𝑅𝑁𝑆 =

6−8𝜃+2𝜃2+2𝑐1−𝜃𝑐1−𝑐2

2(4−𝜃)
. For 𝜃𝑅𝑁𝑆 < 𝜃 < 𝜃

𝑅𝑁𝑆
 and 1 > 𝑐1 > 𝑐2 , we get 2 − 3𝜃 + 𝜃2 + 6𝑐1 − 2𝜃𝑐1 −

5𝑐2 + 𝜃𝑐2 > 0 and 6 − 8𝜃 + 2𝜃2 + 2𝑐1 − 𝜃𝑐1 − 𝑐2 > 0. Therefore, 
2−3𝜃+𝜃2+6𝑐1−2𝜃𝑐1−5𝑐2+𝜃𝑐2

2(4−𝜃)
> 0 and 

6−8𝜃+2𝜃2+2𝑐1−𝜃𝑐1−𝑐2

2(4−𝜃)
> 0. That is, 𝑤1

𝑅𝑁𝑆 > 𝑤2
𝑅𝑁𝑆 and 𝑝1

𝑅𝑁𝑆 > 𝑝2
𝑅𝑁𝑆. 

From Proposition 2, we get 𝑤1
𝑅𝐺𝑆 −𝑤2

𝑅𝐺𝑆 =
2−3𝜃+𝜃2+6𝑐1−6𝜃𝑐1+𝜃2𝑐1−5𝑐2+4𝜃𝑐2

2(4−3𝜃)
 and 𝑝1

𝑅𝐺𝑆 − 𝑝2
𝑅𝐺𝑆 =

(1−𝜃)(6−4𝜃+2𝑐1−𝜃𝑐1−𝑐2)

2(4−3𝜃)
. For 𝜃𝑅𝐺𝑆 < 𝜃 < 𝜃

𝑅𝐺𝑆
 and 1 > 𝑐1 > 𝑐2 , we get 2 − 3𝜃 + 𝜃2 + 6𝑐1 − 6𝜃𝑐1 +

𝜃2𝑐1 − 5𝑐2 + 4𝜃𝑐2 > 0 and 6 − 4𝜃 + 2𝑐1 − 𝜃𝑐1 − 𝑐2 > 0. Therefore, 
2−3𝜃+𝜃2+6𝑐1−6𝜃𝑐1+𝜃2𝑐1−5𝑐2+4𝜃𝑐2

2(4−3𝜃)
>

0 and 
(1−𝜃)(6−4𝜃+2𝑐1−𝜃𝑐1−𝑐2)

2(4−3𝜃)
> 0. That is, 𝑤1

𝑅𝐺𝑆 > 𝑤2
𝑅𝐺𝑆 and 𝑝1

𝑅𝐺𝑆 > 𝑝2
𝑅𝐺𝑆. 

From Proposition 2, we get 𝑤1
𝑅𝐴𝑆 −𝑤2

𝑅𝐴𝑆 =
2−4𝜃+2𝜃2+6𝑐1−5𝜃𝑐1−5𝑐2+4𝜃𝑐2

2(4−3𝜃)
 and 𝑝1

𝑅𝐴𝑆 − 𝑝2
𝑅𝐴𝑆 =

(1−𝜃)(6−5𝜃+2𝑐1−𝑐2)

2(4−3𝜃)
. For 𝜃𝑅𝐴𝑆 < 𝜃 < 𝜃

𝑅𝐴𝑆
 and 1 > 𝑐1 > 𝑐2, we get 2 − 4𝜃 + 2𝜃2 + 6𝑐1 − 5𝜃𝑐1 − 5𝑐2 +

4𝜃𝑐2 > 0  and 6 − 5𝜃 + 2𝑐1 − 𝑐2 > 0 . Therefore, 
2−4𝜃+2𝜃2+6𝑐1−5𝜃𝑐1−5𝑐2+4𝜃𝑐2

2(4−3𝜃)
> 0  and 

(1−𝜃)(6−5𝜃+2𝑐1−𝑐2)

2(4−3𝜃)
> 0. That is, 𝑤1

𝑅𝐴𝑆 > 𝑤2
𝑅𝐴𝑆 and 𝑝1

𝑅𝐴𝑆 > 𝑝2
𝑅𝐴𝑆. This completes the proof. 

 

Proof of Proposition 4: 

(a) 𝑤1
𝑀𝑁𝑆 −𝑤1

𝑀𝐺𝑆 = −
𝜃(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

2(−4+𝜃)(−2+𝜃)
, 𝑤1

𝑀𝑁𝑆 −𝑤1
𝑀𝐴𝑆 =

𝜃(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

4(−4+𝜃)(−2+𝜃)
, 𝑤2

𝑀𝑁𝑆 −𝑤2
𝑀𝐺𝑆 =

−
𝜃2(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

4(−4+𝜃)(−2+𝜃)
 and 𝑤2

𝑀𝑁𝑆 −𝑤2
𝑀𝐴𝑆 =

𝜃(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

2(−4+𝜃)(−2+𝜃)
. For any 𝜃 ∈ [ 𝜃𝑀𝑁𝑆, 𝜃

𝑀𝑁𝑆
] and 0 <

𝑐2 < 𝑐1 < 1, we obtain 2 − 2𝜃 − 2𝑐1 + 𝜃𝑐1 + 𝑐2 > 0 and −𝜃 + 𝜃2 − 𝜃𝑐1 + 2𝑐2 − 𝜃𝑐2 < 0. Therefore, 

𝑤1
𝑀𝑁𝑆 < 𝑤1

𝑀𝐺𝑆, 𝑤1
𝑀𝑁𝑆 < 𝑤1

𝑀𝐴𝑆, 𝑤2
𝑀𝑁𝑆 < 𝑤2

𝑀𝐺𝑆 and 𝑤2
𝑀𝑁𝑆 < 𝑤2

𝑀𝐴𝑆. 

(b) 𝑝1
𝑀𝑁𝑆 − 𝑝1

𝑀𝐺𝑆 = −
𝜃(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

4(−4+𝜃)(−2+𝜃)
, 𝑝1

𝑀𝑁𝑆 − 𝑝1
𝑀𝐴𝑆 =

𝜃(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

8(−4+𝜃)(−2+𝜃)
 𝑝2

𝑀𝑁𝑆 − 𝑝2
𝑀𝐺𝑆 =

−
𝜃2(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

8(−4+𝜃)(−2+𝜃)
 and 𝑝2

𝑀𝑁𝑆 − 𝑝2
𝑀𝐴𝑆 =

𝜃(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

4(−4+𝜃)(−2+𝜃)
. Because 2 − 2𝜃 − 2𝑐1 + 𝜃𝑐1 + 𝑐2 > 0 
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and −𝜃 + 𝜃2 − 𝜃𝑐1 + 2𝑐2 − 𝜃𝑐2 < 0 . Therefore, 𝑝1
𝑀𝑁𝑆 < 𝑝1

𝑀𝐺𝑆 , 𝑝1
𝑀𝑁𝑆 < 𝑝1

𝑀𝐴𝑆 , 𝑝2
𝑀𝑁𝑆 < 𝑝2

𝑀𝐺𝑆  and 

𝑝2
𝑀𝑁𝑆 < 𝑝2

𝑀𝐴𝑆. 

(c) (i) 𝐷𝑀𝑁𝑆 −𝐷𝑀𝐺𝑆 =
𝜃(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

8(−4+𝜃)(−2+𝜃)
 and 𝐷𝑀𝑁𝑆 − 𝐷𝑀𝐴𝑆 = −

−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2

4(−4+𝜃)(−2+𝜃)
. Because 2 −

2𝜃 − 2𝑐1 + 𝜃𝑐1 + 𝑐2 > 0 and −𝜃 + 𝜃2 − 𝜃𝑐1 + 2𝑐2 − 𝜃𝑐2 < 0. Therefore, 𝐷𝑀𝑁𝑆 > 𝐷𝑀𝐺𝑆 and 𝐷𝑀𝑁𝑆 >

𝐷𝑀𝐴𝑆.  

(ii) 𝛼1
𝑀𝑁𝑆 − 𝛼1

𝑀𝐺𝑆 =
𝜃2(𝜃−𝑐2)(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

(−1+𝜃)(−3𝜃+𝜃𝑐1+2𝑐2)(6𝜃−2𝜃2−2𝜃𝑐1+𝜃2𝑐1−4𝑐2+𝜃𝑐2)
 and 𝛼1

𝑀𝐴𝑆 − 𝛼1
𝑀𝑁𝑆 =

−
𝜃2(−1+𝑐1)(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

2(−1+𝜃)(−3𝜃+𝜃𝑐1+2𝑐2)(−3𝜃+𝜃2+𝜃𝑐1+2𝑐2−𝜃𝑐2)
. For any 𝜃 ∈ [ 𝜃𝑀𝑁𝑆, 𝜃

𝑀𝑁𝑆
] and 0 < 𝑐2 < 𝑐1 < 1, we obtain 

−3𝜃 + 𝜃𝑐1 + 2𝑐2 < 0 , 6𝜃 − 2𝜃2 − 2𝜃𝑐1 + 𝜃2𝑐1 − 4𝑐2 + 𝜃𝑐2 > 0  and −3𝜃 + 𝜃2 + 𝜃𝑐1 + 2𝑐2 − 𝜃𝑐2 <

0. Therefore, 𝛼1
𝑀𝐺𝑆 < 𝛼1

𝑀𝑁𝑆 < 𝛼1
𝑀𝐴𝑆. Because 𝛼2 = 1 − 𝛼1, 𝛼2

𝑀𝐺𝑆 > 𝛼2
𝑀𝑁𝑆 > 𝛼2

𝑀𝐴𝑆. 

(d) (i) 𝜋𝑚1
𝑀𝐺𝑆 − 𝜋𝑚1

𝑀𝑁𝑆 =
𝜃2(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

2

16(−4+𝜃)2(−2+𝜃)(−1+𝜃)
> 0 and 𝜋𝑚2

𝑀𝐴𝑆 − 𝜋𝑚2
𝑀𝑁𝑆 =

𝜃(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)
2

16(−4+𝜃)2(−2+𝜃)(−1+𝜃)
> 0.  

(ii) 𝜋𝑟
𝑀𝐺𝑆 − 𝜋𝑟

𝑀𝐴𝑆 = −
(−8+3𝜃)(−𝜃+𝜃2+2𝜃𝑐1−𝜃𝑐1

2−2𝜃𝑐2+𝑐2
2)

64(−2+𝜃)2
 and 𝜋𝑠

𝑀𝐺𝑆 − 𝜋𝑠
𝑀𝐴𝑆 =

−
(−8+5𝜃)(−𝜃+𝜃2+2𝜃𝑐1−𝜃𝑐1

2−2𝜃𝑐2+𝑐2
2)

64(−2+𝜃)2
. Here 𝜃1 =

1−2𝑐1+𝑐1
2+2𝑐2+(1−𝑐1)√1−2𝑐1+𝑐1

2+4𝑐2

2
 where 𝜃1 ∈

[ 𝜃𝑀𝑁𝑆, 𝜃
𝑀𝑁𝑆

], which makes 𝜋𝑟
𝑀𝐺𝑆 − 𝜋𝑟

𝑀𝐴𝑆 = 0 and 𝜋𝑠
𝑀𝐺𝑆 − 𝜋𝑠

𝑀𝐴𝑆 = 0. That is, when 𝜃 ∈ ( 𝜃𝑀𝑁𝑆, 𝜃1], 

𝜋𝑟
𝑀𝐺𝑆 ≤ 𝜋𝑟

𝑀𝐴𝑆  and 𝜋𝑠
𝑀𝐺𝑆 ≤ 𝜋𝑠

𝑀𝐴𝑆 ; when 𝜃 ∈ (𝜃1, 𝜃
𝑀𝑁𝑆

) , 𝜋𝑟
𝑀𝐺𝑆 > 𝜋𝑟

𝑀𝐴𝑆  and 𝜋𝑠
𝑀𝐺𝑆 > 𝜋𝑠

𝑀𝐴𝑆 . This 

completes the proof. 

 

Proof of Proposition 5: 

(a) 𝑤1
𝑅𝑁𝑆 −𝑤1

𝑅𝐺𝑆 = −
𝜃(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

(−4+𝜃)(−4+3𝜃)
, 𝑤1

𝑅𝑁𝑆 −𝑤1
𝑅𝐴𝑆 =

𝜃(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

2(−4+𝜃)(−4+3𝜃)
, 𝑤2

𝑅𝑁𝑆 −𝑤2
𝑅𝐺𝑆 =

−
𝜃2(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

2(−4+𝜃)(−4+3𝜃)
 and 𝑤2

𝑅𝑁𝑆 −𝑤2
𝑅𝐴𝑆 =

𝜃(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

(−4+𝜃)(−4+3𝜃)
. For any 𝜃 ∈ [ 𝜃𝑅𝑁𝑆, 𝜃

𝑅𝑁𝑆
]  and 0 <

𝑐2 < 𝑐1 < 1, we obtain 2 − 2𝜃 − 2𝑐1 + 𝜃𝑐1 + 𝑐2 > 0 and −𝜃 + 𝜃2 − 𝜃𝑐1 + 2𝑐2 − 𝜃𝑐2 < 0. Therefore, 

𝑤1
𝑅𝑁𝑆 < 𝑤1

𝑅𝐺𝑆, 𝑤1
𝑅𝑁𝑆 < 𝑤1

𝑅𝐴𝑆, 𝑤2
𝑅𝑁𝑆 < 𝑤2

𝑅𝐺𝑆 and 𝑤2
𝑅𝑁𝑆 < 𝑤2

𝑅𝐴𝑆. 

(b) 𝑝1
𝑅𝑁𝑆 − 𝑝1

𝑅𝐺𝑆 = −
𝜃(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

(−4+𝜃)(−4+3𝜃)
, 𝑝1

𝑅𝑁𝑆 − 𝑝1
𝑅𝐴𝑆 =

𝜃(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

2(−4+𝜃)(−4+3𝜃)
, 𝑝2

𝑅𝑁𝑆 − 𝑝2
𝑅𝐺𝑆 =

−
𝜃2(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

2(−4+𝜃)(−4+3𝜃)
 and 𝑝2

𝑅𝑁𝑆 − 𝑝2
𝑅𝐴𝑆 =

𝜃(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

(−4+𝜃)(−4+3𝜃)
. Because 2 − 2𝜃 − 2𝑐1 + 𝜃𝑐1 + 𝑐2 > 0 

and −𝜃 + 𝜃2 − 𝜃𝑐1 + 2𝑐2 − 𝜃𝑐2 < 0 . Therefore, 𝑝1
𝑅𝑁𝑆 < 𝑝1

𝑅𝐺𝑆 , 𝑝1
𝑅𝑁𝑆 < 𝑝1

𝑅𝐴𝑆 , 𝑝2
𝑅𝑁𝑆 < 𝑝2

𝑅𝐺𝑆  and 

𝑝2
𝑅𝑁𝑆 < 𝑝2

𝑅𝐴𝑆. 
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(c) (i) 𝐷𝑅𝑁𝑆 −𝐷𝑅𝐺𝑆 =
𝜃(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

2(−4+𝜃)(−4+3𝜃)
 and 𝐷𝑅𝑁𝑆 −𝐷𝑅𝐴𝑆 = −

−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2

4(−4+𝜃)(−4+3𝜃)
. Because 2 − 2𝜃 −

2𝑐1 + 𝜃𝑐1 + 𝑐2 > 0 and −𝜃 + 𝜃2 − 𝜃𝑐1 + 2𝑐2 − 𝜃𝑐2 < 0. Therefore, 𝐷𝑅𝑁𝑆 > 𝐷𝑅𝐺𝑆 and 𝐷𝑅𝑁𝑆 > 𝐷𝑅𝐴𝑆.  

(ii) 𝛼1
𝑅𝑁𝑆 − 𝛼1

𝑅𝐺𝑆 =
𝜃2(𝜃−𝑐2)(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

(−1+𝜃)(−3𝜃+𝜃𝑐1+2𝑐2)(3𝜃−2𝜃2−𝜃𝑐1+𝜃2𝑐1−2𝑐2+𝜃𝑐2)
 and 𝛼1

𝑅𝐴𝑆 − 𝛼1
𝑅𝑁𝑆 =

−
𝜃2(−1+𝑐1)(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

2(−1+𝜃)(−3𝜃+𝜃𝑐1+2𝑐2)(−3𝜃+𝜃2+𝜃𝑐1+2𝑐2−𝜃𝑐2)
. For any 𝜃 ∈ [ 𝜃𝑅𝑁𝑆, 𝜃

𝑅𝑁𝑆
] and 0 < 𝑐2 < 𝑐1 < 1, we obtain 

−3𝜃 + 𝜃𝑐1 + 2𝑐2 < 0,3𝜃 − 2𝜃2 − 𝜃𝑐1 + 𝜃2𝑐1 − 2𝑐2 + 𝜃𝑐2 > 0 and −3𝜃 + 𝜃2 + 𝜃𝑐1 + 2𝑐2 − 𝜃𝑐2 < 0. 

Therefore, 𝛼1
𝑅𝐺𝑆 < 𝛼1

𝑅𝑁𝑆 < 𝛼1
𝑅𝐴𝑆. Because 𝛼2 = 1 − 𝛼1, 𝛼2

𝑅𝐺𝑆 > 𝛼2
𝑅𝑁𝑆 > 𝛼2

𝑅𝐴𝑆. 

(d) 𝜋𝑚1
𝑅𝑁𝑆 − 𝜋𝑚1

𝑅𝐺𝑆 = −
𝜃3(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

2

4(−4+𝜃)2(−1+𝜃)(−4+3𝜃)2
> 0 , 𝜋𝑚1

𝑅𝐴𝑆 − 𝜋𝑚1
𝑅𝐺𝑆 = −

𝜃(−𝜃+𝜃2+𝜃𝑐1
2+2𝑐2−2𝜃𝑐2−2𝑐1𝑐2+𝑐2

2)

4(−4+3𝜃)2
, 

𝜋𝑚2
𝑅𝑁𝑆 − 𝜋𝑚2

𝑅𝐴𝑆 = −
𝜃2(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

2

4(−4+𝜃)2(−1+𝜃)(−4+3𝜃)2
> 0 and 𝜋𝑚2

𝑅𝐺𝑆 − 𝜋𝑚2
𝑅𝐴𝑆 = −

𝜃(−𝜃+𝜃2+𝜃𝑐1
2+2𝑐2−2𝜃𝑐2−2𝑐1𝑐2+𝑐2

2)

4(−4+3𝜃)2
. For 

any 𝜃 ∈ [ 𝜃𝑅𝑁𝑆, 𝜃
𝑅𝑁𝑆

] and 0 < 𝑐2 < 𝑐1 < 1, we obtain −𝜃 + 𝜃2 + 𝜃𝑐1
2 + 2𝑐2 − 2𝜃𝑐2 − 2𝑐1𝑐2 + 𝑐2

2 < 0. 

That is, 𝜋𝑚1
𝑅𝐴𝑆 − 𝜋𝑚1

𝑅𝐺𝑆 > 0 and 𝜋𝑚2
𝑅𝐺𝑆 − 𝜋𝑚2

𝑅𝐴𝑆 > 0. Therefore, 𝜋𝑚1
𝑅𝑁𝑆 > 𝜋𝑚1

𝑅𝐺𝑆, 𝜋𝑚1
𝑅𝐴𝑆 > 𝜋𝑚1

𝑅𝐺𝑆, 𝜋𝑚2
𝑅𝑁𝑆 > 𝜋𝑚2

𝑅𝐴𝑆 

and 𝜋𝑚2
𝑅𝐺𝑆 > 𝜋𝑚2

𝑅𝐴𝑆 . (ii) 𝜋𝑟
𝑅𝑁𝑆 − 𝜋𝑟

𝑅𝐺𝑆 = −
𝜃(2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2)

2

4(−4+𝜃)(−1+𝜃)(−4+3𝜃)
> 0 , 𝜋𝑟

𝑅𝑁𝑆 − 𝜋𝑟
𝑅𝐴𝑆 =

−
(−𝜃+𝜃2−𝜃𝑐1+2𝑐2−𝜃𝑐2)

2

4(−4+𝜃)(−1+𝜃)(−4+3𝜃)
> 0 , 𝜋𝑟

𝑅𝐴𝑆 − 𝜋𝑟
𝑅𝐺𝑆 =

−𝜃+𝜃2+2𝜃𝑐1−𝜃𝑐1
2−2𝜃𝑐2+𝑐2

2

4(−4+3𝜃)
 and 𝜋𝑠

𝑅𝐴𝑆 − 𝜋𝑠
𝑅𝐺𝑆 =

−𝜃+𝜃2+2𝜃𝑐1−𝜃𝑐1
2−2𝜃𝑐2+𝑐2

2

4(−4+3𝜃)
. Here 𝜃1 =

1−2𝑐1+𝑐1
2+2𝑐2+(1−𝑐1)√1−2𝑐1+𝑐1

2+4𝑐2

2
 where 𝜃1 ∈ [ 𝜃𝑅𝑁𝑆, 𝜃

𝑅𝑁𝑆
] , which 

makes 𝜋𝑟
𝑅𝐺𝑆 − 𝜋𝑟

𝑅𝐴𝑆 = 0 and 𝜋𝑠
𝑅𝐺𝑆 − 𝜋𝑠

𝑅𝐴𝑆 = 0. That is, When 𝜃 ∈ ( 𝜃𝑅𝑁𝑆, 𝜃1], 𝜋𝑟
𝑅𝑁𝑆 > 𝜋𝑟

𝑅𝐴𝑆 ≥ 𝜋𝑟
𝑅𝐺𝑆 

and 𝜋𝑠
𝑅𝐴𝑆 ≥ 𝜋𝑠

𝑅𝐺𝑆; When 𝜃 ∈ (𝜃1, 𝜃
𝑅𝑁𝑆

), 𝜋𝑟
𝑅𝑁𝑆 > 𝜋𝑟

𝑅𝐺𝑆 > 𝜋𝑟
𝑅𝐴𝑆 and 𝜋𝑠

𝑅𝐴𝑆 < 𝜋𝑠
𝑅𝐺𝑆. This completes the 

proof. 

 

Proof of Proposition 6: 

(a) For 𝜃 ∈ (0,  𝜃𝑘]，  from Table 3, we get 𝑤1
𝑀𝑁𝑆 −𝑤1

𝑉𝑁𝑁 =
(1−𝜃)(1−𝑐1)

(3−𝜃)(2−𝜃)
> 0 , 𝑤1

𝑀𝑁𝑆 −𝑤1
𝑅𝑁𝑆 =

(1−𝜃)(1−𝑐1)

2(2−𝜃)
> 0  and 𝑤1

𝑉𝑁𝑁 −𝑤1
𝑅𝑁𝑆 =

(1−𝜃)2(1−𝑐1)

2(3−𝜃)(2−𝜃)
> 0 ; 𝑝1

𝑀𝑁𝑆 − 𝑝1
𝑅𝑁𝑆 = 0  and 𝑝1

𝑀𝑁𝑆 − 𝑝1
𝑉𝑁𝑁 =

(1−𝜃)(1−𝑐1)

2(3−𝜃)(2−𝜃)
> 0 ; 𝐷1

𝑀𝑁𝑆 − 𝐷1
𝑅𝑁𝑆 = 0  and 𝐷1

𝑀𝑁𝑆 − 𝐷1
𝑉𝑁𝑁 = −

(1−𝜃)(1−𝑐1)

2(3−𝜃)(2−𝜃)
< 0 ; 𝜋𝑚1

𝑀𝑁𝑆 − 𝜋𝑚1
𝑉𝑁𝑁 =

(1−𝜃)(1+2𝜃−𝜃2)(1−𝑐1)
2

2(3−𝜃)2(2−𝜃)2
> 0, 𝜋𝑚1

𝑀𝑁𝑆 − 𝜋𝑚1
𝑅𝑁𝑆 =

(1−𝜃)(1−𝑐1)
2

4(2−𝜃)2
> 0 and 𝜋𝑚1

𝑉𝑁𝑁 − 𝜋𝑚1
𝑅𝑁𝑆 =

(1−𝜃)2(7−3𝜃)(1−𝑐1)
2

4(3−𝜃)2(2−𝜃)2
> 0; 

𝜋𝑟
𝑀𝑁𝑆 − 𝜋𝑟

𝑉𝑁𝑁 = −
(1−𝜃)(7−3𝜃)(1−𝑐1)

2

4(3−𝜃)2(2−𝜃)2
< 0 , 𝜋𝑟

𝑀𝑁𝑆 − 𝜋𝑟
𝑅𝑁𝑆 = −

(1−𝜃)(1−𝑐1)
2

4(2−𝜃)2
< 0  and 𝜋𝑟

𝑉𝑁𝑁 − 𝜋𝑟
𝑅𝑁𝑆 =

−
(1−𝜃)2(1−𝑐1)

2

4(3−𝜃)2(2−𝜃)
< 0 . That is, 𝑤2

𝑀𝑁𝑆 > 𝑤2
𝑉𝑁𝑁 > 𝑤2

𝑅𝑁𝑆 , 𝑝2
𝑀𝑁𝑆 = 𝑝2

𝑅𝑁𝑆 > 𝑝2
𝑉𝑁𝑁 , 𝐷2

𝑀𝑁𝑆 = 𝐷2
𝑅𝑁𝑆 < 𝐷2

𝑉𝑁𝑁 , 



44 

𝜋𝑚2
𝑀𝑁𝑆 > 𝜋𝑚2

𝑉𝑁𝑁 > 𝜋𝑚2
𝑅𝑁𝑆  and 𝜋𝑟

𝑀𝑁𝑆 < 𝜋𝑟
𝑉𝑁𝑁 < 𝜋𝑟

𝑅𝑁𝑆 . 𝜋𝑠1
𝑀𝑁𝑆 = 𝜋𝑚1

𝑀𝑁𝑆 + 𝜋𝑟
𝑀𝑁𝑆 =

(3−2𝜃)(1−𝑐1)
2

4(2−𝜃)2
, 𝜋𝑠1

𝑉𝑁𝑁 =

𝜋𝑚1
𝑉𝑁𝑁 + 𝜋𝑟

𝑉𝑁𝑁 =
(2−𝜃)(1−𝑐1)

2

(3−𝜃)2
 and 𝜋𝑠1

𝑅𝑁𝑆 = 𝜋𝑚1
𝑅𝑁𝑆 + 𝜋𝑟

𝑅𝑁𝑆 =
(3−2𝜃)(1−𝑐1)

2

4(2−𝜃)2
, so 𝜋𝑠1

𝑀𝑁𝑆 = 𝜋𝑠1
𝑅𝑁𝑆  and 𝜋𝑠1

𝑀𝑁𝑆 −

𝜋𝑠1
𝑉𝑁𝑁 = −

(1−𝜃)2(5−2𝜃)(1−𝑐1)
2

4(3−𝜃)2(2−𝜃)2
< 0. That is, 𝜋𝑠1

𝑀𝑁𝑆 = 𝜋𝑠1
𝑅𝑁𝑆 < 𝜋𝑠1

𝑉𝑁𝑁. 

(b) For 𝜃 ∈ [𝜃
𝑘
, 1), from Table 3, 𝑤2

𝑀𝑁𝑆 −𝑤2
𝑉𝑁𝑁 =

(1−𝜃)(𝜃−𝑐2)

2(3−𝜃)(2−𝜃)
> 0, 𝑤2

𝑀𝑁𝑆 −𝑤2
𝑅𝑁𝑆 =

(1−𝜃)(𝜃−𝑐2)

2(2−𝜃)
> 0 

and 𝑤2
𝑉𝑁𝑁 −𝑤2

𝑅𝑁𝑆 =
(1−𝜃)2(𝜃−𝑐2)

2(3−𝜃)(2−𝜃)
> 0 ; 𝑝2

𝑀𝑁𝑆 − 𝑝2
𝑅𝑁𝑆 = 0  and 𝑝2

𝑀𝑁𝑆 − 𝑝2
𝑉𝑁𝑁 =

(1−𝜃)(𝜃−𝑐2)

2(3−𝜃)(2−𝜃)
> 0 ; 

𝐷2
𝑀𝑁𝑆 − 𝐷2

𝑅𝑁𝑆 = 0 and 𝐷2
𝑀𝑁𝑆 − 𝐷2

𝑉𝑁𝑁 = −
(1−𝜃)(𝜃−𝑐2)

2(3−𝜃)(2−𝜃)𝜃
< 0; 𝜋𝑚2

𝑀𝑁𝑆 − 𝜋𝑚2
𝑉𝑁𝑁 =

(1−𝜃)(1+2𝜃−𝜃2)(𝜃−𝑐2)
2

2(3−𝜃)2(2−𝜃)2𝜃
> 0, 

𝜋𝑚2
𝑀𝑁𝑆 − 𝜋𝑚2

𝑅𝑁𝑆 =
(1−𝜃)(𝜃−𝑐2)

2

4(2−𝜃)2𝜃
> 0  and 𝜋𝑚2

𝑉𝑁𝑁 − 𝜋𝑚2
𝑅𝑁𝑆 =

(1−𝜃)2(7−3𝜃)(𝜃−𝑐2)
2

4(3−𝜃)2(2−𝜃)2𝜃
> 0 ; 𝜋𝑟

𝑀𝑁𝑆 − 𝜋𝑟
𝑉𝑁𝑁 =

−
(1−𝜃)(7−3𝜃)(𝜃−𝑐2)

2

4(3−𝜃)2(2−𝜃)2𝜃
< 0 , 𝜋𝑟

𝑀𝑁𝑆 − 𝜋𝑟
𝑅𝑁𝑆 = −

(1−𝜃)(𝜃−𝑐2)
2

4(2−𝜃)2𝜃
< 0  and 𝜋𝑟

𝑉𝑁𝑁 − 𝜋𝑟
𝑅𝑁𝑆 = −

(1−𝜃)2(𝜃−𝑐2)
2

4(3−𝜃)2(2−𝜃)𝜃
< 0 . 

That is, 𝑤2
𝑀𝑁𝑆 > 𝑤2

𝑉𝑁𝑁 > 𝑤2
𝑅𝑁𝑆, 𝑝2

𝑀𝑁𝑆 = 𝑝2
𝑅𝑁𝑆 > 𝑝2

𝑉𝑁𝑁, 𝐷2
𝑀𝑁𝑆 = 𝐷2

𝑅𝑁𝑆 < 𝐷2
𝑉𝑁𝑁, 𝜋𝑚2

𝑀𝑁𝑆 > 𝜋𝑚2
𝑉𝑁𝑁 > 𝜋𝑚2

𝑅𝑁𝑆 

and 𝜋𝑟
𝑀𝑁𝑆 < 𝜋𝑟

𝑉𝑁𝑁 < 𝜋𝑟
𝑅𝑁𝑆 . 𝜋𝑠2

𝑀𝑁𝑆 = 𝜋𝑚2
𝑀𝑁𝑆 + 𝜋𝑟

𝑀𝑁𝑆 =
(3−2𝜃)(𝜃−𝑐2)

2

4(2−𝜃)2𝜃
, 𝜋𝑠2

𝑉𝑁𝑁 = 𝜋𝑚2
𝑉𝑁𝑁 + 𝜋𝑑

𝑉𝑁𝑁 =

(2−𝜃)(𝜃−𝑐2)
2

(3−𝜃)2𝜃
 and 𝜋𝑠2

𝑅𝑁𝑆 = 𝜋𝑚2
𝑅𝑁𝑆 + 𝜋𝑟

𝑅𝑁𝑆 =
(3−2𝜃)(𝜃−𝑐2)

2

4(2−𝜃)2𝜃
, so 𝜋𝑠2

𝑀𝑁𝑆 = 𝜋𝑠2
𝑅𝑁𝑆  and 𝜋𝑠2

𝑀𝑁𝑆 − 𝜋𝑠2
𝑉𝑁𝑁 =

−
(1−𝜃)2(5−2𝜃)(𝜃−𝑐2)

2

4(3−𝜃)2(2−𝜃)2𝜃
< 0. That is, 𝜋𝑠2

𝑀𝑁𝑆 = 𝜋𝑠2
𝑅𝑁𝑆 < 𝜋𝑠2

𝑉𝑁𝑁. This completes the proof. 

 

Proof of Proposition 7: 

(a) 𝑤1
𝑀𝑁𝑆 −𝑤1

𝑉𝑁𝑁 =
6−5𝜃−𝜃2−6𝑐1+4𝜃𝑐1+𝑐2+𝜃𝑐2

(9−𝜃)(4−𝜃)
, 𝑤1

𝑀𝑁𝑆 −𝑤1
𝑅𝑁𝑆 =

2−2𝜃−2𝑐1+𝜃𝑐1+𝑐2

2(4−𝜃)
, 𝑤2

𝑀𝑁𝑆 −𝑤2
𝑅𝑁𝑆 =

𝜃−𝜃2+𝜃𝑐1−2𝑐2+𝜃𝑐2

2(4−𝜃)
 and 𝑤2

𝑀𝑁𝑆 −𝑤2
𝑉𝑁𝑁 =

5𝜃−5𝜃2+𝜃𝑐1+𝜃2𝑐1−6𝑐2+4𝜃𝑐2

(9−𝜃)(4−𝜃)
. For any 𝜃 ∈ [ 𝜃𝑉𝑁𝑁, 𝜃

𝑉𝑁𝑁
] and 0 <

𝑐2 < 𝑐1 < 1, we obtain 6 − 5𝜃 − 𝜃2 − 6𝑐1 + 4𝜃𝑐1 + 𝑐2 + 𝜃𝑐2 > 0, 2 − 2𝜃 − 2𝑐1 + 𝜃𝑐1 + 𝑐2 > 0, 𝜃 −

𝜃2 + 𝜃𝑐1 − 2𝑐2 + 𝜃𝑐2 > 0  and 5𝜃 − 5𝜃2 + 𝜃𝑐1 + 𝜃2𝑐1 − 6𝑐2 + 4𝜃𝑐2 > 0 . That is, 𝑤1
𝑀𝑁𝑆 > 𝑤1

𝑉𝑁𝑁 , 

𝑤1
𝑀𝑁𝑆 > 𝑤1

𝑅𝑁𝑆, 𝑤2
𝑀𝑁𝑆 > 𝑤2

𝑟𝑛 and 𝑤2
𝑀𝑁𝑆 > 𝑤2

𝑉𝑁𝑁. 

(b) 𝑝1
𝑀𝑁𝑆 − 𝑝1

𝑅𝑁𝑆 = 0 , 𝑝1
𝑀𝑁𝑆 − 𝑝1

𝑉𝑁𝑁 =
6−5𝜃−𝜃2−6𝑐1+4𝜃𝑐1+𝑐2+𝜃𝑐2

2(9−𝜃)(4−𝜃)
, 𝑝2

𝑀𝑁𝑆 − 𝑝2
𝑅𝑁𝑆 = 0  and 𝑝2

𝑀𝑁𝑆 −

𝑝2
𝑉𝑁𝑁 =

5𝜃−5𝜃2+𝜃𝑐1+𝜃2𝑐1−6𝑐2+4𝜃𝑐2

2(9−𝜃)(4−𝜃)
. For any 𝜃 ∈ [ 𝜃𝑀𝑁𝑆, 𝜃

𝑀𝑁𝑆
]  and 0 < 𝑐2 < 𝑐1 < 1 , we obtain 6 −

5𝜃 − 𝜃2 − 6𝑐1 + 4𝜃𝑐1 + 𝑐2 + 𝜃𝑐2 > 0 and . 5𝜃 − 5𝜃2 + 𝜃𝑐1 + 𝜃2𝑐1 − 6𝑐2 + 4𝜃𝑐2 > 0 That is, 𝑝1
𝑀𝑁𝑆 =

𝑝1
𝑅𝑁𝑆 > 𝑝1

𝑉𝑁𝑁 and 𝑝2
𝑀𝑁𝑆 = 𝑝2

𝑟𝑛 > 𝑝2
𝑉𝑁𝑁. 

(c) (i) 𝐷𝑀𝑁𝑆 −𝐷𝑅𝑁𝑆 = 0  and 𝐷𝑅𝑁𝑆 − 𝐷𝑉𝑁𝑁 = −
5𝜃−5𝜃2+𝜃𝑐1+𝜃2𝑐1−6𝑐2+4𝜃𝑐2

2(−9+𝜃)(−4+𝜃)𝜃
< 0 . That is, 𝐷𝑀𝑁𝑆 =
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𝐷𝑅𝑁𝑆 < 𝐷𝑉𝑁𝑁.  

(ii) 𝛼1
𝑀𝑁𝑆 − 𝛼1

𝑅𝑁𝑆 = 0  and 𝛼1
𝑅𝑁𝑆 − 𝛼1

𝑉𝑁𝑁 = −
𝜃(−𝜃+𝜃2+2𝜃𝑐1−𝜃𝑐1

2−2𝜃𝑐2+𝑐2
2)

(−1+𝜃)(−3𝜃+𝜃𝑐1+2𝑐2)(−4𝜃+𝜃𝑐1+3𝑐2)
. Here 𝜃1 =

1−2𝑐1+𝑐1
2+2𝑐2+(1−𝑐1)√1−2𝑐1+𝑐1

2+4𝑐2

2
 where 𝜃1 ∈ [ 𝜃𝑀𝑁𝑆, 𝜃

𝑀𝑁𝑆
], which makes 𝛼1

𝑅𝑁𝑆 − 𝛼1
𝑉𝑁𝑁 = 0. That is, 

when 𝜃 ∈ ( 𝜃𝑀𝑁𝑆, 𝜃1], 𝛼1
𝑀𝑁𝑆 = 𝛼1

𝑅𝑁𝑆 ≤ 𝛼1
𝑉𝑁𝑁 ; when 𝜃 ∈ (𝜃1, 𝜃

𝑀𝑁𝑆
), 𝛼1

𝑀𝑁𝑆 = 𝛼1
𝑅𝑁𝑆 > 𝛼1

𝑉𝑁𝑁 . Because 

𝛼2 = 1 − 𝛼1 , when 𝜃 ∈ ( 𝜃𝑀𝑁𝑆, 𝜃1] , 𝛼2
𝑀𝑁𝑆 = 𝛼2

𝑅𝑁𝑆 ≥ 𝛼2
𝑉𝑁𝑁 ; when 𝜃 ∈ (𝜃1, 𝜃

𝑀𝑁𝑆
) , 𝛼2

𝑀𝑁𝑆 = 𝛼2
𝑅𝑁𝑆 <

𝛼2
𝑉𝑁𝑁. This completes the proof. 


