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Summary 23 

Branching is one of the most striking aspects of land plant architecture, affecting resource acquisition and 24 

yield. Polar auxin transport by PIN proteins is a primary determinant of flowering plant branching patterns 25 

regulating both branch initiation and branch outgrowth. Several lines of experimental evidence suggest 26 

that PIN-mediated polar auxin transport is a conserved regulator of branching in vascular plant 27 

sporophytes. However, the mechanisms of branching and auxin transport and relationships between the 28 

two are not well known outside the flowering plants and the paradigm for PIN-regulated branching in 29 

flowering plants does not fit bryophyte gametophytes. The evidence reviewed here suggests that divergent 30 

auxin transport routes contributed to the diversification of branching forms in distinct land plant lineages. 31 

Keywords: land plant evolution, evo-devo, branching, auxin transport, PIN 32 

I. Diversification of branching forms in land plants 33 

Branching forms have evolved multiple times across the tree of life to optimise exchange between 34 

organisms and their environment. In land plants, shoot branching serves two main purposes (1) to optimize 35 

photosynthetic efficiency during indeterminate growth (Niklas & Kerchner, 1984) and (2) to determine 36 

reproductive output by affecting the number and position of sporangia (Niklas, 2004). Branching thus 37 

affects plant fitness and yield. Land plants have biphasic life cycles in which a gametophyte phase 38 

alternates with a sporophyte phase, and branching forms have arisen with independent evolutionary 39 

trajectories in each life cycle stage (Figure 1) (Harrison, 2016). Current hypotheses of plant interrelationship 40 

suggest that vascular plants emerged as a monophyletic group from an ancestor shared with bryophytes, 41 

but the relationship of bryophytes to vascular plants is contested- bryophytes either form a paraphyletic 42 

grade at the base of the land plant tree of life (Wickett et al., 2014), or form a monophyletic sister group to 43 

vascular plants (Figure 1) (Wickett et al., 2014; Cox et al., 2014). These alternative toplogies bear on 44 
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inferences of the number and direction of branching innovations in land plant evolution in both life cycle 45 

stages. 46 

A general trend in land plant evolution has been the progressive elaboration of the sporophyte stage of the 47 

life cycle at the expense of the gametophyte stage of the life cycle, and sporophytic branching innovations 48 

may have contributed to this trend (Niklas, 1997; Niklas, 2004). Whilst the sporophytes of bryophytes are 49 

small, comprising a single axis that terminates in sporangium formation, the sporophytes of vascular plants 50 

can attain massive sizes as an outcome of branching and indeterminate growth (Figure 1C) (Harrison, 51 

2016). Two fossils have forms that are intermediate between living bryophytes and vascular plants. 52 

Partitatheca is a non-vascular fossil with tiny sporophytes that have stomata and branch (Figure 1E), a 53 

character combination suggesting a close affinity to bryophytes (Edwards et al., 2014) and Cooksonia fossils 54 

reiterate the Partitatheca branching pattern but have vascular tissue (Boyce, 2009). These fossils suggest 55 

potential steps in the elaboration of sporophyte branching (Figure 1). The number and direction of 56 

branching innovations in gametophyte evolution is not yet clear, save to say that there have been multiple 57 

origins of branching axial forms in bryophytes and monilophytes, and probably many reversals. 58 

II. Roles for auxin transport in branching 59 

The mechanisms regulating branching are relatively well characterised in flowering plants, and transport of 60 

the plant hormone auxin plays a key role (Domagalska & Leyser, 2011). This was first demonstrated by 61 

surgical decapitation experiments in which the shoot apical meristem of Vicia faba was excised, a 62 

manipulation that allows buds initiated in leaf axils to grow out as branches (Thimann & Skoog, 1933). If 63 

excision was followed by replacement of the meristem with an agar block impregnated in auxin, the release 64 

from suppression did not occur. This experiment suggested that auxin made at the shoot tip can move 65 

through a plant to suppress branch outgrowth, a phenomenon known as apical dominance (Thimann & 66 

Skoog, 1933). A requirement for long-range basipetal polar auxin transport was demonstrated by 67 

application of auxin transport inhibitors to a region of the stem, and the subsequent outgrowth of branches 68 

below the site of application (Panigrahi & Audus, 1966).  More recent work has demonstrated that auxin 69 

transport is also required for branch initiation, a process that is intimately linked to leaf initiation (Galweiler 70 

et al., 1998; Blakeslee et al., 2007; Bainbridge et al., 2008; Wang, Q et al., 2014; Wang, Y et al., 2014). As 71 

leaf primordia start to grow out from the shoot apical meristem, an auxin minimum forms in the crease 72 

between the new leaf and the shoot apical meristem, and axillary branch meristems form in this region 73 

(Wang, Q et al., 2014; Wang, Y et al., 2014). 74 

75 
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III. Mechanisms for auxin transport in branching 76 

Both the branch initiation and outgrowth processes above are dependent on PIN proteins, a class of auxin 77 

efflux facilitator with diverse roles in plant development (Petrasek & Friml, 2009). PINs generate directional 78 

auxin transport by inserting asymmetrically into plasma membranes (Galweiler et al., 1998). PINs play a key 79 

role in leaf initiation by directing auxin to foci on the dome of the shoot apical meristem to determine the 80 

position of leaf initiation (Galweiler et al., 1998; Reinhardt et al., 2000). As leaf primordia start to grow out 81 

PINs direct auxin transport away from the crease forming between the shoot apical meristem and the new 82 

leaf, leading to the formation of auxin minima and axillary meristem initiation (Wang, Q et al., 2014; Wang, 83 

Y et al., 2014). PINs play a key role in branch outgrowth by generating and modulating long-range basipetal 84 

auxin transport in the stem as well as modulating the action of other hormonal cues on branching (Okada 85 

et al., 1991; Shinohara et al., 2013; Bennett et al., 2016). ABCB/PGP auxin efflux transporters also effect 86 

long-range basipetal transport and modulate branch outgrowth, acting synergistically with PINs (Noh et al., 87 

2001; Blakeslee et al., 2007), and AUX/LAX influx symporters effect auxin influx in leaf initiation, thereby 88 

modulating branching (Swarup et al., 2004; Yang et al., 2006; Bainbridge et al., 2008). Cell to cell 89 

connectivity via plasmodesmata has recently been identified as a further potential route for auxin 90 

transport in the regulation of plant development (Han et al., 2014), and deposition or break down of the 91 

cell wall polymer callose by CalS and GHL genes is one way that the size of plasmodesmatal openings can 92 

be actively regulated. All aforementioned families are conserved within the land plants and are therefore 93 

potential contributors to auxin transport in the evolution of branching forms (Del Bem & Vincentz, 2010; 94 

Carraro et al., 2012; Bennett, T et al., 2014; Gaudioso-Pedraza & Benitez-Alfonso, 2014; Lane et al., 2016). 95 

IV. PIN-mediated polar auxin transport is a conserved regulator of branching in 96 

vascular plants 97 

The bulk basipetal pattern of auxin transport that regulates axillary branching in flowering plants can be 98 

measured using radiolabelled auxin transport assays (Figure 1D, Table 1) (Goldsmith, 1966; Goldsmith, 99 

1977). Tritiated auxin is applied to one cut surface of a stem segment, and its passage through the stem is 100 

monitored by extracting auxin from a portion at the other end of the segment in scintillation fluid. The rate 101 

of auxin transport is inferred by measuring radioactive decay using a scintillation counter in relation to time 102 

allowed for transport (Lewis & Muday, 2009). Such assays demonstrate that bulk basipetal auxin transport 103 

is a conserved property of vascular plant sporophytes (Steeves & Briggs, 1960; Wochok & Sussex, 1973; 104 

Wochok & Sussex, 1974; Walters & Osborne, 1979), and PATI sensitivity suggests that PINs provide the 105 

transport (Sanders & Langdale, 2013). The branching mechanism of basal vascular plant lineages involves 106 

bifurcation of the main shoot apex (in lycophytes and some monilophytes) or the establishment of new 107 

apices in leaf axils (in monilophytes; Figure 1) (Bierhorst, 1977; Harrison et al., 2007; Schneider, 2012), but 108 

links between PIN-mediated PAT and branching are yet to be identified. However, decapitation 109 
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experiments in both lycophytes and monilophytes suggest that there is likely conservation. In the lycophyte 110 

Selaginella, apical decapitation can result in the outgrowth of angle meristems initiated at branch 111 

divergence points, mirroring the PIN-mediated plasticity of branching in flowering plants, and auxin applied 112 

at the tip counteracts this effect (Williams, 1937; Seidl, 1941; Jernstedt et al., 1994). Similarly, decapitation 113 

can result in bud formation from the rhizome in ferns (Wardlaw, 1965). PATI sensitive basipetal auxin 114 

transport can be detected in the single-stemmed axes of moss sporophytes (Poli et al., 2003; Fujita et al., 115 

2008), and disruption of Physcomitrella patens (Physcomitrella) PIN function can induce branching to 116 

generate a similar form to the most ancient branching fossils (Fujita et al., 2008; Bennett, TA et al., 2014). 117 

Current evidence suggests that PIN-mediated PAT is a conserved regulator of sporophyte branching in land 118 

plants. 119 

V. Axial auxin transport is non-polar or weakly polar in liverwort and hornwort 120 

sporophytes and bryophyte gametophytes 121 

Although moss sporophytes show PATI sensitive bulk basipetal auxin transport (Poli et al., 2003; Fujita et 122 

al., 2008), other bryophyte sporophytes do not (Figure 1C, D). Transport assays in the hornwort Phaeoceros 123 

pearsonii detect low rates of PATI-insensitive transport in both directions in sporophyte axes, consistent 124 

with a diffusive mechanism (Poli et al., 2003). Assays similarly detect low rates of bidirectional transport in 125 

the liverwort Pellia epiphylla, but transport is PATI-sensitive suggesting the involvement of membrane 126 

transporters (Thomas, 1980; Poli et al., 2003). Transport in bryophyte gametophytes can be polar 127 

(Maravolo, 1976; Rose & Bopp, 1983; Rose et al., 1983), bidirectional (Fujita et al., 2008; Coudert et al., 128 

2015; aPiatowski et al., 2012), or have a weak directional bias (Gaal et al., 1982), and transport may or may 129 

not be sensitive to PATI and NOA inhibitors (Maravolo, 1976; Rose & Bopp, 1983; Fujita et al., 2008; 130 

Bennett, TA et al., 2014; aPiatowski et al., 2012) that interfere with membrane transporter function 131 

(Geldner et al., 2001; Parry et al., 2001). The roles of PIN proteins and other auxin transporters have not yet 132 

been characterised in liverworts and hornworts, so the mechanisms for transport in these groups are not 133 

clear. In Physcomitrella gametophores PINs can target to the plasma membrane and are likely to generate 134 

short-range directional transport in a manner similar to the pattern observed in flowering plant shoot 135 

apices (Bennett, TA et al., 2014). Disruption of PIN function and PATI application induces defects in 136 

gametophore apex function and leaf development (Bennett, TA et al., 2014; Viaene et al., 2014), but not 137 

gametophore branching (Coudert et al., 2015). In combination, these data suggest that the roles of PIN-138 

mediated auxin transport in branching are not conserved between bryophytes and vascular plants; the 139 

moss sporophyte exception discussed above may reflect convergence.  140 

VI. Apical dominance without PIN-mediated polar auxin transport in a moss 141 

Recent work in Physcomitrella gametophores suggests an alternative route for auxin transport in the 142 

regulation of branching (Coudert et al., 2015). Branches initiate by respecification of epidermal cells into 143 
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apical cells in leaf axils after the leaf has developed, and subsequent outgrowth is not delayed (Coudert et 144 

al., 2015). Surgical decapitation experiments similar to the experiments undertaken in flowering plant 145 

sporophytes showed that the main gametophore apex is an auxin source that acts at a distance to suppress 146 

branch initiation (von Maltzahn, 1959; Nyman & Cutter, 1981; Coudert et al., 2015). Physcomitrella pinab 147 

mutants initiate branches in a fairly normal pattern, and although there are two other PINs in 148 

Physcomitrella, application of NPA to pinab mutants does not disrupt branching further (Coudert et al., 149 

2015). These results suggest that PINs do not provide the auxin transport required to regulate branch 150 

initiation, and a computational modelling approach showed that the measured bi-directional property of 151 

auxin transport in moss gametophores is required to attain realistic branch initiation patterns (Coudert et 152 

al., 2015). Modelling also predicted that variation in the rate of bidirectional auxin transport should perturb 153 

branch initiation patterns, and pharmacological treatments with the callose synthesis inhibitor DDG (Jaffe 154 

& Leopold, 1984) perturbed initiation patterns in a similar way to model predictions (Coudert et al., 2015). 155 

These observations point to a role for auxin transport via plasmodesmata in branching in a moss, but links 156 

between auxin transport and branching have not yet been interrogated in other bryophytes. 157 

VII. Conclusions and future perspectives 158 

As yet there is very scant data relating to the auxin transport properties of non flowering plants. The 159 

bryophyte data discussed here were obtained by different labs and have used different taxon sampling and 160 

techniques. In some instances experiments with the same species or different species within the same 161 

lineage have generated different results (Maravolo, 1976; Gaal et al., 1982; Poli et al., 2003; aPiatowski et 162 

al., 2012). Branching patterns and their developmental basis are also poorly characterised in non-flowering 163 

plants (most notably in monilophytes), and land plant phylogeny remains contested at key nodes for 164 

inferences relating to branching evolution (Cox et al., 2014; Wickett et al., 2014). Despite these deficiencies 165 

in our knowledge, the data discussed suggest that divergent auxin transport pathways were recruited to 166 

regulate branching in land plant gametophytes and sporophytes during evolution. Current evidence 167 

suggests that PIN-mediated basipetal auxin transport is a conserved mechanism within vascular plants 168 

(Sanders & Langdale, 2013), and a conserved regulator of branching. Recent work shows that there is also 169 

bulk basipetal auxin transport in moss sporophytes, and demonstrates that perturbing PIN function can 170 

induce bifurcation (Fujita et al., 2008; Bennett, TA et al., 2014). In contrast bi-directional auxin transport 171 

regulates gametophytic branching patterns, potentially via plasmodesmata (Coudert et al., 2015). The 172 

nature of auxin transporters in liverworts and hornworts, the ancestral mechanism for auxin transport 173 

within land plants, and links between auxin transport and branching in bryophyte gametophytes are open 174 

questions that are now amenable to experimental manipulation.  175 
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Figure legend 358 

Figure 1: Auxin transport pathways in the evolution of branching forms.  359 

(A) Summary of axial gametophyte forms in bryophytes and monilophytes. Whilst hornwort and liverwort 360 

thalli branch dichotomously (Parihar, 1967), leafy liverwort and moss gametophores branch laterally 361 

(Buchloh, 1951; von Maltzahn, 1959; Crandall-Stotler, 1972; Berthier, 1973; La Farge-England, 1996; 362 

Coudert et al., 2015). Monilophyte prothalli bifurcate or branch laterally (Nayar & Kaur, 1971; Schneider, 363 

2012). 364 

(B) Summary of documented auxin transport properties in bryophyte and monilophyte gametophytes. 365 

Whilst hornwort thalli have no detectable basipetal transport (aPiatowski et al., 2012), liverwort thalli may 366 

(Maravolo, 1976) or may not (Gaal et al., 1982; aPiatowski et al., 2012) have basipetal transport and 367 

transport may or may not be PATI sensitive (Maravolo, 1976; Gaal et al., 1982; aPiatowski et al., 2012) and 368 

NOA sensitive (aPiatowski et al., 2012). In moss gametophores the patterns of transport are consistent with 369 

bi-directional transport by membrane transporters or plasmodesmata (Fujita et al., 2008; Coudert et al., 370 

2015), and a functional link between auxin transport and branching has been demonstrated in 371 

Physcomitrella (Coudert et al., 2015). Although there is PIN-mediated auxin transport in Physcomitrella 372 

gametophores (Bennett, T et al., 2014; Bennett, TA et al., 2014; Viaene et al., 2014), it is a minor 373 

contributor to the regulation of branching patterns. Experiments with DDG callose synthesis inhibitors 374 

(Jaffe & Leopold, 1984)  support the hypothesis that a plasmodesmatal mechanism regulates branching 375 

(Coudert et al., 2015). Monilophyte gametophyte development is sensitive to NPA (Gregorich and Fisher, 376 

2006).  377 

(C) Summary of sporophyte forms in land plants. Whilst bryophytes have uni-axial sporophytes that 378 

terminate with sporangia (Parihar, 1967), vascular plants branch by bifurcation (Bierhorst, 1977; Harrison et 379 

al., 2007) or branch laterally (Domagalska & Leyser, 2011).  380 

(D) Summary of documented sporophytic auxin transport properties in land plants. Hornwort sporophyte 381 

axes do not directionally transport auxin and are PATI insensitive suggesting a diffusive mechanism (Poli et 382 

al., 2003). Liverwort sporophyte axes similarly lack directionally biased auxin transport, but transport is 383 

PATI sensitive (Poli et al., 2003), consistent with a contribution for membrane transporters and/or 384 

plasmodesmatal connectivity. Moss sporophytes have bulk basipetal auxin transport (Poli et al., 2003; 385 

Fujita et al., 2008) that is PATI (Poli et al., 2003; Fujita et al., 2008) and NOA (Poli et al., 2003) sensitive. 386 

Disruption of PIN function causes sporophytic abnormalities including bifurcation (Fujita et al., 2008; 387 

Bennett, TA et al., 2014). The data suggest that bulk basipetal transport in mosses is PIN-mediated, and 388 

that the innovation of sporophytic branching forms may have involved changes in PIN function (Harrison, 389 

2015). Lycophyte  (Wochok & Sussex, 1973; Wochok & Sussex, 1974; Sanders & Langdale, 2013) and 390 

monilophyte (Walters & Osborne, 1979) sporophytes have bulk-basipetal transport that is PATI sensitive 391 
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(Hou et al., 2004; Sanders & Langdale, 2013). In a lycophyte, PATI application disrupts bifurcation (Sanders 392 

& Langdale, 2013), but as yet there are no functional data on the nature of auxin transporter involved. In 393 

angiosperms, NPA sensitive (Geldner et al., 2001) PIN-mediated bulk basipetal auxin transport is a major 394 

determinant of branching patterns (Domagalska & Leyser, 2011) and NOA sensitive AUX/LAX auxin influx 395 

carriers (Bennett et al., 1996; Parry et al., 2001; Bainbridge et al., 2008), BUM sensitive ABCB/PGP efflux 396 

carriers (Noh et al., 2001; Geisler et al., 2005; Blakeslee et al., 2007; Cho et al., 2007; Kim et al., 2010) also 397 

regulate branching. 398 

(E) Current hypothesis of phylogenetic relationships between major land plant groups (Cox et al., 2014; 399 

Wickett et al., 2014) showing potential steps involved in the innovation of branching forms as suggested by 400 

the fossil record (Edwards et al., 2014). 401 

402 
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Table 1 406 

 407 

 408 

 409 

Table 1: Summary of auxin transport data from major land plant clades and data sources.  410 

G: gametophyte, S: sporophyte, +: presence, –: absence, blank: no data. Sources: 1Poli et al., 2003, 411 

2Maravolo, 1976, 3Gaal et al., 1982, 4Thomas, 1980, 5Fujita et al., 2008, 6Rose et al., 1983, 7Rose & Bopp, 412 

1983, 8Bennett, TA et al., 2014, 9Viaene et al., 2014, 10Wochok & Sussex, 1973, 11Wochok & Sussex, 1974, 413 

12Sanders & Langdale, 2013, 13Walters & Osborne, 1979, 14Gregorich & Fisher, 2006, 15Albaum, 1938, 414 

16Steeves & Briggs, 1960, 17Hou et al., 2004, 18Goldsmith, 1966, 19Goldsmith, 1977, 20Geldner et al., 2001, 415 

21Ding et al., 2012,  22Galweiler et al., 1998,  23Bennett et al., 1996,  24Parry et al., 2001 aPiatowski et al., 2012 416 

(online conference abstract). 417 
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1.Bulk basipetal transport G - a +/- 2,3,a - 5,a n.a.  n.a 

 S - 1 - 1 + 1,5 +/- 10-12 + 13 + 1,5,18,19 

2. Directional transport G  +/- 2,3 +/- 5-9  + 14,15  

 S - 1 - 1,4 + 1,5 + 10-12 + 13,15,16 + 1,5,18,19 

3. Polar ratio in axis G       

 S 1 1 1.1 1 9.3 1 c. 2 10 c. 100 13 674 1 

4. Rate of transport mmh-1  G  14 3     

 S  6.9 1 8.9 1 12 10  11 1 

5. NPA or TIBA sensitivity G  + 2 + 7-9,a  + 14  

 S - 1 + 1 + 1,5 + 12 + 17 + 1,20 

6. PIN-mediated Transport G   + 8,9   + 21 

 S   + 8   + 22 

7. NOA sensitivity G   + a    

 S   + 1   + 23,24 
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Box 1: Glossary 420 

ABCB/PGP: A class of membrane targeted auxin efflux transporter. 421 

AUX/LAX: A membrane targeted auxin influx symporter. 422 

Axillary branching: Branching that arises due to the activity of meristems in leaf axils. 423 

Basipetal: From the apex to the base. 424 

Bifurcation: Branching that occurs by apex divergence. 425 

BUM: 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid, a compound that inhibits ABCB/PGP-mediated 426 

auxin transport 427 

CalS/ GSL: Callose Synthase/ Glucan Synthase enzymes that polymerize glucose to form Callose (-1,3-428 

Glucan). 429 

DDG: 2-deoxy-D-glucose, a chemical inhibitor of callose synthesis. 430 

Gametophore: A gamete producing leafy shoot in mosses and liverworts. 431 

Gametophyte: A stage of the land plant life cycle during which gamete production occurs. 432 

GHL: Glycosyl hydrolase enzymes that hydrolyze 1,3-beta-glucan polysaccharides such as callose. 433 

Meristem: The growing tip of a plant. 434 

Monophyletic group: A group containing all the species (or genes) derived from a shared ancestral lineage. 435 

NOA: Naphthoxyacetic acid, a compound that inhibits AUX1-mediated auxin influx. 436 

NPA: 1-N-Naphthylphthalamic acid, a compound that inhibits PIN-mediated auxin efflux. 437 

Paraphyletic group: A group of species (or genes) that is not monophyletic and is basal with respect to a 438 

single monophyletic group. 439 

PAT: Polar auxin transport. 440 

PATI: Polar auxin transport inhibitor. 441 

Physcomitrella: A model moss. 442 

PIN: An auxin efflux facilitator class. 443 

Plasmodesmata: Plasma membrane lined channels that can provide cytoplasmic continuity between plant 444 

cells. 445 

Primordium: An organ or tissue at the earliest stages of development. 446 

Selaginella: A model lycophyte. 447 

Sporangium: A plant organ in which meiosis occurs to make spores. 448 

Sporophyte: A stage of the land plant life cycle during which meiosis occurs. 449 
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