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Evolving behaviour trees for swarm robotics

Simon Jones, Matthew Studley, Sabine Hauert, Alan Winfield

Abstract Controllers for swarms of robots are hard to design as swarm behaviour
emerges from their interaction, and so controllers are often evolved. However, these
evolved controllers are often difficult to understand, limiting our ability to predict
swarm behaviour. We suggest behaviour trees are a good control architecture for
swarm robotics, as they are comprehensible and promote modular reuse. We design
a foraging task for kilobots and evolve a behaviour tree capable of performing that
task, both in simulation and reality, and show the controller is compact and under-
standable.

1 Introduction

Swarm robotics is the field of robotics inspired by social insects, flocks of birds,
schools of fish and other natural collective phenomena. By using many simple and
cheap robots, it is hoped that goals such as pollution control, mapping and explo-
ration, and disaster recovery could be met in ways which are resilient, scalable and
decentralised [1]. The desired collective behaviour of the swarm emerges in a self-
organised way from the interactions of the many individual agents that make up the
swarm. Designing the controller for these agents is notoriously hard. A commonly
used approach is the use of evolutionary methods to discover suitable controller
designs.

Behaviour trees are widely used in the games industry to represent the decision
processes of non-player characters. Recently, they have been applied to robotics,
although not to our knowledge to swarm robotics. They have desirable properties
that make them interesting to consider in the context of swarm robotics. They are
human readable. They are hierarchical, all subtrees are themselves behaviour trees,
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encapsulating a complete behaviour that can exist within a larger tree, offering pos-
sibilities for modularity and building block reuse. Finally, they can be created and
optimised using the techniques of Genetic Programming [2].

In this work, we design a behaviour tree controller architecture suitable for in-
stantiation in a swarm of kilobots. We then automatically evolve behaviour trees
in simulation to enable the swarm to perform a collective foraging task. The fittest
behaviour tree is then evaluated in a swarm of real robots and analysed.

This paper is organised as follows; Section 2 gives a brief overview of swarm
robotics and the kilobot platform, and introduces behaviour trees, Section 3 de-
scribes the experimental procedure, Section 4 details the results and Section 5 dis-
cusses results and possible further work.

2 Background and Previous work

We work within the paradigm of swarm robotics as described by Şahin [3] taking
inspiration from social insects, where many simple, homogeneous and not partic-
ularly capable robots with only local sensing and knowledge interact to produce a
desired collective behaviour. There are no principled solutions to designing the con-
troller to produce a given collective behaviour, common approaches are based on
bioinspiration, evolutionary methods and gaining insight by reverse engineering the
discovered controllers [4–6]. See [7] for a recent survey of the state of automatic
swarm controller generation.

One problem with automatic generation of swarm controllers is that of boot-
strapping; it is difficult to devise fitness functions to get complex behaviours [8, 9],
the evolutionary process will often get stuck in uninteresting local maxima. Itera-
tive approaches, with a gradually complexifying fitness function can work well, but
this requires the designer to a priori specify the path to the eventual complex be-
haviour, lessening the likelihood of discovering novel behaviours. Hierarchical mod-
ular approaches are a promising alternative. AutoMoDe by Francesca et al. [10, 11]
uses hand-designed modular and parameterised sub-behaviours which are combined
within a Probabilistic Finite State Machine (PFSM), and the module parameters and
PFSM topology constitute a search space over which optimisation is automatically
carried out. Interestingly their automatically generated controllers have a lower real-
ity gap compared to pure neural net approaches. Another modular approach is work
by Duarte et al. [12,13] where individual sub-behaviours are separately evolved neu-
ral net controllers which are again combined in a higher level Finite State Machine
(FSM), this time hand-designed.

A behaviour tree (BT) is a hierarchical structure of nodes, with leaves that in-
teract with the state of the world, and inner nodes that link these actions together
in various conditional and sequential ways. The whole tree is evaluated at regular
intervals, this is termed a tick. The tick is propagated down to the leaves and re-
sults are propagated back up according to the node types. Ogren [14] shows that
all Hierarchical Dynamic Systems and therefore Finite State Machines (FSMs) can
be represented by a BT, provided there are both sequence and selection type op-
erators. With the addition of a probabilistic selector, Probabilistic Finite state Ma-
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chines (PFSMs) can also be represented. Compared to an FSM or PFSM, the state
transitions are implicit in the tree structure, and modular1 structure is explicit; all
subtrees are legal behaviour trees. Behaviour trees have their origins as a graphical
software engineering tool before being adopted by the games industry for describ-
ing the decision processes and actions of non-player characters. Recently they have
been formalised and applied to robotics [14, 16–30].

Kilobots are small cheap robots introduced by Rubenstein et al. [31]. They are
capable of motion using two vibrating motors, communication with each other over
a limited range using IR, distance sensing using the communication signal strength,
environmental sensing with an upwards facing photo detector, and signalling with
a multicolour LED. They are cheap enough to make it practical to build very large
swarms and capable enough to run interesting experiments. Collective control of the
kilobots in order to program and to start or stop them is achieved using a high inten-
sity IR system using the same protocol as the inter-kilobot communication system.

3 Materials and Methods

Foraging as a collective task is often used as a benchmark for swarm systems
[32]. It involves robotic agents leaving a nest region, searching for food, and return-
ing food to the nest. Cooperative strategies are often more effective.

We designed a simple foraging experiment for a swarm of kilobots in an arena
upon which we can project patterns of light to define the environment (Fig. 1). At the
centre of the arena is a circular nest region. Surrounding this is a gap, then beyond
that is the food region. A kilobot which moves into the food region is regarded
as having picked up an item of food, a kilobot which is carrying an item of food
that enters the nest region is regarded as depositing the food in the nest. Multiple
kilobots are placed in the central region in a grid and all execute the same controller
(homogenous swarm) for a fixed amount of time. The fitness of the swarm is related
to the total amount of food returned to the nest within the test time. The maximum

Fig. 1 Left: Kilobot arena.
The arena is a 3m x 2m sur-
face upon which a projector
defines the environment with
patterns of light. Right: Start-
ing configuration for kilobot
foraging experiment. 25 kilo-
bots are placed in a 5x5 grid in
the centre of the nest region,
with random orientations.
Surrounding the nest is a
100mm gap, then outside that
is the food region. 3m

2m
3.
5m

200mm 100mm

FoodNest

Kilobots

possible number of food items depends on the starting spatial distribution of the

1 Perhaps mirroring a fundamental property of nature [15].
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kilobots. Assume that the kilobots start on the edge of the nest region and for the
duration of the test move directly back and forth between nest and food regions by
the shortest distance. Let f oodmax be the maximum food items, ttest be the test time,
vavg be the average linear velocity of the kilobots, n be the number of kilobots, f ndist
be the shortest (radial) distance between the food and nest regions:

f oodmax =
n · vavg · ttest

2 · f ndist
(1)

We normalise the actual collected food items within the time of the test to give a
fitness value. Let f oodcollected be the total collected food items and k be a derating
factor. The fitness f of the controller is given by:

f = k · f oodcollected

f oodmax
(2)

The derating factor k is used to exert selection pressure towards smaller behaviour
trees to ensure they will fit within the limited RAM resources of the kilobots. It is
related to rusage (4) in the following way: k = 1.0 when rusage < 0.75 decreasing
linearly to 0 when rusage = 1.0.

Kilobots. For our experiments, we want to be able to sense whether we are within
a particular region (nest or food) of the arena. Regions are delineated within the
arena by using different coloured light from a video projector and detected with
the upwards-facing phototransistor of the kilobots. In order to create a robust re-
gion sensing capability with a monochrome sensor, we exploited some particular
characteristics of low cost DLP projectors [33].

The optical path of these type of projectors consists of a white light source, an op-
tical modulator array, and a spinning colour wheel with multiple segments. Different
full intensity primary and secondary colours produce different, quite distinct bright-
ness modulation patterns in the light, which our eyes integrate but which we can
detect easily with a series of samples from the photodetector. In our case, the pro-
jector had a wheel spinning at 120 Hz. Within each 8.3 ms period, primary colours
were represented with a single pulse of about 1.2 ms, cyan and yellow with a pulse
of 3.5 ms, and magenta with two pulses of 1.2 ms separated by a gap of 2 ms, giving,
including black, four distinguishable patterns. We take 16 brightness samples from
the phototransistor at 520 us intervals, covering one complete cycle, and classify the
pattern.

The IR communication system between the kilobots has a range of about 100 mm.
Twice a second, the kilobot system software sends any available outgoing message,
retrying if the sending attempt collided with another sender. A kilobot receiving a
valid message calls a user specified function to handle it. The message has a pay-
load of nine bytes, and associated with the message is signal strength information
to enable the distance from the sender to be calculated.

Controller. In order to control a robot with a behaviour tree, we need to define
the interface between the behaviour tree action nodes and the robot, and the action
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nodes that act on the interface. This interface is known as the blackboard. Here there
is a trade-off between the capabilities that we choose to hard code and those that we
hope will evolve in the BT. We do not design the behaviour of the swarm but we
do make assumptions about what kind of sensory capabilities might be useful for
the evolutionary algorithm. This is often implicit in swarm robotics. The kilobot has
no in-built directional sensors, like the range-and-bearing sensors that are common
in swarm robotics experiments, so we synthesise collective sensing such that it is
possible for a robot to tell if it is moving towards or away from the food or nest. We
also give the capability of sensing the environment and the local density of kilobots,
and of sending and receiving signals to other kilobots.

This relatively rich set of hardwired capabilities is outlined in Table 1. There are
ten blackboard entries, motors maps to the motion control commands of the kilolib
API, The send_signal and receive_signal entries allow for communication between

Index Name Access Description
0 motors W 0=off, 1=left turn, 2=right turn, 3=forward
1 scratchpad RW Arbitrary state storage
2 send_signal RW >0.5 = Send a signal flag
3 received_signal R 1=A signal flag has been received
4 detected_ f ood R 1=Light sensor showing food region
5 carrying_ f ood R 1=Carrying food
6 density R Density of kilobots in local region
7 ∆density R Change in density
8 ∆dist f ood R Change in distance to food
9 ∆distnest R Change in distance to nest

Table 1: Behaviour tree blackboard, defining interface between the behaviour tree and the robot.

kilobots initiated within the BT; send_signal is writeable from the BT. When the
value is greater than 0.5, it is considered true, and a signal flag will be set in the
stream of outgoing message packets. The receive_signal entry will be set to 1 if any
message packets were received over the previous update cycle that had their signal
flag set, otherwise it will remain zero. The scratchpad can be read and written, and
has no defined meaning, it makes available some form of memory for the evolution
of the BT to exploit. Detected_food is read-only, and is 1 if the environment sensing
shows that the kilobot is in the food region, and zero otherwise, and carrying_food
denotes whether the kilobot is considered to be carrying a food item. This entry is
set to 1 if the kilobot enters the food region, and cleared to zero if the kilobot enters
the nest region.

The remaining four entries are all metrics derived from the incoming stream
of messages and their associated distance measurements. density and ∆density are
measures of the local population density and how it is changing. Each kilobot has
a unique ID, which is embedded in its outgoing message packets. By tracking the
number of unique IDs and the distances associated with messages from them, we
can estimate the local density. Let UIDreceived be the set of unique IDs received in
the last update cycle, disti be the distance in mm associated with the unique ID, the
raw local density in kilobots ·m−2 in an update cycle draw is given by:
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draw = ∑
i∈UIDreceived

1
π(disti/1000)2 (3)

This value is filtered with a moving average over w = 5 update cycles2 to give
density(t) at update cycle t and ∆density(t) = density(t)−density(t−1).

The two distance metrics ∆dist f ood and ∆distnest are calculated by tracking the
minimum communication hops [34] needed to reach the respective region, illus-
trated in Fig. 2. For both food and nest, within the message packet are two fields, a
hop count and an accumulated distance. The hop count is the minimum number of
message hops to reach either the food or the nest region. The accumulated distance
is the total length of those hops. Kilobots receiving messages select the lowest hop
count, increment it and forward it and the new accumulated distance in the outgoing
message stream. If no messages are received, we default to a distance of 0 mm if in
a food or nest region, or 500 mm if not in a region. At every update cycle, we calcu-

Fig. 2 Calculation of dis-
tance metrics. Kilobot ‘A’
is in a food or nest region,
kilobot ‘B’ is connected to ‘A’
via two routes. Grey circles
denote maximum communi-
cations radius. ‘B’ selects the
message from the top route
because the hop count is low-
est, giving an accumulated
distance along hops to the
region of 300mm.

Nest or food 
region

Hop 1 - 100mm

Hop 2 - 200mm

Hop 3 - 300mm

Hop 1 - 73mm

Hop 2 - 140mm

Hop 3 - 240mm

Hop 4 - 310mm

Hop 5 - 410mm

A B

late two raw distance measures dist f ood_raw and distnest_raw. These are then filtered
with a moving average in the same way as the density value.

The behaviour tree nodes we implement are outlined in Table 2. Nodes are di-
vided into two types; composition and action. Composition nodes are always inner
nodes of the tree and combine or modify the results of subtrees in various ways.
Action nodes are always leaf nodes and interface with the blackboard. Every update
cycle, occurring at 2 Hz, the root node of the tree is sent the tick event. Each node
handles the tick according to its function and returns success, failure, or running.
The propagation of tick events down the tree and the return of the result to the root
happen every cycle. The composition nodes seqm, selm, probm can have either 2,
3, or 4 children. On receiving a tick they process their child nodes in the following
way: seqm will send tick to each child in turn until one returns failure or all chil-
dren have been ticked, returning failure or success respectively, selm will send tick
to each child in turn until one returns success or all children have been ticked, re-
turning success or failure respectively, probm will probabilistically select one child
node to send tick to and return what the child returns. They all have memory, that

2 Chosen in simulation as a reasonable compromise between responsiveness and stability
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is, if a child node returns running the parent node will also return running, and the
next tick event will start from that child node rather than the beginning of the list of
child nodes. The repeat, successd, failured nodes have a single child. repeat sends
up to a constant number of ticks to its child for as long as the child returns success,
successd and failured send tick to their child and then always return success or fail-
ure respectively. The action nodes are leaf nodes and interface with the blackboard,
described in Table 1. ml, mr, mf turn left, right, or move forward, returning running
for one cycle, then success. The various if nodes compare blackboard entries with
each other or with a constant, and the set node writes a constant to a blackboard
entry.

Node Size success if failure if running if Description
Composition nodes
seqm2,3,4 7,9,11 N Ch S 1 Ch F 1 Ch R Sequence, tick until failure
selm2,3,4 7,9,11 1 Ch S N Ch F 1 Ch R Selection, tick until success
probm2,3,4 11,17,23 Chr S Chr F Chr R Probabilistic choice
repeat 6 I Ch S 1 Ch F Ch R Repeat subtree I times
successd 4 Ch R̄ never Ch R Always succeed subtree
failured 4 never Ch R̄ Ch R Always fail subtree
Action nodes
mf 2 t = 1 never t = 0 Move forward for 1 tick
ml 2 t = 1 never t = 0 Turn left for 1 tick
mr 2 t = 1 never t = 0 Turn right for 1 tick
ifltvar 4 v1 < v2 v1 ≥ v2 never If v1 < v2
ifgevar 4 v1 ≥ v2 v1 < v2 never If v1 ≥ v2
ifltcon 7 v < k v≥ k never If v < k
ifgecon 7 v≥ k v < k never If v≥ k
set 7 always never never Set w← k
successl 2 always never never Always succeed
failurel 2 never always never Always fail

Table 2: Behaviour tree nodes. Ch ≡ children, S ≡ succeeded, F ≡ f ailed, R ≡ running,
N ≡ num children, I ≡ repeat iterations, r ≡ randomly selected child, t ≡ ticks, v,w ≡
blackboard entry, k ≡ contant. Notation from [28].

The controller runs an update cycle at 2Hz. Message handling takes place asyn-
chronously, and a message is always sent at each sending opportunity. Environ-
mental sensing takes place at 8Hz, synchronously with the update cycle, with a
median filter over 7 samples to remove noise. Each cycle, the following steps take
place: 1) New blackboard values are calculated based on the messages received and
the environment. 2) The behaviour tree is ticked, possibly reading and writing the
blackboard. 3) The movement motors are activated, and the message signal flag set
according to the blackboard values.

Implementation of the behaviour tree for execution on the kilobot required care-
ful use of resources; the processor has only 2kbytes RAM, which must hold all vari-
ables, the heap, and the stack. The tree structure is directly represented in memory,
with each node being a structure with type, state, and additional type-dependent data
such as pointers to children. Execution of the behaviour tree involves a recursive de-
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scent following node child pointers and as such, each deeper level uses entries on
the stack.

The compiled kilobot code uses about 500 bytes for all non-heap variables. We
allocate 1024 bytes to the tree storage, leaving another 500 bytes for the stack and
some margin for Interrupt Service Routine stack usage. Each level of tree depth uses
16 bytes of stack. Let trsize be tree storage bytes and trstack be tree stack usage. The
resource usage is given by:

rusage = max(
trsize

1024
,
trstack

500
) (4)

This gives a maximum tree depth of about 30 and a maximum number of about 140
nodes at the average node size.

Evolutionary algorithm and simulator. Behaviour trees are amenable to evolu-
tion using genetic programming techniques. Using the DEAP library [35] a primi-
tive set of strongly typed nodes were defined to represent behaviour tree nodes and
their associated allowable constants. There are several types of constants: if and
set k ∈ [−1.0,1.0], repeat iterations I ∈ [1..9], if blackboard index vi ∈ [1..9], set
blackboard index w ∈ [1..2], prob probability p ∈ [0.0,1.0]

Evolution proceeds as follows: The population of npop is evaluated for fitness by
running 10 simulations for each individual, each simulation with a different starting
configuration. The starting position is always a 5x5 grid with 50mm spacing in
the centre of the nest region, but the orientation is randomly chosen from interval
(−π,π) radians. The simulation runs for 300 simulated seconds and fitness is as
Eqn 2.

An elite of nelite is transferred unchanged to the next generation. The remainder
are chosen by tournament selection with size tsize. A tree crossover operator is ap-
plied with probability pxover to all pairs of non-elite, then three different mutation
operators are applied to the non-elite individuals. Firstly, with probability pmutu, a
node in the tree is selected at random and the subtree at that point is replaced with
a randomly generated one. Next, with probability pmuts, a branch is chosen ran-
domly and replaced with one of its terminals. Next, with probability pmutn a node
is picked at random and replaced with another node with the same argument types.
Lastly, with probability pmute, a constant is picked randomly and its value changed.
Parameters are shown in Table 3.

We wrote a simple 2D simulator based on the games physics engine Box2D [36].
The physics engine is capable of simulating interactions between simple convex
geometric shapes. We model the kilobots as disks sliding on a flat surface with mo-
tion modelled using two-wheel kinematics, with forward velocity of 8×10−3ms−1

and turn velocity of 0.55rad s−1, based on measurements of 25 kilobots. Physical
collisions between kilobots, and movement into and out of communication range
were handled by Box2D, with an update loop running 10Hz. Simulator deficiencies
were masked using the addition of noise [37]. Gaussian noise was added to linear
(σ = 1×10−3ms−1) and angular (σ = 0.2rad s−1) components of motion at every
simulator timestep, and each kilobot had a unique fixed linear (σ = 1.3×10−3ms−1)
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and angular (σ = 0.06rad s−1) velocity bias added, to reproduce measured noise
performance and variability of real kilobots. Message reception probability was
fixed at 0.95. Simulation performance racc, measured using the methodology de-
scribed in [38] on an iMac 3.2GHz machine was approximately 8×104.

Parameter Value Description
ngen 200 Generations
ttest 300 Test length in seconds
npop 25 Population
nelite 3 Elite
tsize 3 Tournament size
pxover 0.8 Crossover probability
pmutu 0.05 Probability of subtree replacement
pmuts 0.1 Probability of subtree shrink
pmutn 0.5 Probability of node replacement
pmute 0.5 Probability of ephemeral constant replacement

Table 3: Parameters for a single evolutionary run

Twenty five independent evolutionary runs were conducted, each one using the
parameters in Table 3. Each individual fitness evaluation was the mean over ten sim-
ulations with different starting configurations. A total of 1.1 million simulations
were run3.

The fittest individual across the 25 separate populations was evaluated again for
fitness, this time over 200 simulations with different starting configurations. This in-
dividual controller was then instantiated uniformly across a swarm of real kilobots,
giving a homogenous swarm. The real kilobots were run 20 times with different
starting configurations and their fitness measured.

4 Results and discussion

The results (Fig. 3) show that we have successfully evolved a behaviour tree for
use as a swarm robot controller to perform a foraging task. When instantiated in
a swarm of real robots, it performs similarly to the simulation, validating the ap-
plicability of using this simulator for evolving kilobot swarm controllers. The per-
formance is slightly lower in real life (0.058) compared to the simulated (0.075)
performance, this is expected due to reality gap [37] effects. It is worth noting this
is still a good outcome, the robots are able to effectively forage.

Fitness rises fast to about 0.03 after the first generation. This is due to the fact
that an extremely simple controller that does nothing except move forward will still
collect some food; because of the variability of the kilobots, some will move in large
arcs that leave the nest, enter the food region and return to the nest. This type of con-
troller is easily discovered by the evolutionary algorithm, confirmed by examining
the fittest controller after one generation in the fittest lineage. The kilobot paths in

3 Due to the elitism policy, three individuals per generation are unchanged and need no fitness
evaluation
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simulation are shown in Fig. 4. It is noteworthy that the fittest of the 25 lineages
is much fitter than the median, and the innovation seems to have been discovered
around generation 30. This suggests that the evolutionary algorithm is not explor-
ing the fitness landscape very effectively, otherwise we would expect evolution to
discover similar behavioural innovations within other lineages.

0 50 100 150 200
Generation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fi
tn

e
ss

Simulation Real

Final fitnessDistribution of fitness across runs

Max fitness

Fig. 3: Result of evolutionary runs. The left hand graph shows the maximum individual fitness
across all 25 independent evolutionary runs, with a box plot every 5 generations to show the dis-
tribution. The right hand shows the distribution of fitnesses of the fittest individual, measured over
200 simulation and 20 real runs.

Fig. 4: Kilobot trails from simulation of the fittest controller in the first generation (left) and the
200th generation (right) of the fittest lineage.

We can examine the fittest BT, shown in Fig. 5, to gain insights into its workings.
First of all, it is interesting to note that not all of the hardwired capabilities are used,
only detected_ f ood, ∆dist f ood , and ∆distnest . Both scratchpad and send_signal
are read but never written, so are equivalent to zero. This is not the case with all the
evolved behaviour trees, see Table 4 for details of the blackboard usage of the top
five fittest trees from different lineages. Between these individuals, every behaviour
tree construct and blackboard entry is used. There is no obvious correlation between
the features used and the fitness of the individual, perhaps indicating that there are
multiple ways to solve this foraging problem.
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Blackboard entry BT Nodes

Rank Fitness 1 2 3 4 5 6 7 8 9 SEQ
SEL

PROB
REPEAT

IF SET

1 0.104 x x x x x x x
2 0.0873 x x x x x x x x
3 0.0853 x x x x x x x x
4 0.0723 x x x x x x x x x x x x x x
5 0.0710 x x x x x x x

Table 4: Individuals from top five lineages and their usage of the blackboard and behaviour tree
constructs. All individuals use at least the forward and one other of the motor action nodes. Usage
is after redundant or unreachable nodes have been removed.

10 Simon Jones, Matthew Studley, Sabine Hauert, Alan Winfield

1 selm3(
2 seqm2(
3 ifgevar(send_signal, detected_ f ood),
4 mf()),
5 seqm3(
6 seqm3(
7 ml(),
8 ifgevar(Ddist f ood, scratchpad),
9 mf()),

10 ifgevar(Ddist f ood, scratchpad),
11 seqm2(
12 seqm3(
13 seqm3(
14 ml(),
15 ifgevar(Ddistnest, Ddistnest),
16 mf(),
17 ifgevar(Ddist f ood, send_signal),
18 mf()),
19 mf())),
20 seqm3(
21 ml(),
22 repeat(5,
23 ifltcon(Ddistnest, �0.058530)),
24 ml()))

1 selm3(
2 seqm2(
3 ifge(0, detected_ f ood),
4 mf()),
5 seqm8(
6 ml(),
7 ifge(Ddist f ood, 0),
8 mf(),
9 ml(),

10 mf(),
11 ifge(Ddist f ood, 0),
12 mf(),
13 mf()),
14 seqm3(
15 ml(),
16 repeat(5,
17 iflt(Ddistnest, �0.058530)),
18 ml()))

Fig. 5: Fittest behaviour tree. Left shows the code as evolved. Right shows the code with redundant
lines removed by hand, the seqm* nodes condensed, and conditionals simplified.

The overall structure is a three-clause selm, the child trees will be ticked in turn
until one returns success. Consider a single kilobot, with no neighbours in commu-
nication with it. The first clause causes the kilobot to move forward as long as it
is not in the food region. If it enters the food, the second clause comes into play,
performing a series of left turns and forward movements until it is again not in the
food region. Behaviour will then revert to the first clause and it will move forward
again, likely hitting the nest region. We can see that this will produce reasonable
individual foraging behaviour, and this pattern is visible in the right hand trail plot
in Figure 4.

Finally, if the kilobot is executing the second clause, manages to leave the food
then re-enters it, the third clause is triggered, with behaviour related to distance
to nest and to interactions with its neighbours. It is currently impossible to predict
emergent swarm behaviour from analysis of the controller since the former is de-
pendent on the multiple interactions between the agents and between agents and
environment. However, we believe that the more easily we can understand the con-
troller, the more likely we are to gain insights into the problem of predicting these
higher-level behaviours.

5 Conclusions and further work

We have introduced the use of behaviour trees as an architecture for evolved
swarm robot controllers. A simple foraging task was designed, a behaviour tree
node set and blackboard interface specified, and behaviour tree were evolved for a
swarm of kilobot robots. The fittest individual was tested in real robots and showed

Move forward until in food

Turn and forward until out of food 

Fig. 5: Fittest behaviour tree. Left shows the code as evolved. Right shows the code with redundant
lines removed by hand, the seqm nodes condensed, and conditionals simplified. Boxes highlight
the three functional clauses.

The overall structure is a three-clause selm, the child trees will be ticked in turn
until one returns success. Consider a single kilobot, with no neighbours in commu-
nication with it. The first clause causes the kilobot to move forward as long as it
is not in the food region. If it enters the food, the second clause comes into play,
performing a series of left turns and forward movements until it moves out of the
food region. Behaviour will then revert to the first clause and it will move forward
again, likely hitting the nest region. We can see that this will produce reasonable
individual foraging behaviour, and this pattern is visible in the right hand trail plot
in Fig 4. The foraging behaviour will be enhanced in the presence of neighbours,
since in this case the second clause will promote movement away from food gener-
ally, rather than just on the food region boundary. Finally, if the kilobot is executing
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the second clause, manages to leave the food then re-enters it, or moves towards it
in the presence of neighbours, the third clause is triggered, which produces some
additional left turning. The repeat sub-clause will fail on the first iteration since it is
not physically possible for the kilobot to move 59 mm in one update cycle of half a
second.

This evolved behaviour tree is sufficiently small that it can be analysed by hand
relatively easily. It may be that greater foraging performance could be obtained by
removing the selective pressure to small trees, and a larger tree would be harder
to analyse. But, in contrast to evolved neural networks, which are a black box for
which there are no adequate tools to predict behaviour apart from direct testing [8],
it is possible at least in principle to analyse any behaviour tree, in the same way it
is possible to analyse any computer program. The behaviour of each sub-tree can
be analysed in isolation, descending until the size of the sub-tree is tractable, and
automatic tools can simplify and prune branches which will never be entered, or
will always do nothing.

Understanding the behaviour of an evolved BT does not mean that it becomes
possible to predict the emergent swarm behaviour that the interaction between the
kilobots will produce. However, we believe that the more easily we can understand
the controller, the more likely we are to gain insights into the problem of predicting
these higher-level behaviours.

5 Conclusions and further work

Evolved controllers for swarm robotics are generally hard to understand. We
have introduced the use of behaviour trees as an architecture for evolved swarm
robot controllers that are more easily human readable. A simple foraging task was
designed, a behaviour tree node set and blackboard interface specified, and a pop-
ulation of behaviour trees were evolved for a swarm of kilobot robots. The fittest
individual was tested in real robots and showed good correspondence in perfor-
mance to the individual in simulation. The individual was then analysed for insight
into the discovered foraging algorithm.

There are many possible avenues for exploration in the application of genetic
programming to behaviour trees since little work in this area exists. Choices of the
evolutionary parameter values, and the filtering of environmental signals are some-
what arbitrary and will be explored further. The choice of blackboard and action
nodes is another area for further investigation. We also want to develop automatic
tools for simplifying the analysis of evolved trees.

We intend to apply the evolution of behaviour trees to other collective swarm
robot tasks, using a more computationally capable platform that will not be so lim-
ited in possible tree size, and will also allow the on-board adaptive co-evolution
of new BT controllers in response to changing environmental conditions. We are
interested in the possibility of encapsulation of various swarm behaviours such as
aggregation, flocking, and dispersion. In this, we are inspired by the argument of
Francesca et al. [10] that restricting the representational power of the controller
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allows the automatic discovery of solutions that are more resistant to reality gap ef-
fects, and feel the hierarchical structure of behaviour trees may lend themselves to
tuning the bias-variance tradeoff.

Finally, we believe the increased human readability of evolved behaviour trees
compared to other forms of evolved controller achieves progress towards more fully
comprehending the emergence of collective behaviour from the interactions of indi-
vidual agents.
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