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ABSTRACT 349 WORDS   26 
Importance The causal direction and magnitude of the association between telomere length 27 

and incidence of cancer and non-neoplastic diseases is uncertain, due to the susceptibility of 28 

observational studies to confounding and reverse causation. 29 

Objective To conduct a Mendelian randomization study, using germline genetic variants as 30 

instrumental variables, to appraise the causal relevance of telomere length for risk of cancer 31 

and non-neoplastic diseases.  32 

Data Sources Genome-wide association studies (GWAS) published up to January 15 2015.  33 

Study Selection GWAS of non-communicable diseases that assayed germline genetic 34 

variation and did not select cohort or control participants on the basis of pre-existing diseases. 35 

Of 163 GWAS of non-communicable diseases identified, summary data from 103 were 36 

available. 37 

Data Extraction Summary association statistics for single nucleotide polymorphisms (SNPs) 38 

that are strongly associated with telomere length in the general population.     39 

Main Outcomes Odds ratios (ORs) for disease per standard deviation (SD) higher telomere 40 

length due to germline genetic variation. 41 

Results Summary data were available for 35 cancers and 48 non-neoplastic diseases, 42 

corresponding to 420,081 cases (median 2,526 per disease) and 1,093,105 controls (median 43 

6,789 per disease). Increased telomere length due to germline genetic variation was generally 44 

associated with increased risk for site-specific cancers. The strongest associations were 45 

observed for (ORs per 1-SD change in genetically increased telomere length): glioma 5.27  46 

(3.15-8.81), serous low-malignant-potential ovarian cancer 4.35 (2.39-7.94), lung 47 

adenocarcinoma 3.19 (2.40-4.22), neuroblastoma 2.98 (1.92-4.62), bladder cancer 2.19 (1.32-48 

3.66), melanoma 1.87 (1.55-2.26), testicular cancer 1.76 (1.02-3.04), kidney cancer 1.55 49 
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(1.08-2.23) and endometrial cancer 1.31 (1.07-1.61). Associations were stronger for rarer 50 

cancers and at tissue sites with lower rates of stem cell division (P<0.05). There was 51 

generally little evidence of association between genetically increased telomere length and risk 52 

of psychiatric, autoimmune, inflammatory, diabetic and other non-neoplastic diseases, except 53 

for coronary heart disease (0.78 [0.67-0.90]), abdominal aortic aneurysm (0.63 [0.49-0.81]), 54 

celiac disease (0.42 [0.28-0.61]) and interstitial lung disease (0.09 [0.05- 0.15]).  55 

Conclusions It is likely that longer telomeres increase risk for several cancers but reduce risk 56 

for some non-neoplastic diseases, including cardiovascular diseases.   57 

 58 

 59 

 60 

 61 

 62 
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 68 

 69 

 70 
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INTRODUCTION 71 

 72 

At the ends of chromosomes, telomeres are DNA-protein structures that protect the genome 73 

from damage, shorten progressively over time in most somatic tissues1 and are proposed 74 

physiological markers of ageing.2,3 Shorter leukocyte telomeres are correlated with older age, 75 

male sex and other known risk factors for non-communicable diseases4–6 and are generally 76 

associated with higher risk for cardiovascular diseases7,8, type 2 diabetes9 and non-vascular 77 

non-neoplastic causes of mortality.8 Whether these associations are causal, however, is 78 

unknown. Telomere length has also been implicated in risk of cancer but the direction and 79 

magnitude of the association is uncertain and contradictory across observational studies.10–14 80 

The uncertainty reflects the considerable difficulty of designing observational studies of 81 

telomere length and cancer incidence that are robust to reverse causation, confounding and 82 

measurement error. 83 

The aim of the present report was to conduct a Mendelian randomization study, using 84 

germline genetic variants as instrumental variables for telomere length, to help clarify the 85 

nature of the association between telomere length and risk of cancer and non-neoplastic 86 

diseases. The approach, which mimics the random allocation of individuals to the placebo 87 

and intervention arms of a randomized controlled trial, allowed us to: (1) estimate the 88 

direction and broad magnitude of the association of telomere length with risk of multiple 89 

cancer and non-neoplastic diseases; (2) appraise the evidence for causality in the estimated 90 

etiological associations; (3) investigate potential sources of heterogeneity in findings for site-91 

specific cancers; and (4) compare genetic estimates to findings based on directly measured 92 

telomere length in prospective observational studies.  93 

 94 
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METHODS 95 

 96 

Study design 97 

The design of our study, illustrated in Figure S1, had three key components: 1) the 98 

identification of genetic variants to serve as instruments for telomere length; 2) the 99 

acquisition of summary data for the genetic instruments from genome wide association 100 

studies (GWASs) of diseases and risk factors for non-communicable diseases; and 3) the 101 

classification of diseases and risk factors into primary or secondary outcomes based on a 102 

priori statistical power. As a first step, we searched the GWAS catalog15,16 on the 15 January 103 

2015, to identify single nucleotide polymorphisms (SNPs) associated with telomere length. 104 

To supplement the list with additional potential instruments, we also searched the original 105 

study reports curated by the GWAS catalog (using a P-value threshold of 5x10-8).17–25 We 106 

acquired summary data for all SNPs identified by our search from a meta-analysis of GWASs 107 

of telomere length, involving 9,190 participants of European ancestry.18  108 

The second key component of our design strategy involved the acquisition of summary data, 109 

corresponding to the selected genetic instruments for telomere length, from GWASs of non-110 

communicable diseases and risk factors (Fig. S1). As part of this step, we invited principal 111 

investigators of non-communicable disease studies curated by the GWAS catalog15,26 to share 112 

summary data for our study. We also downloaded summary data for diseases and risk factors 113 

from publically available sources, including study-specific websites, dbGAP, ImmunoBase 114 

and the GWAS catalog (Fig. S1).  115 

The third key component of our design strategy was the classification of diseases and risk 116 

factors into either primary or secondary outcomes, which we defined on the basis of a priori 117 

statistical power to detect associations with telomere length. Primary outcomes were defined 118 
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as diseases with sufficient cases and controls for >50% statistical power and secondary 119 

outcomes defined as diseases with <50% statistical power to detect odds ratios ≥2.0 per 120 

standard deviation (SD) change in genetically increased telomere length (alpha assumed to be 121 

0.01). All risk factors were defined as secondary outcomes. Risk factors with <50% statistical 122 

power were excluded.  123 

 124 

Further details on our design strategy can be found in the supplement.  125 

 126 

Comparison with prospective observational studies 127 

We searched PubMed for prospective observational studies of the association between 128 

telomere length and disease (see Tables S3 and S4 for details of the search strategy and 129 

inclusion criteria). Study-specific relative risks for disease per unit change or quantile 130 

comparison of telomere length were transformed to a SD scale using previously described 131 

methods.27 Hazard ratios, risk ratios and odds ratios were assumed to approximate the same 132 

measure of relative risk. Where multiple independent studies of the same disease were 133 

identified, these were combined by fixed effects meta-analysis, unless there was strong 134 

evidence of between-study heterogeneity (PCochran’s Q<0.001), in which case they were kept 135 

separate.  136 

 137 

Statistical analysis 138 

We combined summary data across SNPs into a single instrument, using maximum 139 

likelihood to estimate the slope of the relationship between βGD and βGP and a variance-140 

covariance matrix to make allowance for linkage disequilibrium between SNPs,28 where βGD 141 

is the change in disease log odds or risk factor levels per copy of the effect allele and βGP is 142 

the SD change in telomere length per copy of the effect allele (see supplementary methods 143 
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for technical details). The slope from this approach can be interpreted as the log odds ratio for 144 

binary outcomes, or the unit change for continuous risk factors, per SD change in genetically 145 

increased telomere length. P-values for heterogeneity amongst SNPs, in the estimated 146 

associations of genetically increased telomere length with disease and risk factors, were 147 

estimated by likelihood ratio tests.28 Associations between genetically increased telomere 148 

length and continuous risk factors were transformed into SD units. For five secondary disease 149 

outcomes where only a single SNP was available for analysis, we estimated associations 150 

using the Wald ratio: βGD/βGP, with standard errors approximated by the delta method.29  151 

Inference of causality in the estimated etiological associations between telomere length and 152 

disease depends on satisfaction of Mendelian randomization assumptions (Fig. S7; see Table 153 

S6 for a glossary of terms).30,31 The assumptions are: 1) the selected SNPs are associated with 154 

telomere length; 2) the selected SNPs are not associated with confounders; and 3) the selected 155 

SNPs are associated with disease exclusively through their effect on telomere length. If these 156 

assumptions are satisfied, the selected SNPs are valid instrumental variables and their 157 

association with disease can be interpreted as a causal effect of telomere length. We modeled 158 

the impact of violations of these assumptions through two sets of sensitivity analyses: a 159 

weighted median function32 and MR-Egger regression30 (see supplementary methods for 160 

technical details). We restricted our sensitivity analyses to diseases showing the strongest 161 

evidence of association with genetically increased telomere length (defined as 162 

PBonferroni≤0.05). 163 

  164 

We used meta-regression to appraise potential sources of heterogeneity in our findings for 165 

cancer. The association of genetically increased telomere length with the log odds of cancer 166 

was regressed on cancer incidence, survival time and median age-at-diagnosis, downloaded 167 

from the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) 168 
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Program,33 and tissue-specific rates of stem cell division from Tomasetti and Vogelstein.34 As 169 

the downloaded cancer characteristics from SEER correspond to the United States 170 

population, 77% of which was of white ancestry in 201535, the meta-regression analyses 171 

excluded genetic studies conducted in East Asian populations. 172 

 173 

All analyses were performed in R version 3.1.236 and Stata release 13.1 (StataCorp, College 174 

Station, TX). P-values were two-sided and evidence of association was declared at P<0.05. 175 

Where indicated, Bonferroni corrections were used to make allowance for multiple testing, 176 

although this is likely to be overly conservative given the non-independence of many of the 177 

outcomes tested.  178 

 179 

RESULTS  180 

 181 

We selected 16 SNPs as instruments for telomere length (Fig. S1 & Table 1). The selected 182 

SNPs correspond to 10 independent genomic regions that collectively account for 2-3% of 183 

the variance in leukocyte telomere length, which is equivalent to an F statistic of ~18. This 184 

indicates that the genetic instrument, constructed from these 10 independent genomic regions, 185 

is strongly associated with telomere length (details in supplementary discussion).37 Summary 186 

data for the genetic instruments were available for 83 non-communicable diseases, 187 

corresponding to 420,081 cases (median 2,526 per disease) and 1,093,105 controls (median 188 

6,789 per disease), and 44 risk factors (Fig. S1, Table 2 and Table S1). The median number 189 

of SNPs available across diseases was 11 (min=1, max=13) and across risk factors was 12 190 

(min=11, max=13). Of the 83 diseases, 56 were classified as primary outcomes and 27 as 191 

secondary outcomes (Table 2, Fig. S1 and Table S1). For 9 of the 83 non-communicable 192 

diseases, additional summary data were available from 10 independent studies for replication 193 
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analyses, corresponding to 40,465 cases (median 1,416 per disease) and 52,306 controls 194 

(median 3,537 per disease)  (Table S1).  195 

The results from primary analyses of non-communicable diseases are presented in Figure 1; 196 

results from secondary analyses of risk factors and diseases with low a priori power are 197 

presented in the supplement (Fig. S2, S5 and S6). Genetically increased telomere length was 198 

associated with higher odds of disease for 9 of 22 primary cancers (P<0.05), including (odds 199 

ratio [95% confidence interval]): glioma (5.27 [3.15-8.81]), endometrial cancer (1.31 [1.07-200 

1.61]), kidney cancer (1.55 [1.08-2.23]), testicular germ cell cancer (1.76 [1.02-3.04]), 201 

melanoma (1.87 [1.55-2.26]), bladder cancer (2.19 [1.32-3.66]), neuroblastoma (2.98 [1.92-202 

4.62]), lung adenocarcinoma (3.19 [2.40-4.22]) and serous low-malignancy-potential (LMP) 203 

ovarian cancer (4.35 [2.39-7.94]) (Fig. 1). The associations were, however, highly variable 204 

across cancer types, varying from an odds ratio of 0.86 (0.50-1.48) for head and neck cancer 205 

to 5.27 (3.15-8.81) for glioma. Substantial variability was also observed within tissue sites. 206 

For example, the odds ratio for lung adenocarcinoma was 3.19 (2.40-4.22) compared to 1.07 207 

(0.82-1.39) for squamous cell lung cancer. For serous LMP ovarian cancer the odds ratio was 208 

4.35 (2.39-7.94) compared to odds ratios of 1.21 (0.87-1.68) for endometrioid ovarian cancer, 209 

1.12 (0.94-1.34) for serous invasive ovarian cancer, 1.04 (0.66-1.63) for clear cell ovarian 210 

cancer and 1.04 (0.73-1.47) for mucinous ovarian cancer. The strongest evidence of 211 

association was observed for glioma, lung adenocarcinoma, neuroblastoma and serous LMP 212 

ovarian cancer (PBonferroni<0.05). Results for glioma and bladder cancer showed evidence for 213 

replication in independent datasets (independent datasets were not available for other 214 

cancers) (Fig. S3). 215 

Genetically increased telomere length was associated with reduced odds of disease for 6 of 32 216 

primary non-neoplastic diseases (P<0.05), including coronary heart disease (0.78 [0.67-0.9]), 217 

abdominal aortic aneurysm (0.63 [0.49-0.81]), Alzheimer's disease (0.84 [0.71-0.98]), celiac 218 
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disease (0.42 [0.28-0.61]), interstitial lung disease (0.09 [0.05-0.15]) and type 1 diabetes 219 

(0.71 [0.51-0.98]) (P<0.05) (Figure 1). The strongest evidence of association was observed 220 

for coronary heart disease (PBonferroni=0.05) and abdominal aortic aneurysm, celiac disease and 221 

interstitial lung disease (PBonferroni<0.05). The associations with coronary heart disease and 222 

interstitial lung disease showed evidence for replication in independent datasets (Fig. S3).  223 

 224 

Our genetic findings were generally similar in direction and magnitude to estimates based on 225 

observational prospective studies of leukocyte telomere length and disease (Figure 3). Our 226 

genetic estimates for lung adenocarcinoma, melanoma, kidney cancer and glioma, were, 227 

however, stronger in comparison to observational estimates.  228 

 229 

In sensitivity analyses, we appraised the potential impact of confounding by pleiotropic 230 

pathways on our results. Associations estimated by the weighted median and MR-Egger were 231 

broadly similar to the main results for glioma, lung adenocarcinoma, serous LMP ovarian 232 

cancer, neuroblastoma, abdominal aortic aneurysm, coronary heart disease and interstitial 233 

lung disease (Fig. S4). In the second set of sensitivity analyses, implemented by MR-Egger 234 

regression, we found little evidence for the presence of pleiotropy (Pintercept≥0.27) (Fig. S4). 235 

The MR-Egger analyses were, however, generally underpowered, as reflected by the wide 236 

confidence intervals in the estimated odds ratios.  237 

 238 

In meta-regression analyses, we observed that genetically increased telomere length tended to 239 

be more strongly associated with rarer cancers (P=0.02) and cancers at tissue-sites with lower 240 

rates of stem cell division (P=0.02) (Figure 2). The associations showed little evidence of 241 

varying by percentage survival five years after diagnosis or median age-at-diagnosis (P≥37). 242 

 243 



 11

DISCUSSION 244 

In this report we show that genetically increased telomere length is associated with 245 

increased risk of several cancers and with reduced risk of some non-neoplastic diseases. 246 

Given the random distribution of genotypes in the general population with respect to 247 

lifestyle and other environmental factors, as well as the fixed nature of germline 248 

genotypes, these results should be less susceptible to confounding and reverse causation 249 

in comparison to observational studies. Our results could, however, reflect violations of 250 

Mendelian randomization assumptions, such as confounding by pleiotropy, population 251 

stratification or ancestry.38 Although we cannot entirely rule out this possibility, the 252 

majority of our results persisted in sensitivity analyses that made allowance for violations 253 

of Mendelian randomization assumptions. Confounding by population stratification or 254 

ancestry is also unlikely, given the adjustments made for ancestry in the original disease 255 

GWASs (see supplementary discussion). Our results are therefore compatible with 256 

causality.  257 

 258 

Comparison with previous studies 259 

Our findings for cancer are generally contradictory to those based on retrospective studies, 260 

which tend to report increased risk for cancer in individuals with shorter telomeres.11,12,39–42 261 

The contradictory findings may reflect reverse causation in the retrospective studies, whereby 262 

shorter telomeres arise as a result of disease, or of confounding effects, e.g. due to cases 263 

being slightly older than controls even in age-matched analyses. Our findings for cancer are 264 

generally more consistent with those based on prospective observational studies, which tend 265 

to report weak or null associations of longer leukocyte telomeres with overall and site-266 

specific risk of cancer,10–13,41,43–62 with some exceptions.63 Our results are also similar to 267 

previously reported Mendelian randomization studies of telomere length and risk of 268 
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melanoma, lung cancer, chronic lymphocytic leukemia and glioma.64–67 The shape of the 269 

association with cancer may not, however, be linear over the entire telomere length 270 

distribution. For example, individuals with dyskeratosis congenita, a disease caused by 271 

germline loss-of-function mutations in the telomerase component genes TERC and TERT, 272 

have chronically short telomeres and are at increased risk of some cancers, particularly acute 273 

myeloid leukemia and squamous cell carcinomas arising at sites of leukoplakia,68,69 274 

presumably due to increased susceptibility to genome instability and chromosomal end-to-275 

end fusions.70 Our results should therefore be interpreted as reflecting the average association 276 

at the population level and may not be generalizable to the extreme ends of the telomere 277 

length distribution.  278 

 279 

Mechanisms of association 280 

Our cancer findings are compatible with known biology.70 By limiting the proliferative 281 

potential of cells, telomere shortening may serve as a tumour suppressor; and individuals with 282 

longer telomeres may be more likely to acquire somatic mutations owing to increased 283 

proliferative potential.70 Rates of cell division are, however, highly variable amongst tissues34 284 

and thus the relative gain in cell proliferative potential, conferred by having longer telomeres, 285 

may also be highly variable across tissues. This could explain the ~6-fold variation in odds 286 

ratios observed across cancer types in the present study, as well as the tendency of our results 287 

to be stronger at tissue sites with lower rates of stem cell division. For example, the 288 

association was strongest for glioma (OR=5.27) and comparatively weak for colorectal 289 

cancer (OR=1.09) and the rates of stem cell division in the tissues giving rise to these cancers 290 

differ by several orders of magnitude. In neural stem cells, which give rise to gliomas, the 291 

number of divisions is ~270 million and for colorectal stem cells is ~1.2 trillion over the 292 

average lifetime of an individual.34 The observation that genetically increased telomere   293 
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length was more strongly associated with rarer cancers potentially reflects the same 294 

mechanism, since rarer cancers also tend to show lower rates of stem cell division.34 For 295 

example, the incidence of glioma is 0.4 and for colorectal cancer is 42.4 per 100,000 per year 296 

in the United States.33  297 

The inverse associations observed for some non-neoplastic diseases may reflect the impact of 298 

telomere shortening on tissue degeneration and an evolutionary trade-off for greater 299 

resistance to cancer at the cost of greater susceptibility to degenerative diseases, particularly 300 

cardiovascular diseases.71,72  301 

 302 

Study limitations 303 

Our study is subject to some limitations, in addition to the Mendelian randomization 304 

assumptions already considered above. First, our method assumes that the magnitude of the 305 

association between SNPs and telomere length is consistent across tissues. Second, our study 306 

assumed a linear shape of association between telomere length and disease risk, whereas the 307 

shape could be “J” or “U” shaped.44,57,68 Third, our results assume that the samples used to 308 

define the genetic instrument for telomere length18 and the various samples used to estimate 309 

the SNP-disease associations are representative of the same general population, practically 310 

defined as being of similar ethnicity, age and sex distribution.73 This assumption would, for 311 

example, not apply in the case of the SNP-disease associations derived from East Asian or 312 

pediatric populations. Generally speaking, violation of the aforementioned assumptions could 313 

bias the magnitude of the association between genetically increased telomere length and 314 

disease; but would be unlikely to increase the likelihood of false positives (i.e. incorrectly 315 

inferring an association when none exists).74 Our results should therefore remain informative 316 

for the direction and broad magnitude of the average association at the population level, even 317 
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in the presence of such violations. Fourth, we cannot rule out chance in explaining some of 318 

the weaker findings. Fifth, our results may not be fully representative of non-communicable 319 

diseases (since not all studies shared data and our analyses were underpowered for the 320 

secondary disease outcomes). The diseases represented in our primary analyses probably 321 

account for >60% of all causes of death in American adults.75  322 

 323 

Clinical relevance of findings 324 

Our findings suggest that potential clinical applications of telomere length, e.g. as a tool for 325 

risk prediction or as an intervention target for disease prevention, may have to consider a 326 

trade-off in risk between cancer and non-neoplastic diseases. For example, a number of 327 

companies have been established that offer telomere length measurement services to the 328 

public (via a requesting physician), under the claim that shorter telomeres are a general 329 

indicator of poorer health status and older biological age and that such information can be 330 

used to motivate healthy lifestyle choices in individuals. However, the conflicting direction of 331 

association between telomere length and risk of cancer and non-neoplastic diseases, indicated 332 

by our findings, suggests that such services to the general public may be premature.   333 

 334 

Conclusion 335 

It is likely that longer telomeres increase risk for several cancers but reduce risk for some 336 

non-neoplastic diseases, including cardiovascular diseases. Further research is required to 337 

resolve whether telomere length is a useful predictor of risk that can help guide therapeutic 338 

interventions, to clarify the shape of any dose-response relationships and to characterise the 339 

nature of the association in population subgroups. 340 

 341 
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Table 1. Single nucleotide polymorphisms associated with telomere length  

*Summary data from Mangino et al18; Chr, chromosome; pos, base-pair position (GRCh38.p3); EA, effect allele, OA, other allele, Beta, standard deviation change in telomere length per 
copy of the effect allele; SE, standard error; EAF - effect allele frequency; Phet - p value for between-study heterogeneity in association between SNP and telomere length; †from a meta-
analysis of Mangino18 and Gu20 performed in the present study. 

SNPs Chr Pos Gene EA OA EAF* Beta* SE* P-value* Phet* 
No. 

studies* 
Sample 
size* 

Discovery 
p-value 

% variance 
explained Discovery study 

rs11125529 2 54248729 ACYP2 A C 0.16 0.065 0.012 0.000606 0.313 6 9177 8.00E-10 0.080 Codd21 
rs6772228 3 58390292 PXK T A 0.87 0.041 0.014 0.049721 0.77 6 8630 3.91E-10 0.200 Pooley17 
rs12696304 3 169763483 TERC C G 0.74 0.090 0.011 5.41E-08 0.651 6 9012 4.00E-14 0.319 Codd22 
rs10936599 3 169774313 TERC C T 0.76 0.100 0.011 1.76E-09 0.087 6 9190 3.00E-31 0.319 Codd21 
rs1317082 3 169779797 TERC A G 0.71 0.097 0.011 4.57E-09 0.029 6 9176 1.00E-08 0.319 Mangino18 
rs10936601 3 169810661 TERC C T 0.74 0.087 0.011 8.64E-08 0.433 6 9150 4.00E-15 0.319 Pooley17 
rs7675998 4 163086668 NAF1 G A 0.80 0.048 0.012 0.008912 0.077 6 9161 4.35E-16 0.190 Codd21 
rs2736100 5 1286401 TERT C A 0.52 0.085 0.013 2.14E-05 0.54 4 5756 4.38E-19 0.310 Codd21 
rs9419958 10 103916188 OBFC1 T C 0.13 0.129 0.013 5.26E-11 0.028 6 9190 9.00E-11 0.171 Mangino18 
rs9420907 10 103916707 OBFC1 C A 0.14 0.142 0.014 1.14E-11 0.181 6 9190 7.00E-11 0.171 Codd21 
rs4387287 10 103918139 OBFC1 A C 0.14 0.120 0.013 1.40E-09 0.044 6 8541 2.00E-11 0.171 Levy25 
rs3027234 17 8232774 CTC1 C T 0.83 0.103 0.012 2.75E-08 0.266 6 9108 2.00E-08 0.292 Mangino18 
rs8105767 19 22032639 ZNF208 G A 0.25 0.064 0.011 0.000169 0.412 6 9096 1.11E-09 0.090 Codd21 
rs412658 19 22176638 ZNF676 T C 0.35 0.086 0.010 1.83E-08 0.568 6 9156 1.00E-08 0.484 Mangino18 
rs6028466 20 39500359 DHX35 A G 0.17 0.058 0.013 0.003972 0.533 6 9190 2.57E-08† 0.041 Mangino18 & Gu
rs755017 20 63790269 ZBTB46 G A 0.17 0.019 0.0129 0.339611 0.757 5 8026 6.71E-09 0.090 Codd21 



 26

Table 2. Study characteristics for primary non-communicable diseases  

  
No. 

cases 
No. 

controls 
No.  

SNPs 
Statistical 

power Pop. Study / First author 
Cancer   

Bladder cancer 1601 1819 10 0.62 EUR NBCS76 
Breast cancer  48155 43612  13  1.00  EUR  BCAC17,77  

Estrogen receptor –ve 7465 42175 13 1.00 EUR BCAC17,77 
Estrogen receptor +ve 27074 41749 13 1.00 EUR BCAC17,77 

Colorectal cancer 14537 16922 9 1.00 EUR CORECT/GECCO64,78

Endometrial cancer 6608 37925 12 1.00 EUR ECAC79,80 
Esophageal SCC 1942 2111 11 0.64 EA Abnet81 
Glioma 1130 6300 12 0.72 EUR Wrensch82 & Walsh66  
Head & neck cancer 2082 3477 12 1.00 EUR McKay et al83 
Kidney cancer 2461 5081 12 0.99 EUR KIDRISK84 
Lung cancer 11348 15861 13 1.00 EUR  ILCCO85  

Adenocarcinoma 3442 14894 13 1.00 EUR ILCCO85 
Squamous cell carcinoma 3275 15038 13 1.00 EUR ILCCO85 

Skin cancer             
Melanoma 12814 23203 13 1.00 EUR MC86 
Basal cell carcinoma 3361 11518 13 1.00 EUR NHS/HPFS87  

Neuroblastoma 2101 4202 12 0.87 EUR Diskin88 
Ovarian cancer 15397 30816 13 1.00 EUR  OCAC17,89  

Clear cell 1016 30816 13 0.76 EUR OCAC17,89 
Endometriod 2154 30816 13 0.98 EUR OCAC17,89 
Mucinous 1643 30816 13 0.94 EUR OCAC17,89 
Serous invasive 9608 30816 13 1.00 EUR OCAC17,89 
Serous LMP 972 30816 13 0.73 EUR OCAC17,89 

Pancreatic cancer 5105 8739 12 1.00 EUR PanScan (incl. EPIC)90

Prostate cancer 22297 22323 11 1.00 EUR PRACTICAL91,92 
Testicular germ cell cancer 986 4946 11 0.52 EUR Turnbull93 & Rapley94 

Autoimmune/inflammatory diseases  

Alopecia areata 2332 5233 7 0.60 EUR Betz95 
Atopic dermatitis 10788 30047 13 1.00 EUR EAGLE96 
Celiac disease 4533 10750 3 0.82 EUR Dubois97 
Inflammatory bowel disease             

Crohn's disease 5956 14927 11 1.00 EUR IIBDGC98 
Ulcerative colitis 6968 20464 12 1.00 EUR IIBDGC98 

Juvenile idiopathic arthritis 1866 14786 11 0.87 EUR Thompson99† 

Multiple sclerosis 14498 24091 3 1.00 EUR IMSGC100 
Aggressive periodontitis 888 6789 13 0.63 EUR Schaefer101  
Rheumatoid arthritis 5538 20163 11 1.00 EUR Stahl102 

Cardiovascular diseases   
Abdominal aortic aneurysm 4972 99858 13 1.00 EUR AC103–108 
Coronary heart disease 22233 64762 13 1.00 EUR CARDIoGRAM109 
Heart failure 2526 20926 13 0.99 EUR CHARGE-HF110 
Hemorrhagic stroke 2963 5503 12 0.96 EUR METASTROKE/ISGC111  
Ischemic stroke  12389 62004 13 1.00 EUR  METASTROKE/ISGC112,113

large vessel disease 2167 62004 13 0.99 EUR METASTROKE/ISGC112,113

small vessel disease 1894 62004 13 0.97 EUR METASTROKE/ISGC112 
cardioembolic 2365 62004 13 0.99 EUR METASTROKE/ISGC112 

Sudden cardiac arrest 3954 21200 13 1.00 EUR Unpublished 
Diabetes             

Type 1 diabetes 7514 9045 6 0.95 EUR T1DBase114115

Type 2 diabetes 10415 53655 11 1.00 EUR DIAGRAM116

Eye disease             
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AMD 7473 51177 13 1.00 EUR AMD Gene117 
Retinopathy 1122 18289 12 0.75 EUR Jensen118  

Lung diseases             
Asthma 13034 20638 4 1.00 EUR Ferreira/GABRIEL119,120 
COPD 2812 2534 12 0.85 EUR COPDGene121 
Interstitial lung disease 1616 4683 9 0.60 EUR Fingerlin122  

Neurological / psychiatric diseases  
ALS 6100 7125 12 1.00 EUR SLAGEN/ALSGEN123 
Alzheimer's disease 17008 37154 12 1.00 EUR IGAP124 
Anorexia nervosa 2907 14860 9 0.93 EUR GCAN125 
Autism 4949 5314 7 0.82 EUR PGC126 
Bipolar disorder 7481 9250 9 1.00 EUR PGC127 
Major depressive disorder 9240 9519 8 0.99 EUR PGC128 
Schizophrenia 35476 46839 12 1.00 EUR PGC129 
Tourette syndrome 1177 4955 13 0.74 EUR TICG/TSAICG130  

    Other       
Chronic kidney disease 5807 56430 13 1.00 EUR CKDGen131 
Endometriosis 4604 9393 11 1.00 Mix Nyholt132  
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Study acronyms: AC, the aneurysm consortium; ALSGEN, the International Consortium on Amyotrophic Lateral Sclerosis Genetics; AMD Gene, 
Age-related Macular Degeneration Gene Consortium; BCAC, Breast Cancer Association Consortium; CARDIoGRAM, Coronary ARtery DIsease 
Genome wide Replication and Meta-analysis; CHARGE-HF, Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium – Heart 
Failure Working Group; COPDGene, The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease; CKDGen, Chronic Kidney Disease 
Genetics consortium; CORECT, ColoRectal Transdisciplinary Study; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; EAGLE, EArly 
Genetics & Lifecourse Epidemiology Eczema Consortium (excluding 23andMe); ECAC, Endometrial Cancer Association Consortium; EPIC, 
European Prospective Investigation into Cancer and Nutrition study; GABRIEL, Multidisciplinary Study to Identify the Genetic and Environmental 
Causes of Asthma in the European Community; GCAN, Genetic Consortium for Anorexia Nervosa; GECCO, Genetics and Epidemiology of Colorectal 
Cancer Consortium; IGAP, International Genomics of Alzheimer's Project; HPFS, Health Professionals Follow-Up Study; ILCCO, International Lung 
Cancer Consortium; IMSGC, International Multiple Sclerosis Genetic Consortium; IIBDGC, International Inflammatory Bowel Disease Genetics 
Consortium; KIDRISK, Kidney cancer consortium; MC, the melanoma meta-analysis consortium; METASTROKE/ISGC, METASTROKE project of 
the International Stroke Genetics Consortium; NBCS, Nijmegen Bladder Cancer Study; NHS, Nurses’ Health Study; OCAC, Ovarian Cancer 
Association Consortium; PanScan, Pancreatic Cancer Cohort Consortium; PGC, Psychiatric Genomics Consortium; PRACTICAL, Prostate Cancer 
Association Group to Investigate Cancer Associated Alterations in the Genome; SLAGEN, Italian Consortium for the Genetics of Ayotrophic Lateral 
Sclerosis; T1DBase, type 1 diabetes database; TICG (Tourette International Collaborative-Genetics); TSAICG (Tourette Syndrome Association 
International Consortium for Genetics);. Abbreviations: ALS, amyotrophic lateral sclerosis; AMD, age-related macular degeneration; COPD, chronic 
obstructive pulmonary disease; EUR, European; EA, East Asian; LMP, low malignant potential; No., number; Pop., population; SCC, squamous cell 
carcinoma; SNP, single nucleotide polymorphism; -ve, negative; +ve, positive; †plus previously unpublished data.  
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Figure 1. The association between genetically increased telomere length and odds of 
primary non-communicable diseases 
 
Legend to Figure 1 
 
*P value for association between genetically increased telomere length and disease from maximum likelihood; the effect estimate for heart 
failure is a hazard ratio (all others are odds ratios); Phet, P-value for heterogeneity amongst SNPs within the instrument; COPD, chronic 
obstructive pulmonary disease; SNP, single nucleotide polymorphism; CI, confidence interval; LMP, low malignancy potential; ER, 
estrogen receptor; -VE, negative; +VE, positive.  
 
 
 
 
Figure 2. The association between genetically increased telomere length and odds of cancer 
as a function of selected characteristics  
 
Legend to Figure 2 
 
The plotted data show how the strength of the relationship between genetically increased telomere length and cancer varies by the selected 
characteristic. The R2 statistic indicates how much of the variation between cancers can be explained by the selected characteristic. P-values 
are from meta-regression models. Circle sizes are proportional to the inverse of the variance of the log odds ratio. The hashed line indicates 
the null of no association between telomere length and cancer (i.e. an odds ratio of 1). Data for percentage survival 5 years after diagnosis, 
cancer incidence and median age-at-diagnosis was downloaded from the Surveillance, Epidemiology, and End Results Program.33 Data for 
average lifetime number of stem cell divisions was downloaded from Tomasetti and Vogelstein.34 Not all cancers had information available 
for the selected characteristics (hence the number of cancers varies across the subplots). Information was available for 9 cancers for tissue-
specific rates of stem cell division, 13 cancers for percentage surviving 5 years post-diagnosis, 17 cancers for cancer incidence and 13 
cancers for median age-at-diagnosis. SD, standard deviation; OR, Odds ratio. 
 
 
 
Figure 3. Comparison of genetic and prospective observational studies† of the association 
between telomere length and disease 
 
Legend to Figure 3 
 
*from fixed-effects meta-analysis of independent observational studies described in Table S3; †search strategy and characteristics for 
observational studies are described in Tables S3 and S4; ‡CCHS and CGPS; +PLCO, ATBC & SWHS (acronyms explained in Table S3); 
CI, confidence interval 
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