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 2 

 Iron (Fe) reduction and oxidation are important biogeochemical processes coupled to 20 

decomposition, nutrient cycling, and mineral weathering, but factors controlling their rates and 21 

spatial distribution with depth are poorly understood in terrestrial soils. In aquatic ecosystems, Fe 22 

reduction often occurs below a zone of oxic sediments. We tested an alternative conceptual 23 

model for Fe redox cycling in terrestrial soils using a deep humid tropical forest soil profile. We 24 

hypothesized that Fe reduction in anaerobic microsites scales with depth variation in labile C and 25 

Fe availability, as opposed to bulk oxygen (O2). We measured bulk O2 at multiple depths from 26 

0.1–5 m quasi-continuously over 18 months and sampled soils from surface to bedrock (~7 m). 27 

Median O2 mixing ratios declined from 19.8 ± 1.2% at 0.25 m to 16.1 ± 1.0% at 1 m, but did not 28 

consistently decrease below 1 m, challenging a recent model of regolith development. Reduced 29 

Fe (Fe(II)) extractable in 0.5 M hydrochloric acid was greatest in 0 – 0.1 m soil and declined 30 

precipitously with depth, and did not correspond with visible gleying in B horizons. We observed 31 

similar depth trends in potential Fe reduction under anaerobic conditions. Depth trends in Fe(II) 32 

also closely mirrored short-term soil respiration and bulk soil C. Labile C stimulated Fe 33 

reduction at 0 – 0.1 m depth, whereas addition of short-range-ordered Fe oxides had no effect. 34 

Cultivable Fe-reducing bacterial abundance was four orders of magnitude greater in surface soil 35 

(0 – 0.1 m) than below 1 m. Although cultivable Fe oxidizing bacteria were typically also more 36 

abundant in surface soil, addition of labile C and nitrate stimulated Fe oxidizers in deep soil by 37 

two orders of magnitude under anaerobic conditions. This implies that infiltration of nitrate (and 38 

possibly C) from shallow soil water could potentially promote biotic Fe oxidation, a critical step 39 

in bedrock weathering, 7 m below. Together, these data suggest that C, Fe, and nutrient 40 

availability increase microbial Fe reduction and oxidation in surface (vs. deeper) soil microsites 41 

despite high bulk O2, in contrast to the depth segregation of electron accepting processes often 42 
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observed in aquatic ecosystems. Furthermore, the greatest capacity for Fe redox cycling can 43 

occur in A horizons that do not display gleying or mottling. 44 

 45 

Introduction 46 

Iron (Fe) oxidation and reduction driven by microbial and/or abiotic processes are 47 

coupled to the biogeochemical cycling of carbon (C), phosphorus (P), nitrogen (N), and cations 48 

over ecological timescales, and contribute to mineral weathering and soil evolution over 49 

pedogenic timescales. Dissimilatory Fe reduction coupled to C oxidation is an important 50 

anaerobic microbial respiratory process, and dark Fe oxidation coupled to oxygen (O2) or nitrate 51 

(NO3
-) reduction can also support microbial growth (Weber et al. 2006; Melton et al. 2014). The 52 

ecosystem-scale importance of Fe redox cycling and its relationships to other elemental cycles 53 

have received greatest attention in aquatic sediments and wetland soils (Ponnamperuma 1972; 54 

Lovley 1995; Thamdrup 2000; Weber et al. 2006; Cheng et al. 2010). Yet, Fe redox cycling can 55 

also influence organic matter decomposition, nutrient dynamics, and mineral weathering in 56 

relatively well-drained surface soils of terrestrial ecosystems (Chacón et al. 2006; Thompson et 57 

al. 2006; Fimmen et al. 2008; Dubinsky et al. 2010; Hall and Silver 2013; Yang and Liptzin 58 

2015). These dynamics are especially relevant in humid tropical soils, which are often rich in 59 

short-range-ordered Fe oxides and organic C. In these ecosystems, rates of soil Fe redox cycling 60 

and pools of reduced Fe (Fe(II)) often equal or exceed wetland sediments (Dubinsky et al. 2010; 61 

Thompson et al. 2011; Hall and Silver 2015). Yet, understanding the spatial distribution and 62 

controls on Fe reduction and oxidation in terrestrial soils remains an important knowledge gap 63 

hampering the incorporation of Fe redox cycling into quantitative and conceptual models of short 64 
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term (i.e., minutes – months) ecosystem dynamics, and long-term (i.e., centennial – millennial) 65 

weathering and pedogenic processes.  66 

In aquatic sediments and groundwater, a dominant conceptual model proposes that 67 

respiratory terminal electron accepting processes exhibit an approximate segregation with depth 68 

according to their thermodynamic favorability. That is, given sufficient supply of C or other 69 

reductants, O2 is rapidly reduced near the sediment surface, followed by the reduction of nitrate, 70 

manganese oxides, and Fe oxides in progressively deeper zones (Froelich et al. 1979; Chapelle et 71 

al. 1995; Roden and Wetzel 1996; Emerson and Hedges 2003). Thus, in undisturbed sediments 72 

we would typically expect respiratory Fe reduction to commence at depths where most O2 has 73 

been depleted (Fig. 1a)—although sediment redox gradients can also be disrupted by 74 

bioturbation (Norkko et al. 2011). In terrestrial environments, spatial and temporal heterogeneity 75 

in O2 availability is a common feature of soils undergoing fluctuations in moisture, C inputs, and 76 

biological activity. The importance of microsite-scale (mm – cm) redox gradients for stimulating 77 

denitrification in well-drained surface soils is widely acknowledged, and has been contrasted 78 

with the depth stratification of redox reactions in aquatic sediments (Seitzinger et al. 2006). Iron 79 

reduction also appears to be relatively commonplace in many well-drained surface soils (Silver 80 

et al. 1999; DeAngelis et al. 2010; Liptzin et al. 2011; Yang and Liptzin 2015), and even gross 81 

methane production can sometimes be measured in these systems (von Fischer and Hedin 2007). 82 

Despite these observations, patterns in the depth distribution of Fe redox cycling vis a vis 83 

availability of O2 and other potential drivers (C, Fe, and N) have received much less attention in 84 

terrestrial soils.  85 

Spatial interactions between controls on physical O2 supply and biological O2 demand 86 

may be crucial for understanding trends in Fe redox cycling with depth in terrestrial soils. 87 
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Macropore carbon dioxide (CO2) concentrations typically increase with soil depth (Cerling 1991), 88 

corresponding to a stoichiometric decrease in O2 that could stimulate Fe reduction with depth. 89 

Indeed, several studies have documented Fe reduction in subsoils (0.5 – 1.5 m) using 90 

morphological observations and geochemical analyses (Veneman et al. 1976; Fimmen et al. 91 

2008; Schulz et al. 2016). The combination of periodically perched water and/or root C inputs to 92 

clay-rich subsurface horizons appeared to promote Fe reduction and oxidation in these studies 93 

(ibid.), generating prominent visual features of gleying and mottling indicative of Fe redox 94 

cycling. However, significant rates of Fe reduction can also occur in surface (A) soil horizons 95 

from a broad range of ecosystems (Chacón et al. 2006; Thompson et al. 2006; Dubinsky et al. 96 

2010; Buettner et al. 2014; Yang and Liptzin 2015). At the surface, development of aggregates 97 

with tortuous diffusion paths allows anaerobic processes to occur in close spatial proximity to 98 

macropores with near-atmospheric O2 concentrations (Sexstone et al. 1985). As a consequence, 99 

measurements of O2 in soil macropores (defined here as “bulk O2”) do not necessarily reflect the 100 

prevalence of anaerobic microsites at small (mm – cm) spatial scales, despite their utility when 101 

comparing among sites over larger (m – km) spatial scales (Silver et al. 2013; Hall and Silver 102 

2015; Liptzin and Silver 2015). Because both the availability of O2 in soil macropores as well as 103 

total biological O2 demand generally decrease with depth (Cerling 1991), the overall relationship 104 

between soil depth and Fe reduction remains unclear. 105 

The availability of short-range-ordered Fe oxides, organic C, and co-limiting nutrients 106 

could also have a crucial impact on the depth distribution of Fe reduction. Humid tropical soils 107 

are often rich in Fe oxides, especially goethite and hematite, as a consequence of extensive 108 

weathering and desilication (Sanchez 1976; White et al. 1998). Yet, a relatively small fraction of 109 

total Fe may be readily accessible to Fe-reducing microbes. Iron reduction rates often scale with 110 
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the surface area and solubility of Fe oxide phases (Roden and Zachara 1996; Bonneville et al. 111 

2009). The short-range-ordered Fe phases that dominate reducible Fe pools (Hyacinthe et al. 112 

2006) may decline with depth (Thompson et al. 2011; Hall and Silver 2015), potentially limiting 113 

Fe reduction. Organic C availability may also limit Fe reduction with depth. Humid tropical 114 

forests are characterized by high C availability that fuels heterotrophic activity in surface soils 115 

(Raich and Schlesinger 1992), and rates of Fe reduction appear tightly coupled with the 116 

availability of dissolved organic C (Chacón et al. 2006; Fuss et al. 2010). Other nutrients such as 117 

nitrogen (N) could also limit Fe reduction/oxidation, especially in deeper soil horizons with low 118 

organic matter content. Even in comparatively N-rich tropical forests, N additions can enhance 119 

particulate organic matter decomposition (Cleveland and Townsend 2006; Cusack et al. 2011), 120 

and nutrient limitation may be exacerbated in comparatively resource-poor subsoils (Stone et al. 121 

2014). 122 

In deep soils, Fe(II) oxidation is also a crucial step in bedrock weathering, where 123 

minerals such as hornblende and biotite provide a source of Fe(II) that can be oxidized via biotic 124 

or abiotic mechanisms coupled to O2 or NO3
- (Buss et al. 2005; Fletcher et al. 2006; Liermann et 125 

al. 2015). It has been hypothesized that O2 availability limits mineral weathering at the interface 126 

between bedrock and saprolite, and thus may play a key role in controlling landscape evolution 127 

(Fletcher et al. 2006; Brantley and White 2009; Bazilevskaya et al. 2013; Behrens et al. 2015). 128 

Oxygen concentrations often decrease with depth, reflecting a balance between diffusive supply 129 

and the biological and geochemical processes that consume O2. Fletcher et al. (2006) proposed 130 

that depth-dependent decreases in O2 served as a negative feedback on bedrock weathering, 131 

given that increasing regolith thickness would presumably result in decreased O2 supply at the 132 
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weathering front. Alternative oxidants such as NO3
- could also potentially contribute to Fe(II) 133 

oxidation (Böhlke et al. 2002; Liermann et al. 2015), especially under O2-limited conditions.   134 

Few studies have examined trends in O2 and biogeochemical processes across deep soil 135 

profiles. In Amazonian forests and pastures, soil CO2 concentrations increased monotonically 136 

with soil depth, implying a corresponding stoichiometric decline in O2 from ~ 19 % above 1 m to 137 

~ 12 % at 8 m (Nepstad et al. 1994). Similarly, in a highly weathered Puerto Rican forest soil, O2 138 

declined from ~18% above 2 m to ~13% at 7 m (Liermann et al. 2015). It is unclear whether 139 

changes in O2 availability of this magnitude might impact biotic Fe(II) oxidation at depth, and 140 

whether Fe-oxidizing microbial abundance might respond to availability of O2, NO3
-, or organic 141 

matter. 142 

We tested the hypothesis that microbial capacity for Fe reduction and oxidation across a 143 

deep tropical forest soil profile correlates with depth variation in the availability of C and short-144 

range-ordered Fe as opposed to bulk soil O2. In accordance with this hypothesis, we predicted 145 

greater rates of Fe reduction and oxidation potential in surface as opposed to deeper soils, despite 146 

a predicted decline in bulk soil O2 with depth (Fig. 1b). This conceptual framework contrasts 147 

with patterns often observed in flooded wetland soils and sediments (Fig. 1a). We predicted that 148 

our terrestrial soils would deviate from this spatial segregation of aerobic and anaerobic 149 

processes with depth, because of the importance of electron donor supply (i.e., organic C) in 150 

generating anaerobic microsites where Fe reduction can occur within a porous soil matrix, as 151 

well as an increased abundance of short-range-ordered Fe in surface soils. We also assessed the 152 

degree to which addition of C, Fe, and NO3
- affected Fe reduction and oxidation capacity across 153 

the depth gradient. We predicted that NO3
- addition would increase Fe oxidation capacity in deep 154 
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soils, where bedrock supplies ample Fe(II) but oxidant (O2, NO3
-) availability may limit rates of 155 

Fe(II) oxidation.  156 

 157 

Methods 158 

Site description  159 

Samples were collected from the Guaba Ridge (18°17'02"N, 65°47'20"W) in the Río 160 

Icacos Watershed of the Luquillo Experimental Forest, Puerto Rico. This humid montane 161 

tropical forest ecosystem has mean annual temperature and precipitation of 22 ºC and 4200 mm, 162 

respectively (White et al. 1998). Despite high precipitation, surface soils (0 - 10 cm) remain well 163 

drained due to high porosity (~75 %; White et al. 1998) and bioturbation. Parent material is 164 

quartz diorite from the Rio Blanco stock, dominated by plagioclase feldspar and quartz (White et 165 

al. 1998). Soils in the watershed include Oxisols, Ultisols, and Inceptisols, and vary according to 166 

topographic position (Soil Survey Staff 2002; Johnson et al. 2015). The Guaba Ridge separates 167 

two first-order streams that discharge to the Río Icacos at approximately 650 m elevation. The 168 

soil sampled here was recently characterized as a Plinthic Haplohumult (Yi-Balan et al. 2014), 169 

similar to the Humic Hapludox described by the Soil Survey Staff (2002). The B horizons 170 

transition to saprolite at a depth of approximately 1 m (White et al. 1998; Yi-Balan et al. 2014). 171 

Gleying indicative of Fe reduction was especially prominent between 0.2 and 0.4 m. Fine root 172 

biomass was greatest from 0 – 10 cm and declined precipitously with depth, and was absent 173 

below 80 cm (Johnson et al. 2015; Hall and Silver 2015). Organic C declined with depth from 2 174 

– 3 % C by mass from 0 – 0.1 m (S. J. Hall, unpublished data), to 1.6, 1.5, 1.2, and 1.1 % C at 175 

depths of 0.15, 0.3, 0.45, and 0.6 m, respectively. Below 0.6 m, C was typically < 0.2 % (Buss et 176 
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al. 2005). Clay-sized particles were most abundant (42 %) at 0.3 m, and measured between 16 177 

and 30 % in other samples to 5 m depth (Buss et al. 2005). Total Fe oxide content (as Fe2O3) 178 

increased from ~ 4 % at the surface to > 7 % at depth (White et al. 1998). Site vegetation was 179 

evergreen tropical montane forest locally described as the “palo colorado” forest, after the 180 

dominant species Cyrilla racemiflora L. (Weaver and Murphy 1990).  181 

Soil sampling 182 

Soils were sampled on two separate occasions using a 7.6 cm diameter stainless steel 183 

bucket auger and extensions. Samples at a given depth interval represent composites from three 184 

separate augured holes collected within a radius of 15 m. The 2010 samples were collected from 185 

depth increments of 0 – 0.15, 1.5 – 1.8, and 6.9 – 7.2 m. The 2012 samples were collected from 0 186 

– 0.1, 0.1 – 0.2, 0.2 – 0.5, 0.5 – 1, 1 – 2, 2 – 3, 3 – 4, and 4 – 5 m. Samples were stored at field 187 

moisture in sealed polyethylene bags at ambient temperature (22 – 25 °C). 188 

Oxygen measurements 189 

We installed O2 sensors (Apogee SO-110, Logan UT) at depths of 0.1, 0.25, 0.5, 1, 2, 3, 4, 190 

and 5 m in June 2010 and monitored them until February 2012. Sensors were calibrated at 100 % 191 

relative humidity prior to installation and upon retrieval, and corrected for linear drift over time. 192 

Each sensor was installed in a separate hole augured to the depth of installation. Holes were 193 

separated laterally by > 1 m. Sensors were deployed inside 10 cm lengths of 5.1 cm diameter 194 

polyvinylchloride pipe sealed with a cap on the top and bottom and perforated on the sides with 195 

0.5 cm diameter holes to allow gas exchange with the adjacent soil atmosphere. After lowering a 196 

sensor to the bottom of the augured hole, soil was refilled and tamped above the sensor to 197 

approximate field bulk density using a stainless steel rod. The initial week of data was discarded, 198 
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after which point O2 concentrations (atmospheric mixing ratios) established pseudo steady-state 199 

values at deeper depths. Data were recorded at hourly intervals on a datalogger (CR1000, 200 

Campbell Scientific, Logan UT) during most of the 21-month period. Continuous measurements 201 

were not possible due to remote nature of the field site and associated battery failure. 202 

Chemical analyses and laboratory experiments 203 

We measured Fe and trace gas production in the laboratory at U. C. Berkeley shortly after 204 

soils were sampled, and during the course of two laboratory experiments. Iron(II) and (III) were 205 

measured in 0.5M HCl extractions using a 1:10 mass ratio of soil to solution, denoted as Fe(II)HCl 206 

and Fe(III)HCl. Soils were extracted for two hours on a rotary shaker, centrifuged at 3200 rcf, and 207 

the supernatant solution filtered to 0.2 µm. Solutions were analyzed using a modified ferrozine 208 

method (Viollier et al. 2000). Here, we used Fe(III)HCl as an index of short-range-ordered Fe 209 

oxides. Our previous work at nearby sites showed a strong correlation between Fe(III)HCl and Fe 210 

extracted via reductive dissolution with citrate-ascorbate solution, although Fe(III)HCl was always 211 

of smaller magnitude (Hall and Silver 2015). Citrate-ascorbate extractable Fe is thought to be 212 

closely correlated with microbially-reducible Fe (Hyacinthe et al. 2006). We measured 213 

production of carbon dioxide (CO2) using gas chromatography (Shimadzu 14A, Columbia MD) 214 

as described previously (Hall et al. 2013).  215 

We tested relationships between bulk soil O2, trace gas production, and FeHCl across soils 216 

from 0 – 5 m depth (0 – 0.1, 0.1 – 0.2, 0.2 – 0.5, 0.5 – 1, 1 – 2, 2 – 3, 3 – 4, and 4 – 5 m). 217 

Samples (~15 g dry mass equivalent) were incubated in glass jars for 24 hours in darkness under 218 

an ambient atmosphere (20.9 % O2) within 7 days of sample collection, with three replicates per 219 

depth. We report Fe(II)HCl and Fe(III)HCl extracted immediately prior to the trace gas 220 
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measurements. Next, we incubated a subset of these soils (0.1 – 0.2, 0.5 – 1, 2 – 3, 3 – 4, 4 – 5 m 221 

depths) under hypoxic (N2 headspace) and aerobic conditions (~20.9 % O2) over 10-days to 222 

assess potential rates of Fe reduction (n = 3 per depth and headspace).  223 

Together, these measurements identified surface soil horizons as a dominant zone of 224 

actual and potential Fe reduction. We then tested the importance of labile C and short-range-225 

ordered Fe availability as controls on Fe reduction in 0 – 0.1 m soil using a full factorial 226 

experiment (n = 3 per treatment) conducted under hypoxic conditions (N2 headspace) to simulate 227 

the presence of reducing microsites under field conditions. Short-range-ordered Fe as hydrous 228 

ferric oxide (HFO) was prepared as described previously (Yang et al. 2012) and gently 229 

homogenized with soil subsamples (~ 15 g dry mass equivalent) at concentrations of 0, 0.1, 0.5, 230 

and 1 mg Fe g soil-1. Labile C was added as glucose dissolved in deionized water at 231 

concentrations of 0, 50, 100, and 200 µg C g soil-1. Glucose was used given that it can be 232 

fermented to multiple compounds that support Fe reduction (Lovley 1995). 233 

Finally, we used separate samples spanning the soil surface to bedrock to further test 234 

environmental controls on Fe reduction, as well as the abundance of Fe reducing and oxidizing 235 

bacteria using most probable number (MPN) analyses as described by Dubinsky et al. (2010). 236 

Soils from 0 – 0.15, 1.5 – 1.8, and 6.9 – 7.2 m depths were combined in a 1:2 ratio with 237 

deionized water and incubated under anaerobic conditions for 8 days. This experiment was 238 

designed to assess controls on Fe cycling under anaerobic conditions, to test impacts of NO3
- 239 

availability on Fe oxidation, and to compare with an aerobic pre-treatment control. Soil solutions 240 

were amended with either sodium nitrate (NO3
-; 1 mM final concentration), Fe as ferrous 241 

chloride (2 mM), Fe + NO3
-, sodium acetate (0.5 mM), and acetate + NO3

-, or deionized water, 242 

and incubated in an anaerobic chamber (90% N2, 8% CO2, and 2% H2 headspace). Acetate was 243 
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used in this experiment given the precedence of studies that successfully cultivated Fe oxidizers 244 

and reducers (Lovley 1995; Straub et al. 1996). To enumerate anaerobic Fe reducing and 245 

oxidizing bacteria, soils were extracted in buffer containing 0.1% sodium pyrophosphate and 246 

0.03% Tween 80 in basal microbiological medium (BMM). BMM consisted of (per L) 5.0 g 2-247 

(N-morpholino)ethanesulfonic acid (MES) buffer and 10 ml mineral solution, with 0.80 g NaCl, 248 

1.0 g NH4Cl, 0.1 g KCl, 0.1 g KH2PO4, 0.2 g MgCl2·6H2O, and 0.04 g CaCl2·2H2O (per L). 249 

After autoclaving, the media pH was adjusted to 5.5 and amended with 1 ml SL12 trace elements 250 

solution, 2.5 ml trace metal solution (Widdel and Bak 1992), and 1 ml vitamin solution (Pfennig 251 

and Trüper 1992) per L. Media was dispensed into 96-well microplates, and soil subsamples 252 

added in ten-fold dilutions from 10-2 to 10-13 with four biological replicates and three technical 253 

replicates per depth per amendment. Plates were incubated in the dark for 30 days with negative 254 

controls including soil extract buffer only (no soil). Positive growth of Fe(III) reducers was 255 

visualized by adding ferrozine solution, which turns purple in the presence of Fe(II). Formation 256 

of reddish-brown precipitates was used to verify positive results for Fe(II) oxidizers. Cell counts 257 

per gram of soil were calculated using the Most Probable Number Calculator version 4.04 (Klee 258 

1996). 259 

For all experiments, statistical differences among treatments and/or depths were assessed 260 

using ANOVA and post-hoc Tukey comparisons using R v. 3.2.0. To account for temporal 261 

autocorrelation in the O2 data, we used a generalized linear model with an autoregressive error 262 

term implemented using the glm function. 263 

Results 264 
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 Median bulk soil O2 concentrations (mixing ratios) exceeded 16 % at all depths measured 265 

between 0.10 and 5 m (Fig. 2a). All depths significantly differed (p < 0.05) from each other with 266 

the exception of the 1 and 4 m depths. However, differences in O2 were often small: below 0.5 m, 267 

median O2 concentrations differed by < 0.3 % and did not consistently decrease with depth (Fig. 268 

2a). Oxygen was most dynamic at 0.25 and 0.5 m depths, where O2 varied by as much as 10 % 269 

over time (Fig. 2a). In contrast, depths below 0.5 m showed much less variability (< 1.5 % O2) 270 

relative to median values.  271 

Concentrations of Fe(II) HCl and Fe(III)HCl measured on soils sampled in May 2012 272 

showed different patterns from bulk soil O2
 (Fig. 2). Iron(II)HCl was greatest in 0 – 0.1 m soil and 273 

declined precipitously with depth, and was negligible below 1 m (Fig. 2b). Concentrations of 274 

Fe(III)HCl showed very similar depth trends as Fe(II)HCl (Fig. 2c). Patterns of short-term CO2 275 

production closely mirrored both Fe(II)HCl and Fe(III)HCl
 (Fig. 2d), and rates declined > 10-fold 276 

between the 0 – 0.1 and 0.5 – 1 m depths. Ten-day anaerobic incubations of a subset of these 277 

soils confirmed that potential Fe reduction was greatest in the most shallow soil tested (0.1 – 0.2 278 

m), declined by an order of magnitude between 0.5 and 3 m, and was undetectable (not different 279 

from zero, p > 0.05) from 3 to 5 m (Fig. 3). Samples incubated under an aerobic atmosphere 280 

displayed no significant net change in Fe(II) concentrations over this time period (data not 281 

shown). 282 

 Factorial incubation experiments with 0 – 0.1 m soil indicated that Fe reduction generally 283 

increased with increased rates of labile C addition (glucose) under anaerobic conditions. 284 

Production of Fe(II)HCl was significantly greater (p < 0.05) in samples that received the highest 285 

glucose concentrations (100 and 200 µg C g soil-1) and no or minimal Fe(III) addition (0 and 0.1 286 

mg Fe g soil-1). Iron(III) addition had no significant effect on Fe(II)HCl production in the 287 
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treatments with no or minimal glucose addition (0 and 50 µg C g soil-1). However, the treatments 288 

with the highest Fe concentrations decreased Fe(II)HCl production relative to the controls. This 289 

effect depended on the amount of added glucose (Fig. 4; treatment interaction p < 0.0001). 290 

Addition of 1 mg Fe g soil-1 decreased Fe(II)HCl production in the presence of 100 µg glucose C 291 

g soil-1, whereas 0.5 mg Fe g soil-1 decreased Fe(II)HCl production with 200 µg glucose C g soil-1. 292 

 In our final experiment, we incubated soil slurries from surface, intermediate, and deep 293 

samples (0 – 0.15, 1.5 – 1.8, and 6.9 – 7.2 m) to test the factors controlling the abundance of Fe 294 

reducing and oxidizing organisms under anaerobic conditions, simulating anaerobic microsites in 295 

the field. Iron reduction rates were two orders of magnitude greater in surface than deeper 296 

samples (p < 0.001), although lower but significant rates of Fe reduction were also detectable in 297 

some of the intermediate and deep samples under these experimental conditions (Fig. 5a, note the 298 

log scale). Trends in Fe reduction rates with depth were corroborated by MPN analyses of 299 

cultivable Fe reducers, which were four orders of magnitude greater in surface than deeper 300 

samples (Fig. 5b). Experimental amendments (acetate, Fe, and NO3
-) did not significantly affect 301 

Fe reduction rates in surface (0 – 0.15 m) samples. However, Fe + NO3
- addition increased the 302 

abundance of cultivable Fe reducers three-fold relative to the controls in these samples (p < 0.05; 303 

Fig. 5b). Nitrate addition alone doubled mean cultivable Fe reducer abundance relative to the 304 

control in surface soil, but this difference was not statistically significant. In the intermediate 305 

depth samples (1.5 – 1.8 m), addition of Fe, Fe + NO3
-, acetate, and acetate + NO3

- all 306 

significantly stimulated Fe reduction rates relative to the control, but had no significant impact 307 

on Fe reducer MPN (Fig. 5a,b), where abundances were low across all treatments. Iron + NO3
- 308 

addition stimulated Fe reduction rates in the intermediate depth samples to the greatest extent (p 309 
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< 0.05). In the deep soil samples (6.9 – 7.2 m), Fe and Fe + NO3
- stimulated Fe reduction relative 310 

to the controls, whereas the other treatments had no significant effects.  311 

Iron(II) oxidizers were most abundant in surface soils at the beginning of the experiment, 312 

and Fe oxidizer MPN was not significantly affected by experimental amendments in either the 313 

surface or intermediate samples (Fig. 5c). In the deep samples, addition of acetate + NO3
- (but 314 

not acetate or NO3
- alone) significantly stimulated Fe oxidation MPN by two orders of 315 

magnitude relative to the other treatments. Notably, Fe oxidizer MPN values were not inhibited 316 

by anaerobiosis per se at any depth, as they did not decrease relative to initial values under any 317 

treatment despite incubation under anaerobic conditions. 318 

 319 

Discussion 320 

Our data support the hypothesis that labile C and Fe availability (Fig. 1b), as opposed to 321 

variation in bulk O2 with depth (Figs. 1a, 2), controlled Fe reduction across this deep humid 322 

tropical forest soil profile. Actual and potential Fe reduction and cultivable Fe reducer abundance 323 

were greatest in surface soils where bulk O2 concentrations were also highest (Figs. 2,3). Iron 324 

reduction declined by two orders of magnitude below 1 m despite decreased bulk soil O2, and 325 

cultivable Fe reducer abundance declined by four orders of magnitude. Soil respiration (Fig. 2) 326 

and bulk soil C (Buss et al. 2005) showed a depth pattern similar to Fe reduction, and addition of 327 

labile C (but not Fe) significantly enhanced Fe reduction in surface soil (Fig. 4). Apparent 328 

decreases in Fe(II)HCl production at the highest concentrations of added Fe and glucose (Fig. 4) 329 

may represent Fe(II)-catalyzed transformation of short-range-ordered Fe into more crystalline 330 

phases that occluded the newly-produced Fe(II) (Jeon et al. 2003). Although these data represent 331 
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a single site, they support our proposed conceptual framework as well as the need to more 332 

broadly reconsider the controls and impacts of Fe redox cycling with depth, as discussed below. 333 

Contrasting depth distribution of Fe redox cycling in wetlands and uplands 334 

A dominant conceptual model in aquatic sediments posits that terminal electron accepting 335 

processes are segregated with depth according to their thermodynamic favorability (Emerson and 336 

Hedges 2003; Fig. 1a). However, our data suggest that this model does not necessarily explain 337 

depth variation in Fe reduction and oxidation potential at our site, and perhaps also in other well-338 

drained terrestrial soils where high Fe reduction capacity has been documented (Yang and 339 

Liptzin 2015). Bulk O2, Fe(II) concentrations, and potential Fe reduction were all greatest at the 340 

surface, concomitant with greatest labile C availability. These observations, combined with our 341 

experimental data, suggest that patterns in electron donor (i.e., organic C) availability provide a 342 

proximate control on the depth distribution of Fe reduction in this soil.  343 

Although bulk O2 concentrations declined with depth below 0.25 m, the abundance of 344 

anaerobic microsites also declined along with C availability, as reflected by lower concentrations 345 

of Fe(II), lower potential Fe reduction rates, and lower abundance of Fe-reducing and oxidizing 346 

microbes. Subtly increased O2 concentrations at 0.25 m relative to 0.1 m likely reflected lateral 347 

spatial heterogeneity in soil O2 (Liptzin et al. 2011; Hall et al. 2013) as opposed to a consistent 348 

trend with depth. Contrasting patterns between the depth distribution of terminal electron 349 

accepting processes in aquatic sediments vs. this terrestrial forest point to the importance of 350 

microsite-scale anaerobic processes within the largely aerobic soil matrix (Sexstone et al. 1985; 351 

Hall and Silver 2015; Keiluweit et al. 2016). Localized inputs of labile C to fuel O2 consumption 352 

may be a critical regulator of the abundance of anaerobic microsites (Chacón et al. 2006), 353 
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evidenced by recent reports of Fe reduction associated with the rhizosphere (Fimmen et al. 2008; 354 

Schulz et al. 2016). In many ecosystems, including this humid tropical forest, root biomass C 355 

inputs are greatest near the soil surface (Jobbagy and Jackson 2000; Hall and Silver 2015). Thus, 356 

we predict that Fe redox cycling and the numerous processes linked to these dynamics—e.g., 357 

sorption and desorption of P and organic matter (Peretyazhko and Sposito 2005; Chacón et al. 358 

2006; Thompson et al. 2006; Buettner et al. 2014; Hall et al. 2016), microbial respiration 359 

(Dubinsky et al. 2010), and production of reactive oxygen species (Hall and Silver 2013)—may 360 

also be most significant near the surface of many other terrestrial soils, despite the fact that 361 

moisture and visual indicators of Fe redox cycling often increase with depth.  362 

Cryptic Fe redox cycling in surface soils 363 

Our finding of greater Fe reduction capacity in surface vs. subsurface soils shows that 364 

trends in soil coloration and moisture are not necessarily reliable indicators of potential rates of 365 

Fe redox cycling. The greatest Fe(II) concentrations, potential rates of Fe reduction, and 366 

abundance of cultivable microbial Fe reducers and oxidizers occurred in surface A horizon (0 – 367 

0.1 m) soil, where porosity was high (~ 75 %) and moisture rarely approached saturation (White 368 

et al. 1998). In this soil, gleying was visible throughout the B horizons, but not in the A horizon 369 

(Yi-Balan et al. 2014). Surface horizons were rarely saturated, and water content was typically 370 

greatest near the soil-saprolite interface (White et al. 1998). Investigations of Fe reduction in 371 

terrestrial soils have often focused on Fe redox dynamics in relatively deeper (> 0.5 m) B 372 

horizons associated with periodic moisture saturation and rhizosphere gleying (Veneman et al. 373 

1976; Fimmen et al. 2008; Schulz et al. 2016). Mottling and gleying provide important visual 374 

evidence of Fe reduction, translocation, and oxidation (Veneman et al. 1976; Fimmen et al. 2008; 375 

Schulz et al. 2016). Although these features are sufficient to indicate the occurrence of Fe redox 376 
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cycling, they are not obligate indicators, as demonstrated by our data. Several studies have 377 

similarly demonstrated high rates of Fe reduction at the soil surface (Chacón et al. 2006; 378 

Dubinsky et al. 2010; Yang and Liptzin 2015) but did not assess trends with depth. Visual 379 

evidence of Fe redox cycling in 0 – 0.1 m soil may have been obscured by high organic matter 380 

content at the surface, which imparts a dark color. Surface soil horizons typically contain the 381 

highest stocks of root biomass and organic C across a broad range of terrestrial ecosystems 382 

(Jobbagy and Jackson 2000). As a consequence of abundant C inputs that generate anaerobic 383 

microsites yet obscure the visual effects of Fe reduction, we suggest that cryptic Fe reduction in 384 

terrestrial surface soils may be a more commonplace phenomenon than is implied by visible 385 

gleying and mottling. 386 

In surface soils of humid tropical forests and other terrestrial ecosystems, hotspots of Fe 387 

reduction in surface soil microsites are likely generated due to the confluence of several critical 388 

factors. High clay content decreases gas-phase diffusivity and O2 supply, high temperature 389 

decreases O2 solubility while increasing biological O2 consumption, a high density of live and 390 

dead roots provides abundant C inputs, and large pools of Fe are maintained in short-range-391 

ordered minerals (Silver et al. 1999; Buss et al. 2005; Thompson et al. 2011; Johnson et al. 2015; 392 

Hall and Silver 2015). The maintenance of short-range-ordered Fe appears critical in that these 393 

phases exhibit greater rates of reduction than crystalline Fe (Roden and Wetzel 2002). 394 

Interactions between Fe and organic matter likely retard the formation of crystalline minerals 395 

(Schwertmann et al. 1988), despite the fact that redox cycling can potentially lead to formation 396 

of Fe with greater crystalline structure (Thompson et al. 2006). At depth, lower organic matter 397 

concentrations may facilitate the formation of more crystalline Fe minerals during redox cycling 398 

(Jeon et al. 2003; Thompson et al. 2006), consistent with previous Fe isotope measurements at 399 
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this site (Buss et al. 2010). This coincides with our finding that Fe addition stimulated Fe 400 

reduction at depth (Fig. 5), despite the presence of a large total Fe oxide pool (White et al. 1998). 401 

Implications of O2 depth distribution for bedrock weathering 402 

Bulk soil O2 concentrations did not consistently decrease with depth below 1 m, the 403 

approximate depth of the soil/saprolite transition, but rather fluctuated around similar median 404 

values (~ 16 %; Fig. 2). Previous work hypothesized that regolith depth controls weathering rates 405 

by constraining O2 supply, given that O2 availability may limit oxidation of Fe in primary 406 

bedrock minerals (Fletcher et al. 2006; Brantley and White 2009; Behrens et al. 2015). A key 407 

assumption of this hypothesis is that O2 concentrations decrease monotonically with regolith 408 

depth, facilitating a negative feedback between regolith development and weathering rates. Our 409 

data show that bulk soil O2 does not necessarily decrease consistently or significantly within the 410 

saprolite profile. Rather, the asymptotic trend in bulk soil O2 observed here at depths below 1 m 411 

is consistent with analytical models of soil CO2 production and diffusion (Cerling 1991; Fig. 1b) 412 

validated by measurements in shallower soil profiles (< 1.5 m depth) from other ecosystems (e.g. 413 

Solomon and Cerling 1987; Bowling et al. 2015). Bulk O2 concentrations observed here at 5 m 414 

depth (~16 %), as well as other tropical forests (~12 – 17 %; Nepstad et al., 1994; Liermann et al., 415 

2015), were relatively high. If these data and models are broadly representative, regolith depth 416 

per se may not necessarily influence gas-phase O2 supply to the bedrock/saprolite interface. 417 

Rather, the presence and depth of perched water tables at the bedrock/saprolite interface (White 418 

et al. 1998) may be more important in controlling diffusive O2 supply for primary mineral 419 

weathering. 420 

Potential importance of anaerobic Fe oxidation at depth  421 
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Although bulk soil O2 concentrations were relatively high in deep soils, anaerobic 422 

microsites are likely to occur (Silver et al. 1999), particularly in the presence of perched water 423 

tables at the bedrock interface (White et al. 1998; Schulze and White 1999). Iron(II) oxidation by 424 

NO3
- can be a significant process in shallow groundwater (Böhlke et al. 2002). As a consequence, 425 

availability of both O2 and NO3
- could potentially influence rates of Fe(II) oxidation at the 426 

bedrock/saprolite weathering front. In our study, Fe(II) oxidation at intermediate depths was 427 

likely limited by Fe(II) supply from primary minerals (Buss et al. 2005) and the abundance of 428 

cultivable Fe(II) oxidizers was unaffected by our experimental treatments. In deep soils, 429 

cultivable Fe(II) oxidizer abundance was initially similar to intermediate depths, but responded 430 

strongly to additions of NO3
- and acetate under anaerobic conditions—increasing by two orders 431 

of magnitude relative to initial aerobic conditions. This finding suggests significant capacity for 432 

anaerobic, microbially-mediated Fe(II) oxidation in deep soils.  433 

We note that our results are likely conservative in that the MPN enumeration method 434 

used here yielded cultivable anaerobic Fe reducers and oxidizers, and likely underestimates their 435 

total populations (Dubinsky et al. 2010). Previous work in nearby soils found that cultivable Fe 436 

reducers represented 0.7 – 5.7 % of total bacterial abundance, but that the relative abundances of 437 

the canonical Fe reducers Shewanella and Geobacter assessed were low when assessed using 438 

quantitative PCR (Dubinsky et al. 2010; DeAngelis et al. 2010). The composition of Fe reducing 439 

and oxidizing microbial communities in humid tropical soils remains poorly understood. 440 

The finding that acetate stimulates anaerobic Fe(II) oxidizers suggests that heterotrophic 441 

or mixotrophic Fe oxidizers contribute to Fe(II) oxidation and related bedrock weathering at 442 

depth. Previous studies similarly found that C addition enhanced rates of Fe(II) oxidation (Straub 443 

et al. 1996; Kappler et al. 2005). The stimulatory effect of acetate on Fe(II) oxidizer abundance 444 
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may reflect the importance of mixotrophy in preventing the deleterious effects of cell 445 

encrustation by the newly-formed Fe(III) oxides (Kappler et al. 2005).  However, the finding that 446 

acetate stimulated Fe(II) oxidizer abundance presents an interesting conundrum: previous 447 

measurements suggested that deep dissolved organic C concentrations may be extremely low at 448 

this site (Schulz and White 1999), supporting the hypothesis that microbial communities are 449 

dominated by autotrophs reliant on bedrock Fe(II) supply and are decoupled from surface C 450 

inputs (Liermann et al. 2015). Yet, the strong response of cultivable Fe oxidizers to C addition in 451 

deep soils also suggests that heterotrophic microbial communities are poised to respond to C 452 

inputs, either from co-occurring autotrophs or possibly from surface soils.  453 

The observation of high NO3
- concentrations (~ 20 µM) in deep soils from this site and 454 

another nearby site (Schulz and White 1999; Liermann et al. 2015) is indicative of hydrologic 455 

NO3
- supply from surface soils 7 m above, as the parent material does not contain significant N 456 

(White et al. 1998). Surface soil biological processes do not appear strongly N limited in this 457 

ecosystem (Cusack et al. 2011), thus infiltration of surface soil NO3
- to deep soils appears 458 

plausible. The potential for surface soil dissolved organic matter to reach the weathering front at 459 

7 m depth without being sorbed or mineralized in transit may be more tenuous. Couplings 460 

between surface-derived nutrients and bedrock weathering remain an important but poorly 461 

explored topic in the context of landscape evolution, and biogeochemical connections between 462 

surface and deep subsurface soils merit further exploration. 463 

 464 

Conclusions 465 
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Trends in potential Fe reduction and oxidation varied systematically with depth in this 466 

terrestrial humid tropical forest soil but showed distinctly different trends compared to the 467 

standard conceptual model for saturated sediments. Although mean bulk O2 declined overall with 468 

depth, it was most variable and sporadically reached the lowest values at shallow depths (0.25 469 

and 0.5 m). Biotic Fe reduction and oxidation capacity were greatest at the surface and declined 470 

precipitously with depth. At intermediate and deep depths, Fe reduction and oxidation appeared 471 

strongly limited by C, NO3
-, and/or labile Fe, despite high total Fe. However, biotic Fe oxidation 472 

potential increased at the saprolite/bedrock interface in response to acetate and NO3
- addition, 473 

likely as a consequence of increased Fe(II) supply from primary Fe(II)-rich minerals, which had 474 

been depleted from shallower saprolite (intermediate depths). Shallow surface soils may play an 475 

underappreciated role as hotspots of coupled Fe reduction and oxidation, even when visible 476 

gleying is not apparent. Furthermore, our data suggest that the total depth of soil profiles may 477 

have less influence on bulk O2 supply to bedrock than previously proposed, given the observed 478 

asymptotic trend in O2 with depth. In addition to O2 availability, we showed that the supply of 479 

NO3
- from surface soils could play an important role in bedrock weathering by stimulating Fe(II) 480 

oxidizing microbial communities. Although labile C amendments stimulated the growth of Fe(II) 481 

oxidizers, it remains uncertain whether surface soil inputs provide a significant C source at 7 m 482 

depth. 483 
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 681 

Figure captions: 682 

Figure 1: Idealized depth profiles of bulk O2 (solid line) and Fe(II) (dashed line) with depth. 683 

Panel a represents a standard conceptual model for aquatic sediments, where Fe reduction occurs 684 

at depths below which O2 and other oxidants (not shown for clarity) have been reduced. Panel b 685 

shows an alternative model for terrestrial soils where bulk O2 decreases slightly with depth, and 686 
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total Fe reduction peaks in anaerobic microsites near the soil surface as a consequence of greater 687 

availability of C and short-range-ordered Fe. Oxygen profiles were modeled after Cerling (1991), 688 

assuming a stoichiometric relationship between CO2 and O2 and an exponential decline in CO2 689 

production with depth; diffusivity differs for panels a and b. Iron(II) trends are hypothetical but 690 

consistent with previous work at this site; labile Fe(II) may increase near bedrock due to supply 691 

from primary minerals (Buss et al. 2005).  692 

Figure 2: Soil O2 concentrations (a) measured at hourly intervals along the Guaba ridge depth 693 

profile from June 2010 to February 2012. Boxes represent medians and the first and third 694 

quartiles. Whiskers represent the furthest value less than 1.5 times the box length measured from 695 

the box edge; more extreme points are denoted as circles.  Mean (± SE) concentrations of 696 

Fe(II)HCl (b), Fe(III)HCl (c), and soil respiration (d) were measured shortly after sampling (n = 3 697 

per depth). Means with different letters differed significantly (p < 0.05, Tukey comparison). 698 

Figure 3: Net Fe(II) production by depth (± SE) over a 10-day incubation of intact (non-slurried) 699 

soils under anaerobic conditions (n = 3 per depth). Note that bar widths are not proportional to 700 

soil depths (as in Fig. 2) because a subset of depths was measured. 701 

Figure 4: Iron reduction during three-day anaerobic incubations of intact (non-slurried) soils 702 

from 0 – 0.1 m depth, incubated with varying concentrations of labile C (glucose) and short-703 

range-ordered Fe(III). Treatments with different letters differed significantly (all possible 704 

pairwise comparisons were evaluated), and whiskers represent standard errors (n = 3 per 705 

treatment). 706 

Figure 5: Rates of Fe reduction (a) and most-probable-number (MPN) analyses of Fe reducers 707 

(b) and oxidizers (c) measured before and after anaerobic incubations of soil slurries. Samples 708 
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were amended with NO3
-, Fe as ferrous chloride,  NO3

- + Fe, acetate, or acetate + NO3
-. Means 709 

with different letters within a given depth increment differed significantly (n = 4 per treatment).  710 
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Figure 2: 735 
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Figure 5: 767 
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