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Whitham modulation equations and application
to small dispersion asymptotics and long time
asymptotics of nonlinear dispersive equations

Tamara Grava

Abstract In this chapter we review the theory of modulation equations or Whitham
equations for the travelling wave solution of KdV. We then apply the Whitham mod-
ulation equations to describe the long-time asymptotics and small dispersion asymp-
totics of the KdV solution.

1 Introduction

The theory of modulation refers to the idea of slowly changing the constant param-
eters in a solution to a given PDE. Let us consider for example the linear PDE in
one spatial dimension

ut + ε
2uxxx = 0, (1)

where ε is a small positive parameter. Such equation admits the exact travelling
wave solution

u(x, t) = acos
(

k
x
ε
+ω

t
ε

)
, ω = k3

where a and k are constants. Here
x
ε

and
t
ε

are considered as fast variables since
0 < ε � 1. The general solution of equation (1) restricted for simplicity to even
initial data f (x) is given by

u(x, t;ε) =
∫

∞

0
F(k;ε)cos

(
k

x
ε
+ω

t
ε

)
dk

where the function F(k;ε) depends on the initial conditions by the inverse Fourier

transform F(k;ε) =
1

πε

∫
∞

−∞
f (x)e−ik x

ε dx.
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2 T. Grava

For fixed ε , the large time asymptotics of u(x, t;ε) can be obtained using the
method of stationary phase

u(x, t;ε)' F(k;ε)

√
2π

t|ω ′′(k)|
cos
(

k
x
ε
+ω

t
ε
− π

4
signω

′′(k)
)
, (2)

where now k = k(x, t) solves
x+ω

′(k)t = 0. (3)

We will now obtain a formula compatible with (2) using the modulation theory. Let
us assume that the amplitude a and the wave number k are slowly varying functions
of space and time:

a = a(x, t), k = k(x, t).

Plugging the expression

u(x, t;ε) = a(x, t)cos
(

k(x, t)
x
ε
+ω(x, t)

t
ε

)
,

into the equation (1) one obtains from the terms of order one the equations

kt = ω
′(k)kx, at = ω

′(k)ax +
1
2

aω
′′(k)kx, (4)

which describe the modulation of the wave parameters a and k. The curve
dx
dt

=

−ω ′(k) is a characteristic for both the above equations. On such curve

dk
dt

= 0,
da
dt

=
1
2

aω
′′(k)kx.

We look for a self-similar solution of the above equation in the form k = k(z) with
z = x/t. The first equation in (4) gives

(z+ω
′(k))kz = 0

which has the solutions kz = 0 or z+ω ′(k) = 0. This second solution is equivalent
to (3). Plugging this solution into the equation for the amplitude a one gets

da
dt

=− a
2t
, or a(x, t) =

a0(k)√
t
,

for an arbitrary function a0(k). Such expression gives an amplitude a(x, t) compati-
ble with the stationary phase asymptotic (2).
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2 Modulation of nonlinear equation

Now let us consider a similar problem for a nonlinear equation, by adding a nonlin-
ear term 6uux to the equation (1)

ut +6uux + ε
2uxxx = 0. (5)

Such equation is called Korteweg de Vries (KdV) equation, and it describes the
behaviour of long waves in shallow water. The coefficient 6 is front of the nonlinear
term, is just put for convenience. The KdV equation admits the travelling wave
solution

u(x, t;ε) = η(φ), φ =
1
ε
(kx−ωt +φ0),

where we assumed that η is a 2π-periodic function of its argument and φ0 is an
arbitrary constant. Plugging the above ansatz into the KdV equation one obtains
after a double integration

k2

2
η

2
φ =−η

3 +V η
2 +Bη +A, V =

ω

2k
, (6)

where A and B are integration constants and V is the wave velocity. In order to
get a periodic solution, we assume that the polynomial −η3 +V η2 + Bη + A =
−(η−e1)(η−e2)(η−e3) with e1 > e2 > e3. Then the periodic motion takes place
for e2 ≤ η ≤ e1 and one has the relation

k
dη√

2(e1−η)(η− e2)(η− e3)
= dφ , (7)

so that integrating over a period, one obtains

2k
∫ e1

e2

dη√
2(e1−η)(η− e2)(η− e3)

=
∮

dφ = 2π.

It follows that the wavenumber k =
2π

L
is expressed by a complete integral of the

first kind:

k = π

√
(e1− e3)√
2K(m)

, m =
e1− e2

e1− e3
, K(m) :=

∫ π
2

0

dψ√
1−m2 sin2

ψ

, (8)

and the frequency
ω = 2k(e1 + e2 + e3) , (9)

is obtained by comparison with the polynomial in the r.h.s. of (6). Performing an
integral between e1 and η in equation (7) one arrives to the equation
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ψ

0

dψ ′√
1− s2 sin2

ψ ′
=−φ

√
e1− e3√

2k
+K(m), cosψ =

√
η− e1√
e2− e1

.

Introducing the Jacobi elliptic function cn
(
−φ

√
e1− e3√

2k
+K(m);m

)
= cosψ and

using the above equations we obtain

u(x, t;ε) = η(φ) = e2 +(e1− e2)cn2
(√

e1− e3√
2ε

(
x− ω

k
t +

φ0

k

)
−K(m);m

)
,

(10)
where we use also the evenness of the function cn(z;m).

The function cn2(z;m) is periodic with period 2K(m) and has its maximum at
z = 0 where cn(0;m) = 1 and its minimum at z = K(m) where cn(K(m);m) = 0.
Therefore from (10), the maximum value of the function u(x, t;ε) is umax = e1 and
the minimum value is umin = e2.

2.1 Whitham modulation equations

Now, as we did it in the linear case, let us suppose that the integration constants A,
B and V depend weekly on time and space

A = A(x, t), B = B(x, t), V =V (x, t).

It follows that the wave number and the frequency depends weakly on time and too.
We are going to derive the equations of A = A(x, t), B = B(x, t) and V = V (x, t)
in such a way that (10) is an approximate solution of the KdV equation (5) up to
sub-leading corrections. We are going to apply the nonlinear analogue of the WKB
theory introduced in [19]. For the purpose let us assume that

u = u(φ(x, t),x, t), φ =
θ

ε
(11)

Pluggin the ansatz (11) into the KdV equation one has

uφ

θt

ε
+ut +6u(uφ

θx

ε
+ux)+

θ 3
x

ε
uφφφ +3θ

2
x uφφx +3θxεuφxx +3θxxεuθx

+3θxxθxuφφ +θxxxεuφ + ε
2uxxx = 0.

(12)

Next assuming that u has an expansion in power of ε , namely u = u0+εu1+ε2u2+
. . . one obtain from (12) at order 1/ε

θtu0,φ +6θxu0u0,φ +θ
3
x u0,φφφ = 0.

The above equation gives the cnoidal wave solution (10) if u0(φ) = η(φ) and
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θt =−ω, θx = k, (13)

where k and ω are the frequency and wave number of the cnoidal wave as defined
in (8) and (9) respectively. Compatibility of equation (13) gives

kt +ωx = 0, (14)

which is the first equation we are looking for. To obtain the other equations let us
introduce the linear operator

L := ω
∂

∂φ
−6k

∂

∂φ
u0− k3 ∂ 3

∂φ 3 ,

with formal adjoint L † =ω
∂

∂φ
−6ku0

∂

∂φ
−k3 ∂ 3

∂φ 3 . Then at order ε0 equation (12)

gives

L u1 =R(u0), R(u0) := u0,t +6u0u0,x +3θ
2
x u0,φφx +3θxxθxu0,φφ .

In a similar way it is possible to get the equations for the higher order correction
terms. A condition of solvability of the above equation can be obtained by observing
that the integral over a period of the l.h.s of the above equation against the constant
function and the function u0 is equal to zero because 1 and u0 are in the kernel of
L †. Therefore it follows that

0 =
∫ 2π

0
R(u0)dφ = ∂t

∫ 2π

0
u0dφ +3∂x

∫ 2π

0
u2

0dφ

and

0 =
∫ 2π

0
u0R(u0)dφ =∂t

∫ 2π

0

1
2

u2
0dφ +2∂x

∫ 2π

0
u3

0dφ

+3
∫ 2π

0
u0(θ

2
x u0,φφx +θxxθxu0,φφ )dφ .

By denoting with the bracket 〈 .〉 the average over a period, we rewrite the above
two equations, after elementary algebra and an integration by parts, in the form

∂t〈u0〉+3∂x〈u2
0〉= 0 (15)

∂t〈u2
0〉+4∂x〈u3

0〉−3∂x〈θ 2
x u2

0,φ 〉= 0. (16)

Using the identities

〈u0u0,φφ +u2
0,φ 〉= 0, 〈u0,φφ 〉= 0,

and (6), we obtained the identities for the elliptic integrals
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e1

5η3−4V η2−3Bη−2A√
−η3 +V η2 +Bη +A

dη = 0,
∫ e2

e1

−3η2 +2V η +B√
−η3 +V η2 +Bη +A

dη = 0.

Introducing the integral W :=
√

2
π

∫ e2
e1

√
−η3 +V η2 +Bη +Adη and using the above

two identities and the relations k =WA, 〈u0〉= 2πkWB and 〈u2
0〉= 2πkWV where WA,

WB and WV are the partial derivatives of W with respect to A, B and V respectively,
we can reduce (14), (15) and (16) to the form

∂

∂ t
WA +2V

∂

∂x
WA−2WA

∂

∂x
V = 0 (17)

∂

∂ t
WB +2V

∂

∂x
WB +WA

∂

∂x
B = 0 (18)

∂

∂ t
WV +2V

∂

∂x
WV −2WA

∂

∂x
A = 0. (19)

The equation (17), (18) and (19) are the Whitham modulation equations for the
parameters A, B and V . The same equations can also be derived according to
Whitham’s original ideas of averaging method applied to conservation laws, to La-
grangian or to Hamiltonians [60]. Using e1, e2 and e3 as independent variables,
instead of their symmetric function A, B and V , Whitham reduced the above three
equations to the form

∂

∂ t
ei +

3

∑
k=1

σ
k
i

∂

∂x
ek = 0, i = 1,2,3, (20)

for the matrix σ k
i given by

σ = 2V −WA

∂e1WA ∂e2WA ∂e3WA
∂e1WB ∂e2WB ∂e3WB
∂e1WV ∂e2WB ∂e3WV

−1 2 2 2
e2 + e3 e1 + e3 e1 + e2
2e2e3 2e1e3 2e1e2

 ,

where ∂eiWA is the partial derivative with respect to ei and the same notation holds
for the other quantities. Equations (20) is a system of quasi-linear equations for
ei = ei(x, t), j = 1,2,3. Generically, a quasi-linear 3× 3 system cannot be reduced
to a diagonal form. However Whitham, analyzing the form of the matrix σ , was
able to get the Riemann invariants that reduce the system to diagonal form. Indeed
making the change of coordinates

β1 =
e2 + e1

2
, β2 =

e1 + e3

2
, β3 =

e2 + e3

2
, (21)

with
β3 < β2 < β1,

the Whitham modulation equations (20) are diagonal and take the form
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∂

∂ t
βi +λi

∂

∂x
βi = 0, i = 1,2,3, (22)

where the characteristics speeds λi = λi(β1,β2,β3) are

λi = 2(β1 +β2 +β3)+4
∏i 6=k(βi−βk)

βi +α
, (23)

α =−β1 +(β1−β3)
E(m)

K(m)
, m =

β2−β3

β1−β3
, (24)

where E(m) =
∫ π/2

0

√
1−msinψ2dψ is the complete elliptic integral of the second

kind. Another compact form of the Whitham modulations equations (22) is

∂k
∂βi

∂βi

∂ t
+

∂ω

∂βi

∂βi

∂x
= 0, i = 1,2,3, (25)

where the above equations do not contain the sum over repeated indices. Observe
that the above expression can be derived from the conservation of waves (14) by
assuming that the Riemann invariants β1 > β2 > β3 vary independently. Such form
(25) is quite general and easily adapts to other modulation equations ( see for ex-
ample the book [37]). The equations (25) gives another expression for the speed

λi = 2(β1 +β2 +β3)+2
k

∂βik
which was obtained in [33].

The Whitham equations are a systems of 3×3 quasi-linear hyperbolic equations
namely for β1 > β2 > β3 one has [45]

λ1 > λ2 > λ3.

Using the expansion of the elliptic integrals as m→ 0 (see e.g. [43])

K(m) =
π

2

(
1+

m
4
+

9
64

m2 +O(m3)

)
, E(m) =

π

2

(
1− m

4
− 3

64
m2 +O(m3)

)
,

(26)
and m→ 1

E(m)' 1+
1
2
(1−
√

m)

[
log

16
1−m

−1
]
, K(m)' 1

2
log

16
1−m

, (27)

one can verify that the speeds λi have the following limiting behaviour respectively

• at β2 = β1

λ1(β1,β1,β3) = λ2(β1,β1,β3) = 4β1 +2β3

λ3(β1,β1,β3) = 6β3;
(28)

• at β2 = β3 one has
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λ1(β1,β3,β3) = 6β1

λ2(β1,β3,β3) = λ3(β1,β3,β3) = 12β3−6β1.
(29)

Namely, when β1 = β2, the equation for β3 reduces to the Hopf equation
∂

∂ t
β3 +

6β3
∂

∂x
β3 = 0. In the same way when β2 = β3 the equation for β1 reduces to the

Hopf equation.
In the coordinates βi, i = 1,2,3 the travelling wave solution (10) takes the form

u(x, t;ε) = β1 +β3−β2 +2(β2−β3)cn2
(

K(m)
Ω

πε
+K(m);m

)
, (30)

where

Ω := kx−ωt+φ0 = π

√
β1−β3

K(m)
(x−2t(β1+β2+β3))+φ0, m =

β2−β3

β1−β3
. (31)

We recall that

k = π

√
β1−β3

K(m)
, ω = 2k(β1 +β2 +β3), (32)

are the wave-number and frequency of the oscillations respectively.
In the formal limit β1 → β2, the above cnoidal wave reduce to the soliton so-

lution since cn(z,m)
m→1→ sech(z), while the limit β2 → β3 is the small amplitude

limit where the oscillations become linear and cn(z,m)
m→0→ cos(z). Using identities

among elliptic functions [43] we can rewrite the travelling wave solution (30) using
theta-functions

u(x, t,ε) = β1 +β2 +β3 +2α +2ε
2 ∂ 2

∂x2 logϑ

(
Ω(x, t)

2πε
;τ

)
, (33)

with α as in (24) and where for any z ∈ C the function ϑ(z;τ) is defined by the
Fourier series

ϑ(z;τ) = ∑
n∈Z

eπin2τ+2πinz, τ = i
K′(m)

K(m)
. (34)

The formula (33) is a particular case of the Its-Matveev formula [35] that describes
the quasi-periodic solutions of the KdV equation through higher order θ -functions.

Remark 2.1 We remark that for fixed β1,β2 and β3, formulas (30) or (33) give an
exact solution of the KdV equation (5), while when β j = β j(x, t) evolves according
to the Whitham equations, such formulas give an approximate solution of the KdV
equation (5). We also remark that in the derivation of the Whitham equations, we did
not get any information for an eventual modulation of the arbitrary phase φ0. The
modulation of the phase requires a higher order analysis, that won’t be explained
here. However we will give below a formula for the phase.
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Remark 2.2 The Riemann invariants β1, β2 and β3 have an important spectral
meaning. Let us consider the spectrum of the Schrödinger equation

ε
2 d2

dx2Ψ +uΨ =−λΨ ,

where u(x, t;ε) is a solution of the KdV equation. The main discovery of Gardener,
Green Kruskal and Miura [26] is that the spectrum of the Schrödinger operator is
constant in time if u(x, t;ε) evolve according to the KdV equation. This important
observation is the starting point of inverse scattering and the modern theory of inte-
grable systems in infinite dimensions.

If u(x, t;ε) is the travelling wave solution (33), where β1 > β2 > β3 are constants,
then the Schrödinger equation coincides with the Lamé equation and its spectrum
coincides with the Riemann invariants β1 > β2 > β3. The stability zones of the
spectrum are the bands (−∞,β3]∪ [β2,β1]. The corresponding solution Ψ(x, t;λ ) of
the Schrödinger equation is quasi-periodic in x and t with monodromy

Ψ(x+ εL, t;λ ) = eip(λ )L
Ψ(x, t;λ )

and
Ψ(x, t + εT ;λ ) = eiq(λ )T

Ψ(x, t;λ ),

where εL and εT are the wave-length and the period of the oscillations. The func-
tions p(λ ) and q(λ ) are called quasi-momentum and quasi-energy and for the
cnoidal wave solution they take the simple form

p(λ ) =
∫

λ

β2

d p(λ ′), q(λ ) =
∫

λ

β2

dq(λ ′),

where d p and dq are given by the expression

d p(λ )=
(λ +α)dλ

2
√
(β1−λ )(λ −β2)(λ −β3)

, dq(λ )= 12
(λ 2− 1

2 (β1 +β2 +β3)λ + γ)dλ

2
√
(β1−λ )(λ −β2)(λ −β3)

with the constant α defined in (24) and γ =
α

6
(β1 + β2 + β3)+

1
3
(β1β2 + β1β3 +

β2β3) Note that the constants α and γ are chosen so that∫
β2

β3

d p = 0,
∫

β2

β3

dq = 0.

The square root
√
(β1−λ )(λ −β2)(λ −β3) is analytic in the complex place C\{(−∞,β3]∪

[β2,β1]} and real for large negative λ so that p(λ ) and q(λ ) are real in the stability
zones. The Whitham modulation equations (22) are equivalent to

∂

∂ t
d p(λ )+

∂

∂x
dq(λ ) = 0, (35)
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for any λ . Indeed by multiplying the above equation by (λ − βi)
3
2 and taking the

limit λ → βi, one gets (22). Furthermore

k =
∫

β1

β2

d p, ω =
∫

β1

β2

dq,

with k and ω the wave-number and frequency as in (32), so that integrating (35)
between β1 and β2 and observing that the integral does not depend on the path of
integration one recovers the equation of wave conservation (14).

3 Application of Whitham modulation equations

As in the linear case, the modulation equations have important applications in the
description of the solution of the Cauchy problem of the KdV equation in asymptotic
limits. Let us consider the initial value problem{

ut +6uux + ε2uxxx = 0
u(x,0;ε) = f (x),

(36)

where f (x) is an initial data independent from ε . When we study the solution of
such initial value problem u(x, t;ε) one can consider two limits:

• the long time behaviour, namely

u(x, t;ε)
t→∞→ ?, ε fixed;

• the small dispersion limit, namely

u(x, t;ε)
ε→0→ ?, x and t in compact sets.

These two limits have been widely studied in the literature. The physicists Gurevich
and Pitaevski [31] were among the first to address these limits and gave an heuristic
solution imitating the linear case. Let us first consider one of the case studied by
Gurevich and Pitaevski, namely a decreasing step initial data

f (x) =
{

c for x < 0, c > 0,
0 for x > 0. (37)

Using the Galileian invariance of KdV equation, namely x→ x+ 6Ct, t → t and
u→ u+C, every initial data with a single step can be reduced to the above form. The
above step initial data is invariant under the rescaling x/ε→ x and t/ε→, therefore,
in this particular case it is completely equivalent to study the small ε asymptotic, or
the long time asymptotics of the solution.

Such initial data is called compressive step, and the solution of the Hopf equation
vt +6vvx = 0 (ε = 0 in (36) ) develop a shock for t > 0. The shock front s(t) moves
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with velocity 3ct while the multi-valued piece-wise continuos solution of the Hopf
equation vt +6vvx = 0 for the same initial data is given by

v(x, t) =



c for x < 6tc,

x
6t

for 0≤ x≤ 6tc,

0 for x≥ 0.

For t > 0 the solution u(x, t;ε) of the KdV equation develops a train of oscilla-
tions near the discontinuity. These oscillations are approximately described by the
travelling wave solution (33) of the KdV equation where βi = βi(x, t), i = 1,2,3,
evolve according to the Whitham equations. However one needs to fix the solution
of the Whitham equations. Given the self-similar structure of the solution of the
Hopf equation, it is natural to look for a self-similar solution of the Whitham equa-
tion in the form βi = βi(z) with z =

x
t

. Applying this change of variables to the
Whitham equations one obtains

(λi− z)
∂βi

∂ z
= 0, i = 1,2,3, (38)

whose solution is λi = z or ∂zβi = 0. A natural request that follows from the rela-
tions (28) and (29) is that at the right boundary of the oscillatory zone z+, when
β1(z+) = β2(z+), the function β3 has to match the Hopf solution that is constant
and equal to zero, namely β3(z+) = 0. Similarly, at the left boundary z− when
β2(z−) = β3(z−), the function β1(z−) = c so that it matches the Hopf solution. From
these observations it follows that the solution of (38) for z− ≤ z≤ z+ is given by

β1(z) = c, β3(z) = 0, z = λ2(c,β2,0). (39)

In order to determine the values z± it is sufficient to let β2 → c and β2 → 0 re-
spectively in the last equation in (39). Using the relations (28) and (29) one has
λ2(c,c,0) = 4c and λ2(c,0,0) =−6c so that

z− =−6c, or x−(t) =−6ct and z+ = 4c, or x+(t) = 4ct.

According to Gurevich and Pitaevski for −6ct < x < 4t and t � 1, the asymptotic
solution of the Korteweg de Vries equation with step initial data (37) is given by the
modulated travelling wave solution (30), namely

u(x, t;ε)' c−β2 +2β2 cn2
(√

c
ε

(x−2t(c+β2))+
K(m)

πε
φ0 +K(m);m

)
, (40)

with

m =
β2(x, t)

c
,
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where β2(x, t) is given by (39). The phase φ0 in (40) has not been described by
Gurevich and Pitaevski. Finally in the remaining regions of the (x, t > 0) one has

u(x, t,ε)'
{

c for x <−6ct,
0 for x > 4ct.

This heuristic description has been later proved in a rigorous mathematical way
(see the next section). We remark that at the right boundary x+(t) of the oscillatory
zone, when β2 → c, β1 → c and β3 → 0, the cnoidal wave (40) tends to a soliton,
cn(z;m)→ sechz as m→ 1.
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t=12

Fig. 1 In black the initial data (a smooth step) and in blue KdV solution at time t = 12 and ε = 1.
One can clearly see the height of the rightmost oscillation (approximately a soliton) is about two
times the height of the initial step

Using the relation x+(t) = 4ct, the limit of the elliptic solution (40) when β2→
β1→ c gives

u(x, t,ε)' 2c sech2
[

x− x+(t)
ε

√
c+

1
2

log
(

16c
c−β2

)
+

φ̃0

ε

]
, (41)

where the logarithmic term is due to the expansion of the complete elliptic integral
K(m) as in (27) and c−β2 = O(ε). The determination of the limiting value of the
phase φ̃0 requires a deeper analysis [11]. The important feature of the above formula
is that if the argument of the sech term is approximately zero near the point x+(t),
then the height of the rightmost oscillation is twice the initial step c. This occurs for
a single step initial data (see figure 1) while for step-like initial data as in figure 2
this is clearly less evident.

The Gurevich Pitaevsky problem has been studied also for perturbations of
the KdV equation with forcing, dissipative or conservative non integrable terms
[24],[37],[38] and applied to the evolution of solitary waves and undular bores in
shallow-water flows over a gradual slope with bottom friction [25].
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3.1 Long time asymptotics

The study of the long time asymptotic of the KdV solution was initiated around
1973 with the work of Gurevich and Pitaevski [31] for step-initial data and Ablowitz
and Newell [1] for rapidly decreasing initial data. By that time it was clear that for
rapidly decreasing initial data the solution of the KdV equation splits into a number
of solitons moving to the right and a decaying radiation moving to the left. The first
numerical evidence of such behaviour was found by Zabusky and Kruskal [42]. The
first mathematical results were given by Ablowitz and Newell [1] and Tanaka [51]
for rapidly decreasing initial data. Precise asymptotics on the radiation part were
first obtained by Zakharov and Manakov, [61], Ablowitz and Segur [2] and Bus-
laev and Sukhanov [7], Venakides [57]. Rigorous mathematical results were also
obtained by Deift and Zhou [17], inspired by earlier work by Its [36]; see also the
review [14] and the book [49] for the history of the problem. In [2], [32] the region
with modulated oscillations of order O(1) emerging in the long time asymptotics
was called collisionless shock region. In the physics and applied mathematics liter-
ature such oscillations are also called dispersive shock waves, dissipationless shock
wave or undular bore. The phase of the oscillations was obtained in [16]. Soon after
the Gurevich and Pitaevski’s paper, Khruslov [40] studied the long time asymptotic
of KdV via inverse scattering for step-like initial data. In more recent works, us-
ing the techniques introduced in [17], the long time asymptotic of KdV solution
has been obtained for step like initial data improving some error estimates obtained
earlier and with the determination of the phase φ0 of the oscillations [23], see also
[3]. Long time asymptotic of KdV with different boundary conditions at infinity has
been considered in [5]. The long time asymptotic of the expansive step has been
considered in [46].

Here we report from [23] about the long time asymptotics of KdV with step like
initial data f (x), namely initial data converging rapidly to the limits{

f (x)→ 0 for x→+∞

f (x)→ c > 0 for x→−∞,
(42)

but in the finite region of the x plane any kind of regular behaviour is allowed. The
initial data has to satisfy the extra technical assumption of being sufficiently smooth.
Then the asymptotic behaviour of u(x, t;ε) for fixed ε and t→ ∞ has been obtained
applying the Deift-Zhou method in [17]:

• in the region x/t > 4c+ δ , for some δ > 0, the solution is asymptotically given
by the sum of solitons if the initial data contains solitons otherwise the solution
is approximated by zero at leading order;

• in the region−6c+δ1 < x/t < 4c−δ2, for some δ1,δ2 > 0, (collision-less shock
region) the solution u(x, t;ε) is given by the modulated travelling wave (40), or
using ϑ -function by (33), namely
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u(x, t;ε) = β2(x, t)− c+2c
E(m)

K(m)
+

2k2

(2π)2

(
logϑ

(
kx−ωt +φ0

2πε
;τ

))′′
+o(1)

(43)
where

k = π

√
c

K(m)
, ω = 2k(c+β2), m =

β2(x, t)
c

with β2 = β2(x, t) determined by (39). In the above formula the prime in the
logϑ means derivative with respect to the argument, namely (logϑ(z0;τ))′′ =
d2

dz2 logϑ(z+ z0;τ))|z=0. The phase φ0 is

φ0 =
k
π

∫ c

β2

log |T̄ (i√z)T1(i
√

z)|dz√
z(c− z)(z−β2)

, (44)

where T and T1 are the transmission coefficients of the Schrödinger equation

ε2 d2

dx2Ψ + f (x)Ψ =−λΨ from the right and left respectively.
The remarkable feature of formula (43) is that the description of the collision-
less shock region for step-like initial data coincides with the formula obtained by
Gurevich and Pitaevsky for the single step initial data (37) up to a phase factor.
Indeed the initial data is entering explicitly through the transmission coefficients
only in the phase φ0 of the oscillations.

• In the region x/t <−6t−δ3, for some constant δ3 > 0, the solution is asymptot-
ically close to the background c up to a decaying linear oscillatory term.

We remark that the higher order correction terms of the KdV solution in the
large t limit can be found in [2], [7], [23], [61]. For example in the region x <−6tc
the solution is asymptotically close to the background c up to a decaying linear
oscillatory term. We also remark that the boundaries of the above three regions of
the (x, t) plane have escaped our analysis. In such regions the asymptotic description
of the KdV solution is given by elementary functions or Painlevé trascendents see
[50] or the more recent work [6].

The technique introduced by Deift-Zhou [17] to study asymptotics for integrable
equations has proved to be very powerful and effective to study asymptotic be-
haviour of many other integrable equations like for example the semiclassical limit
of the focusing nonlinear Schrödinger equation [39], the long time asymptotics of
the Camassa-Holm equation [6] or the long time asymptotic of the perturbed defo-
cusing nonlinear Schrödinger equation [18].
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Fig. 2 On top the step-like initial data and on bottom the solution at time t = 12. One can clearly
see the soliton region containing two solitons and the collision-less shock region where modulated
oscillations are formed.

3.2 Small ε asymptotic

The idea of the formation of an oscillatory structure in the limit of small dispersion
of a dispersive equation belongs to Sagdeev [48]. Gurevish and Pitaevskii in 1973
called the oscillations, arising in the small dispersion limit of KdV, dispersive shock
waves in analogy with the shock waves appearing in the zero dissipation limit of the
Burgers equation. A very recent experiment in a water tank has been set up where
the dispersive shock waves have been reproduced [55].
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Fig. 3 In blue the solution of the KdV equation for the initial data f (x) = −sech2(x) at the time
t = 0.55 for ε = 10−1. In black the (multivalued) solution of the Hopf equation for the same initial
data and for several times: t = 0, t = tc = 0.128, t = 0.35 and t = 0.55.
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The main steps for the description of the dispersive shock waves are the follow-
ing:

• as long as the solution of the Cauchy problem for Hopf equation vt + 6vvx = 0
with the initial data v(x,0) = f (x) exists, then the solution of the KdV equa-
tion u(x, t;ε) = v(x, t) +O(ε2). Generically the solution of the Hopf equation
obtained by the method of characteristics

v(x, t) = f (ζ ), x = f (ζ )t +ζ , (45)

develops a singularity when the function ζ = ζ (x, t) given implicitly by the
map x = f (ζ )t + ζ is not uniquely defined. This happens at the first time when
f ′(ζ )t + 1 = 0 and f ′′(ζ ) = 0 (see Figure 3). These two equations and (45) fix
uniquely the point (xc, tc) and uc = v(xc, tc). At this point, the gradient blow up:
vx(x, t)|xc,tc → ∞.

• The solution of the KdV equations remains smooth for all positive times. Around
the time when the solution of the Hopf equation develops its first singularity at
time tc, the KdV solution, in order to compensate the formation of the strong gra-
dient, starts to oscillate, see Figure 3. For t > tc the solution of the KdV equation
u(x, t;ε) is described as ε → 0 as follows:

– there is a cusp shape region of the (x, t) plane defined by x−(t) < x < x+(t)
with x−(tc) = x+(tc) = xc. Strictly inside the cusp, the solution u(x, t;ε) has an
oscillatory behaviour which is asymptotically described by the travelling wave
solution (33) where the parameters β j = β j(x, t), j = 1,2,3, evolve according
to the Whitham modulation equations.

– Strictly outside the cusp-shape region the KdV solution is still approximated
by the solution of the Hopf equation, namely u(x, t;ε) = v(x, t)+O(ε2).

Later the mathematicians Lax-Levermore [44] and Venakides [58], [59] gave a rig-
orous mathematical derivation of the small dispersion limit of the KdV equation
by solving the corresponding Cauchy problem via inverse scattering and doing
the small ε asymptotic. Then Deift, Venakides and Zhou [15] obtained an explicit
derivation of the phase φ0. The error term O(ε2) of the expansion outside the oscil-
latory zone was calculated in [12]. For analytic initial data, the small ε asymptotic of
the solution u(x, t;ε) of the KdV equation is given for some times t > tc and within
a cusp x−(t)< x < x+(t) in the (x, t) plane by the formula (33) where β j = β j(x, t)
solve the Whitham modulations equations (22). The phase φ0 in the argument of the
theta-function will be described below. In the next section we will explain how to
construct the solution of the Whitham equations.

3.2.1 Solution of the Whitham equations

The solution β1(x, t)> β2(x, t)> β3(x, t) of the Whitham equations can be consid-
ered as branches of a multivalued function and it is fixed by the following conditions.
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• Let (xc, tc) be the critical point where the solution of the Hopf equation develops
its first singularity and let uc = v(xc, tc). Then at t = tc

β1(xc, tc) = β2(xc, tc) = β3(xc, tc) = uc;

• for t > tc the solution of the Whitham equations is fixed by the boundary value
problem ( see Fig.4)

– when β2(x, t) = β3(x, t), then β1(x, t) = v(x, t);
– when β1(x, t) = β2(x, t), then β3(x, t) = v(x, t),

where v(x, t) solve the Hopf equation.

From the integrability of the KdV equation, one has the integrability of the Whitham
equations [22]. This is a non trivial fact. However we give it for granted and assume
that the Whitham equations have an infinite family of commuting flows:

∂

∂ s
βi +wi

∂

∂x
βi = 0, i = 1,2,3.

The compatibility condition of the above flows with the Whitham equations (22),

implies that
∂

∂ t
∂

∂ s
βi =

∂

∂ s
∂

∂ t
βi. From these compatibility conditions it follows that

1
wi−w j

∂

∂β j
wi =

1
λi−λ j

∂

∂β j
λi, i 6= j (46)

where the speeds λi’s are defined in (22).
Tsarev [56] showed that if the wi = wi(β1,β2,β3) satisfy the above linear overde-

termined system, then the formula

x = λit +wi, i = 1,2,3, (47)

that is a generalisation of the method of characteristics, gives a local solution of the
Whitham equations (22). Indeed by subtracting two equations in (47) with different
indices we obtain

(λi−λ j)t +wi−w j = 0, or t =−
wi−w j

λi−λ j
. (48)

Taking the derivative with respect to x of the hodograph equation (47) gives

3

∑
j=1

(
∂λi

∂β j
t +

∂wi

∂β j

)
∂β j

∂x
= 1.

Substituting in the above formula the time as in (48) and using (46), one get that
only the term with j = i surveys, namely
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∂λi

∂βi
t +

∂wi

∂βi

)
∂βi

∂x
= 1.

In the same way, making the derivative with respect to time of (47) one obtains(
∂λi

∂βi
t +

∂wi

∂βi

)
∂βi

∂ t
+λi = 0.

The above two equations are equivalent to the Whitham system (22). The transfor-
mation (47) is called also hodograph transform. To complete the integration one
needs to specify the quantities wi that satisfy the linear overdetermined system (46).
As a formal ansatz we look for a conservation law of the form

∂sk+∂x(kq) = 0,

with k the wave number and the function q = q(β1,β2,β3) to be determined (recall
that q = 2(β1 + β2 + β3) for the Whitham equations (22)). Assuming that the βi
evolves independently, such ansatz gives wi of the form

wi =
1
2

(
vi−2

3

∑
k=1

βk

)
∂q
∂βi

+q, i = 1,2,3. (49)

Plugging the expression (49) into (46), one obtains equations for the function q =
q(β1,β2,β3)

∂q
∂βi
− ∂q

∂β j
= 2(βi−β j)

∂ 2q
∂βi∂β j

, i 6= j, i, j = 1,2,3. (50)

Such system of equations is a linear over-determined system of Euler-Poisson Dar-
boux type and it was obtained in [33] and [53]. The boundary conditions on the βi
specified at the beginning of the section fix uniquely the solution. The integration
of (50) was performed for particular initial data in several different works (see e.g.
[37], or [47], [33]) and for general smooth initial data in [53],[54]. The boundary
conditions require that when β1 = β2 = β3 = β , then q(β ,β ,β ) = hL(β ) where hL
is the inverse of the decreasing part of the initial data f (x). The resulting function
q(β1,β2,β3) is [53]

q(β1,β2,β3) =
1

2
√

2π

∫ 1

−1

∫ 1

−1
dµdν

hL(
1+µ

2 ( 1+ν

2 β1 +
1−ν

2 β2)+
1−µ

2 β3)√
1−µ

√
1−ν2

. (51)

For initial data with a single negative hump, such formula is valid as long as β3 >
fmin which is the minimum value of the initial data. When β3 goes beyond the hump
one needs to take into account also the increasing part hR of the inverse the initial
data f , namely [54]
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q(β1,β2,β3) =
1

2π

∫
β1

β2

dλ

(∫ −1

β3

dξ hR(ξ )√
λ −ξ

+
∫

λ

−1

dξ hL(ξ )√
λ −ξ

)
√
(β1−λ )(λ −β2)(λ −β3)

. (52)
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Fig. 4 The thick line (green, red and black) shows the solution of the Whitham equations
β1(x, t) ≥ β2(x, t) ≥ β3(x, t) at t = 0.4 as branches of a multivalued function for the initial data
f (x) =−sech2(x). At this time, β3 goes beyond the negative hump of the initial data and formula
(52) has been used. The solution of the Hopf equation including the multivalued region is plotted
with a dashed grey line, while the solution of the KdV equation for ε = 10−2 is plotted with a
blue line. We observe that the multivalued region for the Hopf solution is sensible smaller then the
region where the oscillations develops, while the Whitham zone is slightly smaller.

Equations (47) define β j, j = 1,2,3, in an implicit way as a function of x and
t. The actual solvability of (47) for β j = β j(x, t) was obtained in a series of papers
by Fei-Ran Tian [52] [54] (see Fig. 4). The Whitham equations are a systems of
hyperbolic equations, and generically their solution can suffer blow up of the gra-
dients in finite time. When this happen the small ε asymptotic of the solution of
the KdV equation is described by higher order θ -functions and the so called multi-
phase Whitham equations [27]. So generically speaking the solvability of system
(47) is not an obvious fact. The main results of [52],[53] concerning this issue are
the following:

• if the decreasing part of the initial data, hL is such that h′′′L (uc) < 0 (generic
condition) then the solution of the Whitham equation exists for short times t > tc.

• If furthermore, the initial data f (x) is step-like and non increasing, then under
some mild extra assumptions, the solution of the Whitham equations exists for
short times t > tc and for all times t > T where T is a sufficiently large time.

These results show that the Gurevich Pitaevski description of the dispersive shock
waves is generically valid for short times t > tc and, for non increasing initial data,
for all times t > T where T is sufficiently large. At the intermediate times, the
asymptotic description of the KdV solution is generically given by the modulated
multiphase solution of KdV (quasi-periodic in x and t ) where the wave parameters
evolve according to the multi-phase Whitham equations [27]. The study of these
intermediate times has been considered in [30], [4],[3].
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To complete the description of the dispersive shock wave we need to specify the
phase of the oscillations in (54). Such phase was derived in [15] and takes the form

φ0 =−kq, (53)

where k =
π
√

β1−β3

K(m)
is the wave number and the function q = q(β1,β2,β3) has

been defined in (51) or (52). The simple form (53) of the phase was obtained in [28].
Finally the solution of the KdV equation u(x, t;ε) as ε → 0 is described as follows

• in the region strictly inside the cusp x−(t)< x < x+(t) it is given by the asymp-
totic formula

u(x, t,ε) = β1 +β2 +β3 +2α +2ε
2 ∂ 2

∂x2 logϑ

(
kx−ωt− kq)

2πε
;τ

)
+O(ε) (54)

where β j = β j(x, t) is the solution of the Whitham equation constructed in this
section. The wave number k, the frequency ω and the quantities τ and α are
defined in (31), (34) and (24) respectively and q is defined in (51) and (52).
When performing the x-derivative in (54) observe that

∂x(kx−ωt− kq) = k,

because of (47) and (49).
• For x > x+(t)+δ and x < x−(t)−δ for some positive δ > 0, the KdV solution

is approximated by
u(x, t,ε) = v(x, t)+O(ε2)

where v(x, t) is the solution of the Hopf equation.
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Fig. 5 The solution of the KdV equation and its approximations for the initial data f (x) =
−sech2(x) and ε = 10−2 at two different times t = 0.3 and t = 0.4. The blu dash-dot line is the
KdV solution, the black line is the elliptic asymptotic formula (54) which is on top of the KdV
solution, the black dash line is the solution of the Hopf equation while the green, red and aviation
blue lines are the solution of the Whitham equations β1 ≥ β2 ≥ β3.
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Let us stress the meaning of the formula (54): such formula shows that the lead-
ing order behaviour of the KdV solution u(x, t;ε) in the limit ε → 0 and for generic
initial data is given in a cusp-shape region of the (x, t) plane by the periodic trav-
elling wave of KdV. However to complete the description one still needs to solve
an initial value problem, for three hyperbolic equations, namely the Whitham equa-
tions, but the gain is that these equations are independent from ε .

A first approximation of the boundary x±(t) of the oscillatory zone for t − tc
small, has been obtained in [28] by taking the limit of (47) when β1 = β2 and β2 =
β3. This gives

x+(t)' xc +6uc(t− tc)+
4
√

10
3
√
−h′′′L (uc)

(t− tc)
3
2 ,

x−(t)' xc +6uc(t− tc)−
36
√

2√
−h′′′L (uc)

(t− tc)
3
2 ,

where hL is the decreasing part of the initial data. Such formulas coincide with the
one obtained in [31] for cubic initial data.

We conclude pointing out that in [28] a numerical comparison of the asymp-
totic formula (54) with the actual KdV solution u(x, t;ε) has been considered for
the intial data f (x) =−sech2x. Such numerical comparison has shown the existence
of transition zones between the oscillatory and non oscillatory regions that are de-
scribed by Painlevé trascendant and elementary functions [9],[10],[11]. Looking for
example to Fig. 5 it is clear that the KdV oscillatory region is slightly larger then the
region described by the elliptic asymptotic (54) where the oscillations are confined
to x−(t)≤ x≤ x+(t).

Of particular interest is the solution of the KdV equation near the region where
the oscillations are almost linear, namely near the point x−(t). It is known [30, 52]
that taking the limit of the hodograph transform (47) when β2 = β3 = ξ and β1 = v,
one obtains the system of equations

x−(t) = 6tv(t)+hL(v(t)),
6t +φ(ξ (t);v(t)) = 0,
∂ξ φ(ξ (t);v(t)) = 0,

(55)

that determines uniquely x−(t) and and v(t)> ξ (t). In the above equation the func-
tion

φ(ξ ;v) =
1

2
√

v−ξ

∫ v

ξ

h′L(y)dy√
y−ξ

, (56)

and hL is the decreasing part of the initial data. The behaviour of the KdV solution
is described near the edge x−(t) by linear oscillations, where the envelope of the
oscillations is given by the Hasting Mcleod solution to the Painlevé II equation:

q′′(s) = sq+2q3(s). (57)
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The special solution in which we are interested, is the Hastings-McLeod solution
[34] which is uniquely determined by the boundary conditions

q(s) =
√
−s/2(1+o(1)), as s→−∞, (58)

q(s) = Ai(s)(1+o(1)), as s→+∞, (59)

where Ai(s) is the Airy function. Although any Painlevé II solution has an infinite
number of poles in the complex plane, the Hastings-McLeod solution q(s) is smooth
for all real values of s [34] .

The KdV solution near x−(t) and in the limit ε → 0 in such a way that

lim
ε→0

x→x−(t)

x− x−(t)
ε2/3 ,

remains finite, is given by [10]

u(x, t,ε) = v(t)− 4ε1/3

c1/3 q(s(x, t,ε))cos
(

Θ(x, t)
ε

)
+O(ε

2
3 ). (60)

where
Θ(x, t) = 2

√
v−ξ (x− x−)+2

∫ v

ξ

(h′L(y)+6t)
√

y−ξ dy

and

c =−
√

v−ξ
∂ 2

∂ξ 2 φ(ξ ;v)> 0, s(x, t,ε) =− x− x−(t)

c1/3
√

v−ξ ε2/3
.
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Fig. 6 The solution of the KdV equation in blue and its approximation (60) in green for the initial
data f (x) = −sech2(x) and ε = 10−2 at t = 0.4. One can see that the green and blue lines are
completely overlapped when the oscillations are small.
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Note that the leading order term in the expansion (60) of u(x, t,ε) is given by v(t)
that solves the Hopf equation while the oscillatory term is of order ε1/3 with oscil-
lations of wavelength proportional to ε and amplitude proportional to the Hastings-
McLeod solution q of the Painlevé II equation. From the practical point of view
it is easier to use formula (60), then (54) since one needs to solve only an ODE
(the Painlevé II equation) and three algebraic equations, namely (55). One can see
from figure (6) that the asymptotic formula (60) gives a good approximation (up to
an error O(ε

2
3 )) of the KdV solution near the leading edge where the oscillations

are linear, while inside the Whitham zone, it gives a qualitative description of the
oscillations [29].

Another interesting asymptotic regime is obtained when one wants to describe
the first few oscillations of the KdV solution in the small dispersion limit. In this
case the so called Painlevé I2 asymptotics should be used. Furthermore we point
out that it is simpler to solve one ODE, rather then the Whitham equations. For
example, near the critical point xc and near the critical time the following asymptotic
behaviour has been conjectured in [20] and proved in [9]

u(x, t,ε)' uc+

(
2ε2

σ2

)1/7

U

(
x− xc−6uc(t− tc)

(8σε6)
1
7

;
6(t− tc)

(4σ3ε4)
1
7

)
+O

(
ε

4/7
)
, (61)

where σ = −h′′′L (uc), and U = U(X ,T ) is the unique real smooth solution to the
fourth order ODE [13]

X = T U−
[

U3

6
+

1
24

(U2
X +2U UXX )+

1
240

UXXXX

]
, (62)

which is the second member of the Painlevé I hierarchy (PI2 ). The relevant solution
is uniquely [? ] characterized by the asymptotic behavior

U(X ,T ) =∓(6|X |)1/3∓ 1
3

62/3T |X |−1/3 +O(|X |−1), as X →±∞, (63)

for each fixed T ∈ R. Such Painlevé solution matches, the elliptic solution (54) for
the cubic inital data f (x) = −x

1
3 for large times [8]. Such solution of the PI2 has

been conjectured to describe the initial time of the formation of dispersive shock
waves for general Hamiltonian perturbation of hyperbolic equations [21].

We conclude by stressing that the asymptotic descriptions reviewed in this chap-
ter for the KdV equation can be developed for other integrable equations like the
nonlinear Schrödinger equation, [39] the Camass-Holm equation [6] or the modi-
fied KdV equation [41].
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