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Abstract
We present a new proposal for what to do at limits in the revision theory. The usual
criterion for a limit stage is that it should agree with any definite verdicts that have
been brought about before that stage. We suggest that one should not only consider
definite verdicts that have been brought about but also more general properties; in
fact any closed property can be considered. This more general framework is required
if we move to considering revision theories for concepts that are concerned with real
numbers, but also has consequences for more traditional revision theories such as the
revision theory of truth.

Keywords Revision theory · Self-reference · Circular definitions · Taking limits ·
Probability

1 Introduction

The revision theory is an influential method of working with concepts that are charac-
terised by circular definitions, i.e. definitions that refer to that very notion. The most
widely studied instance of the revision theory is the revision theory of truth, which
was initially developed by Herzberger and Gupta (independently) to study truth in a
way that can account for the liar paradox: a sentence which says of itself that it is not
true. They take the equivalence “ϕ is true” if and only if ϕ to be one of definition.
To apply the definition one starts with a hypothesis about the interpretation of ‘true’
and then revises this hypothesis in accordance with the definition to determine a new
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interpretation. This revised hypothesis can then itself be revised, and so on. This pro-
cess of taking a hypothesis and ‘revising’ it forms the basis of the revision theory of
truth. One thereby obtains a sequence of hypotheses.

The revision sequence that results will typically extend into the transfinite. One
needs a criterion for what to do at limit stages as there’s no immediately preceding
stage which one can apply the revision step to. The limit stages instead sum up the
information in the sequence of hypotheses up to that stage. Exactly how to sum up
such information is the topic of this paper: we will propose a limiting policy that
imposes more constraints than the one usually considered. Although there are differ-
ent proposals in the literature for what to do at the limit stage, they all have a common
core: a limit stage should sum up any definite verdicts that have been brought about
by the sequence up to that stage. We give an alternative proposal for what to do at lim-
its: we suggest one should not only take into account the definite verdicts that have
been brought about but also other properties of the hypotheses. We will not specify
exactly which properties should be considered but instead give a framework which
allows for more general properties. The usual limiting criterion is the weakest of the
class of criteria that we consider.

As has been urged by Belnap [1], and further in Gupta and Belnap [6], the revision
theory is in fact a quite general account of circular definitions. Whenever a concept is
associated with a circular definition a natural revision rule is determined and then the
revision theory can be used to account for the operation of this concept. One applica-
tion of the revision theory is to study concepts that are concerned with real numbers;
for example notions of probability or degrees-of-truth. For example it might be used
to model an agent rationally reflecting on her credences. If one wants to study such
concepts, then the usual limit rule from the revision theory is not sufficient: if one
has a revision sequence where the probability of a sentence converges to 1/2 , then
one might plausibly want the limit rule to require that the probability of that sentence
is equal to 1/2 at the limit stage. We account for such convergence by considering not
just definite verdicts that have been brought about, but also additional properties of
the hypotheses such as: the probability of a sentence is at least 1/4. We will want to
restrict our attention to properties that act nicely under limits. For example the prop-
erty of having the probability of a sentence be strictly less than 1 does not act nicely
under limits: a sequence of hypotheses might all have this property and converge to
another hypothesis that does not have that property. These notions of convergence
and limits can be made precise using topology. We impose the constraint that the only
properties that should be considered are those where the set of hypotheses they deter-
mine is a closed set in the topological sense. We will then call the associated property
a closed property. This restriction to closed properties allows us to show that so long
as the underlying space of hypotheses has a certain feature, namely that the topology
on it is compact, the limit criterion we impose will be satisfiable.

So the move to considering revision theories where one is interested in concepts
like probability motivates a move to considering more general properties of hypothe-
ses that are brought about, as that then allows one to account for convergence. Once
we are considering more general properties we might be interested in the strongest
such limit criterion: where all closed properties are considered. This proposal also
has some interesting consequences for the revision theory of truth: if one adopts this



Limits in the Revision Theory

more restrictive limit criterion, then one obtains the result that limit hypotheses will
be required to have additional properties, for example the interpretation of the truth
predicate will be maximally consistent. This is a departure from traditional limit cri-
teria but is perhaps desirable because now all the hypotheses in the revision sequence
satisfy minimal criteria one might hope for from an interpretation of the truth pred-
icate. This means that we can also obtain interesting theories by determining what
ends up holding at all limit stages.1

The paper proceeds as follows: In Section 2 we will present our proposal for the
limit stage criteria in their general form. The proposal is only legitimate if the topol-
ogy has certain properties, which are outlined in Section 2.1; that section is separated
as some readers may wish to skip it. In Section 3 we present the revision theory of
truth and discuss how these new limit stage criteria make a difference. In Section 4
we discuss how the limit stage criteria affect the revision theory if the hypothesis
space involves reals. Here we see that such a generalisation of the limit criterion is
needed to do the intended job of the limit stage. In that section we first generally
discuss how the limit criteria should apply (Section 4.1), then present examples of
how the strongest criterion, Coherence of all Closed Properties, works (Section 4.2),
then we discuss what results if alternative collections of properties are considered
(Section 4.3), and finally present a sample revision rule that might be appropriate for
a revision theory of probability (Section 4.4). In Section 5 we conclude.

2 Limits in the Revision Theory

In a revision theory one constructs a sequence of hypotheses. Each hypothesis typi-
cally provides a hypothetical interpretation of a concept of interest and the sequence
is given by revising the hypotheses. In its general form, then, the revision sequence
can be seen to be a sequence of hypotheses, h0, h1, h2, . . ., where each hypothesis is
drawn from a space of possible hypotheses H . There is an underlying rule, called a
revision rule, which determines how one moves from one hypothesis to the next. The
revision rule is a function ρ : H → H , and the revision sequence needs to be such
that hn+1 = ρ(hn).

Usually just considering the revision sequence as an ω-length sequence of
hypotheses obtained by iterating the revision rule is not enough. For example in the
case of truth, if one wants to ensure that T�∀nTn�0 = 0�� comes out as true one
might have to move to stages beyond ω.2

1It should be noted that limit ordinals that are not of the form α + ω aren’t well controlled by this limit
policy. A theory which reads off what holds in limits should thus either only focus on ordinals of the form
α + ω, or one should weaken the notion of ‘brought about’ to be that of near stability. See Campbell-
Moore [2, Section 5.4] especially Theorem 5.4.2 for theories of this kind, where the near stability variant
of Coherence of all Closed Properties is being used.

2Here, Tn�ϕ� denotes n-applications of the truth predicate:

n
︷ ︸︸ ︷

T�. . . T�ϕ��. More carefully, Tnx is shorthand
for Tf. (n, x), where f. represents the function f defined recursively by f (0, x) = x, f (n + 1, x) =
�Tf (n, x)�. (See Halbach [7, Theorem 13.9], or in its original form Mcgee [11].)
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A revision sequence is thus a transfinite sequence of hypotheses

h0, h1, . . . hω, hω+1, . . .

These will follow the revision rule for the successor stage, so hα+1 = ρ(hα). We also
need to impose certain requirements on what the limit hypotheses should be like in a
revision sequence. What requirements can be imposed is the topic of this paper.

In Gupta’s first published presentation of his theory he says:

Intuitively what is wanted is a way of summing up the improvements that are
brought about by each successive application of τM [in our notation: ρ]. That is,
we want a way of going from the improvements that are severally brought about
by the various applications of τM to the improvements that are collectively
brought about by those applications. (Gupta [5], p. 39)

That’s the informal idea. It is usually turned into a precise criterion as follows:

At a limit stage μ, one “sums up” the effects of earlier revisions: if the revision
process up to μ has yielded a definite verdict on an element, d, (i.e., if d has
stabilized in the process) then this verdict is reflected in the μth hypothesis;
(Gupta and Belnap [6], p. 168)

In this, Gupta and Belnap are specifically just considering hypothesis spaces that
have the form XD ,3 i.e. where a hypothesis is a choice of a ‘value’, or member of X,
for each member of D. For example a choice of ‘truth value’, true or not-true, to each
sentence.

The criterion that is usually applied at limit stages is thus:

COHERENCE OF DEFINITE VERDICTS. If d is stably x in 〈hα〉α<μ, then hμ

assigns value x to d.

where we say that d is stably x in a sequence of hypotheses if there is a point before
μ after which the value of the element d has settled down on x.4

This Coherence of Definite Verdicts is then usually used to provide the limit crite-
rion in the definition of a revision sequence: (we add the specifier ‘definite verdicts’
because we will generalise the definition)

Definition 1 Fix a hypothesis space XD and a revision rule ρ. A definite verdicts
revision sequence is a sequence of hypotheses 〈hα〉 where:
– For each α, hα+1 = ρ(hα),
– For each limit ordinal μ, Coherence of Definite Verdicts is satisfied.

In this characterisation, the only kinds of properties that are considered in deter-
mining whether the limit stage coheres with the previous stages are the definite

3We useXD to mean either aD-indexed product ofX or to denote the collection of functions fromD toX,
noting that these two spaces have easy translations back and forth. We stick to the product representation
because we then use the product topology on this space.
4Formally we say d is stably x if {h |h(d) = x} is stable in 〈hα〉α<μ in the sense of Definition 2.



Limits in the Revision Theory

verdicts. However in this paper we will argue that one should have a more encom-
passing characterisation. We take the limit rule to generally be accounted for by
something of the form:

If a property of interest of the hypotheses is brought about by the sequence
beneath μ then it should be satisfied at the μth stage.

To obtain specific criteria we need to specify what properties of the hypotheses are
of interest and what it means to be brought about.

We will not specify what the correct collection of properties is; we will just impose
certain constraints on legitimate collections and consider the range of limit criteria
that this can lead to. For this essay we will be taking an extensional perspective on
the notion of a property and equating them with sets of hypotheses. We find the
talk of properties helpful for presentation but don’t take this to impose any formal
constraints.5

For simplicity of this paper we keep ‘being brought about’ to be characterised
by stability, as is usual in the revision theory. Informally a property is stable in a
sequence if the hypotheses in that sequence all end up having that property. Formally,
then:

Definition 2 A set of hypotheses, A ⊆ H , (informally we are calling A a property)
is stable in 〈hα〉α<μ if there is some β < μ such that for all α with β < α < μ,
hα ∈ A.

In fact we have leanings towards counting properties that are merely nearly stable
to also count as being brought about, where near stability weakens stability by requir-
ing that the property is satisfied from some point onwards except for finitely many
stages following limit ordinals.6 This will only make a difference at ordinals, like ω2,
which are not of the form α+ω, and can lead to some behaviour at such ordinals that
might be thought of as desirable, as discussed on Page 23. The near stability vari-
ant is adopted in Campbell-Moore [2], but the focus of this paper is the question of
which properties should be considered instead of how best to understand the notion
of ‘brought about’, so we will not further consider the near stability variant.7

So the general form of the limit criteria is the following, for an appropriate choice
of P (pronounced ‘properties of interest’) which is a collection of sets of hypotheses:
COHERENCE OF P . If A ∈ P and A is stable in 〈hα〉α<μ, then hμ ∈ A.

One then defines the corresponding revision sequences:

5For example we will talk about any set of hypotheses as a property, even those that aren’t governed by a
defining formula.
6More precisely:

∃β < μ ∀α
<μ
>β ∃N < ω ∀n <ω

>N , hα+n ∈ A.

Where, e.g., ∀α
<μ
>β is a restricted quantifier, so is shorthand for ∀α ( β < α < μ → . . .).

7One further consideration for not here focusing on near stability is that we are not certain that it is quite
general enough: near stability allows for ignoring finite stages following limit ordinals, but we might thing
that some more general arbitrary stability which allows one to ignore appropriate bounded (but possibly
infinite) regions after ordinals. Such considerations would take us too far away from our main topic.
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Definition 3 Fix a hypothesis space H and a revision rule ρ. A P-revision sequence
is a sequence of hypotheses 〈hα〉 where:
– For each α, hα+1 = ρ(hα),
– For each limit ordinal μ, Coherence of P is satisfied.

The usual limit criterion is an instance of this criterion where P is taken to be
just the definite verdicts. But we also can allow for other properties to be taken into
account, i.e. consider a more encompassing P .

There are some properties which are inappropriate to consider in this criterion
because they aren’t the sorts of properties that we would even want to ensure limits
cohere with respect to. Consider a property of a real number: being strictly smaller
than 1. Even if a sequence of hypotheses brings about this property, we might not
want to require that the property is also satisfied at the limit; for example if the real
numbers get closer and closer to 1 we might instead want to have that the limit value
is equal to 1.

We thus want to restrict the kinds of properties that can be taken into account;
and this will be done by using topological considerations: we will assume that our
hypothesis space comes with an associated topology, which will determine which
sets are closed and which are open (a set is closed iff its complement is open), and
then we restrict choices of properties of interest to those that determine a closed
set. We can use a result from topology to see why these are the sets that act nicely
under limits: A is closed iff for any h, if h can be approximated arbitrarily well by
members of A, (i.e. For each U open with h ∈ U , there is some hU ∈ A ∩ U .) then
h ∈ A.8

We will thus require that members of P be closed. This assumption will also play
an important role in our proof that there will always be some hypothesis which sat-
isfies the limit criterion, at least with an additional assumption on the underlying
hypothesis space: that the topology on it is compact.

A further restriction on appropriate choices of P that we will make is that we will
require that the definite verdicts are in P so that Coherence of P will then extend
Coherence of Definite Verdicts.

Appropriate choices of P are therefore given by choosing some collection of
propositions of interest which at least contain all definite verdicts, and only contain
closed properties. The appropriate limit criteria are then bounded by the weakest
criterion, which is the usual one, Coherence of Define Verdicts, and the strongest
criterion, Coherence of all Closed Properties:

COHERENCE OF ALL CLOSED PROPERTIES. If A is a closed property and A is
stable in 〈hα〉α<μ, then hμ ∈ A.

We will call the associated revision sequences Closed Properties Revision Sequences.
This limit criterion is in fact already familiar in topology: the hypotheses that satisfy

8See, e.g., Willard [12, Theorem 4.7b]
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Coherence of all Closed Properties are exactly the cluster points of the preceding
sequence of hypotheses.9

There are some restrictions on appropriate topologies in order to ensure that our
proposal works as required. The first requirement is that the topology is compact.
We need this to ensure that our limit criterion will always be satisfiable. The second
requirement is that the definite verdicts are closed. This is required for there to be
any choices of P that satisfy the restrictions we have imposed on legitimate choices.

These considerations and more detailed discussion of the topology will now be
given, but because the details now become a bit more abstract and involved we
present them in a separate section that can be safely skipped.

2.1 Topological Considerations

This section presents more abstract topological considerations. As just mentioned,
the reader who is less interested in such details can skip to Section 3.

We have used the notion of a closed set to set out appropriate choices of P to be
used in the limit criterion. We thus assumed that our hypothesis space comes with an
associated topology to determine which sets are closed or not. A topology is given
by choosing some of the sets to be the open ones, satisfying certain constraints: ∅
and H are open and the open sets are closed under finite intersections and arbitrary
unions. The closed sets are then defined to be the complements of open sets. One can
also directly define a topology by choosing an appropriate collection of sets to be the
closed sets, this collection will have to contain ∅ and H and be closed under finite
unions and arbitrary intersections.

There may be different topologies on a single hypothesis space, but hypothesis
spaces typically come with a standard topology. For example, the standard topology
on {t, f} has that all sets are both open and closed, and the standard topology on [0, 1]
is the topology containing the fewest open sets where each open interval (a, b) is
open. We can give a direct characterisation of the closed sets in this topology: they
are [a, b] and anything generated from these by finite unions and arbitrary intersec-
tions. Often the hypothesis space will be a product of other spaces, e.g. {t, f}SentT
where a hypothesis is an assignment of truth values to sentences, in which case one
will typically use the product topology where the underlying space(s) are given their
standard topology:10

Definition 4 The product topology on
∏

Xi is the coarsest topology (i.e. contains
the fewest open sets) where for any i0 and Ui0 open in Xi0 , {(xi) | xi0 ∈ Ui0} is open.
Open sets are thus anything that can be generated from such projections by finite
intersections and arbitrary unions.

9The μ-length sequence would be called a net in topology. See e.g. Willard [12, Definition 11.3].
10A case where we wouldn’t do that is if, for example, the different concepts added have an intimate
connection to one another; for example if one added countably many predicates: P�r for each rational r ,
then one would want that the topology on the hypothesis space ({t, f}SentP )Q is appropriately connected to
the topology Q

SentP .
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We can equivalently think of it in terms of closed sets: A set is closed if it is the
projection of a closed set (i.e. A = {(xi) | xi0 ∈ Ci0} for some Ci0 closed in Xi0 ), or
generated from these by finite unions and arbitrary intersections.

We should note an alternative picture one might have: we might start with an idea
of what properties we want to consider in this criterion then determine a topology
where all those are closed. For this latter approach it will be very important to check
that the topology is then compact. See footnote 18 for a case where compactness will
form a barrier to a situation where one might want to follow this approach.

The limit criteria we have proposed will only be legitimate if we impose some
restrictions on the topologies, and it is these restrictions that we turn to now. The first
restriction is that the topology is compact:

Definition 5 A space is compact if whenever there is a collection of open sets that
cover the whole space (i.e. every point lies in one of the sets) there is some finite
sub-collection that also covers the space.

This restriction is required to ensure that our limit criteria are satisfiable, i.e. that
there is there always a choice of hμ that satisfies Coherence of P , at least whenever
P only contains closed sets:

Proposition 6 If the topology on H is compact and P contains just closed sets, then
for any sequence 〈hα〉α<μ, there is some hμ satisfying the Coherence of P criterion.

Proof We first note the standard result about compact spaces (which is equivalent
to compactness, showing that our result is rather tight):11 If A is a family of closed
sets with the finite intersection property, i.e. for every finite F ⊆ A,

⋂

F 
= ∅, then
⋂

A 
= ∅.
Let

A := {A ∈ P | A is stable in 〈hα〉α<μ}.
Note that by the assumption on P this is a family of closed sets. We will show thatA
has the finite intersection property and by the above observation we will be able to
deduce that

⋂

A 
= ∅, i.e. there is some hμ ∈ ⋂

A. Such an hμ will be as required.
LetF be finite⊆ A. We know that for eachA ∈ F there is some βA < μ such that

for all α with βA < α < μ we have hα ∈ A. Therefore for any α � max{βA | A ∈ F}
we have hα ∈ A, and thus hα ∈ ⋂

F . So we can see that
⋂

F 
= ∅. We have
therefore shown that A has the finite intersection property, as required.

So whenever the topology on H is compact, the limit criterion can be safely
applied. There are many compact spaces, for example {t, f}with the discrete topology,

11The proof of this equivalence is very easy; it follows from the observation that
⋂

F = ∅ iff {H \
B |B ∈ F} is a cover for H . The result can be found in any introductory topology text book, e.g. Willard
[12, Theorem 17.4].
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which says that all sets are closed, or [0, 1] with the standard topology.12 An exam-
ple of a space that is not compact is (0, 1). One can account for such non-compact
spaces by adding extra elements at limits,13 but we will not further discuss this.

Furthermore, spaces that are ‘built from’ compact spaces are also compact. This is
made precise in Tychonoff’s theorem, which says that the product of compact spaces
is compact, if it is endowed with the product topology.

Theorem 1 (Tychonoff’s Theorem) If Ki is associated with a compact topology for
each i ∈ I , then the product topology on

∏

i Ki is compact.

This allows us to see that, for example, [0, 1]SentP is compact.
Although we now know that in a compact space there will always be limit hypothe-

ses that satisfy the limit criterion, there may be many such hypotheses, and since the
proof of existence relied on Tychonoff’s theorem there may not be any way to ‘con-
struct’ a limit stage satisfying the criterion (Tychonoff’s theorem in its general form
is equivalent to the axiom of choice). However we don’t think this is a problem: here
the limit criterion should be viewed as part of a definition of what it is to be a revi-
sion sequence. It is a test of whether a given sequence of hypotheses is a revision
sequence or not. For some further comments see Section 3. Sometimes one talks as
if the revision theory is in the business of constructing revision sequences, but in fact
one typically isn’t interested in what is obtained in a particular revision sequence but
is instead interested in what happens in all revision sequences for the purposes of
reading off categorical information. Even if one wants to show that certain features
are not brought about by all revision sequences, one does not need to construct a par-
ticular revision sequence with that feature, one instead just needs to provide a proof
that there are some revision sequences with that feature. This can be done by use of
the following result:

Proposition 8 Suppose A is closed and cofinal, i.e. its complement is not stable in
〈hα〉α<μ. Then there is some hypothesis in A which satisfies Coherence of all Closed
Properties.

The proof is just a slight extension of Proposition 6, see Campbell-Moore
[2, Lemma 5.B.1] for further details.

We need to make one further restriction on the hypothesis spaces where this cri-
terion can be applied: We said earlier that appropriate choices of P were ones that
contain only closed sets and at least contain all the definite verdicts. For this to be pos-
sible we require that all definite verdicts are closed. This criterion is a little bit subtle
because we haven’t explicitly said what a definite verdict is in a general hypothesis
space, we only looked at the example of a space XD . Without further information
about the form of the hypothesis space we might just say that a definite verdict is a

12More generally any closed and bounded set of reals is compact.
13E.g. in this case we might add 0 and 1. Whenever the topology is Tychonoff (which is quite weak; for
example all metric spaces are Tychonoff) one can find a ‘compactification’.
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singleton of a hypothesis, or in property terminology: the property of being equal to
that fixed hypothesis. If we take definite verdicts to be singletons then we can ensure
that they are closed by asking that the topology be T1. A topology is called T1 if
all singletons are closed. Most natural topologies are T1, in particular all the topolo-
gies mentioned in this paper are T1. If we know more about the particular hypothesis
space we might be able to say something more restrictive about what properties are
definite verdicts. In the case of the hypothesis space XD we said a definite verdict
was a specific assignment of some member of X to a member of D. The definite ver-
dicts are thus the sets of the form {h ∈ XD | h(d) = x} and we then need these to
be closed in order to have legitimate choices of collections of properties of interest.
Such sets are closed if the topology on X is T1 and the topology on XD is the prod-
uct topology (or finer than the product topology, i.e. whenever a set is closed in the
product topology it is also closed in this topology).

In conclusion, this framework for limit criteria is legitimate whenever the hypoth-
esis space has a compact topology where all definite verdicts are closed.

3 Limits in the Revision Theory of Truth

In this section we’ll consider how this new proposal affects the revision theory of
truth.

The revision theory of truth can be used to say something about a language with a
self-referential truth predicate. In such a language we will have sentences like the liar
sentence that says of itself that it is not true. A revision theory will be a transfinite
sequence of interpretations of the truth predicate that is governed by the revision rule
ρ based on taking the Tarskian T-biconditionals, “ϕ is true” iff ϕ, to be a definitional
equivalence. In such a revision sequence, the liar sentence will continue to change its
truth value, flipping in and out of the truth predicate in successive revision stages.

To present this revision theory and the effect of our suggested limit criteria we first
present some standard technicalities and terminology required to start the discussion
of the revision sequence.

Setup Let L be the language of Peano Arithmetic,14 and let LT extend this by
adding a unary predicate T. We shall use SentT to denote the set of sentences of the
language LT.

The construction works over some fixed background model of L, which we will
fix as the standard model of arithmetic, N.

We assume some coding of SentT to natural numbers which is recursive and one-
to-one. For ϕ ∈ SentT, we let �ϕ� denote the numeral corresponding to the code of
ϕ.15 We will often identify a sentence with its code, but this should not lead to any
confusion.

14Everything that is said could equally be applied to languages that also contain additional vocabulary.

15The numeral of n is denoted n and it corresponds to the expression

n
︷ ︸︸ ︷

S(. . .S(0) . . .).
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PA is the theory of Peano Arithmetic, and we will always assume that induction
axioms are extended to the whole language.

A revision sequence is a sequence of hypotheses, which are proposed extensions
of the truth predicate. Our hypotheses are subsets of the domain, or actually of SentT
as that’s all we care about. A hypothesis is thus some T ⊆ SentT, and the hypotheses
space is ℘(SentT).

A revision sequence will be a sequence of such hypotheses, i.e. we have for each
ordinal α some Tα ⊆ SentT, which should satisfy a successor clause saying that the
successors are obtained by an appropriate revision rule and a limit clause saying that
limits satisfy the imposed criterion. The revision rule that is used for truth is based
on the Tarskian T-biconditionals and says:

ϕ ∈ ρ(T) iff (N,T) |= ϕ.

Where (N,T) is given by expanding the modelN ofL by using T as the interpretation
of the predicate T.

In a sequence following this revision rule the liar sentence, which is a sentence λ

where PA � λ ↔ ¬T�λ�, will have its truth value continually switched i.e. λ ∈ ρ(T)

iff λ /∈ T.
A limit criterion is given by a choice of P , which can only contain closed proper-

ties. Which properties are closed in this hypothesis space ℘(SentT)? I.e. what is the
topology on this space? The topology that we will use is the one generated by taking
all properties of the form ϕ ∈ T and ϕ /∈ T to be open (and thus also closed). The
closed sets are then anything generated from such sets by finite unions and arbitrary
intersections. This is the natural topology on the powerset.16 Here are some examples
of closed sets:

Example 9 The following are closed sets:

– {T | ϕ0 ∈ T},
– {T | ϕ0 /∈ T},
– {T | ¬ϕ0 ∈ T iff ϕ0 /∈ T},
– {T | For all ϕ, ¬ϕ ∈ T iff ϕ /∈ T},
– {T |T is a maximally consistent set of sentences.}
– Any property that is describable using propositional connectives and sentences

of the form ϕ ∈ T.

The following are not closed:

– {T | ϕ0 ∈ T or T�ϕ0� ∈ T or T�T�ϕ0�� ∈ T . . .},
– {T |T is ω-consistent}, i.e.:

∗ If ∃x ∈Nϕ(x) ∈ T then there is some n ∈ N with ϕ(n) ∈ T.

16The standard topology on {t, f}SentT is the product topology (see Definition 4), where {t, f} is given the
discrete topology (where all sets are both open and closed). And since ℘(SentT) is isomorphic to this we
can take the corresponding topology on ℘(SentT).
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These can be shown by using the following characterisation of closed sets, which
is a special case of the general criterion that A is closed iff for any h, if h can be
approximated arbitrarily well by members of A (i.e. for each U open with h ∈ U ,
there is some hU ∈ A ∩ U ) then h ∈ A. The special case results from the fact
that a basis of open sets in ℘(SentT) is the collection of assignments of definite
verdicts to finitely many sentences (i.e. the collection of properties of the form
(
∧

ϕ∈Δ0
ϕ ∈ T

)

∧
(
∧

ϕ∈Δ1
ϕ /∈ T

)

, for Δ0 and Δ1 finite).

Proposition 10 A property A ⊆ ℘(SentT) is closed iff:
for each hypothesis T ∈ ℘(SentT);
if T is such that for every finite set of sentences, Δ, there is some TΔ ∈ A where for
each ϕ ∈ Δ, ϕ ∈ TΔ iff ϕ ∈ T,
then T ∈ A.

This topology is compact by Tychonoff’s theorem so we get that if P contains
only closed properties then Coherence of P is satisfiable.

What results does this lead to? As long as all definite verdicts are inP this criterion
will ensure that definite verdicts that are stable beneath μ should be agreed with by
Tμ. But by choosing a more encompassing P we can impose additional requirements
on Tμ. For example if we consider the strongest limit criterion we get the following:

Proposition 11 Suppose we have a Closed Properties Revision Sequence for Truth.
Then each Tα will be maximally consistent (including at the limit ordinals).

Proof The key component to this is the observation that being maximally consistent
is closed, which one can do using the characterisation in Proposition 10.17

Since the interpretation is maximally consistent at successors because of the
choice of revision rule, the result follows by transfinite induction.

We have not plugged in the requirement that we wanted the limit stages to be
maximally consistent, instead we were able to derive this from a more general
requirement. Furthermore, this consequence seems nice because one might think
that being maximally consistent is a minimal requirement on an appropriate exten-
sion of the truth predicate and now all the hypotheses in a revision sequence will

17Suppose we have some T and for each finite set of sentences, Δ, some maximally consistent TΔ where
for each ϕ ∈ Δ, ϕ ∈ TΔ iff ϕ ∈ T. We need to show that T is also maximally consistent. Each finite
subset of T is consistent (because it corresponds to some consistent TΔ) so by the compactness theorem
T is also consistent. To show it is maximal consider Δ = {ϕ,¬ϕ}. Then ¬ϕ ∈ T{ϕ,¬ϕ} iff ϕ /∈ T{ϕ,¬ϕ} by
maximality of T{ϕ,¬ϕ}, so since T{ϕ,¬ϕ} and T agree on these sentences we also have ¬ϕ ∈ T iff ϕ /∈ T. T
is thus maximally consistent.
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satisfy that requirement. An analogous argument to show that the limit hypotheses
are ω-consistent will fail because that property is not closed.18

A consequence of being maximally consistent is that we require that either λ ∈ Tω

or ¬λ ∈ Tω, but the limit criterion won’t tell us which to put in Tω. There are choices
of Tω that satisfy Coherence of all Closed Properties where λ ∈ Tω, and ones where
¬λ ∈ Tω.19 This highlights the fact that what we are presenting is not a limit rule but
instead a limit criterion.

Different accounts of what to do at limits have been considered in the literature
on the revision theory. There is a substantial difference that is relevant to us here
between Herzberger’s proposal [8] and Belnap’s [1] (which was then adopted in
Gupta and Belnap [6]. Gupta’s initial proposal [5] falls in line with Herzberger’s on
this issue). Herzberger says that one should put a sentence in Tμ only if it is stably in
the extension of the truth predicate up to μ. He is seeing the limit stage to be defined
from the previous stages. The picture is that we start at the beginning with an ini-
tial hypothesis (often taken to be T0 = ∅) and perform the process of constructing a
revision sequence. Gupta’s original revision theory of truth was similar with regard
to the picture of the process of constructing the revision sequence, but differs from
Herzberger’s in that it consults the initial hypothesis to decide what to do with unsta-
ble sentences at limit ordinals. Belnap [1], however, argues that this is too restrictive:
why should the same thing be done to unstable sentences at each limit ordinal. He
instead suggests that one is allowed to do different things to unstable sentences at dif-
ferent ordinals, and doesn’t specify anything more about how they should be treated.
His limit policy provides a criterion rather than a rule.

The feature of our limit policy that it tells you that either λ ∈ Tμ or ¬λ ∈ Tμ but
won’t tell you which, means that our revision theory falls in line with Belnap’s on
this issue: the revision sequence isn’t determined by a choice of initial hypothesis. If
one wants to see it as a process of constructing a revision sequence one has to make
a choice at each limit ordinal.20 We view what we are doing as providing a criterion
for when a sequence of hypotheses is a revision sequence, i.e. a definition of what it
is to be a revision sequence.

We thus see our proposal as an extension of Belnap’s picture of giving a limit
criterion and a definition of what it is to be a revision sequence. In fact Belnap’s def-
inition of a revision sequence is the special case of ours where only definite verdicts
are considered. We don’t see why the restriction to just definite verdicts in Belnap’s

18One might think that being ω-consistent is a property that one would like to take over to limits. To allow
for that one might try to alter the topology to also ensure that this is closed; however one will result in
a non-compact topology, where the criteria are thus inapplicable. This can be seen by an application of
McGee’s result.
19Which can be shown using Proposition 8
20There is one way which ours is worse than Belnap’s: for ours the available options for choices at limits
will depend on what has happened in the revision sequence up to that stage, whereas for Belnap’s one can
make the choices before the revision process is underway.
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proposal is motivated and therefore we have developed a framework where more
general properties can also be considered.21

4 A Hypothesis Space with Reals

We will now present a special case of a hypothesis space that involves real num-
bers. This space is particularly interesting with regard to this generalised limit criteria
because the hypothesis space has a natural topology associated with it where con-
vergence plays an important role. In the topology on {t, f} what it was to converge
was just to stabilise on some particular truth value, whereas convergence in [0, 1] can
happen without the sequence ending up always assigning a particular real number.
Using the usual limit criterion therefore doesn’t work as intended in such a space.

In the truth case we see the general framework of limit criteria as interesting, but
they may turn out to be optional alternatives to just considering definite verdicts.
Ultimately philosophical motivations should determine the appropriate collection of
properties, and for truth we acknowledge that this might end up just being the definite
verdicts, resulting in the usual limit criterion. However, for hypothesis spaces where
convergence plays an important role, the general framework is essential as the usual
choice of P as the definite verdicts is not a reasonable option.

4.1 The Limit Criteria in this Hypothesis Space

We will here consider the application of these criteria if we have a hypothesis space
involving reals. In order to apply the tools of revision theory we will be interested in
concepts that attach a real number to all sentences of a language, including sentences
that say something about that very concept. The case we’ll be talking about here is
the notion of probability, but everything that we say in this section would equally
apply to other notions such as degrees of truth.

The setup is mostly the same as in the previous section where we considered the
revision theory of truth, with a few alterations as follows:

Setup We take the base language here to be the language of real ordered closed
fields (with +, −, ×, 0, 1, <) and a natural number predicate N . We add to this a
probability function symbol P, obtaining LP. The sentences are denoted SentP. Our

21There is also the restriction in the literature in revision theory of truth on being a fully varied revision
sequence [4]. This adds to the definition of a revision sequence (as in ‘definite verdicts revision sequence’)
the requirement that if a hypothesis coheres with the whole revision sequence 〈hα〉α with regard to definite
verdicts, then that hypothesis is cofinal in the sequence. We note that a similar restriction could be applied
to our revision theory:

Definition 12 AP fully varied revision sequence is aP revision sequence where if a hypothesis h satisfies
Coherence ofP (where the ordinal length sequence, 〈hα〉α , is considered), then h is cofinal in the sequence
(i.e. H \ {h} is not stable).

The consequences of such a proposal remain to be investigated.
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base model of the language without probability will be R, the intended interpretation
of this language, with a restriction to N recovering N. Our coding is now taken to
code the language LP. We thus have a type-free probability notion where there are
sentences that talk about their own probability.

A revision sequence for probability is given by a sequence of hypotheses, which
are interpretations of P. So a hypothesis is some p, where p assigns to each sentence
a number between 0 and 1, i.e. p : SentP → [0, 1]. The space of all hypotheses is
then [0, 1]SentP . A revision sequence will be a sequence of hypotheses, pα .

Coherence of Definite Verdicts is not sufficient in this hypothesis space: Suppose
one has a revision sequence up to ω, where pn(ϕ) = (n − 1)/n. This can be graphed
as follows:

So if the revision sequence is as described, the probability of ϕ converges to 1. It thus
seems natural to want to require that the ωth hypothesis puts the probability of ϕ to be
equal to 1. However, there is no definite verdict regarding the probability of ϕ which
is brought about by the sequence. Instead the probability just gets closer and closer
to 1. This means that using Coherence of Definite Verdicts, the probability value at
stage ω could be put to anything at all. This would result in a great loss of valuable
information about the probability of ϕ. In the specific revision rule that we will later
consider it will be of great importance to impose such a constraint because otherwise
simple sentences like T�0 = 0� might have their probability unconstrained at ω.

This is why we don’t just focus on definite verdicts but more general properties.
We can get this result that pω(ϕ) = 1 if we also consider the properties of the form
r � p(ϕ) � s in our limit criterion. This is because for every real number ε > 0, the
property 1 − ε � p(ϕ) � 1 is stable beneath ω: the values converge to 1, so they get
arbitrarily close to 1 and thus however small we make this interval it will nonetheless
hold from some point onwards beneath ω. As long as these closed intervals are being
taken into account, Coherence of P will then require 1 − ε � pω(ϕ) � 1 for each
ε > 0, and thus it must be that pω(ϕ) = 1.

This example also highlights why we have to impose some restrictions on the class
of properties considered: we cannot consider the property p(ϕ) < 1 along with all
the properties r � p(ϕ) � s as there is no limit hypothesis which will then satisfy the
constraint. The restriction to closed properties is natural because those are the ones
that act nicely under convergence. p(ϕ) < 1 is thus a property that we will not want
to consider in our limit criterion.
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To specify which sets are closed we require a topology on the hypothesis space.
There is a very natural choice for this hypothesis space, namely the product topology,
as defined in Definition 4, where [0, 1] is endowed with the standard topology.

As before, we can describe the closed sets by using the notion of approximation.
But since we now have an obvious notion of convergence we state it in that format.22

Proposition 13 A property A ⊆ ℘(SentT) is closed iff:

for each hypothesis [0, 1]SentP;
if p is such that there is a sequence of hypotheses 〈pn〉 (not necessarily following the
revision rule) that converges to p,

i.e. for all ϕ ∈ SentP and for all ε > 0, there is some m ∈ N such that for
all n > m, |pn(ϕ) − p(ϕ)| < ε.

and where each pn ∈ A, then p ∈ A.

Here are some examples of properties that are closed and not:

Example 14 The following are closed properties:

– {p | p(ϕ) = 1/2},
– {p | p(ϕ) = 1 or p(ϕ) = 0},
– {p | p(ϕ) = 1 − p(ψ)},
– {p | p(ϕ) · p(ψ) � 1/2},
–

{

p

∣

∣

∣

∣
If p(ψ) > 0, then

p(ϕ ∧ ψ)

p(ψ)
= 1/2

}

,

– {p | p is a finitely additive probability function}, i.e.:
∗ p(�) = 1 for a tautology �,
∗ p(ϕ) � 0 for all ϕ,
∗ p(ϕ ∨ ψ) = p(ϕ) + p(ψ) if ϕ and ψ are logically incompatible.

The following are not closed:

– {p | p(ϕ) ∈ Q},
– {p | 1/2 < p(ϕ)},
– {p | p(ϕ) 
= 1/2},
– {p | p is an N-additive probability function}, i.e.:

∗ p is a finitely additive probability function, and
∗ p(∃x ∈ N ϕ(x)) = limn pn(ϕ(0) ∨ . . . ∨ ϕ(n))

We have already shown when the limit rule is satisfiable: if the topology is com-
pact (Proposition 6). The topology we are using on [0, 1]SentP is in fact compact.
Moreover in this topology all definite verdicts, i.e. all p(ϕ) = r , are closed, so there
are appropriate choices of P .

22This variant way of describing closed sets does require that L be countable to ensure that sequentially
closed and closed coincide.
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4.2 Features of Coherence of All Closed Properties

We can now present examples of how this will work. We will initially focus on the
strongest limit criterion, Coherence of all Closed Properties, and see what features
this leads to as this is the strongest appropriate limit criterion. We will then later
discuss which restrictions of P get us the different features.

Example 15 Here are some examples of how the criterion Coherence of all Closed
Properties works with the hypothesis space [0, 1]SentP .
FIXES ON A VALUE:
If up to μ the probability of ϕ ends up fixing on a value r , then pμ(ϕ) = r .

E.g. Suppose pn(ϕ) are as follows:

The earlier stages “bring about” the property that p(ϕ) = 1 because it is stable
beneath ω. It is also closed, so the limit hypothesis pω will also have to satisfy
this property, i.e. pω(ϕ) = 1.

CONVERGES TO A VALUE:
If the probability of ϕ converges to r beneath μ, i.e.:

for all ε > 0 there is some β < μ such that for all α with β < α < μ,

|pα(ϕ) − r| < ε

then pμ(ϕ) = r .

E.g. Suppose pn(ϕ) are as follows:

These converge to 1/2. So by the argument in Section 4.1, pω(ϕ) = 1/2.
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IN AN INTERVAL:
If the probability of ϕ ends up always (roughly) being in some interval, then the limit
probability will also be in that interval.

E.g. Suppose pn(ϕ) are as follows:

Except for the first few values, the probability of ϕ beneath ω is always between
0.4−ε and 0.6+ε but does not converge to any value. Our limit constraint requires
that 0.4 � pω(ϕ) � 0.6 for similar reasoning as to in CONVERGES TO A VALUE.

RELATIONSHIPS:
If the probability of ϕ ends up always being one minus the probability of ψ beneath
μ, then pω(ϕ) + pω(ψ) = 1.

E.g. Suppose pn(ϕ) and pn(¬ϕ) are as follows:

0

0.5

1

For every stage, except for the first stage, pn(ϕ) + pn(¬ϕ) = 1, and p(ϕ) +
p(¬ϕ) = 1 is closed as mentioned in Example 14. We will therefore also have
that pω(¬ϕ) + pω(ϕ) = 1.

NON-CONVEX:
If the probability of ϕ ends up always being either a or b beneath μ, then pμ(ϕ) is
either a or b.

E.g. Suppose pn(ϕ) are as follows:
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For every stage, either pn(ϕ) = 0 or pn(ϕ) = 1. Since p(ϕ) = 0 ∨ p(ϕ) = 1 is
closed, it must also be that pω(ϕ) = 0 or pω(ϕ) = 1.

We have now seen some examples of how such a limit rule will work. Here is
a very important consequence of Coherence of all Closed Properties, which is the
probabilistic analogue of our observation that Coherence of all Closed Properties in
the truth revision sequence implied that limit interpretations of truth were maximally
consistent.

Proposition 16 Suppose we have a Closed Properties Revision Sequence. If p is a
finitely additive probability function at each successor ordinal
then p will be a finitely additive probability function at all ordinals.

Proof As in Proposition 11 using the fact that being a finitely additive probability
function is closed. One can observe that this is closed by using Proposition 13

An analogue of ω-consistency for probability is:

p(∃x ∈ N ϕ(x)) = lim
n

pn(ϕ(0) ∨ . . . ∨ ϕ(n)),

which was called σ -additivity in Leitgeb [10] but which we call N-additivity. Just as
for ω-consistency, this property is not closed so can’t be taken over to limits.23

4.3 Which Choices ofP GiveWhich Features

In the previous section we considered features of the limit criterion when Coherence
of all Closed Properties was used. However one might wish to consider possible
weakenings of this criterion by modifyingP . One reason to do this is that one doesn’t
take think certain behaviour should be imposed on limits, alternatively one may wish
to satisfy properties which are inconsistent with such strong limiting behaviour.24 We
shall therefore here present some options for how one might weaken the limit rule.

The minimal choice of P is to just consider all definite verdicts. This would obtain
the limiting behaviour in FIXES ON A VALUE but not even that in CONVERGES TO

A VALUE. We therefore suggest that this will usually not be a sufficient constraint on
the limit probabilities.

To obtain the limiting behaviour in CONVERGES TO A VALUE one needs P to
contain all properties r � p(ϕ) � s. This would not only obtain the behaviour of
FIXES ON A VALUE and CONVERGES TO A VALUE but also that of IN AN INTERVAL.
This constraint is then equivalent to:

lim infα<μpα(ϕ) � p(ϕ) � lim supα<μpα(ϕ)

23In fact for the relative frequency revision sequence one can see that the probabilities at stages α + ω

must fail to be N-additive by a McGee style argument as presented in Leitgeb [9].
24For an example of that see Campbell-Moore [2, Section 5.3.3].
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We believe that this proposal is a significant improvement over the definite verdicts
alternative as it is strong enough to obtain desirable features like convergence.25

The behaviour in RELATIONSHIPS is where we see the effect of considering the
relationships between different sentences. This would not be obtained if we were
only interested in properties of the form r � p(ϕ) � s but is obtained if we are
also interested in properties that say something about how the probability of ϕ relates
to the probability of ¬ϕ. It is this feature that allows us to derive that the limit
interpretations of P will be probabilistic.

Finally, consider the behaviour in NON-CONVEX. It is debatable whether this
behaviour is desirable for the notion of probability. If the probabilities of ϕ flip
between 0 and 1 then we might think that an appropriate way of summing this up
would be to take the probability of ϕ to be 1/2. We could avoid this behaviour by
imposing the constraint that the properties of interest be convex, i.e. if two probabil-
ity functions satisfy A then so do any weighted averages of them.26 A property like
p(ϕ) = 0 ∨ p(ϕ) = 1 would thus not be convex, and so we could rule this out from
being taken over to the limits. Using such a restriction to convex properties we would
nonetheless be able to derive that p is a finitely additive probability function as that
is a convex property.

4.4 Relative Frequencies Revision Rule

We have so far been talking about how the limit criteria would work if one has the
hypothesis space [0, 1]SentP . We will here present an example of a revision rule in
such a hypothesis space.

We will present here a revision rule based on relative frequencies that originates in
Leitgeb [10]. The idea is that the next stage probability should measure how often the
sentence was satisfied in the preceding sequence of interpretations. It is thus based
on an idea of frequency of truth. For example if one also has a truth predicate in
the language one can get that the probability of the liar sentence converges to 1/2

through the finite stages of this process. The notion of probability that this revision
step develops would have to be understood as something like a semantic probability,
measuring how true a sentence is. It is limited to assigning non-trivial probabilities
only to sentences that themselves talk about the notions that are captured in a revision
sequence, such as truth or probability. This is because the truth of sentence of the base
language, such as whether a coin lands heads, will be fixed in the revision sequence
so it’s frequency of truth will either be 1 or 0 – this account of probability is thus not
one that can assign non-trivial probabilities to such usual cases. The main reason we
present this revision step here is a pragmatic one: it is an easy case where we can see
nice examples of convergence with a hypothesis space that remains rather simple. If
we want to use the revision theory to develop an account of probability as degrees of

25This restriction doesn’t get the feature that the limit stages must be finitely additive probability functions.
If one thinks that is a desirable constraint one could add it in this framework by also requiring that P
contains the property: p is a finitely additive probability function.
26More carefully: if p, p′ ∈ A then for any r ∈ [0, 1], then p′′ with p′′(ϕ) = r ·p(ϕ)+(1−r) ·p′(ϕ) is ∈ A.
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belief we might have to plug additional information into the revision sequence and
make our hypothesis space more detailed, for example by taking the hypotheses to be
assignments of values to sentences in each possible world, so the hypothesis space is
([0, 1]SentP)W , where W is the collection of possible worlds. Closed properties will
then include ones involving relationships between interpretations at different worlds,
for example λ is in the extension of T at w0 iff it is in the extension at w1. See
Campbell-Moore [2, Section 5.3] for further details. To keep things simple, then, we
will here focus on the revision rule developed by Leitgeb. For more comments on the
interpretation of such a revision rule see Campbell-Moore et al. [3].

Leitgeb uses a sort of revision procedure to prove the consistency of a set of princi-
ples including Probabilistic Convention T which says p(ϕ) = p(T�ϕ�). To construct
his model Leitgeb starts by constructing an ω-length revision sequence providing
interpretations for truth and probability and then his model is found by taking a ‘limit’
of these interpretations. We shall use his proposal to tell us how to interpret the finite
stage probabilities and although our limit stage differs in technical details, it will
result in something very close to Leitgeb’s ω-stage definition.

Leitgeb’s finite stage construction says that the nth-stage hypothesis should say
that the probability of ϕ is the relative frequency of ϕ being satisfied in the sequence
of interpretations leading up to that stage, i.e.,27

pn(ϕ) = #{i ∈ {0, . . . , n − 1} | (R, pi ) |= ϕ}
n

For a probabilistic liar sentence, π (with PA � π ↔ P�π� � 1/2 ), we then
obtain the probabilities:

0 1 2 3 4 5 6 7 . . .

p−(π) =? 0 1 1/2 2/3 2/4 3/5 3/6 4/7 . . .
(R, p−) |= π ? 3 7 3 7 3 7 3 7 . . .

These probability values are represented in the diagram from CONVERGES TO A

VALUE on Page 17. In fact a number of the examples we used when presenting
the features of the limit criterion earlier were chosen as examples of the relative
frequencies revision sequence for different sentences:

– FIXES ON A VALUE: 0 = 0,
– CONVERGES TO A VALUE: P�0 = 0� = 1,
– IN AN INTERVAL: One can easily extend what’s been done here to a joint lan-

guage with both probability and truth and then a sentence whose revision would
follow the example in IN AN INTERVALwould be δ with PA � δ ↔ P�δ� <

0.4 ∨ (0.4 � P�δ� � 0.6 ∧ T�δ�),
– RELATIONSHIPS: this was δ as in IN AN INTERVAL along with ¬δ,
– The figure on Page 15: P�0 = 0� = 1.28

27Here #A counts how many objects there are in A.
28Assuming we start with an initial hypothesis with p0(0 = 0) < 1.
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As a last example, a sentence ν with PA � ν ↔ ¬ P�ν� > r will have it’s probability
converge to r .29 E.g. for PA � ν ↔ ¬ P�ν� > 0.2:

The transfinite successor stages for truth are usually defined in the same way as the
finite successor stages. Following this same idea we would want to define pα+1(ϕ)

to be the relative frequency of ϕ being satisfied in the sequence of models up to
α + 1. However there are now transfinitely-many such models so how should one
define relative frequency in this case? We shall define pα+1(ϕ) to be the relative
frequency of ϕ being satisfied in the finite sequence of models just before α + 1. For
an alternative approach see Campbell-Moore et al. [3].

For example,

pω+5(ϕ) = #{β ∈ {ω, ω+1 , . . . , ω+4} | (R, pβ) |= ϕ}
5

To give this definition in general one needs to choose the finite sequence of models
beneath an ordinal.

Definition 17 For a successor ordinal α + 1 we let ζα+1 denote the greatest limit
ordinal beneath α+1, and kα+1 be the natural number such that α+1 = ζα+1+kα+1.

For example ζω+5 = ω and kω+5 = 5. We can define:

pα+1(ϕ) = #{β ∈ {ζα+1, ζα+1+1 , . . . , α} | (M, pβ) |= ϕ}
kα+1

For the probabilistic liar sentence (π with π ↔ P�π� � 1/2) one would then
obtain the following probabilities.

ω ω + 1 ω + 2 ω + 3 ω + 4 ω + 5 ω + 6 . . .

p−(π) = : 1/2 1 1/2 2/3 2/4 3/5 3/6 . . .
(M, p−) |= π ? 3 7 3 7 3 7 3 . . .

29As will: ν ↔ ¬ P�ν� � r , ν ↔ P�ν� < r and ν ↔ P�ν� � r
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Which we can picture as:

One might think that this Coherence of all Closed Properties will lead to pω2(λ) =
1/2. It turns out that that is not the case because, for example, p(λ) � 1/4 is not
stable beneath ω2. As we have already very briefly mentioned, one might extend
what counts as being brought about to be characterised by near stability30 and the
resulting constraint would lead to pω2(λ) = 1/2.

We can get examples of non-convex properties arising by considering the transfi-
nite revision sequence. Consider, e.g. τ where:

PA � τ ↔ (γ ∧ ¬T�τ�) ∨ (¬γ ∧ T�τ�)
where γ is the McGee sentence, i.e. is such that γ ↔ ¬∀nTn�γ �.31 The probabilities
of this τ beneath ω2 are:

which has p(τ ) = 0 ∨ p(τ ) = 1 stable beneath ω · ω.

5 Conclusions

We have developed a general limit criterion that says that a limit stage should sum
up the previous stages by satisfying the properties of interest that are brought about
by the preceding sequence. The properties of interest are given by some P . This new
proposal is made precise in the criterion Coherence of P , for appropriate choices of
P . Restrictions on appropriate choices were imposed: P should contain all definite
verdicts and only closed properties. The weakest such criterion is thus Coherence of

30See Footnote 6.
31In particular, (R,T−, p−) |= γ at all successor ordinals, but (R,T−, p−) |= ¬γ at all ordinals of the
form α + ω.
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Definite Verdicts, which is exactly the usual constraint on the limit stage. We thus
see our proposal as extending the revision theory, as developed in Gupta and Belnap
[6], by providing a definition of what it is to be a revision sequence where we lift
the requirement of only considering definite verdicts. Note that if one is drawn to a
more restrictive limit clause where the revision sequence is determined by a choice
of an initial stage (by, e.g., following a limit policy such as Herzberger [8] or Gupta
[5]) then you might not like the generalisation we have presented, but a reader drawn
to the liberal kind of policy should see these generalisations of the limit clause as
legitimate proposals that need to be considered.

The restriction on the choice ofP that says it must only contain closed sets ensured
that there is always some limit hypothesis satisfying Coherence of P , at least if
the hypothesis space (with its associated topology) is compact. Our proposal is thus
restricted to such spaces. We furthermore restrict the hypothesis spaces by requiring
that all definite verdicts be closed (otherwise there is no choice of P that satisfies our
requirements).

This general framework highlights the fact that when one presents a revision the-
ory using Coherence of P , the choice of P should be well-motivated; and we contend
that the choice of P as just definite verdicts, which results in the traditional defini-
tion of what it is to be a revision sequence, has not yet been well-motivated enough.
We suggest that the strongest such criterion, Coherence of all Closed Properties, is
a particularly interesting criterion and has some motivation for it: a topology on a
hypothesis space determines the notion of ‘limit’, or ‘approximation from within’,
and then the closed sets are exactly the ones that act nicely under such limits; it thus
also makes sense that they are the ones we take into consideration when determining
how our limit stage should cohere with the previous stages. Coherence of all Closed
Properties is also familiar in topology as it says that the limit hypothesis is a clus-
ter point of the preceding sequence. We suggest that the default is that one considers
this strongest limit criterion and that weakenings of it should be motivated, though
we do not suggest that there are no such motivated weakenings, we have ourselves
suggested that one might weaken the properties considered to just convex ones in the
revision theory of probability.

In the revision theory of truth, we have seen that restricting the limit criterion
by considering more than just definite verdicts can lead to interesting restrictions;
for example Coherence of all Closed Properties ensures that the limit stages will be
maximally consistent extensions of the truth predicate. It may turn out that in the
truth case the P that has the best motivation is in fact just definite verdicts, then
we will result in the usual revision theory, but we would have achieved additional
understanding of why that is the best revision theory of truth.

For some hypothesis spaces, however, the generalisation of the limit criterion is
essential. We saw an example of this in Section 4 where the hypothesis space involves
real numbers. This is because in such a space convergence plays an essential role and
the restriction to just definite verdicts cannot recognise such facts.

Further work should be done to study how the range of different limit criteria affect
the revision theory and to present arguments for motivating a particular instance of
this limit criterion (via a choice of P) for the different concepts the revision theory is
being used to understand.
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