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Novel Multiple Lane Detection Based on Dense
Vanishing Point Estimation

Umar Ozgunalp, Xiao Ai, and Naim Dahnoun

Abstract—The detection of multiple curved lanes is still a
challenge for Driver Assistance Systems (DAS) today, due to
interferences such as road markings and shadows casted by road
side structures and vehicles. The vanishing point (Vp) contains
the global information of the road image. Hence, Vp based
lane detection algorithms are quite insensitive to interference.
However, when curved lanes are assumed, Vp shifts with respect
to the rows of the image. In this paper, a Vp for each individual
row of the image is estimated by first extracting a Vpy (vertical
position of the Vp) for each individual row of the image from v-
disparity. Then, based on estimated Vpys a 2D Vpx accumulator is
efficiently formed. Thus, by globally optimizing this 2D Vpx accu-
mulator, globally optimum Vps for road image is extracted. Then,
estimated Vps are utilized for multiple curved lane detection on
non-flat surfaces. The resultant system achieves a detection rate
of 99% in 1277 frames of 5 stereo vision test sequence.

Index Terms—Lane detection, Stereo vision, v-disparity, Dy-
namic programing, Vanishing point detection.

I. INTRODUCTION

ACCORDING to statistics [1], around 70% of all reported
road accidents in Great Britain are a result of driver error

or slow reaction time. Fortunately, the computation power
available today makes it possible to utilize DAS to prevent
or minimize the consequences of these accidents. By using
specialized algorithms, DAS predicts driver intent, warns the
driver about possible lane departure or collision, as well as
many more functionalities.

Lane detection is one of the key elements of DAS [2]
and it is necessary for lane departure warning. Due to the
changing environment, the input image can be noisy and lane
detection can be a challenging task. For example, changing
light conditions or the lack of consistent painting can affect
the lane detection significantly. Thus, some assumptions are
commonly made in the algorithms to increase the performance
such as constant road width, constant lane painting width,
consistent road texture and a flat road [3]. An important
property of the input image is perspective mapping. During
the image capturing process, the vision sensor maps the three
dimensional world information into a two dimensional image.
During this process, all parallel lines in the world coordinate
system converge on a point (Vp) in the image coordinate
system. Under the assumption that the lanes are parallel to
each other, Vp can be used to improve the system robustness
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significantly. Thus, many researchers [4]–[8] are focused on
Vp based lane detection algorithms since, Vp contains global
information and Vp based algorithms are less sensitive to local
noise such as, occlusion or shadows. Previously developed Vp
based lane detection algorithms demonstrated robust results
by first detecting Vp and then detecting lanes based on this
global information. However, they still have limitations, such
as having flat road assumption, a straight lane model and the
ability of to detect only the current lane.

In [6], the algorithm assumes intrinsic and extrinsic parame-
ters of the camera are known and that the vehicle is travelling
parallel to the road. Thus, Vp can be estimated from these
parameters and lines crossing Vp can be searched by using
the 2D Hough transform. In [4] and [5], the algorithms first
detect and track Vp (including the horizon line). Therefore,
this eliminates the assumptions of knowing extrinsic camera
parameters and the assumption of the vehicle travelling parallel
to the road. As a second step, algorithms search for line pairs
crossing Vp for each lane (a lane is a light stripe on a darker
background. Thus, each lane has two boundaries).

With a single Vp, only linear lane models can be used
and algorithms using a single Vp are only suitable for the
roads with limited curvature, such as motorways. In [7],
the algorithm segments the image into horizontal bands and
detects a Vp (also assuming the horizon line is known) for each
band. The algorithm first detects a Vp in a bottom band and
then moves to the upper band. Depending on the previously
detected Vp, the algorithm sets a search range for the Vp
which appears in the upper band and detects a new Vp for
this band. Thus, the algorithm detects a few Vps iteratively.
There are two problems with this approach. The first issue is
that the algorithm treats the lanes as they are piecewise linear
within a few bands. Thus, the accuracy of Vp decreases in the
areas close to the band boundaries. The more important issue
with this approach is it is no longer global for the image. To
detect Vp in the bottom band (or in the other bands), only a
small portion of the image is used and the rest is ignored.
For example, even though there is enough information in the
complete image to detect Vp accurately, if the information in
the bottom band is too noisy, the algorithm can fail. In [8],
the CHEVP algorithm (Canny/Hough Estimation of Vanishing
Points) is proposed to initialize lanes. CHEVP also segments
the image into a few bands and iteratively detects a Vp for
each band (similarly to [7]). By detecting Vps, the direction
and curvature of the parallel lanes can be estimated. However,
information such as lateral offset still needs to be detected.
This algorithm initializes both the left and the right lanes by
using the straight lines extracted from the Hough transform.
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It selects two lines, directed to the Vp, from the bottom band
(if available) which are most close to the center column of
the image. This approach of selecting lines is rather simplistic
and highly dependent on thresholds. Any road mark on the
near field of the road, directed to the Vp, may also cause the
algorithm to fail.

Existing Vp based lane detection algorithms either use
single [4]–[6] or few [7], [8] Vpx (the horizontal position
of the Vp) on a single horizon line. While single Vp based
algorithms are based on only the linear lane model, multiple
Vp based algorithms utilize a non-global iterative approach to
detect multiple Vps. Existing algorithms also estimate a single
horizon line (a planar road assumption) using a single image,
which is prone to noise such as camera shakes. However, using
stereovision to estimate the horizon line can be a more robust
method, such as proposed in [9].

In this paper, a global way to estimate Vp (both in horizontal
direction (Vpx) and in vertical direction (Vpy)) for each indu-
vidual row of the image is proposed. Then, this Vp curve is
utilized for multiple curved lane detection on non-flat surfaces.
A block diagram of the proposed system is illustrated in Fig.
1. In this paper, we used stereo vision as the input. Stereo-
vision reveals valuable 3D world information to extract the
vertical road profile for non-flat roads. Using the disparity
map, first the vertical profile of the road is extracted. Then,
since the vertical profile of the road is already known, any
feature point which does not appear on the road is eliminated.
Secondly, a horizon line for each individual row of the road
image is calculated using the estimated vertical road profile.
At this stage, since the horizon line is already known, a Vpx is
calculated for each individual row of the image using a global
optimization technique in an efficient way. Thirdly, based on
the known Vps, a 1D likelihood accumulator is created and
peak pairs (due to the dark-light-dark transition of lanes) are
searched in this accumulator to detect the lanes. As a final step
of the algorithm, the change in the lateral offset is estimated
by cross correlating estimated 1D likelihood functions for
consecutive frames. Then, based on the estimated lateral offset
change, 1D likelihood signals are combined for consecutive
frames to improve the signal to noise ratio (SNR).

II. ROAD PROFILE EXTRACTION

A. Experimental Set-Up

In our stereo camera rig, two Point Grey Flea3 (FL3-GE-
13S2C-CS) cameras have been used. These cameras have 3.75
µm sensors and they can capture up to 1.3 MP images with
31 fps. Synchronization has been achieved by triggering the
cameras using a pulse width modulation signal (the same
signal for both of the cameras) using an Arduino board. The
base line of the cameras is set to 34 cm. Example set-ups are
illustrated in Fig. 2.

B. Disparity Map Estimation

The initial component of the algorithm is the disparity map
estimation [10]. The disparity map estimation, which outputs
the 3D world information, is useful for both extracting the
vertical profile of the road and segmenting it. Although, there

Disparity Map estimation

Road 
Segmentation

Horizon Line Calculation 
for Each Individual Row 

of the Image

Vertical Road Profile 
Extraction Using V-

Disparity

Forming 2D Accumulator 
for Vpx

Peak Pair Selection

Forming Likelihood 
Function

Estimating Vpx

V-Disparity Map 
Estimation

Change in Lateral Offset 
Estimation and SNR 

Improvement

Roll Angle Correction

Image Filtering

Fig. 1: Block diagram of the system

(a) (b)

Fig. 2: Example experimental set ups
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Fig. 3: Disparity map estimation from stereo images

are several applicable stereo vision algorithms available in the
literature, only a limited number of algorithms can achieve
good accuracy while working in real-time, such as [11] and
[12]. In this paper, we have used our previously published
algorithm [13] to acquire the disparity map. This algorithm is
suitable for our application due to its good accuracy and high
computational efficiency. In Fig. 3, input stereo images and
their corresponding calculated disparity maps are illustrated.

C. Roll Angle correction and v-disparity Map

In the previous section, 3D world information is extracted
by stereo vision. Then, this information can be used for
extracting the road profile via the use of the v-dispairty map.
The v-disparity map is a widely applied method for ground
plane extraction [14], [15], [16]. The algorithm, creates a
histogram of disparities for each row of the image and then
maps them to the 2D v-disparity map.

Roll angle is generally assumed to be zero by many v-
disparity based algorithms. However, due to the camera in-
stallation to the vehicle, it can vary significantly. Thus, a roll
angle should be initially estimated for more robust results. In
this paper, the roll angle is estimated by fitting a plane to a
small patch from the near field in the disparity map. Then,
using the estimated roll angle, both the input image and the
disparity map are rotated using the affine transform. The roll
angle is only estimated in the first frame and the same roll
angle is used for the rest of the video sequence to decrease
the computational complexity. With roll angle correction, it is
seen that the algorithm can create a better v-disparity map and
can work more robustly. In Fig. 4(a), original road image is
shown. In Fig. 4(b), the disparity map of the image is shown
and the patch used for the roll angle estimation is depicted by
the black box. In Fig. 4(c), the rotated road image is shown.
In Fig. 4(d), the rotated disparity is shown. In Fig. 4(e), the v-
disparity map of the original image is shown and, in Fig. 4(f),

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Roll angle correction. (a) Input image, (b) Disparity
map of the input image. The patch used for the roll angle
estimation is depicted by the black box. (c) Road image
after roll angle correction. (d) Disparity map after roll angle
correction. (e) v-disparity map of the original image. (f) v-
disparity map after roll angle correction.

the v-disparity of the rotated disparity map is shown. As is seen
from Fig. 4(e) and Fig. 4(f), after the roll angle correction, the
v-disparity map becomes more sharp. Thus, the vertical profile
of the road can be estimated more accurately and the road can
be segmented more precisely.

D. Energy Minimization Based on Dynamic Programming

For a flat road, the disparity of the road for each row of
the image should decrease linearly. Thus, the road profile
is projected to the v-disparity map as a straight line. As a
robust line detector, the Hough transform [17] is a common
method for extracting the road profile from the v-disparity
map. However, with this technique, the vertical road profile can
only be extracted under a flat road assumption or with limited
flexibility. In our previous paper [15], we have successfully
implemented such a technique and applied it for an obstacle
detection application. In this paper, the accuracy requirements
are high and this renders such an approach unsuitable. Thus,
a more flexible approach has been taken. After creating the
v-disparity map, dynamic programming [18] is adopted for
extracting the road profile.
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Fig. 5: Example road image with a lack of lane painting in
the near field

Dynamic programming is a good approach to explore a path
of minimized energy [19] under the interferences of a great
number of outliers and a high level of noise.

In this paper, dynamic programming is utilized in a two-
pass optimization. First, it optimizes (globally) the v-disparity
map and estimates connected Vpys for each individual row of
the image. The algorithm then uses the estimated Vpy values to
create a 2D Vpx accumulator (see section II-H for details) in an
optimized way. The proposed 2D Vpx accumulator (Vpx vs row
number) is then optimized globally via dynamic programming
for estimating connected Vpxs for each row of the image.
Therefore, a continuously varying Vp curve in both the vertical
direction (Vpy) and the horizontal direction (Vpx) is optimized
globally for curved lanes on non-flat surfaces.

Traditionally, for the Vpx estimation of curved lanes, algo-
rithms segment the image into a few horizontal image bands
and iteratively, detect Vpx of the bands from the bottom band
to the upper bands (assuming the road is flat and, therefore,
Vpy is the same for all the bands). However, this approach
is not global and, while estimating Vpx of the current band,
the algorithms completely ignore the information supplied in
the upper bands. This non-global approach may lead to mis-
detection. For example, mis-detection will occur, if there is a
higher level of noise in the near field or lack of lane painting.
An example of such a case is demonstrated in Fig. 5, where
there is no lane painting in the near field. However, there is
enough information in the complete image to detect the lanes.

In this paper, Vp is optimized globally by minimizing the
energy function in equation 1. The data term, Edata, penalizes
the disagreement in Vp. In other words, it depends on the total
vote each accumulator gets. The road profile can be assumed
to be piecewise smooth. Thus, Vp should also be piecewise
smooth. The smoothness term, Esmooth, penalizes the change
in Vp and ensures smoothness, where, λ is a constant.

E(r) = Edata(r) + λEsmooth(r) (1)

The first stage in which dynamic programming has been
used is in optimizing the v-disparity map to extract the vertical
profile of the road. Dynamic programming has been used to
search a path in the v-disparity map which starts from the
right and goes to the left (starting from the left would also
give exactly the same result). Since the upper rows are further
away from the camera, they should have either a decreasing
disparity value or the same disparity value (the input disparity
map does not have sub-pixel accuracy). Thus, only this pattern
is searched.

Let d be an individual road disparity value for a row in the
road image and rd be the row number that disparity belongs
to. Let m(rd) be the cost function (a column in the v-disparity
map) for that disparity. Then, the Edata can be expressed as
in equation 2.

Edata(r) =

1∑
d=dmax

m(rd) (2)

where dmax is the maximum disparity value in the v-
disparity map. Let s(rd, rd+1) be Esmooth and s(rd, rd+1) =
abs(rd − rd+1), where rd+1 is the row number in the next
disparity column (next to the one rd belongs to) in the v-
disparity. Esmooth penalizes the sharp changes between the
assigned disparity values. Due to computational efficiency
concerns, this is chosen to be the absolute difference. However,
in some applications, it could be a more complex formula
such as the spring equation. Esmooth can be expressed as in
equation 3.

Esmooth(r) =

1∑
d=dmax−1

s(rd, rd+1) (3)

where λ is a smoothness constant. By using equation 2 and
equation 3, equation 1 can be rewritten as equation 4 and,
then, as equation 5

E(r) =

1∑
d=dmax

m(rd) + λ

1∑
d=dmax−1

s(rd, rd+1) (4)

E(r) = m(rdmax) +

1∑
d=dmax−1

m(rd) + λs(rd, rd+1) (5)

Equation 5 can be solved iteratively. In each iteration, by
minimizing equation 5 for a range of r, a relationship between
rd and rd+1 can be calculated and saved into a buffer with the
same size of v-disparity map. Thus, once a global optimum
is found for the final d, the algorithm can trace back to the
beginning of the path. More details can be found in [18] and
[19]. An example result is given in Fig. 6 and the estimated
road profile is illustrated with the blue line on the top of the
v-disparity map.

In the energy function, the smoothness term is also impor-
tant for determining how far the road profile estimation can
be considered as reliable. Many lane detection algorithms may
give unreliable results for the far field or restrict the output
results to the fixed arbitrary range, since the SNR drastically
decreases when moving to the far field in the image. However,
this range depends on many parameters such as the visible
area of the road (this region may be occluded) and should
be estimated by analysing the input signal. If there are not
enough visible road points in the far field, there would not
be a distinct line at the end of the v-disparity map. In this
algorithm, if the far field is occluded, due to the smoothness
term in equation 1, the estimated path would have a flattened
region at the end. Thus, the unreliable area in the far field can
be estimated.
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Fig. 6: V-Disparity map for vertical profile estimation

Once this region is removed from the estimated Vpys, the
1D output (a Vpy for each row. i.e. the blue line in Fig. 6)
is fitted to a quadratic. The advantages of the fitting stage,
include the estimation of the road profile at the far field and
reducing the output parameters from a few hundered (depends
on the image resolution) to a few. Thus, tracking in the time
domain would be much more efficient.

E. Speckle Noise Elimination

The system is tested under various conditions, including
sunny and cloudy days. One would expect that the algorithm
would work well under good illumination. However, along
with advantages, there are implications of good illumination
too. Good illumination (a sunny day) and a decent sensor size,
make it possible to capture images with a decreased exposure
time. Thus, motion blur can be minimized and sharp images
can be extracted where this decreases the noise in the disparity
map.

Sharp images can capture all the details on the road,
including the artefacts on the road which are noise for lane
detection algorithms. Due to surface reflectivity (i.e. after rain)
and the material of the asphalt (gravel, for example), large
speckle noise can be introduced to the edge map. For the
input image shown in 7(a), the edge map is estimated as
shown in 7(b). The edge map is created with using the Sobel
edge detector with a threshold of 80. It is seen that under the
conditions mentioned above, large speckle noise is introduced.
Using a higher edge threshold decreases this noise. However,
with a high edge threshold under a shadow, lane edges also
disappear from the edge map. For minimizing speckle noise, a
well known median filter is a good option. The problem with
a median filter is its fixed kernel size. If the kernel size is too
small, noise elimination would be limited. On the other hand,
if the kernel size is too large, lane features on the far field

(a) (b)

(c) (d)

(e)

Fig. 7: Speckle noise filtering. (a) Input road image, (b) Edge
map, (c) Edge map after filtering with small kernel size median
filter, (d) Edge map after filtering with large kernel size median
filter, (c) Edge map after filtering with variable kernel size
median filter.

would be also eliminated. Thus, in this paper, a variable kernel
size median filter is used. Consequently, used median filter has
a large size in the near field and its size decreases directly
proportional to the estimated road disparity value for each
image row. Fig. 7(c) shows the output of the edge detection
after filtering the input image with a small kernel size median
filter. Fig. 7(d) shows the output of the edge detection after
filtering the input image with a large kernel size median filter
and Fig. 7(e) shows the output of the edge detection after
filtering the input image with a variable kernel size median
filter.

F. Road Segmentation

The feature map used for the lane detection is the edge
map. For lane detection purposes, edges can be classified into
a few categories: edges on the sky, the obstacles, the lane
markings, the road markings and noise on the road such as
caused by cracks and shadows. Since the vertical profile of
the road is already calculated, this information can be used
to eliminate further noise on the edge map and increase the
SNR before calculating the horizontal profile of the road.
Since some noise such as road cracks, shadows and road
markings (apart from lane markings) appear on the road and
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(a) Disparity map (b) Segmented disparity map

(c) Original image (d) Segmented image

(e) Edge map (f) Segmented edge map

Fig. 8: Feature map segmentation

they have the same disparity as the road, such noise cannot be
eliminated by using the vertical profile of the road. However,
most of the edge points caused by the obstacles and sky can be
segmented. This is done by eliminating the edge points which
have different disparity values (more than a few pixels) from
the ones calculated by dynamic programming for their rows
in the v-disparity map. Especially for the urban environment,
this process can dramatically improve the SNR of the edge
map, as seen in Fig. 8.

In Fig. 8(a), the calculated disparity map is shown. In Fig.
8(b), the calculated disparity is segmented for the road. In Fig.
8(c), the original image is shown. In Fig. 8(d), the original
image is segmented by using the segmented disparity map. In
Fig. 8(e), the original edge map is shown and, in Fig. 8(f),
the edge map is segmented by using the segmented disparity
map.

G. Horizon Line Calculation for Each Row of the Image

The horizon line (Vpy) estimation is an important step for Vp
detection. Some algorithms assume it is fixed and can be esti-
mated by camera parameters [7] (ignoring the camera shakes)
and some algorithms estimate a single horizon line [5]. For
a flat road, a single horizon line can be estimated. However,
for a non-flat road, the horizon line is continually changing
according to the elevation of the road. Some algorithms [20],
[14], propose a solution to the pitch angle estimation based
on stereo vision which is essentially the same as estimating
the horizon line for a flat road. Projection of the flat road to
the v-disparity map is a straight line since the disparity of the
road should decrease linearly and the road profile in this case
can be estimated by using straight line detectors such as the
Hough transform. However, for a non-flat road, the projection
of the road is not a straight line. The approach taken in this

paper is to estimate the horizon line by taking two points
with different row numbers (their disparity values are already
estimated using dynamic programming as in the section ??)
and, since they are close to each other, the change in elevation
is small and that piece of the road can be assumed to be flat.
By using these two points, a line equation can be calculated
and the cross section of this lane and the column on v-disparity
map which has 0 disparity value is the horizon line for that
section of the road. After calculating the horizon line for this
section, another 2 points are taken which are shifted one row
above and the same process is applied to the estimated horizon
line for this section. This process is iteratively calculated until
the last estimated row of the road.

H. Forming Accumulator for Vpx
Vp is composed of two values, Vpx and Vpy . In the previous

sections, Vpy is already estimated for each individual row of
the image. The initial step of the proposed approach is to
take a segment from the near field of the image and to form
an accumulator for Vpx. Then, all the edge points are voted to
this accumulator according to each edge point’s orientation and
position. This initial step (forming the 1D Vpx accumulator)
is similar to the method used in our previous paper [7], In this
work, instead of using a fixed horizon line, it is estimated by
relying on the 3D information acquired by stereo vision.

The proposed approach then shifts the current band slightly
up and creates another vanishing point accumulator. Computa-
tional efficiency is achieved by adding the edge point’s votes
which appear one row above the current band to the initially
calculated accumulator and subtracting the edge point votes
which appear on the bottom row of the current band from the
initially calculated accumulator.

Furthermore, the far field of the road may contain a higher
curvature. So, thinner bands are desirable for the upper bands
of the image. Formation of thinner bands is achieved during
the shifting process by subtracting more than one row from
the bottom of the previous band, while adding only one row
to the top of the previous band. As a result, the initial band
to final band thickness ratio is adjustable.

By this approach, instead of creating an accumulator from
scratch for every band, the algorithm updates the previous one
by only processing and adding the top row (the vote positions
of the bottom band are already calculated when adding them.
Only subtraction is needed). Once an accumulator is updated
for a band, the algorithm saves it to a 2D accumulator.

This process is demonstrated in Fig. 9. In Fig. 9(a), the
input image is shown. In Fig. 9(b), the extracted feature
image is shown. In Fig. 9(c), the process of creating 2D
Vpx accumulator is demonstrated. In Fig. 9(d), the extracted
2D Vpx accumulator is shown (blue line in Fig. 9(d) is the
estimated Vpxs and estimation method will be introduced in
next section)

I. Estimating Vpx
The vanishing point can be described as the cross section

point between the tangent line of the lane and the horizon
line. Thus, if the road model is a polynomial with an order of
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(a) Original Image

(b) Feature map

(c) Shifting horizontal band for the Vpx accumulator

(d) Resultant 2D Vpx accumulator

Fig. 9: Creating the 2D Vpx accumulator

n, then, the projection of this road model should also be the
same order polynomial, as shown in equation 6,

V px(r) = u(r)− d

dr
u(r) · (r −Hz) (6)

where u(r) is the equation of the lane model. Thus, we can
assume the vanishing point is changing gradually instead of
having sudden jumps. In previous sections, the 2D Vpx accu-
mulator has already been constructed. Similar to the section
II-D, this 2D accumulator can be optimized for a gradually
changing output by dynamic programming to estimate the
best path and acquiring a Vpx for each row. For this purpose,
equation 5 can be rewritten as equation 7.

E(V px) = m(V pxrmax
)

+

1∑
r=rmax−1

m(V pxr) + λs(V pxr, V pxr+1) (7)

For the feature map in Fig. 9(b), the resultant 2D Vpx
accumulator is shown in Fig. 9(d). In Fig. 9(d), a 2D Vpx
versus row position accumulator is demonstrated. The more
votes a cell gets the darker it seems and the blue line on the
top of the figure is the optimization result for this accumulator.

By scanning images as described in the previous sections,
series of Vp is estimated and each calculated vanishing point
is estimated as for the row which is in the middle of the
corresponding band. In this way, each Vp is estimated except
the rows under the middle of the first band. However, these
rows are in the near field where the lanes tend to be straight
and they can be estimated as the same as the V p of the first
band.

III. FORMING THE LIKELIHOOD FUNCTION

In the previous sections, a series of Vp is estimated. Vp can
give direction and curvature information of the lanes. However,
lateral positions of the lanes are still remain unknown. There is
only one unknown variable left to detect for the lane detection.
A 1D accumulator has been formed with a width of 2*image
width. This approach is similar to the paper presented by
[4]. For each possible value of intersection point (Constructed
candidate lane and bottom row of the image), a likelihood
value is calculated by allowing edge points underneath the
constructed lane vote for individual starting points. Each edge
point (e) votes according to the following equation;

V (e) = ∇(e) · cos(θe − θV p) (8)

where, for each individual edge point, V is the vote, grad
is the gradient, θe is the angle of the edge point and θV p

is the angle between the edge point and the vanishing point
(in the future, inclusion of the connectivity is also planned).
For the image in Fig. 10(a), the green area is the segmented
road area and only the edge points in this area are used for
voting. The red lines on Fig. 10(a) are created road patterns
for some example starting points. In Fig. 10(b), the estimated
1D accumulator is illustrated for the image in Fig. 10(a).

IV. PEAK PAIR SELECTION

Due to the dark-light-dark transition of the lane markings,
a lane marking is projected into a 1D likelihood accumulator
as a plus-minus peak pair. This property can be seen in Fig.
10(b).

To detect these peak pairs, the algorithm initially finds plus
and minus peak points and, secondly, for each plus peak point,
finds minus peak points within a range and creates a Dirac
function at the middle of the peak-pair in another accumulator.
This process can be seen in Fig. 10. For the initial accumulator
in Fig. 10(b), a new accumulator is created for peak pairs, as
is seen in Fig. 10(c). Then, lateral offsets of the lanes are



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. , NO. , 8

(a) For an example input image, the ground plane is illustrated with the green
area (excluding obstacles, sky and occluded areas in disparity map) and some
of the candidate lane markings are illustrated with red lines.

(b) Projection of candidate lane markings to the 1D accumulator (size of this
signal is two times larger than the image width).

(c) 1D signal after plus-minus peak pair selection

(d) Lane detection result

Fig. 10: Creating 1D accumulators

selected from this new accumulator. Starting from the highest
peak, the algorithm eliminates all other peaks within the range
(±1m) and, then, detects the next highest peak from the
signal and eliminates all other peaks within the range (±1m).
The algorithm, iterates until the detected peak is lower then
the selected threshold. The detected lanes for Fig. 10(b) are
illustrated in Fig. 10(d).

V. 1D SIGNAL NOISE REDUCTION

The proposed algorithm can detect multiple lanes. However,
compared to the lane in which the vehicle is travelling, the
lanes further from the vehicle are harder to detect, especially
when these lanes are dashed. To detect multiple lanes consis-
tently, a noise reduction step is applied. In this paper, via the
estimated Vps, the lane detection is reduced to a 1D problem.
Let the noise-free signal be x(n) and the estimated signal be:

Si(n) = x(n) + w(n) (9)

where w(n) is Gaussian noise. For instance, w(n) can be
artefacts on the road which are directed to the Vp but, however,
do not consistently appear on consecutive frames. If the road

thicknesses are the same for two consecutive frames, the noise-
free signal for frame i+1 would be x(n−L) where L is the
change in lateral offset. Thus, the estimated signal for frame
i+ 1 can be defined as in equation 10;

Si−1(n) = x(n− L) + w(n) (10)

Thus, the change in lateral offset (L) between two consec-
utive frames can be estimated by applying cross-correlation
between these two signals via equation 11. In this way, before
detecting the lanes, the lateral offset change can be estimated.

ri,i−1(k) =

N∑
n=0

Si(n) · Si−1(n+ k) (11)

The probability density function (PDF) of the change in
lateral offset (L) is then estimated by normalizing ri,i+1(k)
for the range of k.

PDFi,i−1(k) = ri,i−1(k)/T (12)

where

Ti,i−1(k) =

20∑
k=−20

ri,i−1(k) (13)

Finally, signal alignment can be achieved by convolving
PDF of L with the next signal. For random noise reduction
(improvement in SNR), a few signals for a few consecutive
frames are iteratively aligned and added together as in the
equation below.

STi(n) = Si(n) + Si−1(n) ∗ PDFi,i−1 (14)

VI. EXPERIMENTAL RESULTS

To quantify the performance of the algorithm, we tested
both the accuracy of Vp and the lane detection ratio. For
estimating the error in Vp, first the ground truth Vp locations
should be known. For estimating the ground truth Vp, selecting
a Vp location manually from the image would be inaccurate.
In this paper, for a more accurate estimate of Vp, the user
selected 4 points manually, 2 from one lane and 2 from
another lane. Then, the script first calculates 2 line equations
and, then, using the estimated line parameters, calculates the
cross section point (Vp) of these 2 lines. In this way, Vp can
be estimated accurately. However, this process needs manual
work and thus the ground truth Vp locations are only estimated
for the near field.

Once the ground truth positions of Vps are estimated, the
mean error of Vp is calculated for the sample sequences. Then,
the mean error of Vp for the algorithm described in [7] is
estimated for comparison. The problem with this algorithm is
it needs Vpy as input. Thus, the ground truth Vpy is given as
the input and the mean error in Vpx is estimated. The detailed
results are shown in Table I.

To quantify the robustness of the system, the detection ratio
of the algorithm is also estimated on sample sequences from
KITTY datasets [21]. Sample detection results are illustrated
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TABLE I: Mean error in vanishing points

Proposed algorithm Y.Wang et. al. [7]
Err. Vpy Err. Vpx Err. Vpy Err. Vpx

Sequence 1 4.4825 4.4916 Ground truth 10.4558
(429 frame) input
Sequence 2 5.0319 4.8418 Ground truth 9.5621
(295 frame) input
Sequence 3 3.8749 3.3689 Ground truth 14.4960
(187 frame) input

TABLE II: Detection results

Sequence Total Lane Correct Incorrect Mis-Detectin
markings detection detection

Sequence 1 860 860 0 0
Sequence 2 594 594 0 0
Sequence 3 276 276 0 0
Sequence 4 156 147 0 9
Sequence 5 678 661 0 17

total 2564 2538 0 26

in Fig. 11 and the detailed results (sample video sequences will
be available at http://ieeexplore.ieee.org) are shown in Table
II (only the closest lanes are taken into account in this table).

VII. FUTURE WORK

In this paper, the algorithm searches for dark-light-dark
patterns for the lanes which is a more robust way (compared to
searching for a single boundary) to detect lanes and currently
it can only detect painted lanes. In Fig. 10.a, it can be seen that
there are both lane marking and a road boundary on the right
hand side of the road. This is projected to the 1D likelihood
accumulator, as in Fig. 10.b, as peaks. In that position, there
is a plus peak just after the plus-minus peak pair, where the
plus-minus peak pair is due to the lane marking and the plus
peak just after this peak pair is due to the road boundary.
If there were not any painted lane markings, there would
be only a positive peak. To detect this road boundary, it is
possible to modify the peak pair selection in an ad-hoc manner.
Such as, if no lane is detected on either side of the road, the
algorithm should also search for the single high peaks. Thus,
the algorithm would be able to detect painted lanes robustly
by using the dark-light-dark pattern of the lanes and, at the
same time, it would be able to detect road boundaries when,
painted lane markings are not available.

Currently, the algorithm detects lanes accurately and ro-
bustly. However, further improvement is possible by applying
tracking. For this purpose, it is also planned to fit estimated
Vpx values and Vpy values of a frame into spline models and
track estimated control points. Thus, tracking lanes would be
possible by tracking few parameters.

VIII. CONCLUSION

In this paper, a novel lane detection and tracking algorithm
is presented. The main novel elements of this paper include
dense vanishing point estimation, the use of estimated van-
ishing points to detect lanes, estimating the change in lateral
offset of the car in a global way and utilizing this estimation
for SNR improvement. The Vp contains the global information
of the road image. Hence, Vp based lane detection algorithms

are quite insensitive to interference and they demonstrate
robust results. Traditionally, Vp based lane detection algo-
rithms deal with a single Vp in the whole image under the
assumptions of a straight lane and a flat road. Although, pre-
viously using multiple Vpx is also proposed by some authors,
these algorithms still have a flat road assumption (they use a
single Vpy) and suggested Vpx estimation techniques are not
global. Unlike the previously proposed Vp based lane detection
algorithms, the algorithm described in this paper proposes
a global approach for dense vanishing point estimation and
can detect multiple lanes robustly and accurately with both
horizontal and vertical curvature. Experimental results show
that, proposed algorithm works robustly and accurately even
in dense traffic. Furthermore, due to the flexibility of the
described system, the user can simply plug a stereo camera rig
(experimental set-up) on to a vehicle without concern about
any of the external camera parameters (i.e. camera height or
pitch, yaw and roll angle).
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