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ABSTRACT 11 

Atmospheric CO2 possibly doubled during Oceanic Anoxic Event (OAE) 1a, likely in 12 

response to submarine volcanic outgassing. Despite being important for our 13 

understanding of the consequences of carbon cycle perturbations, the response of the 14 

climate system to this increase in greenhouse forcing is poorly constrained. Here we 15 

provide a new sea surface temperature (SST) record from the mid-latitude proto-16 

North Atlantic based on the organic geochemical TEX86-paleothermometer. Using 17 

different calibrations, including the newly developed BAYSPAR deep time analogue 18 

approach, we demonstrate that SSTs increased by ~ 2-4 °C during OAE 1a and 19 

decreased by ~ 4-6 °C at its end, both simultaneous with changes in δ13Corg, which we 20 

argue reflects changes in pCO2. We demonstrate that a clear latitudinal SST-gradient 21 

prevailed during OAE 1a, contrary to the generally accepted view that a nearly flat 22 

SST-gradient existed during OAE 1a and the Early Cretaceous. These results are more 23 



consistent with climate model simulations of the Cretaceous that have failed to 24 

produce flat SST-gradients. 25 

 26 

INTRODUCTION 27 

The Aptian Oceanic Anoxic Event (OAE) 1a, ~ 120 million years ago (Myr), is 28 

characterized by large perturbations of the global carbon cycle. New high-resolution 29 

records demonstrate that pCO2 increased, potentially doubling, during the first part of 30 

OAE 1a and after 1.5-2 million years returned to pre-event values (Naafs et al., 2016). 31 

However the responses of the climate system to these changes in greenhouse forcing 32 

are poorly constrained, representing a fundamental gap in our understanding of this 33 

OAE.  34 

Sea surface temperatures (SSTs) are one of the most diagnostic features of 35 

climate and frequently used to constrain climate model simulations. However, many 36 

OAE 1a sections are characterized by large changes in sedimentology and (partial) 37 

disappearance of biogenic carbonates. Combined with the absence of suitable 38 

foraminifera in (most) Early Cretaceous sediments, SST change during OAE 1a has 39 

generally been inferred from bulk δ18O values (e.g., Ando et al., 2008). However 40 

these values are susceptible to diagenesis (Jenkyns, 1995), and the correlation 41 

between δ18O and SST depends on sea water chemistry such as δ18Osw and pH (e.g., 42 

Ando et al., 2008), which are poorly constrained for the Early Cretaceous but was 43 

likely different from the modern (e.g., Ridgwell, 2005).  44 

The organic palaeothermometer TEX86 is increasingly used to reconstruct 45 

SSTs during the Cretaceous. TEX86 is based on the empirical relationship in the 46 

modern ocean between the distribution of marine archaeal membrane lipids (GDGTs) 47 

in the core tops of marine sediments and overlying SSTs (Schouten et al., 2002). 48 



TEX86 is also susceptible to a number of caveats that must be considered in its 49 

application; for example it can potentially be affected by changes in oxygen 50 

availability (Qin et al., 2015), and there is uncertainty regarding the exact production 51 

depth of the sedimentary TEX86 signal (Taylor et al., 2013). However, TEX86 does not 52 

appear to be systematically influenced by diagenesis (Huguet et al., 2009) nor changes 53 

in sea water chemistry such as salinity and pH (Elling et al., 2015). As such TEX86 54 

can be used to provide complementary and new Mesozoic SST records, especially 55 

during periods with poor carbonate preservation.  56 

The available TEX86 records either do not span the entire δ13C perturbation 57 

(Dumitrescu et al., 2006), have relatively poor temporal resolution (Jenkyns et al., 58 

2012; Mutterlose et al., 2014; Schouten et al., 2003) and/or are influenced by thermal 59 

maturity (Bottini et al., 2015). Here we provide the first high-resolution TEX86-based 60 

SST record spanning OAE 1a from the astronomically tuned record of deep sea 61 

drilling project (DSDP) Site 398 in the mid-latitude proto-North Atlantic to infer the 62 

SST evolution across OAE 1a and we compare that to other TEX86 records to explore 63 

global SST patterns.  64 

 65 

DSDP SITE 398 66 

At Site 398 OAE 1a spans about 20 m, between 1571.26 and 1550.77 meters below 67 

the sea floor (mbsf) and representing ~ 1.3 million year (Myr) (Li et al., 2008). Our 68 

record ranges from 1590 to 1535 mbsf (or ~ 3.5 Myr) and covers the characteristic 69 

negative (isotope segment C3) and subsequent positive carbon isotope excursion 70 

(CIE) across carbon isotope segments C4-C7 (Menegatti et al., 1998) although these 71 

individual segments can’t all be distinguished at Site 398 (Li et al., 2008). These 72 

variations in δ13C have been observed globally and reflect large perturbations of the 73 



global carbon cycle and changes in pCO2 (Naafs et al., 2016). The organic matter at 74 

Site 398 is thermally immature (Naafs et al., 2016) and the lithology remains 75 

relatively constant across OAE 1a, consisting of calcareous claystone and mudstone 76 

(Li et al., 2008).  77 

 78 

ANALYTICAL METHODS 79 

For this study we analysed 40 samples from DSDP Site 398, as well as five samples 80 

from the Djebel Serdj FM in Tunisia. Lipids from Site 398 were obtained by 81 

extracting sediment with an Ethos Ex microwave extraction system, whereas the 82 

samples from the Djebel Serdj were extracted using Soxhlet apparatus for 24 hr (see 83 

supplementary information). The total lipid extract was separated into different 84 

fractions and the polar fractions (containing the GDGTs) were re-dissolved in 85 

hexane/iso-propanol (99:1, v/v) and passed through a 0.45 µm PTFE filter prior to 86 

analysis by a ThermoFisher Scientific Accela Quantum Access triple quadrupole mass 87 

spectrometer instrument.  88 

 89 

CHOICE OF TEX86 CALIBRATION 90 

Previous OAE 1a studies have used the widely applied TEX86
H-calibration (Kim et 91 

al., 2010) to translate TEX86 values into SSTs. TEX86
H assumes a logarithmic 92 

relationship between core top TEX86 values and overlying mean annual SST. 93 

However, there is no evidence for a logarithmic relationship between TEX86 and 94 

SSTs, the modern latitudinal temperature gradient of TEX86
H-based SSTs is reduced 95 

compared to the instrumental record, and TEX86
H is characterized by structured 96 

residual trends that bias SST reconstructions, especially outside the modern 97 

calibration range (Tierney and Tingley, 2014, 2015). The consequences are that 98 



TEX86
H yields a maximum possible SST of  39 °C and exhibits a dampened SST 99 

sensitivity at TEX86 values higher than those found in the modern tropics (about 0.8), 100 

likely underestimating absolute SSTs estimates but also  the amplitude of spatial and 101 

temporal trends. Other global TEX86 calibrations have assumed a linear relationship 102 

(Schouten et al., 2002). A linear relationship (even at high temperatures) is supported 103 

by incubation and mesocom experiments that demonstrate that the temperature 104 

dependence of TEX86 remains linear at temperatures as high as 40 °C (Schouten et al., 105 

2007). 106 

In the context of the above mentioned complications and lack of evidence for 107 

a logarithmic calibration, we applied the deep time analogue approach of BAYSPAR 108 

(Tierney and Tingley, 2014) to our new data and all previously generated TEX86 data 109 

for OAE 1a. The deep time analogue approach assumes a linear temperature 110 

dependence of TEX86, but treats the intercept and slope of the linear regression as 111 

independent Gaussian processes that can vary depending on the modern analogues 112 

used to define the deep time calibration (see Supplementary Information). 113 

 114 

RESULTS 115 

All but 3 samples from Site 398 contained sufficient GDGTs to calculate TEX86 116 

values. The BIT-index, which reflects the relative contribution of terrestrial versus 117 

marine GDGTs (Hopmans et al., 2004), is generally below 0.4 with an average value 118 

of 0.2, mitigating concerns regarding the contribution of terrestrial-derived GDGTs. 119 

Five samples had BIT indices between 0.41 and 0.57 and although these data points 120 

are shown in figure 1, they are not used to calculate the moving averages. 121 

TEX86 values from Site 398 prior to OAE 1a vary around 0.88. During the 122 

negative CIE TEX86 values increase to a maximum of 0.95. At the onset of the 123 



positive CIE TEX86 values start to decrease and reach minimum values of 0.80 during 124 

the plateau of the positive CIE (segment C7).  125 

At Djebel Serdj only two samples contained sufficient GDGTs for SST 126 

reconstruction. Both of these samples are from isotope segment C3 with TEX86 values 127 

of ~ 0.9. Overall these TEX86 values for OAE 1a are ~ 0.1-0.15 units higher than 128 

those found in the modern ocean (Fig. 2c), but are similar to those reported from the 129 

subtropics during the earliest Cretaceous (Littler et al., 2011). 130 

 131 

DISCUSSION 132 

 SST estimates for OAE 1a using the deep time approach are overall higher 133 

than those obtained using TEX86
H, but similar to those obtained with other linear 134 

regressions, with values at Site 398 ranging from around 39 ± 1 °C pre-OAE 1a, to 135 

maximum values of 43 °C during the negative CIE, and minimum values of around 136 

35 °C during the subsequent positive CIE (Fig. 1). Results based on the deep time 137 

approach are nearly identical to those obtained using previously published linear 138 

relationships as well as a linear relationship derived from the most up-to-date modern 139 

dataset (see SI). Although these SST estimates are higher than previous estimates 140 

based on calcite δ18O,  diagenesis can artificially lower δ18O if non-pristine carbonate 141 

is used. Moreover, there is increasing evidence from new inorganic proxy records that 142 

SSTs during the Cretaceous are similar to those obtained using TEX86, with tropical 143 

SSTs near 40 °C (Bice et al., 2006) as well as mid-latitude SSTs (~ 40 °N) as high as 144 

30-36 °C (Erbacher et al., 2011). We concede that these estimated SSTs are very high 145 

and future work, using a range of proxies, is required to confirm these absolute 146 

values. We suggest, however, that the trends using the TEX86 deeptime analogue are 147 



more robust than those derived from TEX86
H that effectively shows no temporal (or 148 

spatial) variation. 149 

It has been shown that Thaumarchaeota grown in oxygen minimum zones 150 

generate GDGTs with more cyclopentane moieties leading to a higher TEX86 value, 151 

in-line with culture experiments (Basse et al., 2014; Qin et al., 2015). However, this 152 

appears to have only a small impact on sedimentary TEX86 distributions, as values 153 

from sediments underneath oxygen minimum zones still reflect overlying SST (Basse 154 

et al., 2014). At both sites concerns regarding the potential effects of severe oxygen 155 

limitation on TEX86 are further mitigated by the relatively low TOC content across 156 

OAE 1a with values of around 1 wt.% and lack of biomarker evidence for photic zone 157 

euxinia in our samples. Therefore, although we do not entirely preclude the role of 158 

anoxia in generating elevated TEX86-SSTs, its influence was likely minor. 159 

 160 

TEMPORAL TRENDS IN SSTS AT SITE 398 161 

In contrast to the TEX86
H-based SSTs, the deep time analogue calibration results in a 162 

2-4 °C warming during the onset of OAE 1a. SSTs start to increase at the onset of the 163 

negative δ13C excursion, and highest SST are reached after ~ 500-700 kyr during the 164 

period with the most negative δ13C values, presumably the time with highest pCO2 165 

(Naafs et al., 2016). These results are similar to the suggested 4 °C increase in SSTs at 166 

the onset of OAE 1a found in the Atlantic boreal realm (Mutterlose et al., 2014), 167 

suggesting a basin wide forcing mechanism. A brief return to more positive δ13C 168 

values in the middle of OAE 1a is associated with lower SSTs, although based on a 169 

limited number of data points, potentially related to an episode of lower SSTs seen in 170 

other basins during C-isotope segment C4-C6 (Dumitrescu et al., 2006; Mutterlose et 171 

al., 2014).  172 



Following a period of maximum SSTs, the onset of (two-stepped) cooling of 173 

5-6 °C coincides with the start of the positive CIE, which is generally attributed to 174 

enhanced burial of 12C rich organic matter and that we interpret as a link between the 175 

enhanced burial of organic matter, drawdown of pCO2, and SST. This cooling that 176 

took ~ 200 kyr is also recorded in SSTs from the boreal realm (Mutterlose et al., 177 

2014) and by changes in pollen assemblages from the Tethys region that document 178 

altered rainfall patterns and a cooler climate (Hochuli et al., 1999). Unfortunately, the 179 

inability to distinguish the individual C3-C6 segments at Site 398 makes it difficult to 180 

attribute causality unambiguously, but these relationships are consistent with those 181 

frequently proposed for other CIEs.  182 

  183 

SPATIAL TRENDS IN SSTS  184 

Previous studies have suggested that OAE 1a was characterized by a flat/reduced 185 

latitudinal SSTs gradient (Jenkyns et al., 2012; Mutterlose et al., 2014) that is smaller 186 

than that suggested by Early Cretaceous climate model reconstructions, even when 187 

taking additional (biological) feedback mechanisms into account (e.g., Kump and 188 

Pollard, 2008). The presence of such a reduced SST gradient implies the existence of 189 

(unknown) additional high-latitude climate feedback mechanisms in a high pCO2-190 

world. However, those previous interpretations were based on the TEX86
H-calibration. 191 

Recalculating all available SST-data using our linear deep time calibration yields a 192 

steeper latitudinal SST gradient, due largely to higher reconstructed tropical SSTs 193 

(Fig. 2b). This new gradient, is particularly more pronounced in the Southern 194 

Hemisphere, which is ~10-15 °C and more similar to, albeit still smaller than, the 195 

modern SST gradient.  196 

 197 



CONCLUSION 198 

The response of the climate system to changes in the carbon cycle (pCO2) 199 

across Aptian OAE 1a is poorly constrained. Here we provide a new SST record from 200 

the mid-latitude North Atlantic across OAE 1a based on the organic geochemical 201 

TEX86 paleothermometer. Our results demonstrate that changes in SSTs coincided 202 

with changes in δ13Corg values. Although we recognise the need for caution in 203 

concluding causality, we interpret that coincidence to predominantly reflect light 204 

organic carbon release resulting in pCO2-forced global warming, followed by organic 205 

matter sequestration and pCO2-forced cooling. Our high tropical TEX86 values and 206 

resulting SSTs, higher than today, argue against the presence of a tropical thermostat 207 

and demonstrate that greenhouse climates can be associated with clear latitudinal SST 208 

gradients, more in-line with climate model simulations (Donnadieu et al., 2006). 209 

However, most climate models suggest lower absolute temperatures than those 210 

observed here and additional (multi-proxy) data is required to confirm the high 211 

absolute SSTs.  212 
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 339 
FIGURE CAPTIONS 340 

Figure 1. A) δ13C of bulk organic matter from DSDP Site 398 (Li et al., 2008) and B) 341 

TEX86-based SST using the TEX86
H (circles) and BAYSPAR (squares) calibrations. 342 

Stars indicate samples with BIT values between 0.41 and 0.57. Thick lines represent 343 

moving averages. Samples with BIT > 0.4 were not included in the moving average. 344 

Definition of carbon isotope segments (C2-C7), which are recognized globally, is 345 

after Li et al. (2008). 346 

 347 

Figure 2. Modern latitudinal SST gradient (Langebroek et al., 2012) together with A) 348 

TEX86
H and B) BAYSPAR based SST estimates from Site 511 (Jenkyns et al., 2012) , 349 

Site 463 (Schouten et al., 2003), Site 1207 (Dumitrescu et al., 2006), Site 398 (this 350 

study), Djebel Serdj (this study), and Altstätte (Mutterlose et al., 2014) across OAE 1a 351 

(carbon isotope segment C3-C6, equivalent of the Selli-level). The gradients for OAE 352 

1a shown in A and B are the same. Error bars in A) reflect standard error of 353 

calibration of 2.5 °C, while error bars in B) represent 95% confidence intervals. C) 354 

raw TEX86 values across OAE 1a together with TEX86 values in modern marine core-355 



top sediments, excluding those from the Artic Ocean (Tierney and Tingley, 2015). 356 

Insert depicts the approximate paleogeography at 120 Myr and locations of study sites. 357 

 358 

1GSA Data Repository item 201Xxxx, supplementary information and data,  359 
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Supplementary information Naafs and Pancost 1 
 2 
Detailed methods 3 
Lipids from DSDP Site 398 were obtained by extracting 14 grams of dry sediment 4 
with an Ethos Ex microwave extraction system with a 20 ml of a mixture 5 
dicloromethane (DCM) and methanol (MeOH) (9:1, v/v). The microwave program 6 
consisted of a 10 min ramp to 70 °C (1000 W), 10 min hold at 70 °C (1000 W), and 7 
20 min cool down. The samples from the Djebel Serdj FM in Tunisia were extracted 8 
using between 30 and 40 gram of dry sediment and Soxhlet apparatus for 24 h using 9 
DCM/MeOH (2:1 v/v). For both sample sets, copper cuttings were added to the total 10 
lipid extract (TLE) for 24 hrs to remove elemental sulphur. For Site 398 the TLE was 11 
separated into four fractions using silica (10 ml slurry) flash column chromatography 12 
and successive elution with 21 ml of hexane (Hex), 21 ml of DCM:Hex (1:1, v/v), 28 13 
ml of DCM, and finally 14 ml of MeOH to obtain the polar fraction that contains the 14 
glycerol dialkyl glycerol tetraethers (GDGTs). For Djebel Serdj the TLE was 15 
separated into three fractions using silica (2 ml) open column chromatography and 16 
successive elution with 3 ml hexane, 4 ml hexane/DCM (3:1 v/v) and 4 ml 17 
DCM/MeOH (1:2 v/v) resulting in apolar, aromatic and polar (GDGT containing) 18 
fractions, respectively.  19 
 All samples were analyzed for their core-lipid GDGTs distribution by high 20 
performance liquid chromatography/atmospheric pressure chemical ionisation – mass 21 
spectrometry (HPLC/APCI-MS) using a ThermoFisher Scientific Accela Quantum 22 
Access triplequadrupole MS at the Organic Geochemistry Unit. Normal phase 23 
separation was achieved using two ultra-high performance liquid chromatography 24 
silica columns, following Hopmans et al. (2016). Injection volume was 15 µl, 25 
typically from 100 µl. Analyses were performed using selective ion monitoring mode 26 
(SIM) to increase sensitivity and reproducibility (m/z 1302, 1300, 1298, 1296, 1294, 27 
1292, 1050, 1048, 1046, 1036, 1034, 1032, 1022, 1020, 1018, 744, and 653). Samples 28 
were integrated manually using the Xcalibur software. 29 
 30 
Definition of TEX86 and TEX86

H and SST calibrations over time 31 
Schouten et al. (2002) defined TEX86 as a ratio of the distribution of isoprenoidal 32 
glycerol dialkyl glycerol diethers (GDGTs), archaeal membrane-spanning lipids. 33 
 34 

𝑇𝐸𝑋!" =
𝐺𝐷𝐺𝑇 − 2 + 𝐺𝐷𝐺𝑇 − 3 + 𝑐𝑟𝑒𝑛′

𝐺𝐷𝐺𝑇 − 1 + 𝐺𝐷𝐺𝑇 − 2 + 𝐺𝐷𝐺𝑇 − 3 + 𝑐𝑟𝑒𝑛′  

 35 
They proposed a linear correlation between TEX86 and SST proxy using marine 36 
sediments from across the world (n=40). 37 
 38 

𝑇𝐸𝑋!" = 0.015 × 𝑆𝑆𝑇 − 0.27      giving      𝑆𝑆𝑇 ℃ = 66.7 × 𝑇𝐸𝑋!" + 18 
 39 
A linear correlation between temperature and TEX86 was confirmed for temperature 40 
up to 40 °C by incubation and mesocom experiments (Schouten et al., 2007; Wuchter 41 
et al., 2004).  42 
 43 

𝑇𝐸𝑋!" = 0.017× 𝑆𝑆𝑇 + 0.064      giving      𝑆𝑆𝑇 ℃ = 58.8 × 𝑇𝐸𝑋!" − 3.8 
 44 



Although the intercept of this calibration differed from that found in marine core-tops, 45 
predominantly due to a difference in the amount of crenarchaeol regioisomer, the 46 
slope was comparable with that found in marine core-tops. 47 

Kim et al. (2008) provided an updated linear calibration, based on 223 core-48 
top samples with a global distribution. 49 
 50 

𝑇𝐸𝑋!" = 0.018 × 𝑆𝑆𝑇 + 0.19      giving      𝑆𝑆𝑇 ℃ = 56.2 × 𝑇𝐸𝑋!" − 10.78 
 51 
Although all previous studies used a linear correlation between TEX86 and 52 
temperature, including the incubation and mesocom experiments, Kim et al. (2010) 53 
proposed a logarithmic correlation between temperature and TEX86 for samples from 54 
core-tops with an overlying SST > 15 °C: “TEX86

H”. 55 
 56 
log(𝑇𝐸𝑋!") = 0.015 × 𝑆𝑆𝑇 − 0.56   giving    𝑆𝑆𝑇 ℃ = 68.4 ×  log(𝑇𝐸𝑋!")+ 38.6 
 57 
We note that Kim et al. (2010) also proposed an alternative ratio and calibration: 58 
TEX86

L. Different from all other calibrations TEX86
L is not based on the original 59 

TEX86 index.  60 

   𝑆𝑆𝑇 ℃ = 67.5 × log (
[𝐺𝐷𝐺𝑇 − 2]

𝐺𝐷𝐺𝑇 − 1 + 𝐺𝐷𝐺𝑇 − 2 + [𝐺𝐷𝐺𝑇 − 3])+ 46.9 

 61 
Recently, the TEX86

L approach has been vigorously critiqued because: 1) the ratio of 62 
GDGT-2 to the sum of GDGT-1, -2 and -3 has no phsysiological basis, unlike the 63 
original TEX86 ratio that records an increasing degree of cyclisation at higher 64 
temperatures(Schouten et al., 2002; Schouten et al., 2013)); 2) it has structured 65 
temperature residuals at the high end of the calibration, which is particularly 66 
problematic for its application to warm climates of the past (Tierney and Tingley, 67 
2014); and 3) sub-surface GDGT distributions are characterized by high ratios of 68 
GDGT-2 to GDGT-3, meaning that export dynamics are particularly problematic for 69 
this proxy (Hernández-Sánchez et al., 2014; Taylor et al., 2013). As such, we do not 70 
use TEX86

L here.  71 
 72 
Deep time analogue calibration 73 
In order to create a deep time analogue calibration for OAE 1a we compiled all TEX86 74 
records that span OAE 1a Fig. 2. The deep-time model of BAYSPAR selects TEX86 75 
values from the modern dataset with a similar TEX86 value to that of the paleorecord 76 
and then uses these locations to construct a linear regression (Tierney and Tingley, 77 
2014). For this purpose the model requires an estimate of the prior distribution of the 78 
unknowns (basically a prediction of the SSTs to be estimated). We selected a value of 79 
30 °C and a broad standard deviation of 20 °C. Selecting different values (e.g. 25-80 
35 °C as priors or smaller standard deviation) does not lead to different SSTs. The 81 
search tolerance was 0.17 (2σ of the inputted TEX86 data). The resulting linear 82 
calibration is based on “analogue” locations from the modern tropics and Red Sea.  83 
 84 

𝑇𝐸𝑋!" = 0.016 × 𝑆𝑆𝑇 + 0.25      giving      𝑆𝑆𝑇 ℃ = 60.9 × 𝑇𝐸𝑋!" − 15.6 
 85 
We note that much of our data fall beyond the modern calibration range, but the 86 
Bayesian approach of the BAYSPAR deep time analogue incorporates that into its 87 
error calculation.  88 
 89 



Linear TEX86 calibration using all modern core tops with SST > 15 °C 90 
In addition to using the BAYSPAR deep time analogue model to create a linear 91 
calibration, we also generated a new linear TEX86 calibration using all modern core 92 
top data underlying surface waters with SST > 15 °C (Fig. S1). The cut-off of 15 °C is 93 
identical to that used by TEX86

H, but instead of a logarithmic correlation we use a 94 
linear correlation.  95 
 96 

𝑇𝐸𝑋!" = 0.017 × 𝑆𝑆𝑇 + 0.22      giving      𝑆𝑆𝑇 ℃ = 58.8 × 𝑇𝐸𝑋!" − 13.4 
 97 
 98 

 99 
Figure S1: Newly constructed linear TEX86 calibration based on all core top data 100 
from regions with SST > 15 °C. Data from Tierney and Tingley (2015) 101 
 102 
 103 
The slope of the new linear calibration is ~ 60, virtually identical that that of the deep 104 
time analogue approach, and both of those are very similar to the slope of the high 105 
temperature calibration obtained from the incubation experiments at temperatures 106 
between 10 and 40 °C (Schouten et al., 2007).  107 

Using the newly constructed calibration to generate latitudinal SST gradients 108 
for OAE 1a gives results that are nearly identical to those obtained using the 109 
BAYSPAR deep time analogue approach with a pronounced latitudinal gradient (Fig. 110 
S2). It also gives nearly identical temporal trends through OAE1a at DSDP Site 398. 111 



 112 
 113 
Figure S2: Latitudinal SST gradient for OAE 1a using the newly constructed linear 114 
TEX86 calibration, based on modern-day samples from regions with SST > 15 °C 115 
only. The deeptime analogue gradient is the same as shown in Figure 2a and b. Error 116 
bars reflect RSME of calibration, which is 3 °C. 117 
 118 
 119 
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