

Naafs, D., & Pancost, R. (2016). Sea-surface temperature evolution across Aptian Oceanic Anoxic Event 1a. *Geology*, *44*(11), 959-962. https://doi.org/10.1130/G38575.1

Peer reviewed version

Link to published version (if available): 10.1130/G38575.1

Link to publication record in Explore Bristol Research PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Geological Society of America at http://dx.doi.org/10.1130/G38575.1. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

1	Sea surface temperature evolution across Aptian Oceanic
2	Anoxic Event 1a
3	
4	B.D.A. Naafs [*] and R.D. Pancost
5	
6	Organic Geochemistry Unit, School of Chemistry and Cabot Institute, University of
7	Bristol, BS8 1TS Bristol, UK
8	
9	*Corresponding author. E-mail address: <u>david.naafs@bristol.ac.uk</u>
10	
11	ABSTRACT
12	Atmospheric CO ₂ possibly doubled during Oceanic Anoxic Event (OAE) 1a, likely in
13	response to submarine volcanic outgassing. Despite being important for our
14	understanding of the consequences of carbon cycle perturbations, the response of the
15	climate system to this increase in greenhouse forcing is poorly constrained. Here we
16	provide a new sea surface temperature (SST) record from the mid-latitude proto-
17	North Atlantic based on the organic geochemical TEX_{86} -paleothermometer. Using
18	different calibrations, including the newly developed BAYSPAR deep time analogue
19	approach, we demonstrate that SSTs increased by \sim 2-4 °C during OAE 1a and
20	decreased by ~ 4-6 °C at its end, both simultaneous with changes in $\delta^{13}C_{\text{org}}$, which we
21	argue reflects changes in p CO ₂ . We demonstrate that a clear latitudinal SST-gradient
22	prevailed during OAE 1a, contrary to the generally accepted view that a nearly flat
23	SST-gradient existed during OAE 1a and the Early Cretaceous. These results are more

24 consistent with climate model simulations of the Cretaceous that have failed to 25 produce flat SST-gradients.

26

27 **INTRODUCTION**

28 The Aptian Oceanic Anoxic Event (OAE) 1a, ~ 120 million years ago (Myr), is 29 characterized by large perturbations of the global carbon cycle. New high-resolution 30 records demonstrate that pCO₂ increased, potentially doubling, during the first part of 31 OAE 1a and after 1.5-2 million years returned to pre-event values (Naafs et al., 2016). 32 However the responses of the climate system to these changes in greenhouse forcing 33 are poorly constrained, representing a fundamental gap in our understanding of this 34 OAE.

35 Sea surface temperatures (SSTs) are one of the most diagnostic features of 36 climate and frequently used to constrain climate model simulations. However, many 37 OAE 1a sections are characterized by large changes in sedimentology and (partial) 38 disappearance of biogenic carbonates. Combined with the absence of suitable 39 foraminifera in (most) Early Cretaceous sediments, SST change during OAE 1a has generally been inferred from bulk δ^{18} O values (e.g., Ando et al., 2008). However 40 41 these values are susceptible to diagenesis (Jenkyns, 1995), and the correlation between δ^{18} O and SST depends on sea water chemistry such as δ^{18} O_{sw} and pH (e.g., 42 43 Ando et al., 2008), which are poorly constrained for the Early Cretaceous but was 44 likely different from the modern (e.g., Ridgwell, 2005). 45 The organic palaeothermometer TEX_{86} is increasingly used to reconstruct 46 SSTs during the Cretaceous. TEX_{86} is based on the empirical relationship in the 47 modern ocean between the distribution of marine archaeal membrane lipids (GDGTs)

48 in the core tops of marine sediments and overlying SSTs (Schouten et al., 2002).

49 TEX₈₆ is also susceptible to a number of caveats that must be considered in its 50 application; for example it can potentially be affected by changes in oxygen 51 availability (Qin et al., 2015), and there is uncertainty regarding the exact production 52 depth of the sedimentary TEX₈₆ signal (Taylor et al., 2013). However, TEX₈₆ does not 53 appear to be systematically influenced by diagenesis (Huguet et al., 2009) nor changes 54 in sea water chemistry such as salinity and pH (Elling et al., 2015). As such TEX₈₆ 55 can be used to provide complementary and new Mesozoic SST records, especially during periods with poor carbonate preservation. 56

The available TEX₈₆ records either do not span the entire δ^{13} C perturbation 57 58 (Dumitrescu et al., 2006), have relatively poor temporal resolution (Jenkyns et al., 59 2012; Mutterlose et al., 2014; Schouten et al., 2003) and/or are influenced by thermal 60 maturity (Bottini et al., 2015). Here we provide the first high-resolution TEX₈₆-based 61 SST record spanning OAE 1a from the astronomically tuned record of deep sea 62 drilling project (DSDP) Site 398 in the mid-latitude proto-North Atlantic to infer the 63 SST evolution across OAE 1a and we compare that to other TEX₈₆ records to explore 64 global SST patterns.

65

66 **DSDP SITE 398**

At Site 398 OAE 1a spans about 20 m, between 1571.26 and 1550.77 meters below the sea floor (mbsf) and representing ~ 1.3 million year (Myr) (Li et al., 2008). Our record ranges from 1590 to 1535 mbsf (or ~ 3.5 Myr) and covers the characteristic negative (isotope segment C3) and subsequent positive carbon isotope excursion (CIE) across carbon isotope segments C4-C7 (Menegatti et al., 1998) although these individual segments can't all be distinguished at Site 398 (Li et al., 2008). These variations in δ^{13} C have been observed globally and reflect large perturbations of the

- global carbon cycle and changes in *p*CO₂ (Naafs et al., 2016). The organic matter at
 Site 398 is thermally immature (Naafs et al., 2016) and the lithology remains
 relatively constant across OAE 1a, consisting of calcareous claystone and mudstone
 (Li et al., 2008).
- 78

79 ANALYTICAL METHODS

80 For this study we analysed 40 samples from DSDP Site 398, as well as five samples 81 from the Djebel Serdj FM in Tunisia. Lipids from Site 398 were obtained by 82 extracting sediment with an Ethos Ex microwave extraction system, whereas the 83 samples from the Djebel Serdj were extracted using Soxhlet apparatus for 24 hr (see 84 supplementary information). The total lipid extract was separated into different 85 fractions and the polar fractions (containing the GDGTs) were re-dissolved in 86 hexane/iso-propanol (99:1, v/v) and passed through a 0.45 µm PTFE filter prior to 87 analysis by a ThermoFisher Scientific Accela Quantum Access triple quadrupole mass 88 spectrometer instrument.

89

90 CHOICE OF TEX₈₆ CALIBRATION

91 Previous OAE 1a studies have used the widely applied TEX_{86}^{H} -calibration (Kim et

92 al., 2010) to translate TEX₈₆ values into SSTs. TEX_{86}^{H} assumes a logarithmic

relationship between core top TEX₈₆ values and overlying mean annual SST.

However, there is no evidence for a logarithmic relationship between TEX_{86} and

95 SSTs, the modern latitudinal temperature gradient of $\text{TEX}_{86}^{\text{H}}$ -based SSTs is reduced

- 96 compared to the instrumental record, and TEX_{86}^{H} is characterized by structured
- 97 residual trends that bias SST reconstructions, especially outside the modern
- calibration range (Tierney and Tingley, 2014, 2015). The consequences are that

TEX₈₆^H yields a maximum possible SST of 39 °C and exhibits a dampened SST 99 100 sensitivity at TEX₈₆ values higher than those found in the modern tropics (about 0.8), 101 likely underestimating absolute SSTs estimates but also the amplitude of spatial and 102 temporal trends. Other global TEX₈₆ calibrations have assumed a linear relationship 103 (Schouten et al., 2002). A linear relationship (even at high temperatures) is supported 104 by incubation and mesocom experiments that demonstrate that the temperature 105 dependence of TEX₈₆ remains linear at temperatures as high as 40 °C (Schouten et al., 106 2007).

107In the context of the above mentioned complications and lack of evidence for108a logarithmic calibration, we applied the deep time analogue approach of BAYSPAR109(Tierney and Tingley, 2014) to our new data and all previously generated TEX₈₆ data110for OAE 1a. The deep time analogue approach assumes a linear temperature111dependence of TEX₈₆, but treats the intercept and slope of the linear regression as112independent Gaussian processes that can vary depending on the modern analogues113used to define the deep time calibration (see Supplementary Information).

115 **RESULTS**

116 All but 3 samples from Site 398 contained sufficient GDGTs to calculate TEX₈₆

117 values. The BIT-index, which reflects the relative contribution of terrestrial versus

118 marine GDGTs (Hopmans et al., 2004), is generally below 0.4 with an average value

119 of 0.2, mitigating concerns regarding the contribution of terrestrial-derived GDGTs.

120 Five samples had BIT indices between 0.41 and 0.57 and although these data points

121 are shown in figure 1, they are not used to calculate the moving averages.

122 TEX₈₆ values from Site 398 prior to OAE 1a vary around 0.88. During the 123 negative CIE TEX₈₆ values increase to a maximum of 0.95. At the onset of the positive CIE TEX₈₆ values start to decrease and reach minimum values of 0.80 during
the plateau of the positive CIE (segment C7).

126 At Djebel Serdj only two samples contained sufficient GDGTs for SST 127 reconstruction. Both of these samples are from isotope segment C3 with TEX₈₆ values 128 of ~ 0.9. Overall these TEX₈₆ values for OAE 1a are ~ 0.1-0.15 units higher than 129 those found in the modern ocean (Fig. 2c), but are similar to those reported from the 130 subtropics during the earliest Cretaceous (Littler et al., 2011).

131

132 **DISCUSSION**

133 SST estimates for OAE 1a using the deep time approach are overall higher than those obtained using TEX_{86}^{H} , but similar to those obtained with other linear 134 135 regressions, with values at Site 398 ranging from around 39 ± 1 °C pre-OAE 1a, to 136 maximum values of 43 °C during the negative CIE, and minimum values of around 35 °C during the subsequent positive CIE (Fig. 1). Results based on the deep time 137 138 approach are nearly identical to those obtained using previously published linear 139 relationships as well as a linear relationship derived from the most up-to-date modern 140 dataset (see SI). Although these SST estimates are higher than previous estimates based on calcite δ^{18} O, diagenesis can artificially lower δ^{18} O if non-pristine carbonate 141 142 is used. Moreover, there is increasing evidence from new inorganic proxy records that 143 SSTs during the Cretaceous are similar to those obtained using TEX_{86} , with tropical SSTs near 40 °C (Bice et al., 2006) as well as mid-latitude SSTs (~ 40 °N) as high as 144 145 30-36 °C (Erbacher et al., 2011). We concede that these estimated SSTs are very high 146 and future work, using a range of proxies, is required to confirm these absolute values. We suggest, however, that the trends using the TEX_{86} deeptime analogue are 147

148 more robust than those derived from $\text{TEX}_{86}^{\text{H}}$ that effectively shows no temporal (or 149 spatial) variation.

150 It has been shown that Thaumarchaeota grown in oxygen minimum zones 151 generate GDGTs with more cyclopentane moieties leading to a higher TEX₈₆ value, 152 in-line with culture experiments (Basse et al., 2014; Qin et al., 2015). However, this appears to have only a small impact on sedimentary TEX_{86} distributions, as values 153 154 from sediments underneath oxygen minimum zones still reflect overlying SST (Basse et al., 2014). At both sites concerns regarding the potential effects of severe oxygen 155 156 limitation on TEX₈₆ are further mitigated by the relatively low TOC content across 157 OAE 1a with values of around 1 wt.% and lack of biomarker evidence for photic zone 158 euxinia in our samples. Therefore, although we do not entirely preclude the role of 159 anoxia in generating elevated TEX₈₆-SSTs, its influence was likely minor.

160

161 TEMPORAL TRENDS IN SSTS AT SITE 398

In contrast to the TEX_{86}^{H} -based SSTs, the deep time analogue calibration results in a 162 2-4 °C warming during the onset of OAE 1a. SSTs start to increase at the onset of the 163 negative δ^{13} C excursion, and highest SST are reached after ~ 500-700 kyr during the 164 period with the most negative δ^{13} C values, presumably the time with highest pCO₂ 165 166 (Naafs et al., 2016). These results are similar to the suggested 4 °C increase in SSTs at 167 the onset of OAE 1a found in the Atlantic boreal realm (Mutterlose et al., 2014), 168 suggesting a basin wide forcing mechanism. A brief return to more positive δ^{13} C 169 values in the middle of OAE 1a is associated with lower SSTs, although based on a 170 limited number of data points, potentially related to an episode of lower SSTs seen in 171 other basins during C-isotope segment C4-C6 (Dumitrescu et al., 2006; Mutterlose et 172 al., 2014).

173	Following a period of maximum SSTs, the onset of (two-stepped) cooling of
174	5-6 °C coincides with the start of the positive CIE, which is generally attributed to
175	enhanced burial of ¹² C rich organic matter and that we interpret as a link between the
176	enhanced burial of organic matter, drawdown of p CO ₂ , and SST. This cooling that
177	took ~ 200 kyr is also recorded in SSTs from the boreal realm (Mutterlose et al.,
178	2014) and by changes in pollen assemblages from the Tethys region that document
179	altered rainfall patterns and a cooler climate (Hochuli et al., 1999). Unfortunately, the
180	inability to distinguish the individual C3-C6 segments at Site 398 makes it difficult to
181	attribute causality unambiguously, but these relationships are consistent with those
182	frequently proposed for other CIEs.
183	
184	SPATIAL TRENDS IN SSTS
185	Previous studies have suggested that OAE 1a was characterized by a flat/reduced
186	latitudinal SSTs gradient (Jenkyns et al., 2012; Mutterlose et al., 2014) that is smaller
187	than that suggested by Early Cretaceous climate model reconstructions, even when
188	taking additional (biological) feedback mechanisms into account (e.g., Kump and
189	Pollard, 2008). The presence of such a reduced SST gradient implies the existence of
190	(unknown) additional high-latitude climate feedback mechanisms in a high pCO_2 -
191	world. However, those previous interpretations were based on the $\text{TEX}_{86}^{\text{H}}$ -calibration.
192	Recalculating all available SST-data using our linear deep time calibration yields a
193	steeper latitudinal SST gradient, due largely to higher reconstructed tropical SSTs
194	(Fig. 2b). This new gradient, is particularly more pronounced in the Southern
195	Hemisphere, which is \sim 10-15 °C and more similar to, albeit still smaller than, the
196	modern SST gradient.

198 CONCLUSION

199 The response of the climate system to changes in the carbon cycle (pCO_2) 200 across Aptian OAE 1a is poorly constrained. Here we provide a new SST record from 201 the mid-latitude North Atlantic across OAE 1a based on the organic geochemical 202 TEX₈₆ paleothermometer. Our results demonstrate that changes in SSTs coincided with changes in $\delta^{13}C_{org}$ values. Although we recognise the need for caution in 203 204 concluding causality, we interpret that coincidence to predominantly reflect light 205 organic carbon release resulting in pCO₂-forced global warming, followed by organic matter sequestration and pCO_2 -forced cooling. Our high tropical TEX₈₆ values and 206 207 resulting SSTs, higher than today, argue against the presence of a tropical thermostat 208 and demonstrate that greenhouse climates can be associated with clear latitudinal SST 209 gradients, more in-line with climate model simulations (Donnadieu et al., 2006). 210 However, most climate models suggest lower absolute temperatures than those 211 observed here and additional (multi-proxy) data is required to confirm the high 212 absolute SSTs.

213

214 ACKNOWLEDGEMENTS

215 B.D.A.N. received funding through a Rubicon fellowship, awarded by the

216 Netherlands Organization for Scientific Research (NWO). Additional funding came

from the advanced ERC grant `The greenhouse earth system' (T-GRES, project

218 reference 340923). R.D.P. acknowledges the Royal Society Wolfson Research Merit

Award. C. O'Brien is acknowledged for discussions and help with generating thedeep-time calibration.

221

222 **REFERENCES**

223	Ando, A., Kaiho, K., Kawahata, H., and Kakegawa, T., 2008, Timing and magnitude
224	of early Aptian extreme warming: Unraveling primary δ^{18} O variation in
225	indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central
226	Pacific Ocean: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260,
227	no. 3–4, p. 463-476, doi: 10.1016/j.palaeo.2007.12.007.
228	Basse, A., Zhu, C., Versteegh, G. J. M., Fischer, G., Hinrichs, KU., and
229	Mollenhauer, G., 2014, Distribution of intact and core tetraether lipids in
230	water column profiles of suspended particulate matter off Cape Blanc, NW
231	Africa: Organic Geochemistry, v. 72, p. 1-13, doi:
232	10.1016/i.orggeochem.2014.04.007.
233	Bice, K. L., Birgel, D., Mevers, P. A., Dahl, K. A., Hinrichs, KU., and Norris, R. D.,
234	2006. A multiple proxy and model study of Cretaceous upper ocean
235	temperatures and atmospheric CO ₂ concentrations: Paleoceanography, v. 21.
236	no 2 p PA2002 doi: 10 1029/2005 $pa001203$
237	Bottini, C., Erba, E., Tiraboschi, D., Jenkyns, H. C., Schouten, S., and Sinninghe
238	Damsté J S 2015 Climate variability and ocean fertility during the Aptian
239	Stage: Climate of the Past v 11 no 3 n $383-402$ doi: 10 5194 /cn-11-383-
240	2015
241	Donnadieu Y Pierrehumbert R Jacob R and Fluteau F 2006 Modelling the
242	primary control of paleogeography on Cretaceous climate: Earth and Planetary
243	Science Letters v 248 no $1-2$ p 426-437 doi: 10 1016/i epsl 2006 06 007
244	Dumitrescu M Brassell S C Schouten S Hopmans E C and
245	Sinninghe Damsté J S 2006 Instability in tropical Pacific sea-surface
246	temperatures during the early Aptian: Geology, y. 34, no. 10, p. 833-836, doi:
247	10.1130/g22882.1.
248	Elling, F. J., Könneke, M., Mußmann, M., Greve, A., and Hinrichs, KU., 2015.
249	Influence of temperature, pH, and salinity on membrane lipid composition and
250	TEX ₈₆ of marine planktonic thaumarchaeal isolates: Geochimica et
251	Cosmochimica Acta, v. 171, p. 238-255, doi: 10.1016/i.gca.2015.09.004.
252	Erbacher, J., Friedrich, O., Wilson, P. A., Lehmann, J., and Weiss, W., 2011, Short-
253	term warming events during the boreal Albian (mid-Cretaceous); Geology, v.
254	39. no. 3. p. 223-226. doi: 10.1130/G31606.1.
255	Hochuli, P. A., Menegatti, A. P., Weissert, H., Riva, A., Erba, E., and Silva, I. P.,
256	1999. Episodes of high productivity and cooling in the early Aptian Alpine
257	Tethys: Geology, v. 27, no. 7, p. 657-660, doi: 10.1130/0091-
258	7613(1999)027<0657:EOHPAC>2.3.CO:2.
259	Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S.,
260	and Schouten, S., 2004, A novel proxy for terrestrial organic matter in
261	sediments based on branched and isoprenoid tetraether lipids: Earth and
262	Planetary Science Letters, v. 224, no. 1-2, p. 107-116, doi:
263	10.1016/j.epsl.2004.05.012.
264	Huguet, C., Kim, JH., de Lange, G. J., Sinninghe Damsté, J. S., and Schouten, S.,
265	2009, Effects of long term oxic degradation on the $U^{K_{137}}$, TEX ₈₆ and BIT
266	organic proxies: Organic Geochemistry, v. 40, no. 12, p. 1188-1194, doi:
267	10.1016/j.orggeochem.2009.09.003.
268	Jenkyns, H. C., 1995, Carbon-isotope stratigraphy and paleoceanographic significance
269	of the lower Cretaceous shallow-water carbonates of resolution Guyot, mid-
270	Pacific Mountains, in Winterer, E. L., Sager, W. W., Firth, J. V., and Sinton, J.
271	M., eds., Proceedings of the Ocean Drilling Program, Scientific Results, vol.
272	143: College Station, TX, Ocean Drilling Program, p. 99-104.

Jenkyns, H. C., Schouten-Huibers, L., Schouten, S., and Sinninghe Damsté, J. S., 273 274 2012, Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface 275 temperatures from the Southern Ocean: Climate of the Past, v. 8, p. 215-226, 276 doi: 10.5194/cp-8-215-2012. 277 Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., 278 Koc, N., Hopmans, E. C., and Sinninghe Damsté, J. S., 2010, New indices and 279 calibrations derived from the distribution of crenarchaeal isoprenoid tetraether 280 lipids: Implications for past sea surface temperature reconstructions: 281 Geochimica et Cosmochimica Acta, v. 74, no. 16, p. 4639-4654, doi: 282 10.1016/j.gca.2010.05.027. Kump, L. R., and Pollard, D., 2008, Amplification of Cretaceous Warmth by 283 284 Biological Cloud Feedbacks: Science, v. 320, no. 5873, p. 195-195, doi: 285 10.1126/science.1153883. Langebroek, P., Bradshaw, C., Yanchilina, A., Caballero-Gill, R., Pew, C., Armour, 286 287 K., Lee, S.-Y., and Jansson, I.-M., 2012, Improved proxy record of past warm 288 climates needed: Eos, Transactions American Geophysical Union, v. 93, no. 289 14, p. 144-145, doi: 10.1029/2012EO140007. 290 Li, Y.-X., Bralower, T. J., Montañez, I. P., Osleger, D. A., Arthur, M. A., Bice, D. M., 291 Herbert, T. D., Erba, E., and Premoli Silva, I., 2008, Toward an orbital 292 chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~ 120 Ma): 293 Earth and Planetary Science Letters, v. 271, no. 1-4, p. 88-100, doi: 294 10.1016/j.epsl.2008.03.055. 295 Littler, K., Robinson, S. A., Bown, P. R., Nederbragt, A. J., and Pancost, R. D., 2011, 296 High sea-surface temperatures during the Early Cretaceous Epoch: Nature 297 Geoscience, v. 4, no. 3, p. 169-172, doi: 10.1038/ngeo1081. 298 Menegatti, A. P., Weissert, H., Brown, R. S., Tyson, R. V., Farrimond, P., Strasser, A., and Caron, M., 1998, High-Resolution δ^{13} C Stratigraphy Through the 299 Early Aptian "Livello Selli" of the Alpine Tethys: Paleoceanography, v. 13, 300 301 no. 5, p. 530-545, doi: 10.1029/98pa01793. 302 Mutterlose, J., Bottini, C., Schouten, S., and Sinninghe Damsté, J. S., 2014, High sea-303 surface temperatures during the early Aptian Oceanic Anoxic Event 1a in the Boreal Realm: Geology, v. 42, no. 5, p. 439-442, doi: 10.1130/G35394.1. 304 305 Naafs, B. D. A., Castro, J. M., De Gea, G. A., Ouijano, M. L., Schmidt, D. N., and 306 Pancost, R. D., 2016, Gradual and sustained carbon dioxide release during 307 Aptian Oceanic Anoxic Event 1a: Nature Geoscience, v. 9, no. 2, p. 135-139, 308 doi: 10.1038/ngeo2627. 309 Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W., Stahl, D. A., 310 and Ingalls, A. E., 2015, Confounding effects of oxygen and temperature on 311 the TEX₈₆ signature of marine Thaumarchaeota: Proceedings of the National 312 Academy of Sciences, v. 112, no. 35, p. 10979-10984, doi: 313 10.1073/pnas.1501568112. 314 Ridgwell, A., 2005, A Mid Mesozoic Revolution in the regulation of ocean chemistry: 315 Marine Geology, v. 217, no. 3-4, p. 339-357, doi: 316 10.1016/j.margeo.2004.10.036. 317 Schouten, S., Forster, A., Panoto, F. E., and Sinninghe Damsté, J. S., 2007, Towards 318 calibration of the TEX₈₆ palaeothermometer for tropical sea surface 319 temperatures in ancient greenhouse worlds: Organic Geochemistry, v. 38, no. 320 9, p. 1537-1546, doi: 10.1016/j.orggeochem.2007.05.014. 321 Schouten, S., Hopmans, E. C., Forster, A., van Breugel, Y., Kuypers, M. M. M., and 322 Sinninghe Damsté, J. S., 2003, Extremely high sea-surface temperatures at

323	low latitudes during the middle Cretaceous as revealed by archaeal membrane
324	lipids: Geology, v. 31, no. 12, p. 1069-1072, doi: 10.1130/g19876.1.
325	Schouten, S., Hopmans, E. C., Schefuss, E., and Sinninghe Damsté, J. S., 2002,
326	Distributional variations in marine crenarchaeotal membrane lipids: a new tool
327	for reconstructing ancient sea water temperatures?: Earth and Planetary
328	Science Letters, v. 204, no. 1-2, p. 265-274, doi: 10.1016/S0012-
329	821X(02)009/9-2.
330	Taylor, K. W. R., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., and Pancost, R.
331	D., 2013, Re-evaluating modern and Palaeogene GDG1 distributions:
332 222	Implications for SST reconstructions: Global and Planetary Change, V. 108, p.
222	Tiomery L.E. and Tinglay M.B. 2014. A Devesion spatially varying calibration
225	model for the TEX provy: Googhiming of Cosmochiming Actory 127 p. 82
226	106 doi: 10.1016/j.gop.2012.11.026
330	- 2015 A TEX _{ex} surface sediment database and extended Bayesian calibration:
338	Scientific Data v 2 n 150029 doi: 10.1038/sdata 2015.29
339	Scientific Data, V. 2, p. 150025, doi: 10.1050/5data.2015.25.
340	FIGURE CAPTIONS
2.4.1	$F_{1}^{*} = 1 + \lambda S_{1}^{13} G_{1}^{*} G_{1}^{*} = 0$
341	Figure 1. A) δ^{-1} C of bulk organic matter from DSDP Site 398 (Li et al., 2008) and B)
342	TEX ₈₆ -based SST using the TEX ₈₆ ^H (circles) and BAYSPAR (squares) calibrations.
343	Stars indicate samples with BIT values between 0.41 and 0.57. Thick lines represent
344	moving averages. Samples with $BIT > 0.4$ were not included in the moving average.
345	Definition of carbon isotope segments (C2-C7), which are recognized globally, is
346	after Li et al. (2008).
347	
348	Figure 2. Modern latitudinal SST gradient (Langebroek et al., 2012) together with A)
349	${\rm TEX_{86}}^{\rm H}$ and B) BAYSPAR based SST estimates from Site 511 (Jenkyns et al., 2012) ,
350	Site 463 (Schouten et al., 2003), Site 1207 (Dumitrescu et al., 2006), Site 398 (this
351	study), Djebel Serdj (this study), and Altstätte (Mutterlose et al., 2014) across OAE 1a
352	(carbon isotope segment C3-C6, equivalent of the Selli-level). The gradients for OAE
353	1a shown in A and B are the same. Error bars in A) reflect standard error of
354	calibration of 2.5 °C, while error bars in B) represent 95% confidence intervals. C)
355	raw TEX ₈₆ values across OAE 1a together with TEX ₈₆ values in modern marine core-

- top sediments, excluding those from the Artic Ocean (Tierney and Tingley, 2015).
- 357 Insert depicts the approximate paleogeography at 120 Myr and locations of study sites.

358

¹GSA Data Repository item 201Xxxx, supplementary information and data,

Supplementary information Naafs and Pancost 1

2 3 **Detailed methods**

Lipids from DSDP Site 398 were obtained by extracting 14 grams of dry sediment 4 with an Ethos Ex microwave extraction system with a 20 ml of a mixture

5 dicloromethane (DCM) and methanol (MeOH) (9:1, v/v). The microwave program 6 consisted of a 10 min ramp to 70 °C (1000 W), 10 min hold at 70 °C (1000 W), and 7 20 min cool down. The samples from the Djebel Serdj FM in Tunisia were extracted 8 9 using between 30 and 40 gram of dry sediment and Soxhlet apparatus for 24 h using

10 DCM/MeOH (2:1 v/v). For both sample sets, copper cuttings were added to the total 11 lipid extract (TLE) for 24 hrs to remove elemental sulphur. For Site 398 the TLE was

separated into four fractions using silica (10 ml slurry) flash column chromatography 12

13 and successive elution with 21 ml of hexane (Hex), 21 ml of DCM:Hex (1:1, v/v), 28 14 ml of DCM, and finally 14 ml of MeOH to obtain the polar fraction that contains the

15 glycerol dialkyl glycerol tetraethers (GDGTs). For Djebel Serdj the TLE was

separated into three fractions using silica (2 ml) open column chromatography and 16

17 successive elution with 3 ml hexane, 4 ml hexane/DCM (3:1 v/v) and 4 ml

18 DCM/MeOH (1:2 v/v) resulting in apolar, aromatic and polar (GDGT containing)

19 fractions, respectively.

20 All samples were analyzed for their core-lipid GDGTs distribution by high 21 performance liquid chromatography/atmospheric pressure chemical ionisation - mass 22 spectrometry (HPLC/APCI-MS) using a ThermoFisher Scientific Accela Quantum 23 Access triplequadrupole MS at the Organic Geochemistry Unit. Normal phase 24 separation was achieved using two ultra-high performance liquid chromatography 25 silica columns, following Hopmans et al. (2016). Injection volume was 15 µl, 26 typically from 100 µl. Analyses were performed using selective ion monitoring mode 27 (SIM) to increase sensitivity and reproducibility (m/z 1302, 1300, 1298, 1296, 1294, 28 1292, 1050, 1048, 1046, 1036, 1034, 1032, 1022, 1020, 1018, 744, and 653). Samples 29 were integrated manually using the Xcalibur software.

30

Definition of TEX_{86} and TEX_{86}^{H} and SST calibrations over time 31

Schouten et al. (2002) defined TEX_{86} as a ratio of the distribution of isoprenoidal 32 33 glycerol dialkyl glycerol diethers (GDGTs), archaeal membrane-spanning lipids. 34

$$TEX_{86} = \frac{[GDGT - 2] + [GDGT - 3] + [cren']}{[GDGT - 1] + [GDGT - 2] + [GDGT - 3] + [cren']}$$

35

36 They proposed a linear correlation between TEX₈₆ and SST proxy using marine 37 sediments from across the world (n=40).

38

$$TEX_{86} = 0.015 \times SST - 0.27$$
 giving $SST (^{\circ}C) = 66.7 \times TEX_{86} + 18$

39

40 A linear correlation between temperature and TEX₈₆ was confirmed for temperature 41 up to 40 °C by incubation and mesocom experiments (Schouten et al., 2007; Wuchter

42 et al., 2004).

43

$$TEX_{86} = 0.017 \times SST + 0.064$$
 giving $SST (^{\circ}C) = 58.8 \times TEX_{86} - 3.8$

44

45 Although the intercept of this calibration differed from that found in marine core-tops,

46 predominantly due to a difference in the amount of crenarchaeol regioisomer, the47 slope was comparable with that found in marine core-tops.

48 Kim et al. (2008) provided an updated linear calibration, based on 223 core-49 top samples with a global distribution.

50

$$TEX_{86} = 0.018 \times SST + 0.19$$
 giving $SST (^{\circ}C) = 56.2 \times TEX_{86} - 10.78$

51

52 Although all previous studies used a linear correlation between TEX_{86} and

temperature, including the incubation and mesocom experiments, Kim et al. (2010)

54 proposed a logarithmic correlation between temperature and TEX_{86} for samples from

55 core-tops with an overlying SST > 15 °C: "TEX₈₆^H". 56

$$\log(TEX_{86}) = 0.015 \times SST - 0.56$$
 giving $SST (^{\circ}C) = 68.4 \times \log(TEX_{86}) + 38.6$

57

58 We note that Kim et al. (2010) also proposed an alternative ratio and calibration:

59 TEX_{86}^{L} . Different from all other calibrations TEX_{86}^{L} is not based on the original

 $60 \quad \text{TEX}_{86} \text{ index.}$

$$SST (^{\circ}C) = 67.5 \times \log\left(\frac{[GDGT - 2]}{[GDGT - 1] + [GDGT - 2] + [GDGT - 3]}\right) + 46.9$$

61

Recently, the TEX_{86}^{L} approach has been vigorously critiqued because: 1) the ratio of 62 GDGT-2 to the sum of GDGT-1, -2 and -3 has no physiological basis, unlike the 63 64 original TEX₈₆ ratio that records an increasing degree of cyclisation at higher temperatures(Schouten et al., 2002; Schouten et al., 2013)); 2) it has structured 65 66 temperature residuals at the high end of the calibration, which is particularly 67 problematic for its application to warm climates of the past (Tierney and Tingley, 68 2014); and 3) sub-surface GDGT distributions are characterized by high ratios of 69 GDGT-2 to GDGT-3, meaning that export dynamics are particularly problematic for 70 this proxy (Hernández-Sánchez et al., 2014; Taylor et al., 2013). As such, we do not use TEX_{86}^{L} here. 71

72

73 Deep time analogue calibration

74 In order to create a deep time analogue calibration for OAE 1a we compiled all TEX_{86} 75 records that span OAE 1a Fig. 2. The deep-time model of BAYSPAR selects TEX₈₆ 76 values from the modern dataset with a similar TEX₈₆ value to that of the paleorecord 77 and then uses these locations to construct a linear regression (Tierney and Tingley, 78 2014). For this purpose the model requires an estimate of the prior distribution of the 79 unknowns (basically a prediction of the SSTs to be estimated). We selected a value of 80 30 °C and a broad standard deviation of 20 °C. Selecting different values (e.g. 25-35 °C as priors or smaller standard deviation) does not lead to different SSTs. The 81 82 search tolerance was 0.17 (2σ of the inputted TEX₈₆ data). The resulting linear 83 calibration is based on "analogue" locations from the modern tropics and Red Sea. 84

54 77

 $TEX_{86} = 0.016 \times SST + 0.25$ giving $SST (^{\circ}C) = 60.9 \times TEX_{86} - 15.6$

85

86 We note that much of our data fall beyond the modern calibration range, but the

Bayesian approach of the BAYSPAR deep time analogue incorporates that into itserror calculation.

89

90 Linear TEX₈₆ calibration using all modern core tops with SST > 15 °C

91 In addition to using the BAYSPAR deep time analogue model to create a linear

92 calibration, we also generated a new linear TEX₈₆ calibration using all modern core

by top data underlying surface waters with SST > 15 °C (Fig. S1). The cut-off of 15 °C is

identical to that used by TEX₈₆^H, but instead of a logarithmic correlation we use a
 linear correlation.

96

 $TEX_{86} = 0.017 \times SST + 0.22$ giving $SST (°C) = 58.8 \times TEX_{86} - 13.4$

97 98

99

100 Figure S1: Newly constructed linear TEX_{86} calibration based on all core top data 101 from regions with SST > 15 °C. Data from Tierney and Tingley (2015)

102 103

104 The slope of the new linear calibration is ~ 60 , virtually identical that that of the deep 105 time analogue approach, and both of those are very similar to the slope of the high 106 temperature calibration obtained from the incubation experiments at temperatures 107 between 10 and 40 °C (Schouten et al., 2007).

Using the newly constructed calibration to generate latitudinal SST gradients
 for OAE 1a gives results that are nearly identical to those obtained using the

- 110 BAYSPAR deep time analogue approach with a pronounced latitudinal gradient (Fig.
- 111 S2). It also gives nearly identical temporal trends through OAE1a at DSDP Site 398.

112 113

114 Figure S2: Latitudinal SST gradient for OAE 1a using the newly constructed linear 115 TEX_{86} calibration, based on modern-day samples from regions with SST > 15 °C

only. The deeptime analogue gradient is the same as shown in Figure 2a and b. Error
bars reflect RSME of calibration, which is 3 °C.

118 119

120 Supplementary references

121	Hernández-Sánchez, M. T., Woodward, E. M. S., Taylor, K. W. R., Henderson, G.
122	M., and Pancost, R. D., 2014, Variations in GDGT distributions through the
123	water column in the South East Atlantic Ocean: Geochimica et Cosmochimica
124	Acta, v. 132, p. 337-348, doi: 10.1016/j.gca.2014.02.009.

- Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S., 2016, The effect of
 improved chromatography on GDGT-based palaeoproxies: Organic
 Geochemistry, v. 93, p. 1-6, doi: 10.1016/j.orggeochem.2015.12.006.
- Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe Damsté, J. S.,
 2008, Global sediment core-top calibration of the TEX₈₆ paleothermometer in
 the ocean: Geochimica et Cosmochimica Acta, v. 72, no. 4, p. 1154-1173, doi:
 10.1016/j.gca.2007.12.010.
- Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F.,
 Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S., 2010, New indices and
 calibrations derived from the distribution of crenarchaeal isoprenoid tetraether
 lipids: Implications for past sea surface temperature reconstructions:
 Geochimica et Cosmochimica Acta, v. 74, no. 16, p. 4639-4654, doi:
 10.1016/j.gca.2010.05.027.

138	Schouten, S., Forster, A., Panoto, F. E., and Sinninghe Damsté, J. S., 2007, Towards
139	calibration of the TEX ₈₆ palaeothermometer for tropical sea surface
140	temperatures in ancient greenhouse worlds: Organic Geochemistry, v. 38, no.
141	9, p. 1537-1546, doi: 10.1016/j.orggeochem.2007.05.014.
142	Schouten, S., Hopmans, E. C., Schefuss, E., and Sinninghe Damsté, J. S., 2002,
143	Distributional variations in marine crenarchaeotal membrane lipids: a new tool
144	for reconstructing ancient sea water temperatures?: Earth and Planetary
145	Science Letters, v. 204, no. 1-2, p. 265-274, doi: 10.1016/S0012-
146	821X(02)00979-2.
147	Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S., 2013, The organic
148	geochemistry of glycerol dialkyl glycerol tetraether lipids: A review: Organic
149	Geochemistry, v. 54, p. 19-61, doi: 10.1016/j.orggeochem.2012.09.006.
150	Taylor, K. W. R., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., and Pancost, R.
151	D., 2013, Re-evaluating modern and Palaeogene GDGT distributions:
152	Implications for SST reconstructions: Global and Planetary Change, v. 108, p.
153	158-174, doi: 10.1016/j.gloplacha.2013.06.011.
154	Tierney, J. E., and Tingley, M. P., 2014, A Bayesian, spatially-varying calibration
155	model for the TEX ₈₆ proxy: Geochimica et Cosmochimica Acta, v. 127, p. 83-
156	106, doi: 10.1016/j.gca.2013.11.026.
157	-, 2015, A TEX ₈₆ surface sediment database and extended Bayesian calibration:
158	Scientific Data, v. 2, p. 150029, doi: 10.1038/sdata.2015.29.
159	Wuchter, C., Schouten, S., Coolen, M. J. L., and Sinninghe Damsté, J. S., 2004,
160	Temperature-dependent variation in the distribution of tetraether membrane
161	lipids of marine Crenarchaeota: Implications for TEX ₈₆ paleothermometry:
162	Paleoceanography, v. 19, no. 4, p. PA4028, doi: 10.1029/2004PA001041.
163	
164	