

Wang, R., Dungait, J. A. J., Buss, H. L., Yang, S., Zhang, Y., Xu, Z., & Jiang, Y. (2017). Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland. *Science of The Total Environment*, *575*, 564-572. https://doi.org/10.1016/j.scitotenv.2016.09.018

Peer reviewed version

License (if available): CC BY-NC-ND

Link to published version (if available): 10.1016/j.scitotenv.2016.09.018

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at http://www.sciencedirect.com/science/article/pii/S0048969716319325. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

2 nitrogen and water inputs in a semi-arid steppe grassland

- 3
- 4 Ruzhen Wang^a, Jennifer A.J. Dungait^b, Heather L. Buss^c, Shan Yang^{a,d}, Yuge Zhang
- ⁵ ^d, Zhuwen Xu ^a, Yong Jiang ^a
- 6
- ^a State Engineering Laboratory of Soil Nutrient Management, Institute of Applied
- 8 Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- 9 ^b Sustainable Soils and Grassland Systems Department, Rothamsted Research, North
- 10 Wyke, Okehampton, Devon, EX20 2SB, UK.
- ^c School of Earth Sciences, University of Bristol, Wills Memorial Building,

12	Queens Road,	Clifton BS8 1RJ, UK.	

- ¹³ ^d Key Laboratory of Regional Environment and Eco-Remediation, College of
- 14 Environment, Shenyang University, Shenyang 110044, China
- 15
- 16 Correspondence: Yong Jiang. E-mail: jiangyong@iae.ac.cn

17 Abstract

18	The intensification of grassland management by nitrogen (N) fertilization and
19	irrigation may threaten the future integrity of fragile semi-arid steppe ecosystems by
20	affecting the concentrations of base cation and micronutrient in soils. We extracted
21	base cations (<u>of</u> exchangeable <u>calcium (</u> Ca), <u>magnesium (Mg)</u> , <u>potassium (</u> K), and
22	sodium (Na) and extractable micronutrients of iron (Fe), manganese (Mn), copper
23	(Cu), and zinc (Zn) from three soil aggregate sizes classes (microaggregates, <0.25
24	mm; small macroaggregates, 0.25-2 mm; large macroaggregates, >2 mm) from a
25	9-year N and water field manipulation study. There were significantly more base
26	cations (but not micronutrients) in microaggregates compared to macroaggregates
27	which was related to greater soil organic matter and clay contents. Nitrogen addition
28	significantly decreased exchangeable Ca by up to 33% in large and small
29	macroaggregates and exchangeable Mg by up to 27% in three aggregates but
30	significantly increased extractable Fe, Mn and Cu concentrations (by up to 262%,
31	150%, and 55 %, respectively) in all aggregate size classes. However, water addition
32	only increased exchangeable Na, while available Fe and Mn were decreased by water
33	addition when averaging across all N treatments and aggregate classes. The loss of
34	exchangeable Ca and Mg under N addition and extractable Fe and Mn in soil
35	aggregates under water addition might potentially constrain the productivity of this
36	semi-arid grassland ecosystem.
37	

38 Key words Nitrogen deposition • Irrigation • Calcium • Magnesium • Manganese •

39 Copper

40 Introduction

41 Micronutrient availability constrains net primary productivity (NPP) (Li et al., 2010, 2012), and deficiencies in soil micronutrients, including Fe, Mn, Cu, and Zn, are a 42 43 problem threatening food production worldwide (Jones et al., 2013). Base cations (i.e., 44 exchangeable Ca, Mg, K, Na) are the predominant exchangeable cations in the 45 calcareous soils (Zhang et al., 2013). They are essential for soil buffering capacity 46 particularly in soils affected by atmospheric acid deposition (Lieb et al., 2011), serve 47 as good indicators of soil fertility (Zhang et al., 2013), and are critical nutrients for both plant and microbial metabolism (Cheng et al., 2010). For instance, Ca regulates 48 49 plant cell signaling, cell division, and carbohydrate metabolism (McLaughlin and 50 Wimmer, 1999), and Mg is important for photosynthesis and energy storage (Lucas et al., 2011). Biogeochemical processes may be driven by base cation and micronutrient 51 52 supply; for instance, root-surface phosphatase activity is correlated with available Ca 53 and Mg (Gabbrielli et al., 1989) and Mg and Zn availability are important for litter 54 decomposition (Powers and Salute, 2011). 55 The availability of base cations and micronutrients is influenced by environmental changes, such as altered N and water availabilities availability 56 57 (Treseder, 2008). The availability of base cations varies with edaphic properties, such as soil pH (Katou, 2002), organic matter fractions (Oorts et al., 2003) and soil particle 58 59 sizes (Beldin et al., 2007). Prolonged N inputs generally causes soil acidification and 60 subsequent losses of soil cations (McLaughlin and Wimmer, 1999; Cheng et al., 2010),

61	and micronutrient availability may increase under soil acidification (Malhi et al., 1998)
62	causing toxicity to both plants and soil microorganisms in extreme cases (Bowman et
63	al., 2008; Horswill et al., 2008). Changes in precipitation regime and soil moisture
64	levels may interact with inorganic N affecting soil microbial activities (Wang et al.,
65	2014, 2015a) including the decomposition of soil organic matter (SOM) and nutrients
66	release and their subsequent transport in the soil (Dungait et al., 2012; Nielsen and
67	Ball, 2014). In sandy soils, increased precipitation might promote leaching of nitrate
68	and counter-ions (such as base cations) (Ochoa-Hueso et al., 2014).
69	Soil aggregate structure predominantly controls SOM dynamics (Six et al., 2004)
70	and microbial activities (Dorodnikov et al., 2009), and soil aggregate stability can
71	serve as an indicator for grassland ecosystem health (Reinhart et al., 2015). In
72	comparison with macroaggregates, microaggregates provide preferential sites for soil
73	C stabilization (Wang et al., 2015b) and the SOM herein is more microbial-processed
74	as evidenced by natural abundance stable ¹³ C values (Gunina and Kuzyakov, 2014;
75	Wang et al., 2015b). More microbial-processed SOM (i.e. more functional groups)
76	and potentially higher mineral contents within microaggregates (Creamer et al., 2011)
77	would purportedly provide more binding sites for base cations and micronutrients.
78	Therefore, dynamics of soil base cations and micronutrients in aggregate scale would
79	be a good indicator for soil health and for the potential of metal nutrients
80	sustainability. However, studies concerning aggregate-scale distribution of base
81	cations and micronutrients under enhanced N input and precipitation are still rarely
82	seen.

83	Semi-arid steppe grasslands support diverse animal and plant species (Kang et al.,
84	2007) and are experiencing or will experience enhanced atmospheric nitrogen (N)
85	deposition and precipitation (Niu et al., 2009; Bai et al., 2010; Wang et al., 2014,
86	2015a; Zhang et al., 2014). Previously, we demonstrated that water addition promoted
87	the incorporation of microaggregates into macroaggregates and enhanced
88	decomposition rates within microaggregates compared to macroaggregates, and that
89	the addition of N depressed extracellular enzyme activities within soil aggregates as a
90	result of soil acidification, after 9-years in a field experiment in the semi-arid steppe
91	grasslands of Inner Mongolia (Wang et al., 2015a,b). In this study, we investigated the
92	changes of base cations and micronutrients within the soil aggregates. We
93	hypothesized that (1) both concentrations of base cations and micronutrients would
94	increase in microaggregates because of the increased abundance of adsorption sites
95	provided by greater SOM and mineral contents therein, and (2) that increased N and
96	water inputs would decrease base cations and increase the availability of
97	micronutrients within soil aggregates due to soil acidification and leaching in the
98	free-draining soil.
99	

- 100 Materials and methods
- 101 Study sites and experiment design
- 102 The experiment was conducted in the Inner Mongolia Restoration Ecological
- 103 Research Station (IMRERS) in the south of Duolun County, Inner Mongolia, China
- 104 (42°02′27″N, 116°17′59″E, elevation 1,324 m a.s.l). The topography of the

105	experimental area is flat. The mean annual temperature is 2.1 °C, ranging from -17.8 °C
106	in January to 18.8 °C in July, and mean annual precipitation is 379.4 mm (Xu et al.,
107	2012). The soil is a Haplic Calcisols according to the FAO classification (IUSS
108	Working Group WRB, 2015) with a texture of sandy loam (0-10 cm): 63% sand, 20%
109	silt, and 17% clay (Wang et al., 2014). The chemical characteristics of the $0 - 10$ cm
110	depth of whole soil are given in Wang et al. (2014).
111	The experimental design is described in detail in Wang et al. (2014). Briefly,
112	experimental plots were set up and run for 9 years. A split-plot design was applied
113	with water and N addition being the two treatments. In April 2005, twelve 8 m \times 8m
114	plots were established in each of seven treatment blocks with 1 m buffer zone
115	between any two adjacent plots. Each block was divided into two main plots with
116	Based on water treatment (either ambient precipitation and or 180 mm water addition),
117	each of seven blocks was divided into two main plots as treatments. Each main plot
118	was divided into six subplots and nitrogen treatments (urea pellets) were applied to a
119	randomly selected subplot (dispersed on the top of the soil) (Xu et al., 2012). Two
120	subplots were phosphorus addition treatments which were not considered in this study.
121	Additional water (approximately 50% of mean annual precipitation) was added to the
122	water addition plots by sprinkling 15 mm weekly during the middle of the growing
123	season from June to August as over 65% of annually total precipitation occurs during
124	this time. The chemical composition of the irrigation water was listed as Table S1.
125	Nitrogen additions were split applications with half applied in early May and the other
126	half in late June at the rates of 0 (control plots, defined as CK), 5 (N ₅), 10 (N ₁₀), and

127	15 (N ₁₅) g N m ⁻² yr ⁻¹ (Xu et al., 2012). The background N inputs (atmospheric
128	deposition plus fertilizer application) in this area are about 5 g N m ^{-2} yr ^{-1} , so these
129	manipulations represent 100%, 200% and 300% surplus of nitrogen compared to the
130	background N inputs (Wang et al., 2015a).
131	
132	Soil sampling and aggregate-size fractionation
133	In September 2013, top soils $(0 - 10 \text{ cm})$ were sampled by compositing five randomly
134	selected cores within each plot from four out of seven blocks. Fresh soil samples were
135	stored at 4°C during transportation to the laboratory. Soil aggregates were isolated by
136	a dry-sieving method according to Dorodnikov et al. (2009) to minimize the
137	disruption in microbial activities and to prevent leaching of available nutrients by wet
138	sieving. Briefly, fresh bulk soil samples (gravimetric water content of 10-15%) were
139	gently passed through a 5 mm screen and transferred to a nest of sieves (2 and 0.25
140	mm) on a mechanical shaker Retsch AS200 Control (Retsch Technology, Düsseldorf,
141	Germany). The sieves were mechanically shaken (amplitude 1.5 mm) for 2 min to
142	separate the aggregates > 2 mm (large macroaggregates), $2 - 0.25$ mm (small
143	macroaggregates), and < 0.25 mm (microaggregates). The mass proportions of large
144	macro-, small macro-, and microaggregates were 30.3-44.8%, 38.3-42.8%, and
145	15.3-31.1%, respectively (Wang et al., 2015b). No correction was made for sand
146	because sand grains can be completely embedded within macroaggregates. The
147	chemical characteristics of bulk soil and soil aggregates (0-10 cm) are given in Table
148	1 (Wang et al., 2014, 2015a,b).

150 Soil physiochemical and biological parameters

151	Soil aggregate pH and electrical conductivity (EC) was determined in a 1:5 (w/v)
152	soil-to-water extract with a PHS-3G digital pH meter (Precision and Scientific Corp.,
153	Shanghai, China) and a Orion 150A+ conductivity meter (Thermo Fisher Scientific
154	Inc., Beverly, USA), respectively. Soil organic carbon (SOC) within aggregate classes
155	was determined for acid-fumigated soils (to remove carbonates) using elemental
156	analyzer (EA1112, ThermoFisher Scientific, Japan). Concentration of soil aggregate
157	ammonium was determined colorimetrically from 2 M KCl soil extracts (Wang et al.,
158	2015b).
159	
160	Extraction and analysis of base cations and micronutrients
161	Soil aggregate base cations were extracted and analysed using the method of
162	Ochoa-Hueso et al. (2014). Briefly, 2.5 g of each soil aggregate fraction was extracted
163	by 50 ml 1 M ammonium acetate (CH ₃ COONH ₄) (pH 7.0). The slurry was orbitally

shaken for 30 min at 150 rpm and then filtered through Whatman no. 2V filter paper

165 (quantitative and ash-free). Micronutrients (Fe, Mn, Cu, Zn) within soil aggregates

166 were extracted by diethylenetriamine pentaacetic acid (DTPA) (Lindsay and Norvell,

167 1978). 10 g of soil aggregates was weighted into Erlenmeyer flask to mix with 20 mL

168 $0.005 \text{ M DTPA} + 0.01 \text{ M CaCl}_2 + 0.1 \text{ M TEA}$ (triethanolamine) (pH 7.0). The mixture

169 were shaken at 180 rpm for 2 h and filtered. All of the extractable metal cations were

170 analyzed by atomic absorption spectrometer (AAS, Shimadzu, Japan). <u>The sum of</u>

171 exchangeable Ca, Mg, K, and Na was defined as effective cation exchange capacity 172 (ECEC).

173

174 *Statistical analyses*

175 A spin-plot design <u>Three-way</u> ANO (A <u>s with a spin-plot design</u> was were used

- the effect of water (between subject), N addition (within subject) and soil aggregate
- 177 sizes on electrical conductivity (EC), the concentrations of base cations (exchangeable
- 178 Ca, Mg, K, and Na) and available micronutrients (Fe, Mn, Cu, and Zn). The effects of
- 179 N addition rates on Multiple comparisons with Duncan design were performed to
- 180 determine differences in EC, base cations, and available micronutrients were-
- 181 determined by one-way ANOVA among N rates and run separately for ambient and
- 182 enhanced precipitation within each soil aggregate. Pearson correlation analysis was
- used to examine the relationships between base cations and available micronutrients.
- 184 All statistical analyses were performed in SPSS 16.0 (SPSS, Inc., Chicago, IL, U.S.A.)
- 185 and statistical significance was accepted at P < 0.05.
- 186

187 **Results**

188 *Responses of electrical conductivity (EC) and total base cations* to N and water

189 *addition*

- 190 Under ambient water conditions, soil EC was significantly reduced in N addition plots
- 191 from 272.5 to 179.2 μ s cm⁻¹ in large macroaggregates, from 249.4 to 188.6 μ s cm⁻¹ in
- 192 small macroaggregates, and from 295.3 to 173.9 µs cm⁻¹ in microaggregatesin soil

193	aggregate size classes, except for N_5 in large macro- and microaggregates as
194	compared to the control (CK) (Fig. 1a, Table 2). Under elevated water conditions, EC
195	values were significantly smaller in N_{15} plots across soil aggregate size classes (Fig.
196	1a). The N_{15} treatment significantly decreased soil EC from 237.8 to 194.5 μ s cm ⁻¹ in
197	large macroaggregates, from 247.5 to 192.9 μ s cm ⁻¹ in small macroaggregates, and
198	from 293.5 to 192.7µs cm ⁻¹ in microaggregates (Fig. 1a). Soil EC values were
199	significantly larger in water addition plots at N application rates of N_{10} in large
200	macroaggregates, N_5 and N_{10} in small macroaggregates, and N_{10} in microaggregates
201	comparing to respective N plots of ambient precipitation (Fig. 1a).
202	Total base cations (sum of exchangeable Ca, Mg, K, and Na) in soil aggregates-
203	increased in the order: small macroaggregates < large macroaggregates <
204	microaggregates averaging across all N and water treatments (Table 2, Fig. 1b). Soil-
205	base cations decreased with N addition in both large and small macroaggregates under
206	both ambient and elevated water conditions (Fig. 1b).
207	
208	Response of ECEC, Exchangeable exchangeable Ca, Mg, K, and Na and
209	DTPA-extractable micronutrients to N and water addition
210	Total base cationshe ECEC (sum of exchangeable Ca, Mg, K, and Na) in soil
211	aggregates increased in the order: small macroaggregates < large macroaggregates <
212	microaggregates averaging across all N and water treatments (Table 2, Fig. 1b). Soil
213	base cations decreased with N addition in both large and small macroaggregates under
214	both ambient and elevated water conditions (Fig. 1b).

215	When averaging all the N and water treatments, the greatest concentrations of
216	exchangeable Ca, Mg, and K were all detected in microaggregates, followed by large
217	macroaggregates (Fig. 2a, b, c). Microaggregates contained significantly more
218	exchangeable Na than the large macroaggregates averaging across all the treatments
219	(Fig. 2d). Under ambient precipitation, exchangeable Ca was significantly less in
220	N-addition plots with N_5 , N_{10} , and N_{15} in large macroaggregates, and in N_{10} and N_{15}
221	plots in small macroaggregates as compared to control plots by as much as 33 %
222	(between CK and N_{15} treatments) (Fig. 2a). Under elevated water conditions, N
223	addition significantly decreased exchangeable Ca in both large (N_5 , N_{10} , and N_{15}) and
224	small macroaggregates (N_{10} and N_{15}) by as much as 26 % (Fig. 2a). Under ambient
225	water conditions, exchangeable Mg was significantly lower in N_{15} in large
226	macroaggregates, in N_5 and N_{15} in small macroaggregates, and in N_{15} in
227	microaggregates by 4 - 27 % (Fig. 2b). Under increased water inputs, N addition
228	decreased exchangeable Mg in N_{10} and N_{15} plots in both large and small
229	macroaggregates and in N_5 , N_{10} , and N_{15} in microaggregates by 2 - 19 % (Fig. 2b).
230	Both exchangeable K and Na showed no response to N addition across all
231	aggregate-size classes (Fig. 2c, d). Significant positive water effects were only seen
232	on the concentration of exchangeable Na when comparing the means of all N
233	treatments and aggregate classes between ambient precipitation and water addition
234	(Table 2).
235	DTPA-extractable micronutrients were distributed differently across

aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were

237	detected within small macroaggregates compared to large macro- and
238	microaggregates (Fig. 3a, b). Extractable Cu increased in the order large macro->
239	micro- > small macroaggregates when averaging all the N and water treatments (Fig.
240	3c). The largest extractable Zn was observed in microaggregates, while no significant
241	difference was found for Zn between large and small macroaggregates (Fig. 3d).
242	Following N additions, DTPA-extractable Fe, Mn, and Cu significantly increased
243	within all soil aggregates under both ambient and elevated water conditions by as
244	much as 262 %, 150 %, and 55 %, respectively (Fig. 3a, b, c). No overall N effects
245	were detectable on extractable Zn (Table 2), but Zn decreased significantly with N_{10}
246	and N_{15} treatments under water addition within microaggregates (Fig. 3d). Extractable
247	Fe and Mn significantly decreased with water addition under N addition rates of 5, 10,
248	and 15 g N m ⁻² yr ⁻¹ within large macroaggregates (Fig. 3a,b, Table 2).
249	
250	Correlations between soil physicochemical parameters, base cations and
251	micronutrients
252	Significant positive correlations were observed between SOC and soil exchangeable

- 253 Ca, Mg, and K, and between pH and EC, exchangeable Ca, Mg, and Na (Table 3).
- 254 There were significant positive relationships between exchangeable Ca vs. Mg, Ca vs.
- 255 K, Ca vs. K, Mg vs. K, and Mg vs. Na (Table 3). Micronutrients Fe, Mn, and Cu were
- negatively correlated with soil pH across all soil aggregate size classes (Fig. 4a, b, c).
- 257 Within macroaggregates, total base cations<u>ECEC</u> significantly and negatively
- 258 correlated with extractable ammonium (Table Fig. S1a5a).

260 Discussion

261 Distribution of base cations and micronutrients within soil aggregates

262	Relatively increased clay mineral and SOM contents are commonly recognized to be
263	associated with the smallest aggregate size fractions (< 0.25 mm), both of which play
264	an essential role in retaining soil base cations especially in sandy, free-draining soils
265	similar to our experimental field plot (Oorts et al., 2003; Beldin et al., 2007). In line
266	with our initial hypothesis, a significant positive correlation was detected between
267	SOC (the largest component of SOM) and exchangeable Ca, Mg, K, and total base-
268	cationsECEC (Table 3), and their distribution was similar to the distribution pattern of
269	SOC and total nitrogen with the highest concentrations in microaggregates (Wang et
270	al., 2015b). Soil organic matter was more decomposed within microaggregates (Wang
271	et al., 2015b) and thus may have provided more binding sites (e.g. more carbonyl
272	functions; Golchin et al., 1994) for exchangeable base cations. It is widely reported
273	that available micronutrients correspond to both SOM and clay content which are both
274	usually more abundant in microaggregates (e.g. Sharma et al., 2004; Six et al., 2004).
275	Although we observed greater available Zn in microaggregates compared to
276	macroaggregates (as reported by Głąb and Gondek, 2014), there was no significant
277	relationship of SOC with Fe, Mn, and Cu, which had quite different distribution
278	patterns from SOC within soil aggregate-size classes and was similar to the findings
279	by Glab and Gondek (2014) in bulk soil. Due to the fact that large macroaggregates
280	are responsible for providing nutrients for plants and the early stages of SOM

281	formation (Six et al., 2004), plant cycling (uptake and biomass decomposition) might
282	contribute to the higher concentrations of Fe, Mn and Cu in large macroaggregates
283	(Jobbágy and Jackson, 2001).
284	
285	Response of <u>EC and base cations to nitrogen and water addition</u>
286	Protons released when soils acidify may exchange with base cations making them
287	available for take-up by plants or transport (and loss) by water in soils (Lucas et al.,
288	2011; Malhi et al., 1998; Sharma et al., 2004). As EC represents salt concentration in
289	soil solution (Zhou et al., 2011), significantly lower EC values might suggest the loss
290	of ions, in line with the decline of ECEC under higher N rates (Fig. 1a vs. Fig. 1b).
291	Deficiencies in soil base cations caused by N deposition could pose a threat to
292	ecosystems through their effect on soil microbial activity (Vitousek et al., 1997;
293	Treseder, 2008). Many studies on the effects of chronic N addition to soil contribute
294	shifts in soil microbial community structure and activity to the reduction of soil pH
295	(Ramirez et al., 2010; Wang et al., 2014), and we previously reported soil enzyme
296	depression under N addition attributed to soil acidification (Chung et al., 2007; Wang
297	et al., 2014). Consistent with our hypothesis, we observed a decrease in Ca and Mg.
298	which are the major base cations in macroaggregates (Fig. 2). This decrease
299	corresponded to a negative correlation between NH_4^+ and total base cation-
300	concentrationsECEC across soil macroaggregates (Fig. S15a). Nitrogen addition
301	increased NH_4^+ concentrations across all three soil aggregate size classes (Wang et al.,
302	2015b) which may displace soil aggregate base cations and bind strongly to soil

303	surfaces (Matschonat and Matzner, 1996). We did not measure leaching rates in the
304	field experiment, but these are likely to be substantial given the sand content of the
305	soil (> 60%). Increased leaching under water addition that caused NO_3^- loss was
306	previously reported (Wang et al., 2015b) and may indicate a route for the loss of Ca
307	and Mg within soil aggregates, as observed by Currie et al. (1999) and Lucas et al.
308	(2011). Our results contradict those of Ochoa-Hueso et al. (2014) who reported an
309	increase of extractable base cations under N deposition in a highly buffered, limestone
310	soil in the semi-arid Mediterranean region. However, where N addition increases NPP
311	in an N-limited soil, such as those of semi-arid steppe grasslands (Xu et al., 2014) a
312	coincident uptake of base cations by vigorous plant growth may occur (Tomlinson,
313	2003). But we did not investigate changes in the cation content of plant tissues in this
314	experiment to confirm this flux. Furthermore, no effect of N addition was observed on
315	soil aggregate K and Na concentrations (although Ca and Mg decreased; Fig. <u>32</u> ,
316	Table 2) indicating the selective depletion of base cations (Lu et al., 2014). The
317	depletion of base cations within soil aggregate can accelerate a reduction in the
318	buffering capacity of soils and accelerate soil acidification (with increased N at
319	ambient water soil pH 6.97 decreased to 6.10, and with added water, 7.17 to 6.42;
320	Wang et al., 2015a); the dynamics of the base cations were affected substantially.
321	Water addition increased EC and exchangeable Na but did not affect the other base
322	cations (Table 2; Fig. <u>1a,</u> 2). Although the Na concentration in the water for irrigation
323	is uncertain, t <u>T</u> he positive effect of water on soil <u>EC and</u> exchangeable Na was-
324	unlikelymight be caused by Na the relatively high EC value and Na concentration in

325	irrigative water due to the undetectable water effect on Ca in this calcareous grassland
326	(Table S1). We previously reported that water addition increased soil microbial
327	activity at the study site (Wang et al., 2014, 2015a): if litter decomposition rates were
328	promoted as a consequence (e.g. Liu et al., 2006) Ca, Mg and K may have been
329	released from this secondary biological source to supplement the soil pools.
330	
331	Response of micronutrients to nitrogen and water addition
332	Micronutrient cycling relies on the balance between input (mineral weathering
333	release), recycling (plant biomass turnover), retention (sorption reactions), and
334	removal (biomass harvesting, fire, and hydrologic leaching) (Li et al., 2008).
335	Long-term N addition caused large increases in extractable Fe, Mn and Cu
336	concentrations in all soil aggregate size classes (by up to 262%, 150%, and 55 %,
337	respectively; Fig. 3a, b, c), presumably due to the decrease in soil pH which may
338	increase micronutrient release through weathering and desorption from soil minerals
339	and SOM (Malhi et al., 1998). Acidification caused by the long-term addition of N
340	negatively affected microbial activity previously observed as the depression of
341	enzyme activity in these experimental soils (Chung et al., 2007; Wang et al., 2014).
342	The mechanism underlying this biological response was not explored but is likely to
343	be complex and due in part to the effect of the changes in micronutrient supply.
344	Long-term irrigation had the opposite effect on extractable Fe and Mn within soil
345	aggregates where increases in soil aggregate pH (which usually decrease the
346	mobilization of micronutrients) were detected compared to ambient precipitation plots

347	(Wang et al., 2014). Our previous study suggested that water addition increased soil
348	pH from 7.1 to 7.3 in CK and from 5.6 to 6.1 in N_{15} plots for large macroaggregates,
349	from 7.1 to 7.5 in CK and from 5.8 to 6.2 in N ₁₅ plots for small macroaggregates, and
350	from 7.1 to 7.4 in CK and from 5.9 to 6.2 in N ₁₅ plots for microaggregates (Wang et
351	al., 2015). A previous study carried out at the same plots showed that water addition
352	significantly increased NPP (Xu et al., 2010), suggesting enhanced uptake of growing
353	plants may have reduced concentrations of Fe and Mn in the soil aggregates. This is
354	consistent with the findings of Li et al. (2008) who reported that Mn and boron uptake
355	by plants outpaced their resupply by mineral weathering. However, Fe and Mn may
356	be toxic to plants (Brown and Jones, 1977), so losses by increased leaching may be
357	the most likely route for their decrease in the irrigated plots. However, neither
358	leaching nor plant performance was measured in this experiment.
359	
360	Conclusions
361	Consistent with our first hypothesis, microaggregates had greater base cation
362	concentrations, which was ascribed to a proportion of sorption provided by increased
363	SOM and clay contents associated with the smallest aggregate size class. However,
364	extractable micronutrients (except Zn) did not follow the same concentration pattern
365	as base cations across three soil aggregate size classes. Under N addition,
366	exchangeable Ca and Mg decreased while extractable micronutrients (Fe, Mn and Cu)
367	increased, which was related to the slight but apparently important decrease in soil pH.
368	Water addition showed no impact on exchangeable Ca, Mg and K, but decreased

369	available Fe and Mn averaging across soil aggregates which partially supported our
370	second hypothesis. Our findings suggest that uncontrolled or long-term N fertilization
371	and irrigation of semi-arid steppe soils cause significant changes in the concentrations
372	of base cations and micronutrients which will ultimately decrease soil fertility,
373	constrain NPP and the nutrient quality of plants. The pathway of the losses (e.g.
374	leaching or uptake into plant tissues followed by harvest) need to be determined in
375	order to manage large and fragile semi-arid grassland systems.
376	
377	Acknowledgments
378	We wish to thank the Duolun Restoration Ecology Research Station for the support in
379	the field work. This work was financially supported by the National Key Research
380	and Development Program of China (2016YFC0500707), the National Natural
381	Science Foundation of China (41371251), and the Strategic Priority Research
382	Program of the Chinese Academy of Sciences (XDB15010100). This work represents
383	part of the BBSRC funded programmes at Rothamsted Research on Sustainable Soil
384	Function, and Bioenergy and Climate Change.
385	
386	References
387	Bai, Y., Wu, J., Clark, C.M., Naeem, S., Pan, Q., Huang, J., Zhang, L. & Han, X. 2010.
388	Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and
389	ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change
390	<i>Biology</i> , 16 , 358-372.

Beldin, S.I., Caldwell, B.A., Sollins, P., Sulzman, E.W., Lajtha, K. & Crow, S.E. 2007.

- 392 Cation exchange capacity of density fractions from paired conifer/grassland soils.
- 393 *Biology Fertility of Soils*, **43**, 837-841.
- Bowman, W.D., Cleveland, C.C., Halada, L., Hresko, J. & Baron, J.S. 2008. Negative
- impact of nitrogen deposition on soil buffering capacity. *Nature Geoscience*, 1,
 767-770.
- Brown, J.C. & Jones, W.E. 1977. Manganese and iron toxicities dependent on
 soybean variety. *Communications in Soil Science and Plant Analysis*, 8, 1-15.
- 399 Cheng, L., Zhu, J., Chen, G., Zheng, X., Oh, N.H., Rufty, T.W. & Hu, S. 2010.
- 400 Atmospheric CO₂ enrichment facilitates cation release from soil. *Ecology Letters*,
 401 **13**, 284-291.
- 402 Chung, H., Zak, D.R., Reich, P.B. & Ellsworth, D.S. 2007. Plant species richness,
- 403 elevated CO₂, and atmospheric nitrogen deposition alter soil microbial community
- 404 composition and function. *Global Change Biology*, **13**, 980-989.
- 405 Currie, W.S., Aber, J.D. & Driscoll, C.T. 1999. Leaching of nutrient cations from the
- 406 forest floor: effects of nitrogen saturation in two long-term manipulations.
- 407 *Canadian Journal of Forest Research*, **29**, 609-620.
- 408 Creamer, C.A., Filley, T.R., Boutton, T.W., Oleynik, S. & Kantola, I.B. 2011. Controls
- 409 on soil carbon accumulation during woody plant encroachment: evidence from
- 410 physical fractionation, soil respiration, and δ^{13} C of respired CO₂. Soil Biology &
- 411 *Biochemistry*, **43**, 1678-1687.
- 412 Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier A. &
- 413 Kuzyakov, Y. 2009. Stimulation of microbial extracellular enzyme activities by

- 414 elevated CO₂ depends on soil aggregate size. *Global Change Biology*, **15**,
 415 1603-1614.
- 416 Dungait, J.A.J., Hopkins, D.W., Gregory, A.S. & Whitmore, A.P. 2012. Soil organic
- 417 matter turnover is governed by accessibility not recalcitrance. *Global Change*
- 418 *Biology*, **18**, 1781-1796.
- 419 Gabbrielli, R., Grossi, L. & Vergnano, O. 1989. The effects of nickel, calcium and
- 420 magnesium on the acid-phosphatase activity of 2 *Alyssum* species. *New Phytologist*,
- 421 **111,** 631-636.
- 422 Głąb, T. & Gondek, K. 2014. The influence of soil compaction and N fertilization on
- 423 physico-chemical properties of Mollic Fluvisol soil under red clover/grass mixture.
- 424 *Geoderma*, **226**, 204-212.
- 425 Golchin, A., Oades, J., Skjemstad, J. & Clarke, P. 1994. Study of free and occluded
- 426 particulate organic matter in soils by solid state ¹³C Cp/MAS NMR spectroscopy
- 427 and scanning electron microscopy. *Soil Research*, **32**, 285-309.
- 428 Gunina, A. & Kuzyakov, Y. 2014. Pathways of litter C by formation of aggregates and
- 429 SOM density fractions: implications from ¹³C natural abundance. *Soil Biology* &
- 430 *Biochemistry*, **71**, 95-104.
- 431 Horswill, P., O'sullivan, O., Phoenix, G.K., Lee, J.A. & Leake, J.R. 2008. Base cation
- 432 depletion, eutrophication and acidification of species-rich grasslands in response to
- 433 long-term simulated nitrogen deposition. *Environmental Pollution*, **155**, 336-349.
- 434 IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014.
- 435 International soil classification system for naming soils and creating legends for

- 436 *soil maps.* World Soil Resources Reports No. 106. FAO, Rome.
- 437 Jobbágy, E.G. & Jackson, R.B. 2001. The distribution of soil nutrients with depth:
- 438 global patterns and the imprint of plants. *Biogeochemistry*, **53**, 51-77.
- 439 Jones, D.L., Cross, P., Withers, P.J.A., DeLuca, T.H., Robinson, D.A., Quilliam, R.S.,
- 440 Harris, I.M., Chadwick, D.R. & Edwards-Jones, G. 2013. Review: Nutrient
- 441 stripping: the global disparity between food security and soil nutrient stocks.
- 442 *Journal of Applied Ecology*, **50**, 851-862.
- 443 Kang, L., Han, X., Zhang, Z. & Sun, O.J. 2007. Grassland ecosystems in China:
- review of current knowledge and research advancement. *Philosophical Transactions of Royal Society B*, **362**, 997-1008.
- 446 Katou, H. 2002. A pH-dependence implicit formulation of cation- and anion-exchange
- capacities of variable-charge soils. *Soil Science Society of America Journal*, **66**,
 1218-1224.
- Li, J., Richter, D.D., Mendoza, A. & Heine, P. 2008. Four-decade responses of soil
- trace elements to an aggrading old-field forest: B, Mn, Zn, Cu, and Fe. *Ecology*, 89,
 2911-2923.
- Li, J., Richter, D.D., Mendoza, A. & Heine, P.R. 2010. Effects of land-use history on
- 453 soil spatial heterogeneity of macro- and trace elements in the Southern Piedmont
 454 USA. *Geoderma*, **156**, 60-73.
- Li, J. & Richter, D.D. 2012. Effects of two-century land use changes on soil iron
- 456 crystallinity and accumulation in Southeastern Piedmont region, USA. *Geoderma*,
- **173**, 184-191.

458	Lieb, A.M., Darrouzet-Nardi, A. & Bowman, W.D. 2011. Nitrogen deposition
459	decreases acid buffering capacity of alpine soils in the southern Rocky Mountains.
460	Geoderma, 164, 220-224.
461	Lindsay, W.L. & Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron,
462	manganese, and copper. Soil Science Society of America Journal, 42, 421-428.
463	Liu, P., Huang, J., Han, X., Sun, O.J. & Zhou, Z. 2006. Differential responses of litter
464	decomposition to increased soil nutrients and water between two contrasting
465	grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 34,
466	266-275.
467	Lu, X., Mao, Q., Gilliam, F.S., Luo, Y. & Mo, J. 2014. Nitrogen deposition
468	contributes to soil acidification in tropical ecosystems. Global Change Biology, 20,
469	3790-3801.
470	Lucas, R.W., Klaminder, J., Futter, M.N., Bishop, K.H., Egnell, G., Laudon, H. &
471	Hogberg, P. 2011. A meta-analysis of the effects of nitrogen additions on base

- 472 cations: Implications for plants, soils, and streams. *Forest Ecology and*473 *Management*, **262**, 95-104.
- 474 Malhi, S.S., Nyborg, M. & Harapiak, J.T. 1998. Effects of long-term N
 475 fertilizer-induced acidification and liming on micronutrients in soil and in
 476 bromegrass hay. *Soil Tillage & Research*, 48, 91-101.
- 477 Matschonat, G. & Matzner, E. 1996. Soil chemical properties affecting NH₄⁺ sorption
- in forest soils. *Zeitschrift Fur Pflanzenernahrung Und Bodenkunde*, **159**, 505-511.
- 479 Mclaughlin, S.B. & Wimmer, R. 1999. Tansley Review No. 104 Calcium physiology

- 480 and terrestrial ecosystem processes. *New Phytologist*, **142**, 373-417.
- 481 Nielsen, U.N. & Ball, B.A. 2014. Impacts of altered precipitation regimes on soil
- 482 communities and biogeochemistry in arid and semi-arid ecosystems. *Global*483 *Change Biology*, **21**, 1407-1421.
- 484 Niu, S., Yang, H., Zhang, Z., Wu, M., Lu, Q., Li, L., Han, X. & Wan, S. 2009.
- 485 Non-additive effects of water and nitrogen addition on ecosystem carbon exchange
 486 in a temperate steppe. *Ecosystems*, **12**, 915-926.
- 487 Ochoa-Hueso, R., Bell, M.D. & Manrique, E. 2014. Impacts of increased nitrogen

deposition and altered precipitation regimes on soil fertility and functioning in

- 489 semiarid Mediterranean shrublands. *Journal of Arid Environment*, **104**, 106-115.
- 490 Oorts, K., Vanlauwe, B. & Merckx, R. 2003. Cation exchange capacities of soil
- 491 organic matter fractions in a Ferric Lixisol with different organic matter inputs.
- 492 Agriculture, Ecosystems & Environment, **100**, 161-171.
- 493 Powers, J.S. & Salute, S. 2011. Macro- and micronutrient effects on decomposition of
- 494 leaf litter from two tropical tree species: inferences from a short-term laboratory
- 495 incubation. *Plant and Soil*, **346**, 245-257.

488

- 496 Ramirez, K.S., Lauber, C.L., Knight, R., Bradford, M.A. & Fierer, N. 2010.
- 497 Consistent effects of nitrogen fertilization on soil bacterial communities in
 498 contrasting systems. *Ecology*, **91**, 3463-3470.
- 499 Reinhart, K.O., Nichols, K.A., Petersen, M. & Vermeire, L.T. 2015. Soil aggregate
- 500 stability was an uncertain predictor of ecosystem functioning in a temperate and
- semiarid grassland. *Ecosphere*, **6**, 1-16.

502	Sharma, B.D., Arora, H., Kumar, R. & Nayyar, V.K. 2004. Relationships between soil
503	characteristics and total and DTPA-extractable micronutrients in Inceptisols of
504	Punjab. Communications in Soil Science and Plant Analysis, 35, 799-818.
505	Six, J., Bossuyt, H., Degryze, S. & Denef, K. 2004. A history of research on the link

- 506 between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil
- 507 *Tilliage & Research*, **79**, 7-31.
- 508 Tomlinson, G.H. 2003. Acidic deposition, nutrient leaching and forest growth.
- 509 *Biogeochemistry*, **65**, 51-81.
- 510 Treseder, K.K. 2008. Nitrogen additions and microbial biomass: a meta-analysis of
 511 ecosystem studies. *Ecology Letters*, **11**, 1111-1120.
- 512 Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler,
- 513 D.W., Schlesinger, W.H. & Tilman, D.G. 1997. Human alteration of the global
- nitrogen cycle: Sources and consequences. *Ecological Applications*, **7**, 737-750.
- 515 Wang, R., Dorodnikov, M., Yang, S., Zhang, Y., Filley, T.R., Turco, R.F., Zhang, Y.,
- 516 Xu, Z., Li, H. & Jiang, Y. 2015a. Responses of enzymatic activities within soil
- 517 aggregates to 9-year nitrogen and water addition in a semi-arid grassland. Soil
- 518 Biology & Biochemistry, **81**, 159-167.
- 519 Wang, R., Dungait, J.A.J., Creamer, C.A., Cai, J., Li, B., Xu, Z., Zhang, Y., Ma, Y. &
- Jiang, Y. 2015b. Carbon and nitrogen dynamics in soil aggregates under long-term
- 521 N and water addition in a temperate steppe. Soil Science Society of America
- 522 Journal, **79**, 527-535.
- 523 Wang, R., Filley, T.R., Xu, Z., Wang, X., Li, M-H., Zhang, Y., Luo, W. & Jiang, Y.

- 2014. Coupled response of soil carbon and nitrogen pools and enzyme activities to
 nitrogen and water addition in a semi-arid grassland of Inner Mongolia. *Plant and Soil*, **381**, 323-336.
- 527 Xu, Z., Ren, H., Cai, J., Wang, R., Li, M-H., Wan, S., Han, X., Lewis, B.J. & Jiang, Y.
- 528 2014. Effects of experimentally-enhanced precipitation and nitrogen on resistance,
- recovery and resilience of a semi-arid grassland after drought. *Oecologia*, **176**,
 1187-1197.
- 531 Xu, Z., Wan, S., Ren, H., Han, X., Li, M-H., Cheng, W. & Jiang, Y. 2012. Effects of
- 532 Water and nitrogen addition on species turnover in temperate grasslands in 533 Northern China. *PLoS ONE*, **7**, e39762.
- 534 Xu, Z., Wan, S., Zhu, G., Ren, H. & Han, X. 2010. The influence of historical land
- use and water availability on grassland restoration. *Restoration Ecology*, 18,
 217-225.
- 537 Zhang, Y., Lü, X., Isbell, F., Stevens, C., Han, X., He, N., Zhang, G., Yu, Q., Huang, J.
- 538 & Han, X. 2014. Rapid plant species loss at high rates and at low frequency of N
- addition in temperate steppe. *Global Change Biology*, **20**, 3520-3529.
- 540 Zhang, Y., Xu, Z., Jiang, D. & Jiang, Y. 2013. Soil exchangeable base cations along a
- 541 chronosequence of Caragana microphylla plantation in a semi-arid sandy land,
- 542 China. *Journal of Arid Land*, **5**, 42-50.
- 543

- 545 **Tables**
- 546 **Table 1** The chemical characteristics of bulk soil and soil aggregates without
- 547 field-manipulated treatments. SOC, TN, C/N, and DOC represent soil organic carbon,
- total nitrogen, the ratio of SOC to TN, and dissolved organic carbon, respectively.
- 549 Data are represented as means \pm standard error.
- 550

		Soil aggregates (mm)			
	Bulk soil	>2	0.25-2	< 0.25	
SOC (g kg soil ⁻¹)	18.9±1.7	18.2 ± 1.0	15.1 ± 2.0	21.6 ± 1.4	
TN $(g kg soil^{-1})$	1.8±0.2	1.9 ± 0.1	1.5 ± 0.2	2.2 ± 0.1	
C/N	10.4±1.3	9.5 ± 0.5	10.4 ± 0.4	10.0 ± 0.2	
рН	7.0±0.2	7.1 ± 0.2	7.1 ± 0.2	7.1 ± 0.3	
DOC	69.8±5.6	72.5±6.8	66.6±1.3	71.2±1.5	
NO_3^N (mg kg soil ⁻¹)	27.3±5.9	4.2 ± 0.1	31.6 ± 2.2	34.4 ± 3.8	
$\mathrm{NH_4^+}$ -N (mg kg soil ⁻¹)	9.4±1.6	17.0 ± 1.3	17.9 ± 2.5	22.9 ± 1.0	

551 Data from Wang et al. (2014, 2015a,b)

553 **Table 2** Results (*F* values) of ANOVAs with a split-plot design on the effects of N,

554 water addition (W), and soil fractions (S) on soil electrical conductivity (EC),

555 exchangeable Ca, Mg, K, Na, total base cations effective cation exchange capacity

556 (ECEC, sum of exchangeable Ca, Mg, K, and Na, cmol kg aggregate⁻¹), and available

557 Fe, Mn, Cu, and Zn (mg kg aggregate⁻¹).

558

	EC	Ca	Mg	K	Na	Base- cations <u>ECEC</u>	Fe	Mn	Cu	Zn
W	11.60*	3.07	5.08	0.17	15.6**	4.03	27.8**	14.1*	2.40	3.92
Ν	14.20**	6.36**	38.7**	0.33	1.71	7.36**	147**	136.3**	44.7**	2.47
S	3.63*	25.0**	168.3**	123.7**	3.49*	30.7**	17.7**	30.1**	33.7**	33.8**
W×N	6.90**	1.01	5.68**	6.81**	1.26	1.25	2.36	3.40*	7.23**	4.34**
W×S	0.28	1.03	3.75*	0.98	0.34	1.03	6.07**	10.8**	6.60**	2.32
N×S	0.77	0.87	0.36	0.88	1.81	0.88	1.59	2.43*	0.85	2.04
W×N×	S0.86	0.44	1.03	1.41	0.61	0.42	0.99	2.54*	1.16	3.84**

⁵⁵⁹ * and ** indicating the significant level at P<0.05, 0.01, respectively

561
 Table 3 Correlation analyses (R values) among exchangeable base cations, effective

cation exchange capacity (ECEC), soil organic carbon (SOC), soil pH, and soil 562

	pН	EC	Ca	Mg	K	Na	Base cations<u>ECEC</u>
SOC	0.11	0.19	0.42**	0.73**	0.81**	0.17	0.46**
pН		0.66**	0.35**	0.48**	0.04	0.33**	0.37**
EC			0.28**	0.40**	0.15	0.16	0.29**
Ca				0.60**	0.53**	0.23*	0.998**
Mg					0.77**	0.24*	0.65**
Κ						0.10	0.57**
Na							0.26*

electrical conductivity (EC). 563

* and ** indicating the significant level at P<0.05, 0.01, respectively 564

Table S1 Chemical characteristics of the irrigation water.

	Irrigation water
EC (us cm ⁻¹)	196.1±6.4
рН	7.7 ± 0.07
Ca (mmol L ⁻¹)	1.6±0.03
Mg (mmol L^{-1})	0.8 ± 0.02
K (mmol L^{-1})	0.04 ± 0.002
Na (mmol L ⁻¹)	0.6 ± 0.02

568 The symbol '-'indicate the ions were not detected.

570 Figure Legends

571	Fig.1 The effect of 9-year of water (ambient vs. water addition) and N additions (0
572	[CK], 5 [N ₅], 10 [N ₁₀], 15 [N ₁₅] g N m ⁻² yr ⁻¹) on (a) electrical conductivity (EC, us
573	cm ⁻¹) and (b) total base cations effective cation exchange capacity (ECEC, sum of
574	exchangeable Ca, Mg, K, and Na, cmol kg aggregate ⁻¹). Data are represented as
575	means \pm standard error (n=4). Lowercase letters indicate significant differences
576	between N treatments within a soil aggregate class size and water treatment. The
577	capital letters indicate significant differences between soil aggregate sizes across N
578	and water treatments.
579	
580	Fig.2 The effect of 9-year of water (ambient vs. water addition) and N additions (0
581	[CK], 5 [N ₅], 10 [N ₁₀], 15 [N ₁₅] g N m ⁻² yr ⁻¹) on exchangeable (a) Ca, (b) Mg, (c) K
582	and (d) Na concentrations (cmol kg aggregate ⁻¹) in 3 soil aggregate size classes (<0.25
583	mm, 0.25-2 mm, >2 mm). Data are represented as means \pm standard error (n=4).
584	Lowercase letters indicate significant differences between N treatments within a soil
585	aggregate size class and water treatment. The capital letters indicate significant
586	differences between soil aggregate sizes across N and water treatments.
587	
588	Fig. 3 The effect of 9-years of water (ambient vs. water addition) and N additions (0
589	[CK], 5 [N ₅], 10 [N ₁₀], 15 [N ₁₅] g N m ⁻² yr ⁻¹) on DTPA-extractable micronutrients (a)
590	Fe, (b) Mn, (c) Cu and (d) Zn in 3 soil aggregate size classes (<0.25 mm, 0.25-2
591	mm, >2 mm (mg kg aggregate ⁻¹). Data are represented as means \pm standard error

592 (n=4). Lowercase letters indicate significant differences between N treatments within

593 a soil fraction and water treatment. The capital letters indicate significant differences

between soil aggregate sizes across N and water treatments.

595

596	Fig. 4 The relationshi	ps between soil	pH and DTPA-extractable	(a) Fe	(mg kg
	8			()	\ 0 0

⁵⁹⁷ aggregate⁻¹), (b) Mn (mg kg aggregate⁻¹), (c) Cu (mg kg aggregate⁻¹) and (d) Zn (mg

598 kg aggregate⁻¹) across all N and water treatments within the soil aggregate size

- 599 classes.
- 600

Fig. <u>S1-5</u> The relationships between KCl-extractable ammonium (mg kg aggregate⁻¹)
and total base cations effective cation exchange capacity (ECEC, sum of exchangeable
Ca, Mg, K, and Na, cmol kg aggregate⁻¹) within macroaggregates (a) and

604 microaggregates (b) across all N and water inputs.

1 Base cations and micronutrients in soil aggregates as affected by ennan

2 nitrogen and water inputs in a semi-arid steppe grassland

- 3
- 4 Ruzhen Wang^a, Jennifer A.J. Dungait^b, Heather L. Buss^c, Shan Yang^{a,d}, Yuge Zhang
- ⁵ ^d, Zhuwen Xu ^a, Yong Jiang ^a
- 6
- ^a State Engineering Laboratory of Soil Nutrient Management, Institute of Applied
- 8 Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- 9 ^b Sustainable Soils and Grassland Systems Department, Rothamsted Research, North
- 10 Wyke, Okehampton, Devon, EX20 2SB, UK.
- ^c School of Earth Sciences, University of Bristol, Wills Memorial Building,

12	Queens Road,	Clifton BS8 1RJ, UK.	

- ¹³ ^d Key Laboratory of Regional Environment and Eco-Remediation, College of
- 14 Environment, Shenyang University, Shenyang 110044, China
- 15
- 16 Correspondence: Yong Jiang. E-mail: jiangyong@iae.ac.cn

17 Abstract

The intensification of grassland management by nitrogen (N) fertilization and 18 19 irrigation may threaten the future integrity of fragile semi-arid steppe ecosystems by 20 affecting the concentrations of base cation and micronutrient in soils. We extracted 21 base cations of exchangeable calcium (Ca), magnesium (Mg), potassium (K), and 22 sodium (Na) and extractable micronutrients of iron (Fe), manganese (Mn), copper 23 (Cu), and zinc (Zn) from three soil aggregate sizes classes (microaggregates, <0.25 24 mm; small macroaggregates, 0.25-2 mm; large macroaggregates, >2 mm) from a 25 9-year N and water field manipulation study. There were significantly more base cations (but not micronutrients) in microaggregates compared to macroaggregates 26 27 which was related to greater soil organic matter and clay contents. Nitrogen addition 28 significantly decreased exchangeable Ca by up to 33% in large and small 29 macroaggregates and exchangeable Mg by up to 27% in three aggregates but 30 significantly increased extractable Fe, Mn and Cu concentrations (by up to 262%, 31 150%, and 55 %, respectively) in all aggregate size classes. However, water addition 32 only increased exchangeable Na, while available Fe and Mn were decreased by water 33 addition when averaging across all N treatments and aggregate classes. The loss of exchangeable Ca and Mg under N addition and extractable Fe and Mn in soil 34 35 aggregates under water addition might potentially constrain the productivity of this 36 semi-arid grassland ecosystem. 37

38 Key words Nitrogen deposition • Irrigation • Calcium • Magnesium • Manganese •

39 Copper

40 Introduction

41 Micronutrient availability constrains net primary productivity (NPP) (Li et al., 2010, 2012), and deficiencies in soil micronutrients, including Fe, Mn, Cu, and Zn, are a 42 43 problem threatening food production worldwide (Jones et al., 2013). Base cations (i.e., 44 exchangeable Ca, Mg, K, Na) are the predominant exchangeable cations in the 45 calcareous soils (Zhang et al., 2013). They are essential for soil buffering capacity 46 particularly in soils affected by atmospheric acid deposition (Lieb et al., 2011), serve 47 as good indicators of soil fertility (Zhang et al., 2013), and are critical nutrients for both plant and microbial metabolism (Cheng et al., 2010). For instance, Ca regulates 48 49 plant cell signaling, cell division, and carbohydrate metabolism (McLaughlin and 50 Wimmer, 1999), and Mg is important for photosynthesis and energy storage (Lucas et al., 2011). Biogeochemical processes may be driven by base cation and micronutrient 51 52 supply; for instance, root-surface phosphatase activity is correlated with available Ca 53 and Mg (Gabbrielli et al., 1989) and Mg and Zn availability are important for litter 54 decomposition (Powers and Salute, 2011). 55 The availability of base cations and micronutrients is influenced by environmental changes, such as altered N and water availability (Treseder, 2008). The 56 57 availability of base cations varies with edaphic properties, such as soil pH (Katou, 2002), organic matter fractions (Oorts et al., 2003) and soil particle sizes (Beldin et al., 58 59 2007). Prolonged N inputs generally causes soil acidification and subsequent losses of

soil cations (McLaughlin and Wimmer, 1999; Cheng et al., 2010), and micronutrient

61	availability may increase under soil acidification (Malhi et al., 1998) causing toxicity
62	to both plants and soil microorganisms in extreme cases (Bowman et al., 2008;
63	Horswill et al., 2008). Changes in precipitation regime and soil moisture levels may
64	interact with inorganic N affecting soil microbial activities (Wang et al., 2015a)
65	including the decomposition of soil organic matter (SOM) and nutrients release and
66	their subsequent transport in the soil (Dungait et al., 2012; Nielsen and Ball, 2014). In
67	sandy soils, increased precipitation might promote leaching of nitrate and
68	counter-ions (such as base cations) (Ochoa-Hueso et al., 2014).
69	Soil aggregate structure predominantly controls SOM dynamics (Six et al., 2004)
70	and microbial activities (Dorodnikov et al., 2009), and soil aggregate stability can
71	serve as an indicator for grassland ecosystem health (Reinhart et al., 2015). In
72	comparison with macroaggregates, microaggregates provide preferential sites for soil
73	C stabilization (Wang et al., 2015b) and the SOM herein is more microbial-processed
74	as evidenced by natural abundance stable ¹³ C values (Gunina and Kuzyakov, 2014;
75	Wang et al., 2015b). More microbial-processed SOM (i.e. more functional groups)
76	and potentially higher mineral contents within microaggregates (Creamer et al., 2011)
77	would purportedly provide more binding sites for base cations and micronutrients.
78	Therefore, dynamics of soil base cations and micronutrients in aggregate scale would
79	be a good indicator for soil health and for the potential of metal nutrients
80	sustainability. However, studies concerning aggregate-scale distribution of base
81	cations and micronutrients under enhanced N input and precipitation are still rarely
82	seen.

83	Semi-arid steppe grasslands support diverse animal and plant species (Kang et al.,
84	2007) and are experiencing or will experience enhanced atmospheric nitrogen (N)
85	deposition and precipitation (Niu et al., 2009; Bai et al., 2010; Zhang et al., 2014).
86	Previously, we demonstrated that water addition promoted the incorporation of
87	microaggregates into macroaggregates and enhanced decomposition rates within
88	microaggregates compared to macroaggregates, and that the addition of N depressed
89	extracellular enzyme activities within soil aggregates as a result of soil acidification,
90	after 9-years in a field experiment in the semi-arid steppe grasslands of Inner
91	Mongolia (Wang et al., 2015a,b). In this study, we investigated the changes of base
92	cations and micronutrients within the soil aggregates. We hypothesized that (1) both
93	concentrations of base cations and micronutrients would increase in microaggregates
94	because of the increased abundance of adsorption sites provided by greater SOM and
95	mineral contents therein, and (2) that increased N and water inputs would decrease
96	base cations and increase the availability of micronutrients within soil aggregates due
97	to soil acidification and leaching in the free-draining soil.

99 Materials and methods

100 Study sites and experiment design

101 The experiment was conducted in the Inner Mongolia Restoration Ecological

102 Research Station (IMRERS) in the south of Duolun County, Inner Mongolia, China

103 (42°02′27″N, 116°17′59″E, elevation 1,324 m a.s.l). The topography of the

104 experimental area is flat. The mean annual temperature is 2.1 °C, ranging from -17.8 °C

105	in January to 18.8 °C in July, and mean annual precipitation is 379.4 mm (Xu et al.,
106	2012). The soil is a Haplic Calcisols according to the FAO classification (IUSS
107	Working Group WRB, 2015) with a texture of sandy loam (0-10 cm): 63% sand, 20%
108	silt, and 17% clay (Wang et al., 2014). The chemical characteristics of the $0 - 10$ cm
109	depth of whole soil are given in Wang et al. (2014).
110	The experimental design is described in detail in Wang et al. (2014). Briefly,
111	experimental plots were set up and run for 9 years. A split-plot design was applied
112	with water and N addition being the two treatments. In April 2005, twelve 8 $\ensuremath{m\times8m}$
113	plots were established in each of seven treatment blocks with 1 m buffer zone
114	between any two adjacent plots. Each block was divided into two main plots with
115	either ambient precipitation or 180 mm water addition) as treatments. Each main plot
116	was divided into six subplots and nitrogen treatments (urea pellets) were applied to a
117	randomly selected subplot (dispersed on the top of the soil) (Xu et al., 2012). Two
118	subplots were phosphorus addition treatments which were not considered in this study.
119	Additional water (approximately 50% of mean annual precipitation) was added to the
120	water addition plots by sprinkling 15 mm weekly during the middle of the growing
121	season from June to August as over 65% of annually total precipitation occurs during
122	this time. The chemical composition of the irrigation water was listed as Table S1.
123	Nitrogen additions were split applications with half applied in early May and the other
124	half in late June at the rates of 0 (control plots, defined as CK), 5 (N ₅), 10 (N ₁₀), and
125	15 (N ₁₅) g N m ⁻² yr ⁻¹ (Xu et al., 2012). The background N inputs (atmospheric
126	deposition plus fertilizer application) in this area are about 5 g N m ⁻² yr ⁻¹ , so these

manipulations represent 100%, 200% and 300% surplus of nitrogen compared to the
background N inputs (Wang et al., 2015a).

129

130 Soil sampling and aggregate-size fractionation

131	In September 2013, top soils $(0 - 10 \text{ cm})$ were sampled by compositing five randomly
132	selected cores within each plot from four out of seven blocks. Fresh soil samples were
133	stored at 4°C during transportation to the laboratory. Soil aggregates were isolated by
134	a dry-sieving method according to Dorodnikov et al. (2009) to minimize the
135	disruption in microbial activities and to prevent leaching of available nutrients by wet
136	sieving. Briefly, fresh bulk soil samples (gravimetric water content of 10-15%) were
137	gently passed through a 5 mm screen and transferred to a nest of sieves (2 and 0.25
138	mm) on a mechanical shaker Retsch AS200 Control (Retsch Technology, Düsseldorf,
139	Germany). The sieves were mechanically shaken (amplitude 1.5 mm) for 2 min to
140	separate the aggregates > 2 mm (large macroaggregates), $2 - 0.25$ mm (small
141	macroaggregates), and < 0.25 mm (microaggregates). The mass proportions of large
142	macro-, small macro-, and microaggregates were 30.3-44.8%, 38.3-42.8%, and
143	15.3-31.1%, respectively (Wang et al., 2015b). No correction was made for sand
144	because sand grains can be completely embedded within macroaggregates. The
145	chemical characteristics of bulk soil and soil aggregates (0-10 cm) are given in Table
146	1 (Wang et al., 2014, 2015a,b).
147	

148 Soil physiochemical and biological parameters

149	Soil aggregate pH and electrical conductivity (EC) was determined in a 1:5 (w/v)
150	soil-to-water extract with a PHS-3G digital pH meter (Precision and Scientific Corp.,
151	Shanghai, China) and a Orion 150A+ conductivity meter (Thermo Fisher Scientific
152	Inc., Beverly, USA), respectively. Soil organic carbon (SOC) within aggregate classes
153	was determined for acid-fumigated soils (to remove carbonates) using elemental
154	analyzer (EA1112, ThermoFisher Scientific, Japan). Concentration of soil aggregate
155	ammonium was determined colorimetrically from 2 M KCl soil extracts (Wang et al.,
156	2015b).

158 Extraction and analysis of base cations and micronutrients

Soil aggregate base cations were extracted and analysed using the method of 159 160 Ochoa-Hueso et al. (2014). Briefly, 2.5 g of each soil aggregate fraction was extracted by 50 ml 1 M ammonium acetate (CH₃COONH₄) (pH 7.0). The slurry was orbitally 161 shaken for 30 min at 150 rpm and then filtered through Whatman no. 2V filter paper 162 (quantitative and ash-free). Micronutrients (Fe, Mn, Cu, Zn) within soil aggregates 163 were extracted by diethylenetriamine pentaacetic acid (DTPA) (Lindsay and Norvell, 164 1978). 10 g of soil aggregates was weighted into Erlenmeyer flask to mix with 20 mL 165 $0.005 \text{ M DTPA} + 0.01 \text{ M CaCl}_2 + 0.1 \text{ M TEA}$ (triethanolamine) (pH 7.0). The mixture 166 were shaken at 180 rpm for 2 h and filtered. All of the extractable metal cations were 167 analyzed by atomic absorption spectrometer (AAS, Shimadzu, Japan). The sum of 168 exchangeable Ca, Mg, K, and Na was defined as effective cation exchange capacity 169 (ECEC). 170

172 Statistical analyses

173	Three-way ANOVAs with a split-plot design were used to test the effect of water
174	(between subject), N addition (within subject) and soil aggregate sizes on electrical
175	conductivity (EC), the concentrations of base cations (exchangeable Ca, Mg, K, and
176	Na) and available micronutrients (Fe, Mn, Cu, and Zn). Multiple comparisons with
177	Duncan design were performed to determine differences in EC, base cations, and
178	available micronutrients among N rates and run separately for ambient and enhanced
179	precipitation within each soil aggregate. Pearson correlation analysis was used to
180	examine the relationships between base cations and available micronutrients. All
181	statistical analyses were performed in SPSS 16.0 (SPSS, Inc., Chicago, IL, U.S.A.)
182	and statistical significance was accepted at $P < 0.05$.

183

184 **Results**

185 *Responses of electrical conductivity (EC) to N and water addition*

186 Under ambient water conditions, soil EC was significantly reduced in N addition plots

from 272.5 to 179.2 μ s cm⁻¹ in large macroaggregates, from 249.4 to 188.6 μ s cm⁻¹ in

- small macroaggregates, and from 295.3 to 173.9 μ s cm⁻¹ in microaggregates, except
- 189 for N_5 in large macro- and microaggregates as compared to the control (CK) (Fig. 1a,
- 190 Table 2). Under elevated water conditions, EC values were significantly smaller in
- 191 N_{15} plots across soil aggregate size classes (Fig. 1a). The N_{15} treatment significantly
- decreased soil EC from 237.8 to 194.5 μ s cm⁻¹ in large macroaggregates, from 247.5

193	to 192.9 μ s cm ⁻¹ in small macroaggregates, and from 293.5 to 192.7 μ s cm ⁻¹ in
194	microaggregates (Fig. 1a). Soil EC values were significantly larger in water addition
195	plots at N application rates of N_{10} in large macroaggregates, N_5 and N_{10} in small
196	macroaggregates, and N_{10} in microaggregates comparing to respective N plots of
197	ambient precipitation (Fig. 1a).
198	
199	Response of ECEC, exchangeable Ca, Mg, K, and Na and DTPA-extractable
200	micronutrients to N and water addition
201	The ECEC (sum of exchangeable Ca, Mg, K, and Na) in soil aggregates increased in
202	the order: small macroaggregates < large macroaggregates < microaggregates
203	averaging across all N and water treatments (Table 2, Fig. 1b). Soil base cations
204	decreased with N addition in both large and small macroaggregates under both
205	ambient and elevated water conditions (Fig. 1b).
206	When averaging all the N and water treatments, the greatest concentrations of
207	exchangeable Ca, Mg, and K were all detected in microaggregates, followed by large
208	macroaggregates (Fig. 2a, b, c). Microaggregates contained significantly more
209	exchangeable Na than the large macroaggregates averaging across all the treatments
210	(Fig. 2d). Under ambient precipitation, exchangeable Ca was significantly less in
211	N-addition plots with N ₅ , N ₁₀ , and N ₁₅ in large macroaggregates, and in N ₁₀ and N ₁₅
212	plots in small macroaggregates as compared to control plots by as much as 33 %
213	(between CK and N_{15} treatments) (Fig. 2a). Under elevated water conditions, N
214	addition significantly decreased exchangeable Ca in both large (N_5 , N_{10} , and N_{15}) and

215	small macroaggregates (N_{10} and N_{15}) by as much as 26 % (Fig. 2a). Under ambient
216	water conditions, exchangeable Mg was significantly lower in N_{15} in large
217	macroaggregates, in N_5 and N_{15} in small macroaggregates, and in N_{15} in
218	microaggregates by 4 - 27 % (Fig. 2b). Under increased water inputs, N addition
219	decreased exchangeable Mg in N_{10} and N_{15} plots in both large and small
220	macroaggregates and in N_5 , N_{10} , and N_{15} in microaggregates by 2 - 19 % (Fig. 2b).
221	Both exchangeable K and Na showed no response to N addition across all
222	aggregate-size classes (Fig. 2c, d). Significant positive water effects were only seen
223	on the concentration of exchangeable Na when comparing the means of all N
224	treatments and aggregate classes between ambient precipitation and water addition
225	(Table 2).
226	DTPA-extractable micronutrients were distributed differently across
226 227	aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were
226 227 228	DTPA-extractable micronutrients were distributed differently across aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were detected within small macroaggregates compared to large macro- and
226227228229	DTPA-extractable micronutrients were distributed differently across aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were detected within small macroaggregates compared to large macro- and microaggregates (Fig. 3a, b). Extractable Cu increased in the order large macro- >
 226 227 228 229 230 	DTPA-extractable micronutrients were distributed differently across aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were detected within small macroaggregates compared to large macro- and microaggregates (Fig. 3a, b). Extractable Cu increased in the order large macro- > micro- > small macroaggregates when averaging all the N and water treatments (Fig.
 226 227 228 229 230 231 	DTPA-extractable micronutrients were distributed differently across aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were detected within small macroaggregates compared to large macro- and microaggregates (Fig. 3a, b). Extractable Cu increased in the order large macro- > micro- > small macroaggregates when averaging all the N and water treatments (Fig. 3c). The largest extractable Zn was observed in microaggregates, while no significant
 226 227 228 229 230 231 232 	DTPA-extractable micronutrients were distributed differently across aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were detected within small macroaggregates compared to large macro- and microaggregates (Fig. 3a, b). Extractable Cu increased in the order large macro- > micro- > small macroaggregates when averaging all the N and water treatments (Fig. 3c). The largest extractable Zn was observed in microaggregates, while no significant difference was found for Zn between large and small macroaggregates (Fig. 3d).
 226 227 228 229 230 231 232 233 	DTPA-extractable micronutrients were distributed differently across aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were detected within small macroaggregates compared to large macro- and microaggregates (Fig. 3a, b). Extractable Cu increased in the order large macro- > micro- > small macroaggregates when averaging all the N and water treatments (Fig. 3c). The largest extractable Zn was observed in microaggregates, while no significant difference was found for Zn between large and small macroaggregates (Fig. 3d). Following N additions, DTPA-extractable Fe, Mn, and Cu significantly increased
 226 227 228 229 230 231 232 233 234 	DIPA-extractable micronutrients were distributed differently across aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were detected within small macroaggregates compared to large macro- and microaggregates (Fig. 3a, b). Extractable Cu increased in the order large macro- > micro- > small macroaggregates when averaging all the N and water treatments (Fig. 3c). The largest extractable Zn was observed in microaggregates, while no significant difference was found for Zn between large and small macroaggregates (Fig. 3d). Following N additions, DTPA-extractable Fe, Mn, and Cu significantly increased within all soil aggregates under both ambient and elevated water conditions by as
 226 227 228 229 230 231 232 233 234 235 	DTPA-extractable micronutrients were distributed differently across aggregate-size classes (Fig. 3, Table 2). Significantly less extractable Fe and Mn were detected within small macroaggregates compared to large macro- and microaggregates (Fig. 3a, b). Extractable Cu increased in the order large macro- > micro- > small macroaggregates when averaging all the N and water treatments (Fig. 3c). The largest extractable Zn was observed in microaggregates, while no significant difference was found for Zn between large and small macroaggregates (Fig. 3d). Following N additions, DTPA-extractable Fe, Mn, and Cu significantly increased within all soil aggregates under both ambient and elevated water conditions by as much as 262 %, 150 %, and 55 %, respectively (Fig. 3a, b, c). No overall N effects

and N_{15} treatments under water addition within microaggregates (Fig. 3d). Extractable Fe and Mn significantly decreased with water addition under N addition rates of 5, 10, and 15 g N m⁻² yr⁻¹ within large macroaggregates (Fig. 3a,b, Table 2).

240

241 Correlations between soil physicochemical parameters, base cations and

- 242 micronutrients
- 243 Significant positive correlations were observed between SOC and soil exchangeable
- Ca, Mg, and K, and between pH and EC, exchangeable Ca, Mg, and Na (Table 3).
- 245 There were significant positive relationships between exchangeable Ca vs. Mg, Ca vs.
- 246 K, Ca vs. K, Mg vs. K, and Mg vs. Na (Table 3). Micronutrients Fe, Mn, and Cu were
- 247 negatively correlated with soil pH across all soil aggregate size classes (Fig. 4a, b, c).
- 248 Within macroaggregates, ECEC significantly and negatively correlated with
- extractable ammonium (Fig. 5a).
- 250

251 Discussion

252 Distribution of base cations and micronutrients within soil aggregates

253 Relatively increased clay mineral and SOM contents are commonly recognized to be

associated with the smallest aggregate size fractions (< 0.25 mm), both of which play

- an essential role in retaining soil base cations especially in sandy, free-draining soils
- similar to our experimental field plot (Oorts et al., 2003; Beldin et al., 2007). In line
- 257 with our initial hypothesis, a significant positive correlation was detected between
- 258 SOC (the largest component of SOM) and exchangeable Ca, Mg, K, and ECEC (Table

259	3), and their distribution was similar to the distribution pattern of SOC and total
260	nitrogen with the highest concentrations in microaggregates (Wang et al., 2015b). Soil
261	organic matter was more decomposed within microaggregates (Wang et al., 2015b)
262	and thus may have provided more binding sites (e.g. more carbonyl functions;
263	Golchin et al., 1994) for exchangeable base cations. It is widely reported that
264	available micronutrients correspond to both SOM and clay content which are both
265	usually more abundant in microaggregates (e.g. Sharma et al., 2004; Six et al., 2004).
266	Although we observed greater available Zn in microaggregates compared to
267	macroaggregates, there was no significant relationship of SOC with Fe, Mn, and Cu,
268	which had quite different distribution patterns from SOC within soil aggregate-size
269	classes and was similar to the findings by Głąb and Gondek (2014) in bulk soil. Due
270	to the fact that large macroaggregates are responsible for providing nutrients for
271	plants and the early stages of SOM formation (Six et al., 2004), plant cycling (uptake
272	and biomass decomposition) might contribute to the higher concentrations of Fe, Mn
273	and Cu in large macroaggregates (Jobbágy and Jackson, 2001).

275 Response of EC and base cations to nitrogen and water addition

276 Protons released when soils acidify may exchange with base cations making them

available for take-up by plants or transport (and loss) by water in soils (Lucas et al.,

- 278 2011; Malhi et al., 1998; Sharma et al., 2004). As EC represents salt concentration in
- soil solution (Zhou et al., 2011), significantly lower EC values might suggest the loss
- of ions, in line with the decline of ECEC under higher N rates (Fig. 1a vs. Fig. 1b).

281	Deficiencies in soil base cations caused by N deposition could pose a threat to
282	ecosystems through their effect on soil microbial activity (Vitousek et al., 1997;
283	Treseder, 2008). Many studies on the effects of chronic N addition to soil contribute
284	shifts in soil microbial community structure and activity to the reduction of soil pH
285	(Ramirez et al., 2010; Wang et al., 2014), and we previously reported soil enzyme
286	depression under N addition attributed to soil acidification (Chung et al., 2007; Wang
287	et al., 2014). Consistent with our hypothesis, we observed a decrease in Ca and Mg,
288	which are the major base cations in macroaggregates (Fig. 2). This decrease
289	corresponded to a negative correlation between NH_4^+ and ECEC across soil
290	macroaggregates (Fig. 5a). Nitrogen addition increased NH_4^+ concentrations across all
291	three soil aggregate size classes (Wang et al., 2015b) which may displace soil
292	aggregate base cations and bind strongly to soil surfaces (Matschonat and Matzner,
293	1996). We did not measure leaching rates in the field experiment, but these are likely
294	to be substantial given the sand content of the soil (> 60%). Increased leaching under
295	water addition that caused NO_3^- loss was previously reported (Wang et al., 2015b) and
296	may indicate a route for the loss of Ca and Mg within soil aggregates, as observed by
297	Currie et al. (1999) and Lucas et al. (2011). Our results contradict those of
298	Ochoa-Hueso et al. (2014) who reported an increase of extractable base cations under
299	N deposition in a highly buffered, limestone soil in the semi-arid Mediterranean
300	region. However, where N addition increases NPP in an N-limited soil, such as those
301	of semi-arid steppe grasslands (Xu et al., 2014) a coincident uptake of base cations by
302	vigorous plant growth may occur (Tomlinson, 2003). But we did not investigate

303	changes in the cation content of plant tissues in this experiment to confirm this flux.
304	Furthermore, no effect of N addition was observed on soil aggregate K and Na
305	concentrations (although Ca and Mg decreased; Fig. 2, Table 2) indicating the
306	selective depletion of base cations (Lu et al., 2014). The depletion of base cations
307	within soil aggregate can accelerate a reduction in the buffering capacity of soils and
308	accelerate soil acidification (with increased N at ambient water soil pH 6.97 decreased
309	to 6.10, and with added water, 7.17 to 6.42; Wang et al., 2015a); the dynamics of the
310	base cations were affected substantially. Water addition increased EC and
311	exchangeable Na but did not affect the other base cations (Table 2; Fig. 1a, 2). The
312	positive effect of water on soil EC and exchangeable Na might be caused by the
313	relatively high EC value and Na concentration in irrigative water in this calcareous
314	grassland (Table S1). We previously reported that water addition increased soil
315	microbial activity at the study site (Wang et al., 2014, 2015a): if litter decomposition
316	rates were promoted as a consequence (e.g. Liu et al., 2006) Ca, Mg and K may have
317	been released from this secondary biological source to supplement the soil pools.
318	
319	Response of micronutrients to nitrogen and water addition
320	Micronutrient cycling relies on the balance between input (mineral weathering
321	release), recycling (plant biomass turnover), retention (sorption reactions), and
322	removal (biomass harvesting, fire, and hydrologic leaching) (Li et al., 2008).

Long-term N addition caused large increases in extractable Fe, Mn and Cu

concentrations in all soil aggregate size classes (by up to 262%, 150%, and 55 %,

325	respectively; Fig. 3a, b, c), presumably due to the decrease in soil pH which may
326	increase micronutrient release through weathering and desorption from soil minerals
327	and SOM (Malhi et al., 1998). Acidification caused by the long-term addition of N
328	negatively affected microbial activity previously observed as the depression of
329	enzyme activity in these experimental soils (Chung et al., 2007; Wang et al., 2014).
330	The mechanism underlying this biological response was not explored but is likely to
331	be complex and due in part to the effect of the changes in micronutrient supply.
332	Long-term irrigation had the opposite effect on extractable Fe and Mn within soil
333	aggregates where increases in soil aggregate pH (which usually decrease the
334	mobilization of micronutrients) were detected compared to ambient precipitation plots
335	(Wang et al., 2014). Our previous study suggested that water addition increased soil
336	pH from 7.1 to 7.3 in CK and from 5.6 to 6.1 in N_{15} plots for large macroaggregates,
337	from 7.1 to 7.5 in CK and from 5.8 to 6.2 in $N_{\rm 15}$ plots for small macroaggregates, and
338	from 7.1 to 7.4 in CK and from 5.9 to 6.2 in N_{15} plots for microaggregates (Wang et
339	al., 2015). A previous study carried out at the same plots showed that water addition
340	significantly increased NPP (Xu et al., 2010), suggesting enhanced uptake of growing
341	plants may have reduced concentrations of Fe and Mn in the soil aggregates. This is
342	consistent with the findings of Li et al. (2008) who reported that Mn and boron uptake
343	by plants outpaced their resupply by mineral weathering. However, Fe and Mn may
344	be toxic to plants (Brown and Jones, 1977), so losses by increased leaching may be
345	the most likely route for their decrease in the irrigated plots. However, neither
346	leaching nor plant performance was measured in this experiment.

348 Conclusions

349 Consistent with our first hypothesis, microaggregates had greater base cation concentrations, which was ascribed to a proportion of sorption provided by increased 350 351 SOM and clay contents associated with the smallest aggregate size class. However, extractable micronutrients (except Zn) did not follow the same concentration pattern 352 as base cations across three soil aggregate size classes. Under N addition, 353 354 exchangeable Ca and Mg decreased while extractable micronutrients (Fe, Mn and Cu) 355 increased, which was related to the slight but apparently important decrease in soil pH. Water addition showed no impact on exchangeable Ca, Mg and K, but decreased 356 357 available Fe and Mn averaging across soil aggregates which partially supported our 358 second hypothesis. Our findings suggest that uncontrolled or long-term N fertilization and irrigation of semi-arid steppe soils cause significant changes in the concentrations 359 360 of base cations and micronutrients which will ultimately decrease soil fertility, 361 constrain NPP and the nutrient quality of plants. The pathway of the losses (e.g. 362 leaching or uptake into plant tissues followed by harvest) need to be determined in 363 order to manage large and fragile semi-arid grassland systems. 364

365 Acknowledgments

366 We wish to thank the Duolun Restoration Ecology Research Station for the support in

367 the field work. This work was financially supported by the National Key Research

and Development Program of China (2016YFC0500707), the National Natural

369	Science Foundation of China (41371251), and the Strategic Priority Research
370	Program of the Chinese Academy of Sciences (XDB15010100). This work represents
371	part of the BBSRC funded programmes at Rothamsted Research on Sustainable Soil
372	Function, and Bioenergy and Climate Change.
373	
374	References
375	Bai, Y., Wu, J., Clark, C.M., Naeem, S., Pan, Q., Huang, J., Zhang, L. & Han, X. 2010.
376	Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and
377	ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change
378	<i>Biology</i> , 16 , 358-372.
379	Beldin, S.I., Caldwell, B.A., Sollins, P., Sulzman, E.W., Lajtha, K. & Crow, S.E. 2007.
380	Cation exchange capacity of density fractions from paired conifer/grassland soils.
381	Biology Fertility of Soils, 43, 837-841.
382	Bowman, W.D., Cleveland, C.C., Halada, L., Hresko, J. & Baron, J.S. 2008. Negative
383	impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1,
384	767-770.
385	Brown, J.C. & Jones, W.E. 1977. Manganese and iron toxicities dependent on
386	soybean variety. Communications in Soil Science and Plant Analysis, 8, 1-15.
387	Cheng, L., Zhu, J., Chen, G., Zheng, X., Oh, N.H., Rufty, T.W. & Hu, S. 2010.
388	Atmospheric CO ₂ enrichment facilitates cation release from soil. <i>Ecology Letters</i> ,
389	13, 284-291.
390	Chung, H., Zak, D.R., Reich, P.B. & Ellsworth, D.S. 2007. Plant species richness,

391 elevated CO₂, and atmospheric nitrogen deposition alter soil microbial community

- 392 composition and function. *Global Change Biology*, **13**, 980-989.
- 393 Currie, W.S., Aber, J.D. & Driscoll, C.T. 1999. Leaching of nutrient cations from the
- 394 forest floor: effects of nitrogen saturation in two long-term manipulations.
- 395 *Canadian Journal of Forest Research*, **29**, 609-620.
- 396 Creamer, C.A., Filley, T.R., Boutton, T.W., Oleynik, S. & Kantola, I.B. 2011. Controls
- 397 on soil carbon accumulation during woody plant encroachment: evidence from
- 398 physical fractionation, soil respiration, and δ^{13} C of respired CO₂. Soil Biology &
- *Biochemistry*, **43**, 1678-1687.
- 400 Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier A. &
- 401 Kuzyakov, Y. 2009. Stimulation of microbial extracellular enzyme activities by
- 402 elevated CO₂ depends on soil aggregate size. *Global Change Biology*, 15,
 403 1603-1614.
- 404 Dungait, J.A.J., Hopkins, D.W., Gregory, A.S. & Whitmore, A.P. 2012. Soil organic
- 405 matter turnover is governed by accessibility not recalcitrance. *Global Change*406 *Biology*, **18**, 1781-1796.
- 407 Gabbrielli, R., Grossi, L. & Vergnano, O. 1989. The effects of nickel, calcium and
- 408 magnesium on the acid-phosphatase activity of 2 Alyssum species. New Phytologist,
- 409 **111,** 631-636.
- 410 Głąb, T. & Gondek, K. 2014. The influence of soil compaction and N fertilization on
- 411 physico-chemical properties of Mollic Fluvisol soil under red clover/grass mixture.
- 412 *Geoderma*, **226**, 204-212.
- 413 Golchin, A., Oades, J., Skjemstad, J. & Clarke, P. 1994. Study of free and occluded

414	particulate organic matter in soils by solid state ¹³ C Cp/MAS NMR spectroscopy
415	and scanning electron microscopy. Soil Research, 32, 285-309.
416	Gunina, A. & Kuzyakov, Y. 2014. Pathways of litter C by formation of aggregates and
417	SOM density fractions: implications from ¹³ C natural abundance. Soil Biology &
418	Biochemistry, 71 , 95-104.
419	Horswill, P., O'sullivan, O., Phoenix, G.K., Lee, J.A. & Leake, J.R. 2008. Base cation
420	depletion, eutrophication and acidification of species-rich grasslands in response to
421	long-term simulated nitrogen deposition. Environmental Pollution, 155, 336-349.
422	IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014.
423	International soil classification system for naming soils and creating legends for
424	soil maps. World Soil Resources Reports No. 106. FAO, Rome.
425	Jobbágy, E.G. & Jackson, R.B. 2001. The distribution of soil nutrients with depth:
426	global patterns and the imprint of plants. <i>Biogeochemistry</i> , 53 , 51-77.
427	Jones, D.L., Cross, P., Withers, P.J.A., DeLuca, T.H., Robinson, D.A., Quilliam, R.S.,
428	Harris, I.M., Chadwick, D.R. & Edwards-Jones, G. 2013. Review: Nutrient
429	stripping: the global disparity between food security and soil nutrient stocks.
430	Journal of Applied Ecology, 50 , 851-862.
431	Kang, L., Han, X., Zhang, Z. & Sun, O.J. 2007. Grassland ecosystems in China:
432	review of current knowledge and research advancement. Philosophical
433	Transactions of Royal Society B, 362 , 997-1008.
434	Katou, H. 2002. A pH-dependence implicit formulation of cation- and anion-exchange
435	capacities of variable-charge soils. Soil Science Society of America Journal, 66,

- 1218-1224. 436
- Li, J., Richter, D.D., Mendoza, A. & Heine, P. 2008. Four-decade responses of soil 437 438 trace elements to an aggrading old-field forest: B, Mn, Zn, Cu, and Fe. Ecology, 89, 2911-2923. 439
- 440 Li, J., Richter, D.D., Mendoza, A. & Heine, P.R. 2010. Effects of land-use history on
- soil spatial heterogeneity of macro- and trace elements in the Southern Piedmont 441 USA. Geoderma, 156, 60-73. 442
- 443 Li, J. & Richter, D.D. 2012. Effects of two-century land use changes on soil iron
- 444 crystallinity and accumulation in Southeastern Piedmont region, USA. Geoderma, 173, 184-191. 445
- Lieb, A.M., Darrouzet-Nardi, A. & Bowman, W.D. 2011. Nitrogen deposition 446
- 447 decreases acid buffering capacity of alpine soils in the southern Rocky Mountains.
- Geoderma, 164, 220-224. 448

- Lindsay, W.L. & Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, 449
- 450 manganese, and copper. Soil Science Society of America Journal, 42, 421-428.
- Liu, P., Huang, J., Han, X., Sun, O.J. & Zhou, Z. 2006. Differential responses of litter 452 decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 34, 453 266-275. 454
- Lu, X., Mao, Q., Gilliam, F.S., Luo, Y. & Mo, J. 2014. Nitrogen deposition 455 contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 456 3790-3801. 457

458	Lucas, R.W., Klaminder, J., Futter, M.N., Bishop, K.H., Egnell, G., Laudon, H. &
459	Hogberg, P. 2011. A meta-analysis of the effects of nitrogen additions on base
460	cations: Implications for plants, soils, and streams. Forest Ecology and
461	Management, 262 , 95-104.
462	Malhi, S.S., Nyborg, M. & Harapiak, J.T. 1998. Effects of long-term N
463	fertilizer-induced acidification and liming on micronutrients in soil and in
464	bromegrass hay. Soil Tillage & Research, 48, 91-101.
465	Matschonat, G. & Matzner, E. 1996. Soil chemical properties affecting NH_4^+ sorption
466	in forest soils. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 159, 505-511.
467	Mclaughlin, S.B. & Wimmer, R. 1999. Tansley Review No. 104 - Calcium physiology
468	and terrestrial ecosystem processes. New Phytologist, 142, 373-417.
469	Nielsen, U.N. & Ball, B.A. 2014. Impacts of altered precipitation regimes on soil
470	communities and biogeochemistry in arid and semi-arid ecosystems. Global
471	<i>Change Biology</i> , 21 , 1407-1421.

- 472 Niu, S., Yang, H., Zhang, Z., Wu, M., Lu, Q., Li, L., Han, X. & Wan, S. 2009.
- 473 Non-additive effects of water and nitrogen addition on ecosystem carbon exchange
 474 in a temperate steppe. *Ecosystems*, **12**, 915-926.
- 475 Ochoa-Hueso, R., Bell, M.D. & Manrique, E. 2014. Impacts of increased nitrogen
- 476 deposition and altered precipitation regimes on soil fertility and functioning in
- semiarid Mediterranean shrublands. *Journal of Arid Environment*, **104**, 106-115.
- 478 Oorts, K., Vanlauwe, B. & Merckx, R. 2003. Cation exchange capacities of soil
- 479 organic matter fractions in a Ferric Lixisol with different organic matter inputs.

- 480 Agriculture, Ecosystems & Environment, **100**, 161-171.
- 481 Powers, J.S. & Salute, S. 2011. Macro- and micronutrient effects on decomposition of
- 482 leaf litter from two tropical tree species: inferences from a short-term laboratory
- 483 incubation. *Plant and Soil*, **346**, 245-257.
- 484 Ramirez, K.S., Lauber, C.L., Knight, R., Bradford, M.A. & Fierer, N. 2010.
- 485 Consistent effects of nitrogen fertilization on soil bacterial communities in
 486 contrasting systems. *Ecology*, **91**, 3463-3470.
- 487 Reinhart, K.O., Nichols, K.A., Petersen, M. & Vermeire, L.T. 2015. Soil aggregate
- 488 stability was an uncertain predictor of ecosystem functioning in a temperate and
- 489 semiarid grassland. *Ecosphere*, **6**, 1-16.
- 490 Sharma, B.D., Arora, H., Kumar, R. & Nayyar, V.K. 2004. Relationships between soil
- 491 characteristics and total and DTPA-extractable micronutrients in Inceptisols of
- 492 Punjab. *Communications in Soil Science and Plant Analysis*, **35**, 799-818.
- 493 Six, J., Bossuyt, H., Degryze, S. & Denef, K. 2004. A history of research on the link
- 494 between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil
- 495 *Tilliage & Research*, **79**, 7-31.
- 496 Tomlinson, G.H. 2003. Acidic deposition, nutrient leaching and forest growth.
- 497 *Biogeochemistry*, **65**, 51-81.
- 498 Treseder, K.K. 2008. Nitrogen additions and microbial biomass: a meta-analysis of
- 499 ecosystem studies. *Ecology Letters*, **11**, 1111-1120.
- 500 Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler,
- 501 D.W., Schlesinger, W.H. & Tilman, D.G. 1997. Human alteration of the global

- 502 nitrogen cycle: Sources and consequences. *Ecological Applications*, **7**, 737-750.
- 503 Wang, R., Dorodnikov, M., Yang, S., Zhang, Y., Filley, T.R., Turco, R.F., Zhang, Y.,

504 Xu, Z., Li, H. & Jiang, Y. 2015a. Responses of enzymatic activities within soil 505 aggregates to 9-year nitrogen and water addition in a semi-arid grassland. *Soil*

- 506 *Biology & Biochemistry*, **81**, 159-167.
- 507 Wang, R., Dungait, J.A.J., Creamer, C.A., Cai, J., Li, B., Xu, Z., Zhang, Y., Ma, Y. &
- Jiang, Y. 2015b. Carbon and nitrogen dynamics in soil aggregates under long-term
- N and water addition in a temperate steppe. Soil Science Society of America
 Journal, 79, 527-535.
- 511 Wang, R., Filley, T.R., Xu, Z., Wang, X., Li, M-H., Zhang, Y., Luo, W. & Jiang, Y.
- 2014. Coupled response of soil carbon and nitrogen pools and enzyme activities to
 nitrogen and water addition in a semi-arid grassland of Inner Mongolia. *Plant and Soil*, **381**, 323-336.
- 515 Xu, Z., Ren, H., Cai, J., Wang, R., Li, M-H., Wan, S., Han, X., Lewis, B.J. & Jiang, Y.
- 516 2014. Effects of experimentally-enhanced precipitation and nitrogen on resistance,
- 517 recovery and resilience of a semi-arid grassland after drought. *Oecologia*, **176**,

518 1187-1197.

- 519 Xu, Z., Wan, S., Ren, H., Han, X., Li, M-H., Cheng, W. & Jiang, Y. 2012. Effects of
- Water and nitrogen addition on species turnover in temperate grasslands in
 Northern China. *PLoS ONE*, 7, e39762.
- 522 Xu, Z., Wan, S., Zhu, G., Ren, H. & Han, X. 2010. The influence of historical land
- use and water availability on grassland restoration. Restoration Ecology, 18,

524 217-225.

- 525 Zhang, Y., Lü, X., Isbell, F., Stevens, C., Han, X., He, N., Zhang, G., Yu, Q., Huang, J.
- 526 & Han, X. 2014. Rapid plant species loss at high rates and at low frequency of N
- addition in temperate steppe. *Global Change Biology*, **20**, 3520-3529.
- 528 Zhang, Y., Xu, Z., Jiang, D. & Jiang, Y. 2013. Soil exchangeable base cations along a
- 529 chronosequence of Caragana microphylla plantation in a semi-arid sandy land,
- 530 China. *Journal of Arid Land*, **5**, 42-50.
- 531
- 532

- 533 Tables
- 534 **Table 1** The chemical characteristics of bulk soil and soil aggregates without
- 535 field-manipulated treatments. SOC, TN, C/N, and DOC represent soil organic carbon,
- total nitrogen, the ratio of SOC to TN, and dissolved organic carbon, respectively.
- 537 Data are represented as means \pm standard error.
- 538

		Soil aggregates (mm)				
	Bulk soil	> 2	0.25-2	< 0.25		
SOC (g kg soil ⁻¹)	18.9±1.7	18.2 ± 1.0	15.1 ± 2.0	21.6 ± 1.4		
TN (g kg soil ⁻¹)	1.8±0.2	1.9 ± 0.1	1.5 ± 0.2	2.2 ± 0.1		
C/N	10.4±1.3	9.5 ± 0.5	10.4 ± 0.4	10.0 ± 0.2		
рН	7.0±0.2	7.1 ± 0.2	7.1 ± 0.2	7.1 ± 0.3		
DOC	69.8±5.6	72.5±6.8	66.6±1.3	71.2±1.5		
NO_3^N (mg kg soil ⁻¹)	27.3±5.9	4.2 ± 0.1	31.6 ± 2.2	34.4 ± 3.8		
$\mathrm{NH_4^+}$ -N (mg kg soil ⁻¹)	9.4±1.6	17.0 ± 1.3	17.9 ± 2.5	22.9 ± 1.0		

539 Data from Wang et al. (2014, 2015a,b)

541	Table 2 Results (F values) of ANOVAs with a split-plot design on the effects of N,
542	water addition (W), and soil fractions (S) on soil electrical conductivity (EC),
543	exchangeable Ca, Mg, K, Na, effective cation exchange capacity (ECEC, sum of
544	exchangeable Ca, Mg, K, and Na, cmol kg aggregate ⁻¹), and available Fe, Mn, Cu,
545	and Zn (mg kg aggregate ⁻¹).
546	

	EC	Ca	Mg	K	Na	ECEC	Fe	Mn	Cu	Zn
W	11.60*	3.07	5.08	0.17	15.6**	4.03	27.8**	14.1*	2.40	3.92
N	14.20**	6.36**	38.7**	0.33	1.71	7.36**	147**	136.3**	44.7**	2.47
S	3.63*	25.0**	168.3**	123.7**	3.49*	30.7**	17.7**	30.1**	33.7**	33.8**
W×N	6.90**	1.01	5.68**	6.81**	1.26	1.25	2.36	3.40*	7.23**	4.34**
W×S	0.28	1.03	3.75*	0.98	0.34	1.03	6.07**	10.8**	6.60**	2.32
N×S	0.77	0.87	0.36	0.88	1.81	0.88	1.59	2.43*	0.85	2.04
W×N×S	0.86	0.44	1.03	1.41	0.61	0.42	0.99	2.54*	1.16	3.84**

547 * and ** indicating the significant level at P<0.05, 0.01, respectively

549 **Table 3** Correlation analyses (*R* values) among exchangeable base cations, effective

550 cation exchange capacity (ECEC), soil organic carbon (SOC), soil pH, and soil

	pН	EC	Ca	Mg	Κ	Na	ECEC
SOC	0.11	0.19	0.42**	0.73**	0.81**	0.17	0.46**
рН		0.66**	0.35**	0.48**	0.04	0.33**	0.37**
EC			0.28**	0.40**	0.15	0.16	0.29**
Ca				0.60**	0.53**	0.23*	0.998**
Mg					0.77**	0.24*	0.65**
Κ						0.10	0.57**
Na							0.26*

551 electrical conductivity (EC).

⁵⁵² * and ** indicating the significant level at P<0.05, 0.01, respectively

Table S1 Chemical characteristics of the irrigation water.

	Irrigation water
EC (us cm ⁻¹)	196.1±6.4
рН	7.7 ± 0.07
Ca (mmol L ⁻¹)	1.6±0.03
Mg (mmol L^{-1})	0.8 ± 0.02
K (mmol L^{-1})	0.04 ± 0.002
Na (mmol L^{-1})	0.6 ± 0.02

556 The symbol '-'indicate the ions were not detected.

558 Figure Legends

Fig.1 The effect of 9-year of water (ambient vs. water addition) and N additions (0 [CK], 5 [N₅], 10 [N₁₀], 15 [N₁₅] g N m⁻² yr⁻¹) on (a) electrical conductivity (EC, us

- 561 cm⁻¹) and (b) effective cation exchange capacity (ECEC, sum of exchangeable Ca, Mg,
- 562 K, and Na, cmol kg aggregate⁻¹). Data are represented as means \pm standard error (n=4).
- 563 Lowercase letters indicate significant differences between N treatments within a soil

aggregate class size and water treatment. The capital letters indicate significant

- differences between soil aggregate sizes across N and water treatments.
- 566

567 Fig.2 The effect of 9-year of water (ambient vs. water addition) and N additions (0

568 [CK], 5 [N₅], 10 [N₁₀], 15 [N₁₅] g N m⁻² yr⁻¹) on exchangeable (a) Ca, (b) Mg, (c) K

and (d) Na concentrations (cmol kg aggregate⁻¹) in 3 soil aggregate size classes (<0.25

570 mm, 0.25-2 mm, >2 mm). Data are represented as means \pm standard error (n=4).

571 Lowercase letters indicate significant differences between N treatments within a soil

aggregate size class and water treatment. The capital letters indicate significant

573 differences between soil aggregate sizes across N and water treatments.

574

576 [CK], 5 [N₅], 10 [N₁₀], 15 [N₁₅] g N m⁻² yr⁻¹) on DTPA-extractable micronutrients (a)

577 Fe, (b) Mn, (c) Cu and (d) Zn in 3 soil aggregate size classes (<0.25 mm, 0.25-2

578 mm, >2 mm (mg kg aggregate⁻¹). Data are represented as means \pm standard error

579 (n=4). Lowercase letters indicate significant differences between N treatments within

- a soil fraction and water treatment. The capital letters indicate significant differences
 between soil aggregate sizes across N and water treatments.
- 582
- **Fig. 4** The relationships between soil pH and DTPA-extractable (a) Fe (mg kg

aggregate⁻¹), (b) Mn (mg kg aggregate⁻¹), (c) Cu (mg kg aggregate⁻¹) and (d) Zn (mg

- 585 kg aggregate⁻¹) across all N and water treatments within the soil aggregate size
 586 classes.
- 587

```
588 Fig. 5 The relationships between KCl-extractable ammonium (mg kg aggregate<sup>-1</sup>) and
```

589 effective cation exchange capacity (ECEC, sum of exchangeable Ca, Mg, K, and Na,

590 cmol kg aggregate⁻¹) within macroaggregates (a) and microaggregates (b) across all N

591 and water inputs.

□CK =N5 =N10 =N15

Fig. 2 Click here to download high resolution image

×.

Fig. 3 Click here to download high resolution image

Aggregate size (mm)

Fig. 4 Click here to download high resolution image

