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Abstract—In this paper, error correction is introduced to the 
Bluetooth Low Energy (BLE) and IEEE 802.15.4 standards by 
utilising data redundancy provided by Cyclic Redundancy Check 
(CRC) codes used by both protocols to detect erroneous packets. A 
scenario with an energy-constrained transmitter and a constraint-
free infrastructure is assumed which enables additional signal 
processing at the receiving side, keeping the transmitter intact. CRC 
error correction is achieved using a novel approach of applying 
iterative decoding techniques. The proposed methods are evaluated 
based both on simulated and real packets. It is shown that by enabling 
CRC error correction, up to 2.5 dB of the SNR gain can be achieved, 
while up to 35% of real corrupted packets can be corrected, at no extra 
cost for the transmitter. This results in potential range extension and 
longer battery life caused by a reduced number of retransmissions. 

Keywords-CRC; error correction; Bluetooth Low Energy; 
IEEE 802.15.4; short-range IoT 

 

I. INTRODUCTION 

Internet-of-Things (IoT) emerging technologies enable mul- 

tiple applications that aim at improving the quality of life of 

citizens of smart cities [1]. Energy-constrained communication 

is a fundamental challenge for the realisation of the IoT- 

enabling technologies. Bluetooth Low Energy (BLE) and 

IEEE 802.15.4 are two widely employed wireless standards 

in energy-constrained short-range IoT applications. Combined 

with long-range communication technologies, such as those 

proposed by Sigfox and the LoRa Alliance [2], BLE and IEEE 

802.15.4 offer a full spectrum of wireless connectivity options 

for the IoT. 

BLE is part of the Bluetooth 4 standard [3] that is aimed at 

very low power applications. As one of the de facto wireless 

communication options in modern smart phones, BLE has 

become a common choice for many manufacturers of commer- 

cial wearable gadgets. BLE is also the basis of the iBeacon 

technology [4] which enables proximity-based services and 

applications, such as indoor positioning. IEEE 802.15.4 [5] 

is a wireless standard that defines the Physical (PHY) and 

Medium Access Control (MAC) layers of the communications 

stack. It is the basis of several higher layer protocol suites such 

as Zigbee and 6LoWPAN that are widely used in various IoT 

applications, including smart grids [6]. It is also the basis of the 

recently-announced Thread [7] protocol suite that is targeting 

the integration of smart home applications with cloud-based 

services. Both BLE and IEEE 802.15.4 are considered as two 
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of the main enabling wireless technologies for smart cities [1]. 

In BLE and IEEE 802.15.4, particular attention is paid to 

the energy efficiency of the transmitter. As a result, many 

traditional communication techniques, such as forward error 

correction, are disabled to avoid any additional energy spent at 

the transmitter. At the same time, to ensure data integrity, both 

standards employ Cyclic Redundancy Check (CRC) codes for 

error detection. To this end, prior to transmission each packet 

is encoded such that a number of redundant bits is generated 

and appended to the packet. CRC encoding consumes mini- 

mum amount of energy and does not compromise the energy 

efficiency of the transmitter. At the receiver side, a packet is 

forwarded to the upper layers of the stack only if it passes a 

CRC check, i.e., it does not have any bit errors. Otherwise, 

the packet is considered corrupted and is discarded. 

In the application layer, packets discarded by the CRC 

check are experienced as performance degradation, whose 

nature depends on the mechanics of the MAC layer used. 

More specifically, both BLE and IEEE 802.15.4 can operate 

in either a unidirectional broadcasting mode or a connection- 

oriented acknowledge-based mode. In the former case, packet 

loss imposes limits on the operational range. In the latter case, 

discarded packets cause retransmissions resulting in additional 

energy consumption of the transmitter. 

While CRC codes are traditionally used for error detection 

only, they have an inherent error correction potential due to 

redundancy they introduce to transmitted data. If some 

additional signal processing was added at the receiver to utilise 

this redundancy and actually correct some errors, it would 

reduce the packet loss experienced by the upper layers. When 

broadcasting, this could extend the operational range or de- 

crease the required transmit power. In the connection-oriented 

mode, the number of retransmissions would be reduced. In 

both cases, the energy efficiency can be improved at no extra 

cost for the transmitter. In other words, CRC error correction 

is a compelling choice for applications where an energy- 

constrained transmitter communicates with a constraint-free 

receiver, such as wearable sensors streaming data to a smart 

infrastructure. 

In this paper, the error correction potential of the CRC codes 

employed in BLE and IEEE 802.15.4 is investigated in a real 

environment. Using the ideas proposed in [8][9] for BLE only, 

two iterative decoding techniques are applied to correct errors 

in both standards. These ideas are further investigated by con- 

sidering how the frame size, and thus the level of redundancy, 

influences the error correction potential. For benchmarking, 

a simple look-up algorithm that is able to correct corrupted 

packets with no more than a single bit error is implemented. 

By comparing the techniques, different situations are identified 

where one of the techniques is more beneficial than the others. 
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The proposed error correction algorithms are evaluated via

simulation and using datasets of real corrupted data acquired

using a commercial off-the-shelf radio that supports both BLE

and IEEE 802.15.4.

The remainder of the paper is organised as follows. In Sec-

tion II, a brief overview of the background and related work is

provided. Following that, in Section III basic concepts behind

CRC codes are introduced. In Section IV, the description of

two proposed error correction methods is given. In Section V,

the correction potential of the aforementioned algorithms is

evaluated through simulation. In Section VI, the performance

is further investigated in a practical scenario, both in terms of

correction potential and complexity, based on datasets of real

corrupted packets. Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

Some error correction techniques for CRC codes have

been proposed over the years. A simple look-up algorithm

correcting all single errors was described by the inventors

of CRC codes in [10]. This algorithm is based on the fact

that each possible single-error position in a packet gives a

unique remainder after polynomial division of the polynomial

corresponding to the packet by the generator polynomial,

regardless of the actual bits transmitted in the packet. As

a result, a look-up table of all possible remainders and the

corresponding error bit positions can be calculated in advance,

using packets with one in error positions and zeros elsewhere.

When an erroneous packet with a single bit error arrives, the

corresponding remainder is calculated and checked against the

loop-up table, thus the error position is identified. This method

can correct 100% of all single-error packets.

More sophisticated look-up techniques correcting some of

double-error codewords were also developed [11]. However,

all these techniques aim at correcting a particular number of

errors for certain packet sizes and CRC codes. To the best

of knowledge of the authors, no unified approach has been

proposed that can be applied to any CRC code and packet

size to correct an arbitrary number of errors limited only by

the error-correction capabilities of the code itself.

Many state-of-the-art error correction codes employ iterative

decoding algorithms. One of those algorithms, known as Belief

Propagation (BP), was originally developed for Low Density

Parity Check (LDPC) codes [12], a special type of linear codes

that have a sparse parity check matrix. In general, BP provides

good decoding performance when applied to any linear code,

as long as the parity check matrix of the code is sparse and

the corresponding Tanner graph contains no cycles of length

four [13].

In [13] and [14], the authors proposed methods to eliminate

four-cycles on the Tanner graph of an arbitrary linear code,

demonstrating the results on Hamming and Reed-Solomon

codes. The same techniques can be applied to CRC codes,

making them suitable for BP-based error correction.

As an alternative to BP, the decoding of a linear code can

be viewed as a linear program (LP), the idea that was first

introduced in [15]. This approach resulted in an algorithm

based on the Alternating Direction Method of Multipliers

(ADMM) initially proposed in [16] and applied to LDPC codes

in [17]. Practical and computationally simple modifications

were further developed in [18], [19] and [20]. While the

ADMM-based algorithm has only been investigated in the

context of LDPC codes, it can also be applied to correct errors

for any linear code, such as the CRC.

III. PRELIMINARIES

In a CRC-based system, each packet of data is encoded

by a systematic CRC encoder which adds redundant bits and

forms a codeword. This operation is efficiently implemented in

hardware using a linear feedback shift register (LFSR) circuit

that is defined by the generator polynomial of the code in

question. In BLE, the CRC-24 code is employed, with 24

redundant bits being added [3]. Similarly, the CRC-16 code

that uses 16 redundant bits is implemented in IEEE 802.15.4

[5]. The generator polynomials of the codes can be expressed

as follows:

BLE : g(x) = x24 + x10 + x9 + x6 + x4 + x3 + x+ 1; (1)

IEEE802.15.4 : g(x) = x16 + x12 + x5 + 1. (2)

At the receiver, after the signal is demodulated and con-

verted to the binary form, CRC check is performed by cal-

culating the remainder after division of the polynomial corre-

sponding to a received codeword by the generator polynomial.

Again, this operation is efficiently implemented in hardware

using an LFSR. If the remainder is zero, the packet is assumed

to be correct; otherwise, an error occurred and the packet is

discarded.

A CRC code can be described using the matrix notation.

Let x ∈ {0, 1}N denote a transmitted codeword vector

corresponding to a CRC-encoded packet, and let r ∈ {0, 1}N

denote the received codeword vector after demodulation before

the CRC check. Here, N is the total number of bits in the

codeword including the redundant ones; denote M as the

number of redundant bits. For a given generator polynomial,

one can construct a parity check matrix H ∈ {0, 1}M×N that

relates each redundant bit with the original systematic bits.

The parity check matrix can be visualised as the Tanner graph,

whereby each column of H is represented by a variable node

and each row of H is represented by a check node [21].

Using the parity check matrix concept, the error detection

problem (or CRC check) can be reformulated as finding

whether Hr = 0. However, in this work the focus is on

the error correction problem that decodes the transmitted

codeword based on r. The optimum decoder is based on the

maximum a posteriori (MAP) rule [21]:

x̂ = argmax
x:Hx=0

P (x|r). (3)

The decoders presented in this work attempt to efficiently solve

(3) in two different ways.

IV. DECODING

A. ADMM

The ADMM attempts to solve the decoding problem (3) by

converting it to an LP. To see how, (3) can be reformulated



3

as a maximum likelihood (ML) decision rule by assuming

equiprobable codewords and employing Bayes’ rule:

x̂ = argmax
x:Hx=0

p(r|x). (4)

In the natural logarithm domain, the probability density func-

tion in (4) can be expressed as

ln p(r|x) = ln

N
∏

i=1

p(ri|xi) =

N
∑

i=1

ln p(ri|xi). (5)

Here, it is assumed that individual bits propagate through the

channel independently. For each bit, the likelihoods of the bit

being 1 and 0 are related as follows:

ln p(ri|xi = 1) = γi + ln p(ri|xi = 0),

where γi is the log-likelihood ratio LLR for the i-th bit. The

ML problem can now be restated as

argmax
x:Hx=0

(

N
∑

i=1

[γixi + ln p(ri|xi = 0)]

)

= argmax
x:Hx=0

(

N
∑

i=1

γixi

)

. (6)

Finally, by introducing the negative LLR γ̄i , −γi, ML

decoding can be converted to a minimisation problem

minimise γ̄Tx, subject toHx = 0. (7)

In [15], it was shown how the minimisation problem (7) can

be formulated as an LP over the convex hull of all codewords.

Using an LDPC code as an example, it was demonstrated that

LP decoding performs similarly to the state-of-the-art decoder

based on BP. In addition, it was shown that LP decoding

is guaranteed to produce an ML codeword. However, the

computational complexity of the original LP decoder is much

higher than that of BP, and as a result in [17] the authors

introduced a faster algorithm based on the ADMM which

was originally developed in [16]. With this modification, the

ADMM for ML decoding can be formulated as follows:

minimise γ̄Tx, (8)

subject to∀j, Pjx = zj , zj ∈ PPdj
. (9)

Here, Pj is the operation of selecting those bits of x that

participate in the j-th check; zj is a replica vector for the j-th
check; dj , j = 1, ...,M is the degree of the j-th check node;

PPdj
is the parity polytope of dimension dj [17]. Denoting

y(x) the objective function to be minimised, the augmented

Lagrangian in the unscaled form [16] for (8) can be written

as

Lµ(x, z, λ) = y(x)+
∑

j

λj(Pjx−zj)+
µ

2

∑

j

‖Pjx− zj‖
2
2 ,

(10)

where µ > 0 is the augmented Lagrangian parameter and

λj is an auxiliary variable. The solution to (8) is an iterative

algorithm with the k-th iteration being

x
[k+1] = argmin

x

Lµ(x, z
[k], λ[k]), (11)

z
[k+1] = argmin

z

Lµ(x
[k+1], z, λ[k]), (12)

λ[k+1] = λ
[k+1]
j + µ(Pjx

[k+1] − z
[k+1]). (13)

In (11) and (12), the two primal variables - x and z - are

updated in an alternating fashion. Therefore, the ADMM can

be viewed as a message passing algorithm on a graph, with

xi, i = 1, ..., N and zj , j = 1, ...,M being variable and check

nodes respectively.

To improve the performance of the algorithm at low SNRs

and to avoid error floors at high SNRs, a penalty function was

introduced in [18] such that the modified objective function

y(x) can be rewritten as

γ̄Tx+
∑

i

f(xi), (14)

where f : [0, 1] 7→ R ∪ {±∞} is a penalty function. Two

penalty functions are proposed in [18]:

f1(x) = −α1 ‖x− 0.5‖1 , (15)

f2(x) = −α2 ‖x− 0.5‖
2
2 . (16)

They are called l1 and l2 penalty functions respectively, with

α1, α2 > 0 being the penalty coefficients. As shown in [18],

the l2 penalty function provides better PER performance than

the l1 penalty function.

To finalise the algorithm, the over-relaxation technique

advocated in [16] can be adopted to improve decoding conver-

gence. Denoting ρ > 1 the over-relaxation parameter and ci,
i = 1, .., N , the degree of the i-th variable node, the ADMM-

PD algorithm with with the l2 penalty function is summarised

in Algorithm 1.

In the update for zj in Algorithm 1, ΠPPdj
(·) is the

projection onto the parity polytope PPdj
[17]. In this work, the

original projection algorithm proposed by [17] is employed.

More computationally effective techniques were derived in

[19] and [20].

As discussed in [8], the selected ADMM algorithm has sev-

eral parameters: the augmented Lagrangian parameter µ, the

penalty coefficient α (for a given penalty function), the over-

relaxation parameter ρ and the maximum number of iterations

Tmax. Investigation into the selection of these parameters for

some LDPC codes and the AWGN (additive white Gaussian

noise) channel was carried out in [18], where it was shown

that the algorithm is rather sensitive to parameters settings. In

[8][9], a slightly different set of optimum parameters for the

BSC channel was identified as follows:

µ = 3, α2 = 1, ρ = 1.8. (17)

As for Tmax, it is clear that increasing the maximum number

of iterations improves the performance but leads to longer

decoding time. This compromise will be investigated in the

results sections.
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Algorithm 1 ADMM-PD with over-relaxation.

Input: Vector of negative LLRs γ̄ and parity check matrix H.
Output: Decoded vector x.
1: Initialisation: Construct the selection matrix Pj for each check
node j based on H. Initialise λj as the all zeros vector and zj as
the all 0.5 vector. Set k = 0.
2: Variable node update: For each variable node i, do:

Calculate z̄j = P
T
j z

[k]
j , λ̄j = P

T
j λ

[k]
j , ∀j.

Calculate ti =
∑

j

(

z̄j −
λ̄j

µ

)

− γ̄i

µ
.

Update

x
[k+1]
i ←

1

ci − 2α2/µ
(ti −

α2

µ
).

Project x
[k+1]
i onto [0, 1]: x

[k+1]
i ← Π[0,1]x

[k+1]
i .

3: Check node update: For each check node j, do:
Calculate

v
[k+1]
j ← ρPjx

[k+1] + (1− ρ)z
[k]
j +

λ
[k]
j

µ
.

Update z
[k+1]
j ← ΠPPdj

(v
[k+1]
j ).

Update

λ
[k+1]
j ← λ

[k]
j + µ

[

ρPjx
[k+1] + (1− ρ)z

[k]
j − z

[k+1]
j

]

.

4: Make a tentative hard decision on x
[k+1]: if x

[k+1]
i ≥ 0.5, x̂i = 1;

otherwise x̂i = 0.
5: If Hx̂ = 0, then return x = x̂. Otherwise, if k + 1 is smaller
then the maximum number of iterations Tmax, do k ← k + 1 and
loop to Variable node update. Otherwise, declare decoding failure
and Stop.

B. BP

BP attempts to solve the decoding problem (3) by con-

sidering the posterior probability for each individual bit,

P (xi|r), i = 1, ..., N . In this way, decoding is turned into

the marginalisation problem [21] which is efficiently tackled

by BP. While several implementations of BP are available,

the sum-product algorithm in its log-likelihood form [21] is

employed in this work. For the purpose of completeness, it is

presented Algorithm 2.

C. Calculating inputs for decoding

It can be observed that both ADMM and BP decoders

require LLRs as their inputs. As was mentioned above, it is

assumed that the demodulator produces hard outputs. There-

fore, the channel between the CRC encoder and decoder can

be modelled as a binary symmetric channel (BSC) which

is characterised by the crossover probability that the bit is

flipped. Denoting this probability as χ, the LLR for the i-th
received bit ri can be calculated as

γi = (2ri − 1) ln

(

1− χ

χ

)

. (18)

In practice, the crossover probability can be estimated by

sending known data bits and calculating a bit error rate (BER)

at the receiver. When transmitted bits are unknown, some

reliability indication can be used to estimate χ. For example,

the received signal strength indication (RSSI) is usually avail-

able in practical receivers. Practical recommendations will be

discussed in later sections.

Algorithm 2 Log-likelihood sum-product implementation of

BP.
Input: Vector of LLRs γ and parity check matrix H.
Output: Decoded vector x.
1: Initialisation: Construct sparse representation of H:
Nm = {n : Hmn = 1}, m = 1, ...,M ;
Mn = {m : Hmn = 1}, n = 1, ..., N .

Set η
[0]
m,n = 0 for all (m,n) : Hmn = 1;

λ
[0]
n = γn, n = 1, ..., N ; k = 0.

2: Check node update: For each (m,n) : Hmn = 1, compute:

η[k+1]
m,n ← −2 tanh

−1





∏

j∈Nm\n

tanh

[

−
λ
[k]
j − η

[k]
m,n

2

]



 .

3: Variable node update: For n = 1, ..., N , compute:

λ[k+1]
n ← γn +

∑

m∈Mn

η[k+1]
m,n .

4: Make a tentative hard decision: if λ
[k+1]
n ≥ 0, x̂n = 1; otherwise

x̂n = 0, n = 1, ..., N .
5: If Hx̂ = 0, then return x = x̂. Otherwise, if k+1 is smaller then
the maximum number of iterations Tmax, do k ← k+1 and loop to
Check node update. Otherwise, declare decoding failure and Stop.

D. Removing cycles from the parity check matrix

It is known that the performance of iterative decoding

techniques such as BP applied to a general linear code is

affected by the presence of short cycles on the Tanner graph

of the code [13]. In particular, cycles of length four, or four-

cycles, should be avoided. As shown in [14], the total number

of four-cycles for an M × N parity check matrix H can be

calculated as
M
∑

i=1

M
∑

j=i+1

(

(

HH
T
)

ij

2

)

. (19)

For example, for the packet size of 39 bytes (312 bits)

supported by both BLE and IEEE 802.15.4, there are 813816
four-cycles in the case of the CRC-24 code and 758300 four-

cycles in the case of the CRC-16 code. Therefore, direct

application of algorithms such as BP would result in extremely

poor decoding performance.

The maximum cycle strategy (MCS) algorithm to sparsify

the parity check matrix of a general linear code by removing

all four-length cycles was presented in [13]. In this algorithm,

auxiliary variable and check nodes are added to the Tanner

graph for every four-cycle such that all parity check equations

remain intact. Compared with the original approach given in

[14], the MCS algorithm significantly reduces the number of

auxiliary nodes. When applied to the 24 × 336 H matrix of

the CRC-24 code, the MCS algorithm results in only 276

additional variable and check nodes, making the size of the

modified matrix 300 × 612. Similarly, in the case of the

16× 328 matrix of the CRC-16 code, 268 additional variable

and check nodes are added, increasing the size of the matrix

to 292× 596.

The resulting matrices do not have any cycles of length

four and therefore are suitable for BP-based decoding. When it

comes to the ADMM, the algorithm does not explicitly require

the absence of short cycles and therefore may be used with
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Fig. 1. Simulated PER for three different BLE packet sizes (8, 21 and 39
bytes), with and without CRC error correction.

the original parity check matrix. At the same time, it was

observed empirically that the ADMM converges significantly

slower when applied to the original matrix. Based on that, and

for the sake of fare comparison, in this paper both ADMM and

BP are applied to the modified parity check matrix with all

four-cycles removed.

V. PERFORMANCE EVALUATION: SIMULATION

The performance of the proposed decoding methods is first

demonstrated via Monte Carlo simulation. To this end, a BSC

channel is simulated with the crossover probability calculated

as

χ = Q
(

√

2REb/N0

)

, (20)

where Eb/N0 is the equivalent signal to noise ratio (SNR)

calculated per bit, Q is the Q-function [21] and R is the code

rate.

Fig. 1 illustrates packet error rate (PER) performance of

CRC error correction based on ADMM and BP applied to

BLE for three different packet sizes - 8, 21 and 39 bytes (the

corresponding code rates are 0.73, 0.88 and 0.93). The maxi-

mum number of decoding iterations is limited to 1000 for both

decoders. The performance curves without error correction are

also presented for comparison. It can be immediately seen

that for all packet sizes, error correction enables a significant

gain in the equivalent SNR: 2.5, 2 and 1.8 dB at the PER of

10−2 for the packet size of 8, 21 and 39 bytes respectively.

This can potentially improve the sensitivity threshold of a BLE

receiver and, as a result, the distance between the transmitter

and receiver. It is also clear that shorter packets benefit more

from error correction due to the lower code rate. In line with

previous works [8][9], ADMM slightly outperforms BP in both

scenarios.

Fig. 2 shows the correction rate of ADMM and BP for

all three packet sizes and for different numbers of errors per

packet. Here, the correction rate is defined as the number of

corrected packets divided to the number of erroneous packets.

It can be observed that both decoders mostly fail to correct

more than three errors per packet regardless of the packet

size. To see why, it is worth estimating the theoretical error

correction potential of the CRC code in question. It can be
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Fig. 2. Simulated correction rate for two BLE packet sizes (8, 21 and 39
bytes) as a function of number of errors per packet.

shown that the minimum Hamming distance (MHD) dmin of

a cyclic code cannot be larger than the weight of the code’s

generator polynomial. Hence, for the CRC-24 code, dmin ≤ 8.

The guaranteed maximum number of corrected errors in the

case of a hard-input optimum, nearest-neighbour decoder can

be calculated as ⌊(dmin − 1)/2⌋ [21], which is equal to 3 for

the CRC-24 code. Therefore, the simulation results are fully

in line with the code’s error correction potential.

From Fig. 2, ADMM can be seen to significantly outperform

BP in terms of the correction rate for all packet sizes and when

there are no more than two errors per packet. The benefit of

using smaller packets and a somewhat lower code rate is also

clearly illustrated: the correction rate of both decoders rises

significantly when the packet size is reduced from 39 to 8

bytes. Overall, it can be predicted that for real environments

where single-, double-, and triple-error packets constitute a

dominant portion of erroneous packets, CRC error correction

can provide substantial benefits.

Figs. 3 and 4 depict simulation results for IEEE 802.15.4

for the same packet sizes as in the case of BLE. From Fig. 4

it can be observed that the correction rate for multiple-error

packets is much lower for 802.15.4 than for BLE, and both

decoding algorithms fail to correct more than two errors per

packet. This can be explained using the same argument about

the error correction potential as before: the MHD of the CRC-

16 code does not exceed 4, hence if optimum hard-input

decoding was performed, only single-error packets would be

corrected for certain. Interestingly, both decoders can still

correct some double-error packet. Despite the differences, the

PER performance of IEEE 802.15.4 is similar to that of BLE,

as can be observed from Fig. 3, with a slightly smaller SNR

gain due inferior error correction capabilities: 2.2 dB for 8-

byte packets compared with 2.5 dB for BLE. Both ADMM

and BP perform almost identically in terms of the PER.

VI. PERFORMANCE EVALUATION: REAL DATA

In this section, the performance of ADMM and BP decod-

ing is evaluated for real corrupted BLE and IEEE 802.15.4

packets. A discussion on the implementation aspects and

complexity of decoding is also included.

The corrupted packets were collected using the TI CC2650

(CC2650EM-7ID) evaluation module which is the first com-

mercial off-the-shelf radio that supports both BLE and IEEE

802.15.4. The module was interfaced to the SmartRF06 eval-

uation board controlled by SmartRF Studio 7 software that al-

lows all received packets to be logged along with an RSSI level
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bytes), with and without CRC error correction.
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Fig. 4. Simulated correction rate for two IEEE 802.15.4 packet sizes (8, 21
and 39 bytes) as a function of number of errors per packet.

for each packet. To emulate real practical deployments, the

experiments were carried out in a laboratory environment con-

sisting of workbenches with testing equipment, office furniture

and computers. For each test scenario, multiple transmitter

locations were used. In addition, dynamic channel conditions

were tested by collecting packets when the transmitter was

moving. On top of that, some interference was present due to

the radio operating in the same 2.4 GHz ISM band as a few

active WiFi networks in the same area. Four datasets were

collected corresponding to the two radio configuration (BLE

and IEEE 802.15.4) and two packets sizes (21 and 39 bytes).

For the remainder of the paper they will be referred to as BLE-

21, BLE-39, 802.15.4-21 and 802.15.4-39 respectively. Each

dataset consists of at least 1000 corrupted packets.

To start with, the statistics of the number of bit errors

per packet for the collected datasets can be analysed, as

summarised in Table I. First, it can be observed that double-

error packets are the most common case in all four scenarios,

comprising up to 30%. In the case of BLE, single-error packets

are the second most common, making up 18% and 16%

for BLE-21 and BLE-39 respectively. In the case of IEEE

802.15.4, the proportion of single-error packets is somewhat

lower, with triple-error packets being the second most popular.

All in all, packets with less than four errors make up the

majority of all corrupted packets in all scenarios. This implies

that in a real environment there is considerable potential for

error correction.

TABLE I
DISTRIBUTION OF PACKETS WITH DIFFERENT NUMBERS OF ERRORS IN A

REAL ENVIRONMENT FOR BLE AND IEEE 802.15.4 AND TWO PACKET

SIZES (21 AND 39 BYTES).

# of bit errors
BLE IEEE 802.15.4

21 bytes 39 bytes 21 bytes 39 bytes

1 18% 16% 11% 10%

2 28% 27% 30% 27%

3 12% 11% 15% 16%

>3 42% 46% 44% 47%

A. Calculating decoder inputs

In Section IV-C, it was already highlighted that both

ADMM and BP decoders require reliability information about

bits in the form of the LLRs. In a situation when only binary

information is available for the decoder, the crossover (or

bit-flipping) probability needs to be estimated so that the

LLRs can be calculated according to (18). In practice, the

RSSI can serve as a measure of the reliability of received

data. For instance, the TI CC2650 platform used in this

work provides an RSSI level for every received packet. To

map the RSSI level to the crossover probability χ, a look-up

table can be calculated in advance and stored at the receiver.

To avoid additional computations, it is beneficial to store

ψ , ln[(1 − χ)/χ] instead of χ such that the LLR can be

directly calculated as ±ψ, depending on the value of the bit in

question, according to (18). To construct the look-up table, one

can resort either to simulation or real measurements. In this

work, ψ is calculated by transmitting known bits, measuring

an average BER for each possible RSSI level and then using

it as the crossover probability χ.

Naturally, the constructed look-up table may contain sub-

optimum values from the point of view of decoding. For

instance, the real channel might be different from the one used

to construct the look-up table. To optimise error correction

performance, the look-up table can be calibrated to match the

real environment. As a figure of merit, the average correction

rate for each RSSI level can be used. It should be noted

that to compute the average correction rate, no knowledge

of transmitted data is required, since a simple syndrome

calculation can be performed to check whether a packet has

been corrected or not. In this work, ψ is calibrated at each

RSSI level as follows:

ψ = ψ0 +△, △ ∈ {−2,−1, 0, 1, 2},

where ψ0 is the initial value from the look-up table for a given

RSSI obtained via BER measurements and △ is the calibration

term. The values of △ are chosen based on the fact that ψ0

mostly takes values between −2 to 12 (corresponding to the

BER of 0.5 and 10−5). For each RSSI level, the optimum value

of ψ is identified as the one that gives the best correction rate.

To provide an even finer level of calibration, the process

can be performed on-the-fly, for each packet individually. It is

clear that this method implies additional processing time, so it

is important to understand potential benefits. Fig. 5 illustrate

the correction rate performance of the ADMM decoder for

BLE-21 packets for three cases: calibration for each RSSI
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Fig. 5. Correction rate of ADMM for BLE-21 packets for different calibration
methods.

level based on previous statistics, calibration for each packet

and no calibration at all. It can be seen that the per-RSSI

calibration method introduces only a marginal benefit for the

dataset in question, increasing an overall correction rate by

1%. The reason is that the same environment was used for

the measurements and calibration. In practice, the benefits

may be more substantial, especially if the initial values are

based on approximation. In contrast, the per-packet calibration

improves the overall correction rate by 6%, being especially

advantageous for double-error packets. Therefore, depending

on processing time constraints, the system designer can select

one of the three approaches and trade off complexity for better

performance.

B. BLE and 802.15.4 performance

In this section, the performance of ADMM and BP decoders

applied to BLE and IEEE 802.15.4 is evaluated in terms of

the correction rate. To highlight error correction potential,

the per-packet LLR calibration method described before is

used. Fig. 6 illustrates the results for for BLE-21 and BLE-

39 packets. Compared with the simulation results presented in

Fig. 2, the overall correction rate (‘Total’ bar) that can serve

as an ultimate figure of merit is also included. It can be seen

that when it comes to real packets, the ADMM performance

is similar to the simulated one, with the correction rate for

triple-error packets being even higher (7% against 3%). In

contrast, BP demonstrates poor decoding performance in prac-

tice, correcting only 7% of double-error BLE-21 packets as

opposed to 20% for simulated data, and almost not being able

to correct double-error 39-byte packets. The total correction

rate of ADMM is 12% higher than that of BP for BLE-21

packets and 6% higher for BLE-39 packets. Overall, up to

35% of all corrupted BLE-21 packets and up to 22% of all

corrupted BLE-39 packets can be corrected. Compared with

the look-up method mentioned in Section II that is able to

correct all single-error packets, ADMM can correct twice as

many BLE-21 packets and 38% more BLE-39 packets.

Fig. 7 demonstrates the correction rates in the case of

IEEE 802.15.4. Again, ADMM outperforms BP by correcting

13% real 802.15.4-21 packets and 7% 802.15.4-39 packets, as

opposed to 1% and 0% for BP. Overall, the total correction

rate for IEEE 802.15.4 is much lower than for BLE: only up

to 15% of 802.15.4-21 packets and up to 12% 802.15.4-39

packets can be corrected. As discussed before, this is due to

inherently lower error correction potential of the CRC-16 code
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Fig. 6. Correction rate for BLE and different packet sizes as a function of
number of errors per packet.

Number of errors per packet

1 2 3 >3 Total

C
o

rr
e

c
ti
o

n
 r

a
te

0

0.2

0.4

0.6

0.8

1

ADMM, 21 bytes

BP, 21 bytes

ADMM, 39 bytes

BP, 39 bytes

Fig. 7. Correction rate for IEEE 802.15.4 and different packet sizes as a
function of number of errors per packet.

compared to the CRC-24. While the advantage of ADMM over

the look-up method is only marginal, it can still be important in

situations when there is no alternative way to recover corrupted

packets.

C. Complexity analysis

To evaluate the complexity of the proposed decoding al-

gorithms, it can be first estimated how the overall correction

rate depends on the maximum number of decoding iterations

Tmax, which in turn directly affects the average time delay

introduced by error correction. Fig. 8 illustrates the results

for various maximum numbers of iterations for the BLE-21

case. As a reference, the correction rate of the look-up method

mentioned in Section II that is able to correct all single-error

packets is shown. No LLR calibration is performed, but in

line with the previous results and to highlight error correction

potential the optimum values on a per-packet basis are used.

It can be observed that the benefit from the higher number of

iterations for the BP decoder is only marginal: the correction

rate increases only by 28% by changing Tmax from 10 to

1000. By contrast, the correction rate of the ADMM decoder

is boosted by seven times for the same scenario. It can also be

seen that BP outperforms ADMM when the maximum number

of iterations is small. These results confirm the fact that the

convergence rate of BP is in general faster than that of ADMM,

while the probability of successful decoding of the latter is

higher in asymptotic time. At the same time, neither of the

decoders is better than the look-up method when Tmax = 10,

hence the maximum number of iterations should be at least

100 for the decoders to be efficient.

In practice, the performance of error correction is also

characterised by the time delay it introduces at the receiver.

To estimate such delay, both the ADMM and BP decoders
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TABLE II
COMPLEXITY OF ADMM AND BP IN TERMS OF THE AVERAGE DECODING

TIME (MS) AND THE AVERAGE NUMBER OF FLOPS PER PACKET.

Max. # of iterations
ADMM BP

Time, ms Gflops Time, ms Gflops

10 1.1 0.8 2.4 1.7

100 8.5 6.1 18.9 13.5

500 42.5 30.4 94.5 67.5

1000 85.0 60.7 189.0 135.5

were implemented in C++1 as per Algorithms 1 and 2, with

the average decoding time per packet being measured on a

desktop machine with Intel i7 3.1 GHz CPU, 8 GB RAM

and a Microsoft Visual C++ 2010 compiler. It was observed

empirically that the average decoding time grows linearly with

Tmax, with each 10 iterations requiring approximately 1.1 ms

for ADMM and 2.4 ms for BP. The compromise between the

correction rate and the average decoding time for the BLE-

21 dataset is shown in Fig. 9 for both decoders, where the

decoding time was measured for the same values of Tmax as

in Fig. 8. The intersection point, corresponding to the average

decoding time of 5.5 ms, can be clearly observed. Above that

point, ADMM is superior to BP both in terms of correction

rates and speed, exhibiting the average delay of up to 80 ms per

corrupted packet. It should be noted that below the intersection

point, the correction rate of both ADMM and BP becomes

inferior to that of the look-up method correcting all single

errors.

To provide an implementation-independent complexity esti-

mation of the proposed algorithms, a simple repetitive opera-

tion consisting of an addition of two integer numbers and mul-

tiplication of two floating-point numbers was implemented,

using the same compiler and hardware platform as before. For

convenience, let one flop define a combined operation of such

addition and multiplication. By measuring the time required

to perform different numbers of flops for the configuration

mentioned above, a linear relationship was observed between

the two, with one flop corresponding to 1.4 ns. Based on this

value, the average decoding time can be expressed in terms

of a number of flops, which gives an approximate platform-

independent complexity estimation. Table II summarises the

complexity estimation for the two algorithms in terms of both

the average decoding time and the average number of flops

per packet, for different values of the maximum number of

decoding iterations.

Based on the presented analysis, it can be concluded that

the maximum number of iterations in the case of ADMM

could be configured to match the application requirements.

For applications where data is transmitted only occasionally,

such as smart metering systems where a single packet is sent

once in 24 hours [23], Tmax can be set to a value much larger

than 1000, potentially increasing the probability of packet

correction.

1The projection algorithm implementation for the ADMM decoder was
taken from [22].
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VII. CONCLUSIONS

In this work, error correction techniques are investigated in

the context of energy-efficient communication standards for

the IoT lacking traditional forward error control methods due

to transmitter constraints. The proposed error correction is

based on utilising the existing redundancy added to transmitted

data by CRC codes, ubiquitously used to detect errors in

received data. No additional overhead or signal processing

is imposed by the proposed techniques, which preserves the

energy efficiency of the transmitter and compliance with an

existing physical layer. The correction is performed by post-

processing at the receiver. Two iterative decoding algorithms,

ADMM and BP, traditionally used for state-of-the-art error

control codes, are employed. Based on two widely deployed

IoT standards, BLE and IEEE 802.15.4, the proposed methods

are first evaluated through simulations. It is shown that an SNR

gain of up to 2.5 dB can be obtained by introducing error

correction, with no extra cost for the transmitter. Potential

benefits include longer operational range and battery life.

It is also demonstrated that a significant portion of packets

containing up to 3 bit errors can be corrected, with smaller

packets having higher correction rates.

The techniques are then verified in a practical scenario using

the TI CC2650 platform that supports both standards. To start

with, datasets of corrupted packets were collected for both

standards and different packet sizes in an indoor environment

and it was shown that the majority of all real erroneous

packets have no more than 3 errors, indicating significant

error correction potential. When the error correction methods

were applied, it was demonstrated that totally up to 35% of

corrupted BLE packets and up to 15% of corrupted IEEE



9

802.15.4 packets were corrected. It was shown that ADMM

significantly outperforms BP when in comes to practice in both

scenarios.

Finally, the complexity of the proposed methods was anal-

ysed, where it was shown that the performance of ADMM im-

proves steadily with the number of iterations, in contrast with

BP. The processing delay introduced by both algorithms was

measured based on a desktop PC implementation. Depending

on the limit on the number of iterations, ADMM exhibited

the average delay per corrupted packet from 5.5 to 80 ms,

providing the correction rates from 0.18 to 0.35 respectively.

It should be emphasized that the proposed methods introduce

complexity only at the receiver side, without affecting the

transmitter.
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