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Key points 

• Serum elevated GGT is associated with vascular disease outcomes, metabolic 

syndrome, diabetes, cancer, chronic kidney disease, fractures, dementia, and 

total mortality. 

• Biological mechanisms postulated for these relationships include oxidative 

stress, inflammation, and underlying fatty liver. 

• Limited data suggests GGT is unlikely to improve disease risk prediction and 

data on the causal relevance of GGT to these outcomes are lacking. 

• GGT assays may have the potential to aid in the identification of individuals 

who need further evaluation of risk factors for adverse outcomes.  

• Further work is needed to understand the pathophysiological mechanisms that 

underlie the associations and implications for clinical practice. 
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Abstract 

Gamma-glutamyltransferase, is a liver enzyme which is located on the plasma membranes of 

most cells and organ tissues, but more commonly in hepatocytes and is routinely used in 

clinical practice to help indicate liver injury and as a marker of excessive alcohol 

consumption. Among the liver enzymes, important advances have especially been made in 

understanding the physiological functions of GGT. The primary role of GGT is the 

extracellular catabolism of glutathione, the major thiol antioxidant in mammalian cells, which 

plays a relevant role in protecting cells against oxidants produced during normal metabolism; 

GGT, therefore plays an important role in cellular defence. Beyond its physiological 

functions, circulating serum GGT has been linked to a remarkable array of chronic conditions 

and diseases, which include nonalcoholic fatty liver disease, vascular and non-vascular 

diseases, as well as mortality outcomes. This review summarizes the available 

epidemiological and genetic evidence for the associations between GGT and these adverse 

outcomes; the postulated biologic mechanisms underlying these associations; outlines areas 

of outstanding uncertainty; and the implications for clinical practice. 
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The liver plays a major role in metabolism and has a number of functions including protein 

synthesis, glycogen storage, lipid metabolism, and secretion of acute phase proteins in 

response to inflammation. Plasma liver biochemistry tests are groups of clinical laboratory 

blood assays widely used in the clinic to give information about the state of a patient's liver; 

and assays for gamma-glutamyltransferase (GGT), alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), and alkaline phosphatase (ALP) are the most commonly used for 

this purpose. Circulating levels of these enzymes are markers of liver injury, associated with 

cellular integrity, or with conditions linked to the biliary tract and can be used to measure the 

severity of hepatic inflammation, cellular injury, or obstruction (1). They are commonly used 

to identify patients with liver diseases, monitor the course and severity of these diseases, and 

the effect of therapies (2). There have been important advances in the understanding of the 

physiological functions of these liver enzymes and several epidemiological associations have 

been reported. Among the liver enzymes, research has largely focused on GGT. Beyond its 

physiological functions, circulating serum GGT has been linked to several adverse outcomes, 

which include nonalcoholic fatty liver disease (NAFLD), vascular and non-vascular diseases, 

as well as mortality outcomes. This review aims to summarize available information on the 

physiological role of GGT; evidence on the epidemiological and genetic associations between 

GGT and these outcomes; evidence on the postulated biologic mechanisms underlying these 

associations; outlines areas of outstanding uncertainty; and implications for clinical practice. 

 

Occurrence, physiology, and functions of GGT 

Gamma-glutamyltransferase, originally called gamma-glutamyl transpeptidase, was first 

adopted as a liver biochemistry test in the 1960s and 1970s (3). It is a glycoprotein with a 

molecular weight of 68,000 daltons and consist of two proteins - a larger and smaller chain 

with molecular weights of 46,000 and 22,000 daltons respectively (1). It is located on the 
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plasma membranes of most cells and organ tissues, but more commonly hepatocytes (3). 

Gamma-glutamyltransferase is also found in the extracellular fluid attached to α and β 

lipoproteins (4) and albumin carrier molecules (5). It has recently been reported that GGT is 

made up of four fractions namely big-GGT (b-GGT), medium-GGT (m-GGT), small-GGT 

(s-GGT), and free-GGT (f-GGT), with each having its own molecular weight and distinct 

physiochemical properties (6, 7). Human GGT genes are located on chromosome 22 (8, 9), 

with related sequences that are non-functional or represent pseudogenes on chromosomes 18, 

19, and 20 (9). There are seven or more GGT genes in humans, but only one of these gives 

rise to a complete and functional protein (10). The active GGT enzyme is coded by GGT1 on 

chromosome 22 (11). Gamma-glutamyltransferase activity is significantly genetically 

determined and its heritability has been estimated to range between 50 to 77% in adults (12-

15). It has been suggested that half of the genetic variance in GGT is shared by ALT and 

AST. Though the same genes influence GGT activity across age and sex, their relative 

contribution to the variation in its activity differs in males and females and across age (15). 

 

The primary role of GGT is the extracellular catabolism of glutathione, the major thiol 

antioxidant in mammalian cells, which enables precursor amino acids to be assimilated and 

re-utilized for intracellular synthesis of glutathione (3). Glutathione plays a relevant role in 

protecting cells against oxidants produced during normal metabolism. The reaction that GGT 

catalyzes is the transfer of a glutamyl residue (linked through glutamate’s gamma carboxylic 

acid to an amine or to another amino acid) to an acceptor (3), therefore maintaining adequate 

levels of glutathione. Gamma-glutamyltransferase is also involved in the transfer of amino 

acids across cell membranes (16) and metabolism of leukotriene (17). Liver injury or 

blockage of bile ducts can cause accumulation of GGT in the liver and secretion of excess 

GGT into circulation. In clinical practice, raised circulating GGT values are routinely and 
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widely used to help indicate potential hepatic or biliary disease and as a biologic marker of 

excessive alcohol intake (3). A number of demographic and physiological factors, which 

shade into risk factors for disease; affect GGT values, making the definition of a reference 

range very complicated (3). Common factors influencing the reference range include sex, 

pregnancy, childbirth, race, smoking, oral contraceptive use, and exercise. The reference 

range for GGT activity is similar across ages, though there are significant gender differences, 

with males having higher values than females (18) (Figure 1). The gender difference in GGT 

activity is most likely physiologic and has been attributed to the effect of sex hormones. The 

recommended cut-off for the upper normal limit of GGT has been set at an average of 51 U/L 

for males and 33 U/L for females (19). Common causes of elevated GGT activity include 

liver disease, obesity, excessive alcohol consumption, medications (such as phenytoin, 

phenobarbital, furosemide, and heparin), congestive cardiac failure, and smoking (20, 21). 

Younger females and pregnancy are associated with decreased GGT activity, whilst 

postmenopausal women and those taking oral contraceptives have higher GGT activity closer 

to that of men (3). Black populations have higher values compared with Caucasian 

populations. Over the past two decades, significant progress has been made in understanding 

the physiological functions of GGT and evidence for several epidemiological associations has 

been uncovered.  

 

Epidemiological associations of GGT with risk markers for disease 

The multi-functional role of the liver in metabolism and inflammation suggests that complex 

relationships are likely to exist between the liver markers and several biochemical, metabolic, 

lipid, or inflammatory factors. Though GGT has a high heritability (13-15), its activity is 

highly variable, with the variability significantly affected by various environmental factors 

such as body mass index (BMI), alcohol consumption, and age (14). Gamma-
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glutamyltransferase has been demonstrated to be associated with several lifestyle, 

biophysical, and biochemical factors, majority of which are risk factors for vascular and non-

vascular disease. Positive associations with age, BMI, waist circumference, alcohol 

consumption, smoking, heart rate, blood pressure, serum levels of glucose, ferritin, uric acid, 

and lipids [triglycerides, total cholesterol, and low-density lipoprotein (LDL) cholesterol] 

have been demonstrated (22, 23), whereas inverse associations have been observed with high-

density lipoprotein cholesterol, physical activity, and lung function (3). Gamma-

glutamyltransferase is also known to correlate with several dietary factors such as coffee 

consumption, fruit and meat intake, as well as vitamin status (24). Studies have consistently 

demonstrated that BMI has the strongest association with GGT compared with other risk 

markers, with GGT increasing progressively across all classes of BMI (22, 25-27). Indeed, 

GGT has been shown to have a causal association with BMI, as well as with fasting insulin 

(28, 29). The strong relationships between GGT and several risk markers have been attributed 

to common genetic loci that affect GGT activity and these risk markers (13). 

 

Relationship between GGT and NAFLD 

Nonalcoholic fatty liver disease is a common clinical condition characterised by hepatic 

steatosis with varying degrees of necroinflammation and fibrosis and which develops in the 

absence of substantial alcohol intake (30). It spans a range of conditions from simple hepatic 

steatosis to nonalcoholic steato-hepatitis and cirrhosis (30, 31) and is regarded as the hepatic 

component of the metabolic syndrome (MetS) (32-34). Nonalcoholic fatty liver disease has 

reached epidemic proportions and it is emerging as the most common cause of chronic liver 

disease in the developed world (30, 35, 36).  The global prevalence of NAFLD has been 

estimated to be around one-third of the general population (37), with estimates varying 

between 70-90% in individuals who are obese or have type 2 diabetes mellitus (T2DM) (38-
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40). Its diagnosis is based on (i) imaging techniques (i.e., ultrasonography, CT scan, or MRI) 

confirming the presence of fat infiltration of the liver, and/or liver biopsy showing steatosis in 

at least 5% of hepatocytes(41) and (ii) exclusion of other liver diseases of other aetiology 

such as significant alcohol consumption or drug-induced liver disease, autoimmune or viral 

hepatitis, and cholestatic or metabolic/genetic liver disease (42). It is the most common cause 

for unexplained elevated liver enzymes including the transaminases and GGT (43-46). The 

most commonly observed biochemical pattern in NAFLD is increased levels of 

transaminases, with ALT exceeding levels of AST.(47) Elevated ALT has frequently been 

used as a biochemical surrogate for NAFLD diagnosis; however, it is not uncommon to 

diagnose NAFLD in patients with normal ALT levels using ultrasonography or histology (36, 

48). Elevated GGT activity has less frequently been used as a surrogate biomarker for 

NAFLD. 

 

Obesity is one of the most important factors in the development of NAFLD. Fall and 

colleagues in their recent Mendelian randomization study (29), provided novel evidence for a 

causal effect of adiposity (as measured by BMI) on GGT and ALT; with suggestions that 

elevated activity of these liver enzymes caused by an increased BMI, are likely to be related 

to NAFLD. Nonalcoholic fatty liver disease is strongly associated with obesity as well as 

several cardiometabolic risk factors (38, 39), MetS, T2DM (49), and mortality, with CVD 

being the most common cause of death among patients with NAFLD (46, 50). Independent 

associations have also been demonstrated for other adverse outcomes such as heart failure 

(HF) (51), cardiac arrhythmias (52, 53), hepatocellular cancer (HCC) (54), chronic kidney 

disease (CKD) (55), and cognitive decline (56). For these reasons, it has been hypothesized 

that NAFLD may be the underlying cause for the associations of elevated GGT with several 

vascular and non-vascular outcomes. 
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Prospective associations of GGT with vascular, non-vascular, and all-cause mortality 

outcomes 

Cardiovascular disease 

Gamma-glutamyltransferase has been implicated in CVD development with epidemiologic 

evidence suggesting greater CVD risk with higher serum GGT activity. Although interest in 

GGT as an emerging risk factor for CVD goes back at least several decades, further research 

was stimulated with the publication of the first systematic review and meta-analysis by Fraser 

and colleagues (57) (Table and Figure 2). They reported an independent and positive 

association between GGT and risk of CVD. However, despite the evidence and the 

publication of additional studies, there were still uncertainties regarding the shape and nature 

of the association between GGT and CVD risk. In 2014, our group published an updated 

meta-analysis comprising 20 studies (1,054,181 participants and 15,194 events) and which 

included a dose-response analysis. The findings confirmed a positive and independent 

association between GGT and CVD, which was consistent with a log-linear relationship 

(Table and Figure 2) (58). Positive and independent associations between GGT and CVD 

mortality have also been demonstrated (59, 60). Given the somewhat diverse aetiology of 

different vascular events such as stroke and coronary heart disease, it was uncertain whether 

the effect of GGT on these cause-specific vascular outcomes may differ. However, several 

studies have shown GGT to be positively and independently associated with both stroke and 

CHD outcomes with similar magnitudes of effect (57, 58, 61). Given the independent 

association of higher GGT levels with increased cardiovascular risk, there has been an 

evolving debate on whether adding information on GGT to current CVD risk prediction 

algorithms might be associated with improvements in the ability to predict CVD beyond 

established cardiovascular risk factors (1, 62, 63). Whiles some studies have reported a 
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marginal improvement in CVD risk prediction (64, 65), a recent large-population based 

cohort analysis by our group has shown that addition of GGT to conventional CVD risk 

factors is unlikely to improve prediction of first-ever cardiovascular events (66). 

 

Several mechanistic pathways for the increased cardiovascular risk associated with elevated 

levels of GGT have been postulated. Though at normal values, GGT counteracts oxidative 

stress by making cysteine available for regeneration of intracellular glutathione, recent 

evidence has also demonstrated that serum GGT values within the normal reference range are 

associated with promotion of atherosclerosis. Pro-oxidant and pro-inflammatory activities 

have been proposed to underlie this process (67-69). At normal values, serum GGT catalyzes 

LDL oxidation in vitro; it initially catalyzes the degradation of extracellular glutathione, the 

major thiol intracellular antioxidant in the body. Glutathione is hydrolyzed by GGT into 

glutamate and a cysteinyl-glycine dipeptide. Glutamate is subsequently recycled inside the 

cell, producing additional glutathione. The cysteinyl-glycine dipeptide acts as a strong 

reducing agent of iron on the cellular membrane and in the extracellular space, resulting in 

the development of free radical species (1) which may cause oxidation of LDL, which is 

believed to participate in other processes such as cell proliferation and development of 

atheroma within the vascular endothelial wall (1, 67). Gamma-glutamyltransferase also 

mediates interconversion of the glutathione-containing inflammatory mediator leukotriene C4 

into leukotriene D4 (70). It has also been reported that GGT may be directly involved in 

atheromatous plaque formation (68). Indeed, GGT activity has been found within cerebral, 

carotid, and coronary plaques, co-localizing with oxidised lipids and foam cells (71, 72). Of 

the four GGT fractions identified, only b-GGT is found within atherosclerotic plaques and 

has been suggested to be the fraction involved in the pathogenesis of CVD (7). In addition, 
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GGT may be linked to CVD risk via underlying NAFLD, which is a major risk factor for 

CVD (73, 74) and commonly associated with increased serum GGT activity. 

 

The consistent findings of a linear and independent association between GGT and CVD risk 

is suggestive of causality, but this requires robust evidence from randomized controlled trials. 

However, trials to enable causal inferences may be unlikely, as several pharmacological 

agents (such as insulin sensitizers and antioxidants) that modify GGT activity also influence 

levels of other liver enzymes and lipid factors (75). Mendelian randomization (MR) studies of 

genetic variants specifically related to GGT may provide another route to assess causality 

(76). There is evidence to suggest that the GGT1 locus, which is the main protein-coding 

gene for GGT, may be specific for GGT activity (77, 78) and therefore variants within this 

locus might be valid instrumental variables for MR studies. Till date, the causal relevance of 

GGT to CVD has been difficult to assess as these variants explain only a small fraction of the 

variability in levels of GGT, in addition to their pleiotropic effects on other phenotypic traits 

(79). Larger Genome Wide Association Studies (GWASs) may help uncover new variants to 

explain the missing heritability in GGT activity. Next generation DNA sequencing may also 

provide an opportunity to identify rare genetic variants which have large effects on GGT 

activity. 

 

Heart failure 

The first population-based prospective study of GGT activity and HF risk was reported in 

2005 by Ruttman and colleagues (20). This study comprising of 163,944 participants and 162 

HF cases, reported a positive and independent association between GGT and HF risk. Three 

more studies prospective studies (80-82) were published after this study. To provide a better 

indication of the relevance of GGT to HF, given the small number of HF cases included in 
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previous studies; our group has recently conducted a detailed assessment of the association of 

GGT activity with risk of HF using a prospective cohort of 1,780 men and also performed a 

pooled analysis of available published prospective evidence on the associations in one 

comprehensive analysis. Given that GGT exhibits high within-person variability which has 

been recently reported (83),  we also corrected for “regression dilution bias” (84). Our meta-

analysis of five studies indicated that a two-fold increase in usual GGT values was associated 

with approximately 40% higher risk of HF (Table and Figure 2) (85). Whether GGT has the 

potential to be used in the identification of individuals at high risk of HF is yet to be 

elucidated. Dhingra and colleagues reported a marginal improvement in HF risk prediction on 

addition of GGT to a standard risk engine (80). 

 

Postulated pathways underlying the relationship between elevated GGT values and increased 

HF risk, include the pro-oxidant and pro-inflammatory properties of GGT (67), as well as its 

direct involvement in atheromatous plaque formation (68). Other pathways implicated 

include underlying fatty liver (67) (which is associated with low-grade inflammation, insulin 

resistance, and oxidative stress (86, 87)); endothelial dysfunction; and exposure to 

environmental pollutants (88, 89). 

 

Cardiac arrhythmias 

Until recently, there was uncertainty as to whether GGT was associated with cardiac 

arrhythmias. Alonso and colleagues in the Atherosclerosis Risk in Communities (ARIC) 

study reported a positive, linear, and independent association between GGT activity and risk 

of atrial fibrillation (AF) (90). Our group has also recently shown a positive log-linear 

association of GGT with risk of AF in age-adjusted analysis, but which was attenuated on 

further adjustment for conventional risk factors (85). In the same study, we also demonstrated 
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a positive log-linear association between GGT and ventricular arrhythmias in analyses 

adjusted for established vascular risk factors, but the association was attenuated on further 

adjustment for other potential confounders. Putative biological mechanisms accounting for 

the associations include oxidative and inflammatory pathways (67), direct involvement of 

GGT in atheromatous plaque formation (68), fatty liver (67), and endothelial dysfunction and 

exposure to environmental pollutants (88, 89). Given the limited evidence available, further 

large-scale prospective studies are warranted to assess the associations and to evaluate 

whether measurement of GGT activity can usefully contribute to risk prediction algorithms 

for cardiac arrhythmias. 

 

Sudden cardiac death 

In analyses of the Kuopio Ischemic Heart Disease (KIHD) prospective cohort study of 1,780 

men aged 42-61 years that recorded 136 sudden cardiac deaths (SCDs) during 22 years of 

follow-up, we have shown for the first time that GGT is positively, log-linearly, and 

independently associated with future risk of SCD (83). The association was not importantly 

modified under different circumstances (such as by age, smoking status, or different levels of 

established vascular risk factors). As postulated previously, the pro-inflammatory activities of 

GGT (67) and its direct involvement in atheromatous plaque formation (68, 72) may underlie 

the association. Nonalcoholic fatty liver disease which is associated with cardiac autonomic 

dysfunction (a risk factor for SCD) (91), may also be mediating the association. Whether 

GGT has any clinical use in improving SCD risk prediction is yet to be investigated. 

 

Type 2 diabetes mellitus 

The first prospective study to examine the association between GGT and incident T2DM was 

reported in 1998 (92). Since then, several studies have evaluated the associations between 
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GGT and T2DM risk, but reported apparently conflicting results. To put the data into context 

and provide a better indication of the relevance of GGT to T2DM risk, Fraser and colleagues 

in a meta-analysis of 13 prospective studies showed a positive and independent association 

between GGT and T2DM risk (Table and Figure 2) (93). Given the uncertainty regarding 

the shape of the GGT-T2DM association, our group conducted an updated meta-analysis 

which included 24 prospective cohort studies and showed that GGT contributes to an 

increased risk of T2DM in a nonlinear dose-response pattern (94). A graded increase in 

T2DM risk was evident at GGT levels 9-35 U/L, with the effects of GGT seeming to level off 

beyond 35 U/L. Ballestri and colleagues in a meta-analysis of nine studies evaluating the 

prospective association between NAFLD (as diagnosed by elevated GGT activity) and 

T2DM, demonstrated an almost two-fold increase in the risk of incident T2DM (95).  

Gamma-glutamyltransferase has been postulated to be linked to the development of T2DM 

via oxidative stress, increased inflammation and underlying fatty liver (NAFLD), which are 

major pathways in the pathophysiology of T2DM (95-97). The causal relevance of GGT to 

T2DM is still yet to be investigated and current evidence suggests that serum GGT provides 

little incremental benefit for prediction of T2DM risk (98, 99).  

 

Metabolic syndrome 

In a review of nine prospective cohort studies, Liu and colleagues reported a positive and 

independent association between GGT and the MetS (Table and Figure 2) (100). In an 

updated meta-analysis of 10 studies, we showed a nonlinear relationship (albeit using limited 

published data) to the positive association which was evident within normal reference values 

of GGT (101). In pooled analysis of five studies, Ballestri and colleagues reported NAFLD to 

be associated with a two-fold increase in the risk of incident T2DM, when elevated GGT 

activity was used as an indicator of NAFLD (95). Mechanistic pathways underlying the 
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relationship between GGT and the MetS have been linked to similar processes suggested for 

GGT and T2DM; which include oxidative stress, increased inflammation and excessive 

deposition of fat in the liver, all of which are implicated in impaired insulin signalling and 

insulin resistance (32, 102). The relationships between GGT activity and the MetS as well as 

its components, have been attributed to genetic origins. Loomba and colleagues using a twin 

study design, reported genetic covariance between GGT and MetS traits such as insulin 

resistance, increased triglycerides, and blood pressure (103). The adrenergic locus ADRB2 

was also shown to have pleiotropic effects on both circulating GGT and triglycerides. 

 

Hypertension 

In a meta-analysis of 13 prospective cohort studies, Liu and colleagues reported a positive 

association between GGT activity and hypertension risk (Table and Figure 2) (104). In an 

updated meta-analysis of 14 studies, we showed an approximately 30% increased risk of 

future hypertension when comparing individuals in the top versus bottom thirds of circulating 

GGT values and this was consistent with a linear dose-response relationship (105). Elevated 

GGT activity has been suggested to signify states of oxidative stress, increased inflammation, 

and fatty liver, consequently leading to impaired insulin secretion and insulin resistance, all 

of which have been implicated in the development of hypertension (106, 107).  

 

Cancer 

Gamma-glutamyltransferase has also been linked to the risk of cancer. Long and colleagues 

in a review of available prospective epidemiological data suggested a positive association 

between GGT and cancer-related mortality (60). However, a pooled analysis was not 

conducted which precluded assessment of the magnitude of the association. In a meta-

analyses of 10 cohort studies involving 780,553 participants and 52,724 cancer events, we 
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have shown a positive association between GGT and overall cancer outcomes and which was 

also consistent with a log-linear relationship (108) (Table and Figure 2). Significant positive 

associations for site-specific cancers such as breast cancer, cancers of male genital organs, 

cancers of digestive organs, and liver cancer were also reported in this study. In a subgroup 

analyses, the associations were consistent across several study characteristics including 

incident cancers and cancer mortality. In a pooled analysis of two population-based cohorts 

comprising a total of 107,058 participants, Preyer and colleagues reported a significantly 

higher risk of breast cancer comparing the top versus bottom quartile of GGT values (109). 

Whether GGT has a direct aetiological role in carcinogenesis or just a risk marker of an 

underlying aetiology is uncertain. It has however been postulated that the persistent 

production of reactive oxygen species (ROS) from GGT-mediated metabolism may 

contribute to tumour progression; as low levels of ROS have been suggested to modulate a 

range of biological responses involved in cellular growth, proliferation, and apoptosis (110, 

111). Gamma-glutamyltransferase activity has also been considered to confer rapid turnover 

and survival advantages for cancer cells.(112) A number of experimental studies have also 

suggested a direct causative role of GGT in carcinogenesis (110, 113). The association 

between GGT and liver cancers, may also reflect underlying NAFLD, which itself is an 

important risk factor for HCC (54). 

 

Chronic kidney disease 

In the first prospective evaluation of GGT and CKD, Ryu and colleagues employed a large 

cohort of 10,337 nonhypertensive and nondiabetic Korean male workers with normal kidney 

function at baseline, and demonstrated increased GGT activity to be significantly associated 

with an increased risk of future CKD in a nonlinear fashion (109). The association remained 

consistent on adjustment for a comprehensive panel of confounders and mediators. The 
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authors speculated several mechanistic pathways to underlie the association between GGT 

and CKD; some of which include alcohol consumption, liver disease, obesity, insulin 

resistance, and low-grade inflammation. However, since all these factors were accounted for 

in their multivariate analyses, the authors reported that it was highly unlikely that these 

pathways were involved in the pathophysiology. Based on the broad body of evidence 

demonstrating GGT as a marker of oxidative stress, it was suggested that the association of 

GGT with risk of CKD might be due to mechanisms related to oxidative stress (69). It has 

been reported that renal ROS cause vasoconstriction of renal vasculature, leading to sodium 

retention and subsequently renal damage (114, 115). Targher and colleagues in a recent study 

reviewed evidence on the link between NAFLD and CKD. It was postulated that the origins 

for this relationship were via pathways such as atherogenic dyslipidemia, insulin resistance, 

dysglycemia, and the release of pro-inflammatory, pro-coagulant, and pro-fibrogenic factors, 

which cause kidney damage (55). Given the strong relationship between NAFLD and GGT 

activity, NAFLD may mediate the association between GGT and CKD. Because of the 

limited evidence on the GGT-CKD relationship, further studies are needed to replicate this 

association especially among female populations. 

 

Fractures 

Gamma-glutamyltransferase has been demonstrated to have harmful effects on bone 

metabolism in in vitro studies and animal models (116, 117). In the first epidemiological data 

involving humans, a large prospective study involving 16,036 Korean men with an average 

follow-up of 3 years, demonstrated a higher serum GGT activity to be independently 

associated with an increased risk of osteoporotic fractures. Aetiopathogenic pathways 

suggested to underlie the association between GGT and risk of fractures include oxidative 

stress, inflammation, and a direct pathogenic role of GGT in metabolic bone diseases. 
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Oxidative stress has been shown to have adverse effects on bone metabolism (118, 119). An 

in vitro study has shown GGT to induce the formation of osteoclasts, independent of its 

enzymatic activity, via stimulation of the receptor activator of nuclear factor-kappaB ligand 

expression (116). An animal study has also shown that GGT overexpression accelerates bone 

resorption and causes osteoporosis (117). 

 

Dementia 

GGT has recently been shown to be positively, log-linearly, and independently associated 

with future risk of dementia in a population-based cohort of 2,415 apparently healthy men 

with good cognitive function from eastern Finland (120). This association remained robust in 

several sensitivity analyses. Since mechanistic research provides strong support for 

inflammatory and oxidative processes in the aetiogenesis of dementia (121-123), it was 

proposed that GGT might contribute to the development of dementia via its pro-inflammatory 

and pro-oxidant properties (67). In addition, since NAFLD has been linked to the 

pathogenesis of cognitive impairment via insulin resistance,(124) there is a possibility that 

underlying NAFLD may be a link between the observed association. Being the only 

longitudinal study so far to report on this association, further research is needed to replicate 

these findings and help unravel the mechanistic pathways of GGT in the pathogenesis of 

dementia. 

 

All-cause mortality 

Finally, GGT has also been linked to the risk of all-cause mortality, an outcome which has 

been suggested to be a more ultimate indicator of health than cause-specific outcomes (125). 

In a meta-analysis of three prospective cohort studies, Du and colleagues showed a positive 

association of GGT with all-cause mortality comparing the highest versus lowest GGT 
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quartile (Table and Figure 2) (59). Long and colleagues in their review also reported a 

positive association between GGT and all-cause mortality (60). In the most recent review, 

pooled analysis of 11 prospective cohorts (comprising over 9 million participants and 

236,765 all-cause mortality outcomes) also showed a positive association between GGT and 

all-cause mortality which was consistent with a linear dose-response relationship (126). 

Increased mortality risk associated with GGT has been suggested to be mediated by increased 

cardiovascular risk via pathways reported above. 

 

Management of asymptomatic individuals with isolated raised GGT values 

As there are established published clinical guidelines for the management of liver enzymes 

including GGT, this section is not intended as a comprehensive management guide for 

elevated GGT. In light of the current overall evidence, there is a possibility that GGT may 

only be a risk marker for these adverse outcomes. It therefore appears the clinical 

implications for these findings are elusive. However, despite the limited role of GGT in 

disease risk prediction and absence of data showing any causal relevance to these adverse 

outcomes, the preceding observations may be translated into clinical improvements. Assays 

for GGT may have the potential to aid in the identification of individuals at moderate to high 

risk of these adverse outcomes. Gamma-glutamyltransferase assays are sensitive, well 

standardized, simple, inexpensive, and commonly measured as part of routine liver 

biochemistry panels. Though GGT is not very specific for the liver, mild and subtle 

elevations in GGT values below the upper limits of normal are very common in the general 

population and may indicate the presence of subclinical liver disease. Patients with isolated 

elevated values (even within normal reference ranges) of GGT should be considered for 

further evaluation. Factors which are associated with elevated GGT (such as increased BMI, 

alcohol consumption, smoking, and medication use) as discussed in a previous section, 
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should be assessed for in the individual. Nonalcoholic fatty liver disease should also be 

suspected and screened for, especially in those with increased body weight and associated 

factors; though NAFLD may rarely be a cause of isolated raised GGT activity. Patients 

diagnosed with or suspected of having NAFLD should be screened for T2DM, given their 

close inter-relationship. Many patients with increased GGT activity will also have risk factors 

for vascular disease and other chronic diseases, which should be assessed and such patients 

should have their disease risk assessed using established risk engines. Patients identified to 

have factors (e.g., NAFLD, excessive smoking and alcohol consumption, obesity) accounting 

for elevated GGT values, should be provided with lifestyle advice on healthy eating, physical 

activity, weight loss, smoking cessation, and reduction in alcohol intake. Several studies (75, 

127, 128) have found evidence to support a substantial lowering effect of a variety of 

interventions (including lifestyle-related factors such as sustained weight loss (128), physical 

activity, and dietary factors (127)) on circulating GGT activity. On implementation of these 

lifestyle changes, patients should have repeat liver biochemical tests in a few months for 

reassessment by the clinician. Patients with persistently elevated values not amenable to 

lifestyle advice should be considered for specialist referral. 

 

Conclusion 

Gamma-glutamyltransferase, a liver enzyme, which plays an important role in cellular 

defence and protection of cells against further oxidative stress; is linked to a remarkable array 

of chronic diseases as well as all-cause mortality outcomes. It has been consistently 

demonstrated that increased GGT activity (sometimes within normal reference values) is 

positively associated with each of the outcomes reviewed, with majority of these associations 

consistent with linear relationships. Plentiful putative mechanistic pathways underlying these 

associations have been proposed, but many of these are hypothetical and are not well 
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understood. Undoubtedly, increased GGT activity is associated with adverse levels of 

classical vascular risk factors. However, though a large and broadly consistent body of 

evidence has established GGT as moderately to strongly linked to the development of these 

vascular and non-vascular outcomes, its role in the causal pathways for these outcomes is 

uncertain and current evidence (albeit limited) suggests that serum GGT is unlikely to 

improve disease risk prediction beyond established risk factors. Further work, however, is 

crucially needed to understand the pathophysiological mechanisms that underlie the 

associations between GGT and these adverse outcomes; establish any causal relevance to the 

associations; and whether these could be translated into clinical benefits. 

 

Data sources and selection criteria 

Relevant prospective cohort studies (with at least one year of follow-up) conducted in general 

populations were sought from MEDLINE, EMBASE, and Web of Science; with particular 

emphasis on systematic reviews and meta-analyses of these study designs. Search terms 

included “gamma-glutamyltransferase”, “nonalcoholic fatty liver disease”, “cardiovascular 

disease”, “coronary heart disease”, “diabetes”, “metabolic syndrome”, “hypertension”, 

“cancer”, “chronic kidney disease”, “fracture”, “dementia”, and “mortality”. Studies were 

limited to those in adults and written in English. 
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Table. Available meta-analyses of prospective studies of gamma-glutamyltransferase and 

adverse outcomes 

Author, year of 

publication 

[reference] 

No. of 

studies 

Outcome No. of 

participants 

No. of 

cases 

Combined risk 

(95% CI) 

Risk comparison 

reported 

       

Fraser, 2007 [57] 

 

11 

7 

6 

CVD 

CHD 

Stroke 

1,017,231 

998,906 

976,877 

12,365 

5,283 

4,682 

1.34 (1.22-1.48) 

1.20 (1.02-1.40) 

1.54 (1.19-1.99) 

Per 1 U/L change 

Per 1 U/L change 

Per 1 U/L change 

Kunutsor, 2014 [58] 20 

9 

9 

CVD 

CHD 

Stroke 

1,054,181 

1,006,176 

825,255 

15,194 

4,570 

4,738 

1.23 (1.16-1.29) 

1.17 (1.00-1.36) 

1.28 (1.10-1.50) 

Per 1 SD change 

Per 1 SD change 

Per 1 SD change 

Du, 2013 [59] 5 CVD mortality 192,461 4,866 1.52 (1.36-1.70) Top versus bottom 

fourth 

Long, 2014 [60]  CVD mortality 253,555 7,213 1.60 (1.48-1.73) Highest versus lowest 

category 

Zhang, 2015 [61] 10 Stroke 926,497 5,707 1.28 (1.16-1.43) Highest versus lowest 

category 

Kunutsor, 2016 [85] 5 Heart failure 210,841 1,821 1.28 (1.20-1.35)  

 

1.43 (1.31-1.56)  

Per 1 SD change in 

baseline values 

Per 1 SD change in 

usual vales 

Kunutsor, 2016 [85] 2 Atrial fibrillation 11,113 1,357 1.09 (1.02-1.16) 

 

1.14 (1.03-1.25) 

Per 1 SD change in 

baseline values 

Per 1 SD change in 

usual values 

Fraser, 2009 [93] 13 T2DM 62915 2732 1.92 (1.66-2.21) Per 1 U/L change 

Kunutsor, 2014 [94] 24 T2DM 177,307 11,155 1.34 (1.27-1.42) Top versus bottom 

third 

Ballestri, 2016 [95] 9 T2DM 2,006 32,170 1.86 (1.71-2.03) Highest versus lowest 

category 

Liu, 2012 [100] 9 MetS 47,499 5,009 1.63 (1.43-1.82) Highest versus lowest 

category 

Kunutsor, 2014 [101] 10 MetS 67,905 6,595 1.88 (1.49-2.38) Top versus bottom 

third 

Ballestri, 2016 [95] 9 MetS 5,706 69,840 1.98 (1.89-2.07) Highest versus lowest 

category 

Liu, 2012 [104] 13 Hypertension 43,314 5,280 1.94 (1.55-2.43) Highest versus lowest 

category 

Kunutsor, 2015 [105] 14 Hypertension 44,582 5,270 1.32 (1.23-1.43) Top versus bottom 

third 

Kunutsor, 2015 [108] 10 Cancer 780,553 52,724 1.32 (1.15-1.52) Top versus bottom 

third 

Du, 2013 [59] 3 All-cause 

mortality 

19,241 2,235 1.56 (1.34-1.83) Top versus bottom 

fourth 

Long, 2014 [60]  All-cause 

mortality 

47,837 7,523 1.75 (1.47-2.08) Highest versus lowest 

category 

Kunutsor, 2014 [126] 11 All-cause 

mortality 

9,071,005 236,765 1.60 (1.42-1.80) Top versus bottom 

third 

 

CHD, coronary heart disease; CVD, cardiovascular disease; MetS, metabolic syndrome; SD, standard deviation; 

T2DM, type 2 diabetes mellitus 
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Figure legends 

 

Figure 1. Median serum GGT values in the general population by gender and age groups 

0

5

10

15

20

25

30

35

40

M
e
d
ia

n
 G

G
T

 v
a
lu

e
s
 (
U

/L
)

8-12 12-16 16-20 20-30 30-40 40-50 50-60 > 60

Age groups (years)

Males Females

 

 

GGT, gamma-glutamyltransferase; Data for the figure was extracted from Schiele F, Guilmin 

AM, Detienne H, Siest, G. Gamma-glutamyltransferase activity in plasma: statistical 

distributions, individual variations, and reference intervals. Clin Chem. 1977; 23: 1023–8. 
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Figure 2. Forest plot of available meta-analyses of prospective studies of gamma-

glutamyltransferase and adverse outcomes 
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No. of studies
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5,283

976,877
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4,738

4,866

7,213

5,707

1,821

1,357

2,732

11,155

2,006

5,009

6,595

5,706

5,280

5,270

52,724

2,235

47,837

236,765

No. of cases

1017231

998,906

4,682

1054181

1006176

825,255

192,461

253,555

926,497

210,841

11,113

62,915

177,307

32,170

47,499

67,905

69,840

43,314

44,582

780,553

19,241

7,523

9071005

No. of total participants

1.53 (1.33, 1.77)

1.31 (1.04, 1.65)

1.88 (1.29, 2.74)
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1.41 (1.01, 1.97)

1.71 (1.22, 2.40)

1.43 (1.30, 1.58)

1.60 (1.48, 1.73)

1.28 (1.16, 1.43)

1.71 (1.51, 1.95)

1.21 (1.05, 1.39)

2.59 (2.11, 3.20)

1.34 (1.27, 1.42)

1.86 (1.71, 2.03)

1.63 (1.43, 1.82)

1.88 (1.49, 2.38)

1.98 (1.89, 2.07)

1.94 (1.55, 2.43)

1.32 (1.23, 1.43)

1.32 (1.15, 1.52)

1.46 (1.28, 1.67)
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1.60 (1.42, 1.80)
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Outcome
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CHD, coronary heart disease; CI, confidence interval; CVD, cardiovascular disease; GGT, 

gamma-glutamyltransferase; MetS, metabolic syndrome; RR, relative risk; SD, standard 

deviation; T2DM, type 2 diabetes mellitus 

Relative risks were converted to “top versus bottom thirds of GGT values” where 

appropriate, to ensure consistency and enhance comparison; *, denotes studies where authors 

reported a risk comparison of “highest versus bottom category of GGT values” which could 

not be converted. 

 

 


