
                          Danon, L., & Brooks Pollock, E. (2016). The need for data science in
epidemic modelling: Comment on: "Mathematical models to characterize
early epidemic growth: A Review" by Gerardo Chowell et al. Physics of Life
Reviews, 18, 102–104. https://doi.org/10.1016/j.plrev.2016.08.011

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.plrev.2016.08.011

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at http://www.sciencedirect.com/science/article/pii/S1571064516300847. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/96779688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.plrev.2016.08.011
https://doi.org/10.1016/j.plrev.2016.08.011
https://research-information.bris.ac.uk/en/publications/the-need-for-data-science-in-epidemic-modelling(a48465b0-7e78-44bf-a4f2-bfdd1638ac06).html
https://research-information.bris.ac.uk/en/publications/the-need-for-data-science-in-epidemic-modelling(a48465b0-7e78-44bf-a4f2-bfdd1638ac06).html


The need for data science in epidemic modelling: 
Comment on: “Mathematical models to characterize early epidemic growth: A 
Review" by Gerardo Chowell et al. 
 
Leon Danon1*, Ellen Brooks-Pollock2 

 
1School of Social and Community Medicine, University of Bristol, Bristol, 
United Kingdom, BS8 2BN 
 
2Health Protection Research Unit, School of Social and Community Medicine, 
University of Bristol, Bristol, United Kingdom, BS8 2BN 
 
*Corresponding author: Leon Danon, l.danon@bristol.ac.uk.  
 
In their review, Chowell et al. consider the ability of mathematical models to 
predict early epidemic growth [1]. In particular, they question the central 
prediction of classical differential equation models that the number of cases 
grows exponentially during the early stages of an epidemic. Using examples 
including HIV and Ebola, they argue that classical models fail to capture key 
qualitative features of early growth and describe a selection of models that do 
capture non-exponential epidemic growth. An implication of this failure is that 
predictions may be inaccurate and unusable, highlighting the need for care 
when embarking upon modelling using classical methodology. There remains 
a lack of understanding of the mechanisms driving many observed epidemic 
patterns; we argue that data science should form a fundamental component of 
epidemic modelling, providing a rigorous methodology for data-driven 
approaches, rather than trying to enforce established frameworks. The need 
for refinement of classical models provides a strong argument for the use of 
data science, to identify qualitative characteristics and pinpoint the 
mechanisms responsible for the observed epidemic patterns.  
 
Exponential growth in classical ordinary differential equation models results 
from the assumption that at the start of an epidemic there is an unlimited pool 
of susceptible individuals, due to the fact that everyone is assumed to be in 
contact with everyone else[2]. In contrast, models that include a notion of 
individual identity tied to spatial location, be it on a lattice, in a network or a 
metapopulation, impose local depletion of susceptible individuals that occurs 
much earlier in the epidemic [3,4], leading to sub-exponential epidemic 
growth. In practice, partially observed epidemics may obscure early growth 
patterns; this uncertainty is most acute during the early part of an outbreak of 
a novel pathogen [5,6]. This leads to uncertainty in model structure, 
parameter estimation and therefore model predictions that wanes as the 
epidemic grows, and estimates of burden become more accurate [7]. Novel 
data streams, such as social media platforms or web searches [8] hold the 
promise of timely and accurate estimates, but only when appropriately used. 
 
Behavioural data sources can be incorporated into existing frameworks, or be 
used to inspire new modelling structures; spatial and movement data readily 
inform metapopulation models; social network data can be used in individual 
based models; temporally explicit data can inform behaviour-change models, 
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and so on. Recently, detailed, individually explicit behavioural datasets, such 
as mobile phone records or cattle tracing systems have been used to provide 
some of this information and bring into focus the role of the individual [9]. But, 
repurposed data of this type often leaves gaps in understanding that can only 
be filled with targeted data collection. The current trend of digitising our lives 
through wearable devices, ubiquitous computing, and digital city initiatives is 
providing vast quantities of data on human behaviour on an ever-increasing 
scale. Data analytic tools that can handle such volumes are required, but may 
introduce further uncertainties into modelling predictions which need to be 
managed with validation across data sources[10,11]. 
 
How to compare the predictions of data-hungry models with uncertain 
incidence remains a significant barrier to identifying the mechanisms 
responsible for early epidemic patterns. Recent developments in complex 
model fitting and model choice may hold the promise of picking apart the most 
likely mechanisms. Complex data combined with complex models inevitably 
leads to challenges in robust model fitting and parameter estimation, however. 
Likelihood methods are the ‘gold standard’, but they can be difficult or 
impossible to implement, so simulation-based approximation methods are 
increasingly being used [12,13]. Computational overhead can be a limiting 
factor for complex model fitting and there are exciting developments involving 
Bayesian emulation [14] and Laplacian approximations [15] that are making 
complex model fitting feasible.    
 
Together, advances in data collection and analysis, model development and 
fitting can provide the evidence needed to go beyond phenomenological 
descriptions of early epidemic growth and disentangle the driving 
mechanisms, but not without a trans-disciplinary effort. Combining 
approaches from data science with classical epidemiology is an exciting 
research direction and has the potential to revolutionise public health care.  
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