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ABSTRACT 

In this work, Pd-Ni catalysts supported on carbon nanofibers were synthesized, with 

metal contents and Pd:Ni atomic ratios close to 25 wt. % and 1:2, respectively. 

Previously, the carbon nanofibers were chemically treated, in order to create surface 

oxygen and/or nitrogen groups. The synthesized catalysts displayed low crystallinity 

degree and high dispersion on carbon supports, especially in those with surface 

functional groups. Oxygen reduction reaction (ORR) was studied by rotating ring-disk 

electrode (RRDE) techniques. When the kinetic current is normalized by the mass of Pd 

present in the electrode, higher activities were obtained for the synthesized materials in 

comparison with the activity observed for a commercial Pd/C E-TEK catalyst. Some 

differences are reported for the different materials under study, mainly dependent on the 

presence of oxygen surface groups on the carbon support. In light of the results, we can 

propose the synthesized catalysts as possible candidates for cathodes in alkaline direct 

methanol fuel cells.  

Keywords: Pd-Ni catalysts; alkaline medium; oxygen reduction; carbon nanofibers; 

hydrogen peroxide production. 

 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION 

Polymer electrolyte membrane fuel cells (PEMFCs) have been postulated as 

possible alternatives in the production of electricity for portable and stationary 

applications, due to their advantageous characteristics such as low working temperature, 

high energy conversion efficiency, high power density, low or zero pollution emissions, 

quick start‐up and long lifetime [1]. Several works in the literature predicted that 

PEMFCs could develop similar efficiencies to batteries, internal combustion engines 

and/or power grids [2]. However, the implement of this technology still must confront 

challenges related to technical details such as the low kinetics in the oxygen reduction 

reaction (ORR) at the cathode side [3].   

The main progresses in the cathodic side have been devoted to the development 

and improvement of activity and stability of non-platinum materials, such as heat-

treated macrocyclic compounds of transition metals [4-6], ruthenium based 

chalcogenides [7-9] and palladium alloys catalysts [10-12]. The last being the most 

promising alternatives, due to lower price and higher Pd mining sources in comparison 

with platinum. Besides Pd being cheaper ($654.1 per oz.) than Pt ($1796.9 per oz.) [13], 

the addition of other metals can increase its activity towards the ORR, in a similar way 

to the Pt-M catalysts. This increase is caused by the modification of the Pd electronic 

structure [14], an effect related to the oxygen dissociative adsorption energy. This effect 

has been reported for 1 nm M@Pd core-shells, which have shown that surface strain 

and charge distribution can change the Pd shell d-band energy [15]. 

Into the research of Pd alloys, some authors focused their attention in the Pd:Ni 

alloy. Li et al prepared palladium–nickel alloys supported on carbon, observing lower 

onset potentials and higher ORR activities than those of a Pd/C catalyst in alkaline 

media [16]. Ramos-Sánchez et al focused their research into the catalysts metal loading, 

preparing bimetallic PdNi nanoparticles supported on carbon by borohydride reduction 

in a THF solution. These electrocatalysts were also tested as cathode in a PEM fuel cell, 

finding power densities near 122 mW cm-2 for a 45 % metal loading [17]. Previously, 

the same authors reported higher activity on Pd-Ni catalysts compared to Pd materials, 

showing a shift in the onset potential for ORR close to 110 mV towards more positive 

values [18]. Unsupported Pd-Ni catalysts have also been prepared and tested towards 



ORR. Xu et al [19] de-alloyed a PdNiAl composite, forming a Pd-Ni alloy with uniform 

and interconnected structure, which displayed both high activity towards the oxygen 

reduction reaction and higher tolerance to methanol crossover than a Pt/C catalyst in 

acidic media. Wang et al [20] reported the synthesis of Pd-Ni hollow nanoparticles by 

galvanic replacement, employing Ni nanoparticles as sacrificial electrodes. These 

materials exhibited better performances towards the oxygen reduction reaction 

compared to Pt and Pd carbon supported catalysts in alkaline media. 

If Pd-Ni nanoparticles are supported on carbon materials, the role of the support 

and the content and nature of surface functional groups must be considered, when the 

catalytic activity is assessed. Surface oxygen groups assist the impregnation of metal 

precursors on the carbon support during the synthesis process [21] and promote the 

electron transfer between metal particles and the carbon material [22]. In the case of 

surface nitrogen groups, formation of small size nanoparticles with low sintering degree 

in presence of these groups has been reported, resulting in more stable catalysts [23]. 

In this work Pd-Ni catalysts supported on different chemically treated carbon 

nanofibers have been synthesized, obtaining similar metal contents (close to 25 wt. %) 

and Pd:Ni atomic ratios close to 1:2, in order to evaluate their catalytic activity towards 

the oxygen reduction reaction, as an alternative to platinum electrocatalysts for oxygen 

reduction reaction. The synthesized catalysts were analyzed by EDX, XRD and TEM 

for determining their physical and morphological properties (composition, size and 

dispersion of the nanoparticles on carbon supports) whereas an electrochemical study 

with RRDE techniques was perform in order to evaluate the catalytic activity of 

synthesized materials at 20 ºC towards the oxygen reduction reaction. 

2. EXPERIMENTAL 

2.1 Carbon nanofibers 

Carbon nanofibers (CNFs) were prepared by catalytic thermal decomposition of 

methane [24] on a Ni:Cu:Al catalyst (atomic ratio = 78:6:16) at 700 ºC for 10 h [25]. 

Then, CNFs were treated in HNO3 65% (v/v) for 2 h at 110 ºC, in order to create surface 

oxygen groups (carbon support here named as CNFO) and remove the metals used in 

the synthesis (Ni, Al and Cu) [26]. Nitrogen surface groups on carbon nanofibers were 



generated mixing CNFO with ethylenediamine, 10:6 molar ratio, at room temperature 

for 24 h. Then, the new carbon material (here named as CNFN) was washed to pH 7.0 

and dried at 85 ºC for 24 h. 

2.2 Preparation of Pd-Ni catalysts 

 The modified carbon materials were well-dispersed in ultra-pure water by 

sonication and magnetic stirring. Next, a solution of the precursor salts (Na2PdCl4, 98 

wt. %, NiCl2, 99.999 wt. %, Aldrich) was slowly added to the dispersion and then, pH 

was adjusted to 5.0 with a concentrated NaOH solution (98 %, Panreac). After 12 h, a 

26.4 mM sodium borohydride solution (99 %, Aldrich) was added drop by drop under 

sonication. Reaction mixture was kept under magnetic stirring for 12 h, before the 

filtering, washing and drying at 60 ºC. Nomenclature of the synthesized catalysts 

depends on the carbon support and the Pd:Ni atomic ratio, labeling them as Pd-Ni/CNF 

1:2, Pd-Ni/CNFO 1:2, Pd-Ni/CNFN 1:2 and Pd-Ni/CB 1:2. 

Additionally, carbon black (Cabot®) was employed for preparing a Pd:Ni 1:2 

catalyst, which was used as a comparison. A commercial Pd/C from E-TEK was also 

used as a standard. 

2.3 Physical characterization 

Metal content and Pd-Ni atomic ratios for the synthesized materials were 

determined by energy dispersive X ray analysis (EDX) using a scanning electron 

microscope Hitachi S-3400 N coupled to a Röntec XFlash analyser, operating at 15 

keV, with a Si(Li) detector and a Be window. 

A Bruker AXS D8 Advance diffractometer was employed for obtain the X-ray 

diffraction (XRD) patterns. This equipment works with a θ-θ configuration and a Cu-Kα 

radiation at 40 kV and 40 mA. Scans were collected at 1º min-1 for 2θ values between 

10 and 100º. 

Analyses of the dispersion and particles size distribution were performed by 

transmission electron microscopy analysis (TEM). A transmission electron microscope 

200 kV JEOL-2000 FXII was employed. Images were obtained by means of a 

MultiScan CCD (Gatan 694) camera, and they were treated with the Fourier Transform 



software Digital Micrograh (3.7.0, Gatan) for obtaining the particle size distribution 

histograms. 

2.4 Electrochemical characterization 

An AUTOLAB NS 85630 modular equipment connected to a three electrodes 

cell was used for carry out the potentiostatic measurements. Working electrode was a 

glassy carbon disk modified with the Pd-Ni catalysts. It was prepared from an ink 

containing 2.0 mg of catalyst, 15 µL of Nafion® (5 wt. %, Aldrich) and 500 µL of ultra-

pure water; then, a 60 µL aliquot was deposited and dried on the glassy carbon disk. As 

counter electrode, a glassy carbon bar was used, whereas a reversible hydrogen 

electrode (RHE) placed inside a Luggin capillary was used as reference electrode; all 

potentials presented in the text are referred to this electrode. The supporting electrolyte 

was 0.1 M KOH (99.99%, Aldrich) solution in high resistivity deoxygenated 18.2 MΩ 

H2O. Electrochemical tests for the oxygen reduction reaction were performed 

employing a Hg/HgO reference electrode placed on a Luggin capillary. For an easier 

comparison, all the potentials have been converted to RHE. The electrolyte was 

previously saturated with oxygen (99.999 %, BOC) during 20 min. before each test. 

Measurements were conducted using a rotating-ring disk electrode (RRDE) operated 

with an ALS Rotation Controller and an Ivium-CompactStat bipotentiostat. The RRDE 

consisted of a 4 mm diameter glassy carbon disk and a platinum ring with a 7 mm outer 

diameter. The final loading onto the electrode was 150 𝜇gcatalyst cm-2. 

3. RESULTS AND DISCUSSION 

3.1 Carbon nanofibers characterization 

 Table 1 shows the textural properties and nitrogen content for the carbon 

nanofibers and the carbon black employed as supports for the Pd-Ni nanoparticles. 

Chemical treatment induced an increase in the surface area, pore volume and pore 

diameter of CNFs, especially in the case of N-modified carbon nanofibers, which 

overcame the pore diameter exhibited by all the carbon materials. Nonetheless, carbon 

black showed the biggest value for surface area and pore volume. The chemical 

treatment of the carbon nanofibers with nitric acid in the experimental conditions 

previously mentioned possibly induced the creation of different surface oxygen groups, 



being some of them carboxylic acids, according to the results reported in other previous 

works [26, 27]. Therefore, a molecule with basic groups as ethylenediamine can react 

with the O-modified carbon nanofibers. This fact was evidenced in the nitrogen content 

increase for the CNFN material, which suggests that the chemical treatment of CNFO 

with ethylenediamine induced the successful incorporation of nitrogen in the carbon 

material in form of surface nitrogen groups [28, 29]. 

3.2 Physical characterization 

 Metal content and Pd:Ni atomic ratios for the Pd-Ni/C catalysts were determined 

by EDX analysis and the data are reported in Table 2. The values were close to the 

nominal ones expected from the synthesis procedure (25 wt. % and 1:2, respectively). 

XRD patterns of the studied materials (Figure 1) exhibited signals attributed to the well-

known Pd face-centered cubic structure. Peaks were located at 40º, 47º, 68º and 82º, 

corresponding to the Pd (111), (200), (220) and (311) facets, respectively [30]. The low 

intensity of these signals indicates a relatively low crystallinity degree. Previous works 

in the literature observed that as a consequence of the nickel presence, the particle size 

decreases and thus, the amount of crystalline facets [31]. Moreover, the presence of 

crystalline 𝛽-Ni(OH)2 was evidenced from the peak located at ~20º, which corresponds 

to the reflection of the (001) facet for this specie [32]. In the case of the materials 

supported on CNFs, an intense peak close to 25º was observed, which corresponds to 

the C(002) graphite basal planes [33, 34]. The intensity of this peak can be explained 

from the bigger amount of graphitic planes present in CNFs compared to Vulcan. 

 TEM images of the materials are showed in Figure 2. As a general trend, the 

catalysts supported on CNFs display particle sizes between 3.4 and 4.1 nm, bigger than 

that observed for the nanoparticles supported on Vulcan (Pd-Ni/CB 1:2). In fact, the 

histograms for these materials present a wider range of diameters than that obtained for 

the catalyst Pd-Ni/CB. Nevertheless, the nanoparticles supported on chemical-modified 

carbon nanofibers presented lower average particle diameters than those supported on 

the carbon nanofibers without any chemical treatment, suggesting that presence of 

surface oxygen and nitrogen groups promotes the formation of smaller size particles. 

This effect was also evident in the dispersion of the nanoparticles on the different 



carbon supports, considering a negligible formation of aggregates on CNFO and CNFN 

carbon supports. 

3.3 Oxygen reduction reaction (ORR) on the synthesized catalysts 

 Figure 1SI shows the results obtained for the electrochemical characterization of 

the catalysts in the support electrolyte. Typical signals for the hydrogen adsorption-

desorption processes were observed between 0 and 0.3 V vs RHE in all the studied 

materials, whereas the formation/reduction of Pd oxides can be seen in the 0.7 – 1.0 V. 

The oxygen electrochemical reduction (ORR) on the synthesized Pd-Ni catalysts was 

studied and Figure 3 presents the results obtained for RRDE experiments at 1600 rpm. 

Top panel displays the current density at the Pt-ring (jRING) and the botton panel at the 

disk (jDISK), the area used to normalize the currents was the geometric area of the disk. 

The first obvious observation is that the catalysts supported on CNFs displayed 

similar onset potentials, with values close to 0.98 V vs RHE. This onset potential falls 

within the range of values reported in the literature for Pd-Ni alloys in alkaline media 

[35]. It also needs to be mentioned, that the onset potential for the CNFs used as 

supports (as shown in Figure 2SI) occurs at more negative potentials, confirming the 

involvement of the Pd-Ni sites in the reaction. On the other hand, the onset value for the 

catalyst Pd/C E-TEK was close to 1.04 V, resulting in a difference of 60 mV. This 

observation suggests that the commercial Pd catalyst is more active toward ORR, 

however, it needs to be considered the lower Pd content in the Pd-Ni alloys.  

It is interesting to see that the magnitude of the ring (jRING) and disk (jDISK) 

current densities for the different electrodes is affected by the nature of the carbon 

nanofibers used as support. Pd-Ni/CNF and Pd-Ni/CNFN catalysts exhibited high 

diffusional current densities for the oxygen reduction and low currents at the ring, 

suggesting a low production of hydrogen peroxide. In the case Pd-Ni/CNFO the lowest 

diffusional current densities and the highest production of hydrogen peroxide were 

found. It is possible that oxygen surface groups promote the production of this 

intermediate, a behavior corroborated from the ORR experiments performed on the 

employed carbon supports (Figure 2SI in supplementary information), which 



demonstrated high current densities at the ring and low diffusion current densities for 

the oxygen reduction on CNFO. 

By using the current values recorded at the disk and ring electrodes at 1600 rpm, 

the H2O2 yield was calculated and is shown in Figure 4. The catalysts Pd-Ni/CNF and 

the commercial Pd/C E-TEK displayed the lowest production percentage, with values 

below 20%. On the other hand, Pd-Ni/CNFO and Pd-Ni/CNFN showed higher 

hydrogen peroxide production percentages, suggesting that the oxygen and nitrogen 

groups, somehow, promote the formation of this intermediate during the oxygen 

reduction. This result is in agreement with some reports in literature, that demonstrated 

an increase in the production of hydrogen peroxide during the ORR on N-doped and 

non-reduced graphene oxide quantum dots [36], N-doped graphenes [37] and graphitic-

based materials (highly oriented pyrolytic graphite and glassy carbon) with quinones, 

anthraquinones and hydroquinones as surface functional groups [38, 39]. This behavior 

is also reflected when calculating the number of electrons transferred during the reaction 

(see blue lines in Figure 4). In the case of Pd-Ni/CNF and Pd/C E-TEK, the number of 

transferred electrons was close to 4 in all the potential range. For Pd-Ni/CNFO and Pd-

Ni/CNFN values close to 3.5 electrons were observed, indicating changes in the 

reaction mechanism, principally related to a contribution from the reduction of oxygen 

to hydrogen peroxide (as called indirect pathway). Li et al proposed a relation between 

the number of transferred electrons and the Pd:Ni ratios of the catalysts, showing a 

decrease in the number of electrons with the increase of Ni in the formed alloy. This 

behavior was explained from the presence of a high amount of Ni atoms on catalyst 

surface and their participation in the addressing of the reaction mechanism towards the 

formation of hydrogen peroxide [16]. 

Figure 5 shows the Koutecky-Levich plots analysis, in order to identify the 

possible reduction pathways associated with the different materials. The catalyst Pd-

Ni/CNFO showed no parallel trends at the different studied potentials, suggesting the 

existence of a 2+2 mechanism in the oxygen reduction and strengthen the above 

postulated argument, which makes reference to the production of hydrogen peroxide 

promoted by surface oxygen groups. These deviations from the parallelism were also 

observed in the Koutecky-Levich plots for the CNFO carbon support, reported in the 



Figure 6SI of the supplementary information. The other materials presented trends close 

to the parallelism, as a proof of a four electron process and thus, a direct reduction of 

oxygen to water.  

Finally, an interesting point to assess is the performance of the different catalysts 

against each other. Benchmarking of ORR processes is not straight forward, in order to 

compare the activity of different electrocatalysts it is common to take the kinetically 

controlled current density, where influences of mass transport are negligible [40, 41]. 

Catalytic activities of the different electrodes are compared in Table 3, where kinetic 

currents at 0.85 V were calculated. Table 3 shows a value which is up to nine times 

bigger for the commercial catalyst than for some of the synthetized Pd-Ni materials, 

which reflect the difference in the current-potential relationship between the pure Pd 

commercial and the Pd-Ni catalysts. However, it should be considered that the Pd 

loadings are significantly different. Normalizing ik(0.85 V) by the Pd loading, we 

estimated a value of 9.8·10-5 A µg-1 for Pd-Ni/CNFO, revealing that the Pd sites in the 

Pd-Ni samples are significantly more active than in the commercial catalysts, 

suggesting an improvement of the activity with the addition of Ni. It is possible to 

compare the obtained ik values con some reported in literature. Zhao et al [42] reported 

maxima ik(0.7 V) values, normalized by the metal loading, close to 1.0·10-4 A µg-1, for 

Pd80Ni20/C catalysts supported on Vulcan XC-72R carbon black, with a metal loading 

close to 20 wt. %. The authors also reported the effect of the heat treatment of the 

catalysts at 500, 700 and 900 ºC, which caused a decrease of the ik(0.7 V) with the 

increase of temperature. Wang et al [20] reported the synthesis of PdNi hollow 

nanoparticles with different Pd:Ni ratios, observing a decrease in the ik(−0.114 V (vs 

Ag/AgCl)), between 3.05·10-7 A µg-1
Pd and 1.84·10-7 A µg-1

Pd, with the increase of the 

atomic Pd ratio from 0.5 and 3. The authors also reported ik values close to 1.51·10-7 A 

µg-1
Pt and 1.62·10-7 A µg-1

Pd for Pt/C and Pd/C catalysts, respectively, explaining the 

high ik values determined for the PdNi catalysts to the changes in the surface electronic 

properties of Pd with the addition of Ni. Considering the ik values here reported for the 

Pd-Ni catalyst supported on carbon nanofibers, it is possible to suggest that these 

materials can be employed as cathodes in direct methanol fuel cells. 

 



4. CONCLUSIONS 

 Pd-Ni catalysts supported on carbon nanofibers were synthesized, with metal 

loadings and Pd:Ni atomic ratios close to 25 wt. % and 1:2, respectively. XRD patterns 

evidenced low crystallinity for these materials, whereas TEM analyses showed a good 

dispersion of the nanoparticles on the carbon support. The electrochemical 

characterization of the studied catalysts in the support electrolyte demonstrated that 

carbon supports affect the catalytic activity in both, the hydrogen adsorption – evolution 

process, the capacitive currents and the formation of Pd oxides. 

Similar onset potentials for ORR were observed for the synthetized Pd-Ni 

catalysts, although these were still 60 mV shifted to more negative potentials than the 

Pd/C E-TEK commercial catalyst. Some differences were appreciated in terms of the 

hydrogen peroxide formed as intermediate in this reaction. Pd-Ni/CNF and Pd/C E-TEK 

showed the lower production of this intermediate, whereas Pd-Ni/CNFO displayed the 

highest current densities associate to the production of this intermediate, indicating that 

oxygen surface groups induce the formation of hydrogen peroxide, principally between 

0.5 - 0.7 V vs RHE. The ORR on the other synthesized catalysts and the commercial is 

addressed predominantly towards the formation of water, in agreement with the 

Koutecky-Levich analysis. To account for the different Pd content, ik at 0.85 V was 

normalized in terms of mass. In this sense, higher ik values normalized by Pd mass at 

0.85 V were found, in comparison with the observed value for Pd/C E-TEK. From the 

results presented in this work, it is possible to suggest the use of Pd-Ni catalysts 

supported on carbon nanofibers as cathodes in direct methanol fuel cells.  
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Figure captions 

Figure 1. XRD patterns of the synthesized Pd-Ni catalysts. 

Figure 2. TEM images (left) and histograms for particle size distribution (right) of the 

synthesized Pd-Ni catalysts: (a-b) Pd-Ni/CNF 1:2, (c-d) Pd-Ni/CNFO 1:2, (e-f) Pd-

Ni/CNFN 1:2 and (g-h) Pd-Ni/CB 1:2. 

Figure 3. RDE (bottom) and RRDE (top) measurements of the synthesized Pd-Ni 

catalysts and the commercial Pd/C catalyst at 1600 rpm in 0.1 M KOH with O2-

saturated. Scan rate: 10 mV s-1. 

Figure 4. Production percentage of hydrogen peroxide (black line) and number of 

electrons (blue line) produced on the different catalysts. 

Figure 5. Koutecky–Levich plots for RDE results of Pd-Ni catalysts at different 

potentials. 
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Figure 1SI presents the cyclic voltammograms for the electrochemical 

characterization of the catalysts in the support electrolyte. The signals for the hydrogen 

adsorption-desorption processes were observed between 0 and 0.3 V vs RHE, while 

those corresponding to the formation/reduction of Pd oxides have been seen in the 0.7 – 

1.0 V range. 
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Figure 1SI. Cyclic voltammograms of the synthesized Pd-Ni catalysts in the support 

electrolyte. Support electrolyte: KOH 0.1 M. Scan rate: 20 mV s-1. 

 

Results obtained for oxygen reduction reaction (ORR) on carbon supports CNF, 

CNFO, CNFN and CB are presented in Figure 2SI. The onset potentials for the ORR on 

the carbon supports is notably at more negative potentials than those observed for the 

Pd-Ni synthesized catalysts, revealing the role of metals in the catalysis for this 

reaction. Chemical modification of CNFs (i.e. CNFO and CNFN) seems to affect these 

values, shifting the onset potential by 40 mV to more positive potentials compared with 

the non-chemical treated carbon nanofiber (CNF). Non-modified carbon black showed a 

0.78 V onset potential. 



 

 

Figure 2SI. Disk measurements (bottom) and ring (top) measurements of the different 

carbon supports at different rotation rates in 0.1 M KOH with O2-saturated. Scan rate: 

10 mV s-1. 

 

Figure 3SI displayed RRDE experiments at different rotation rates for the samples 

under study.  Higher diffusional current densities were observed for the catalysts Pd-

Ni/CNF 1:2 and Pd-Ni/CNFN 1:2. These materials also showed the lowest current 

densities for the hydrogen peroxide production, whereas the catalyst Pd-Ni/CNFO 1:2 

exhibited the lowest diffusional current densities and the highest currents associated to 

the hydrogen peroxide production. 



 

Figure 3SI. RDE measurements (bottom) and RRDE (top) measurements of 

synthesized Pd-Ni catalysts at different rotation rates in 0.1 M KOH with O2-saturated. 

Scan rate: 10 mV s-1. 

 

Figure 4SI shows the hydrogen peroxide production yield when the ORR is performed 

on the different carbon nanofibers. CNFO showed the high percentages in all the range 

of applied potentials, whereas CNFN and CB exhibited the lowest values, principally 

between 0.2 and 0.5 V vs RHE. 



 

Figure 4SI. Production percentage of hydrogen peroxide (black line) and number of 

electrons (blue line) produced on the different carbon support. 

 

Figure 5SI shows the RDE and RRDE results for the performance of ORR on the 

commercial catalyst Pd/C E-TEK, which demonstrated the low production of hydrogen 

peroxide and the obtaining of high diffusion current densities. The onset for this 

reaction was at potentials more positive than 1.0 V, as was described in the manuscript. 



 

 

Figure 5SI. RDE measurements (bottom) and RRDE measurements (top) of 

commercial catalyst Pd/C E-TEK catalysts at different rotation rates in 0.1 M KOH with 

O2-saturated. Scan rate: 10 mV s-1. 

 

Koutecky–Levich plots for the carbon materials are presented in Figure 6SI. Deviations 

from a parallel behavior were observed and suggested the preferential formation of 

hydrogen peroxide on these materials. The drastic deviations were found for CNF and 

CB, although the later anchoring of Pd-Ni nanoparticles addressed the ORR mechanism 

towards the formation of water as final reduction product. 



 

Figure 6SI. Koutecky–Levich plots for RDE results of Pd-Ni catalysts at different 

potentials. 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Textural and chemical properties of carbon supports 

Carbon 

supports 
SBET / m2 g-1 Vtotal / cm3 g-1 Vmeso / cm3 g-1 

Pore 

diameter / 

nm 

Nitrogen 

content / 

%wt. 

CNF 72.1 0.241 0.239 11.56 0.03 

CNFO 72.7 0.260 0.256 11.89 0.13 

CNFN 72.5  0.280 0.275  12.63 0.38 

CB 214.6 0.412 0.343 9.64 ---- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Physical characterization of synthesized Pd-Ni catalysts. 

     Catalyst 
Atomic ratio 

Pd:Ni 

Metal content / 

% wt. 

Pd content / 

% wt. 

Ni content / 

% wt. 

Particle size / 

nm 

Pd-Ni/CNF 1:2 33:67 24 12.3 11.8 4.1 + 1.2 

Pd-Ni/CNFO 1:2 35:65 27 12.0 15.2 3.8 + 1.2 

Pd-Ni/CNFN 1:2 37:63 18 8.8 9.1 3.4 + 1.1 

Pd-Ni/CB 1:2 28:72 24 9.8 14.3 2.7 + 0.9 

Pd/C E-TEK --- 20 20 ---  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Activity descriptors obtained from the kinetics analysis such as the kinetic 

current at 0.85 V (ik(0.85)) and the kinetic current density by mass of Pd in the electrode 

(jk(0.85) / A μg-1), 

     Catalyst ik(0.85 V) / A jk(0.85 V) / A µg-1 

Pd-Ni/CNF 1:2 2.1 · 10-4 8.8 · 10-5 

Pd-Ni/CNFO 1:2 2.3 · 10-4 9.8 · 10-5 

Pd-Ni/CNFN 1:2 1.0 · 10-4 5.8 · 10-5 

Pd-Ni/CB 1:2 1.4 · 10-4 7.3 · 10-5 

Pd/C E-TEK 9.4 · 10-4 2.4·10-4 
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