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Abstract 

Accurately predicting biological impacts of climate change is necessary to guide policy. 

However, the resolution of climate data could be affecting the accuracy of climate change impact 

assessments. Here we review the spatial and temporal resolution of climate data used in impact 

assessments and demonstrate that these resolutions are often too coarse relative to biological 

scales. We then develop a framework that partitions climate into three important components: 

trend, variance, and autocorrelation. We apply this framework to map different global climate 

regimes and identify where coarse climate data is most and least likely to reduce the accuracy of 

impact assessments. We show that impact assessments for many large mammals and birds use 

climate data with a spatial resolution similar to the biologically relevant area of a population. 

Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate 

data with a spatial resolution that is orders of magnitude larger than the area of a population. 

Most impact assessments also use climate data with a very coarse temporal resolution. Climate 

data with a coarse spatial resolution likely reduces the accuracy of impact assessments the most 

in climates with high spatial trend and variance (e.g., much of western North and South America) 

and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). 

Climate data with a coarse temporal resolution likely reduces the accuracy of impact assessments 

the most in the northern half of the northern hemisphere where temporal climatic variance is 

high. Climate data with an appropriate resolution is unavailable for most species. Our framework 

provides one way to evaluate where using coarse climate data will affect the accuracy of impact 

assessments. 
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Global change is changing the abundance and distribution of species, which is altering 

biological communities, ecosystems, and their associated services to humans (Parmesan & Yohe, 

2003; Cardinale et al., 2012; Kortsch et al., 2015). These changes are expected to accelerate due 

to climate change (Maclean & Wilson, 2011; Urban, 2015). Accurately predicting biological 

responses to climate change is therefore necessary to help assess the potential impacts of climate 

change and guide policy designed to mitigate those impacts. 

A growing number of studies indicate that the accuracy of climate change impact 

assessments is affected by the temporal and spatial resolution of climate data used to model 

climate change (Randin et al., 2009; Early & Sax, 2011; Gillingham et al., 2012; Lenoir et al., 

2013; Bennie et al., 2013; Nabel et al., 2013). For example, an average of 52% of high-elevation 

plant species were predicted to become extirpated from two regions of Switzerland when 

assessments of extirpation used climate data with a coarse spatial resolution (19 by 13 km grid 

cells; Randin et al., 2009). However, up to 100% of these species were predicted to persist when 

predictions were made using climate data with a fine spatial resolution (25 by 25 m grid cells; 

Randin et al., 2009). The temporal resolution of climate data can also be important. For example, 

predictions made using coarse temporal climate data (i.e., two time periods 100 years apart) 

suggest that most western U.S. amphibians will persist under climate change by shifting their 

range to track suitable climates (Early & Sax, 2011). However, decadal climate fluctuations 

could prevent many amphibians from accessing future suitable climates, which would 

significantly increase their risk of extinction under climate change (Early & Sax, 2011). 

The appropriate spatial and temporal resolution of climate data for climate change impact 

assessments requires further research, but likely depends on a few key factors. First, the 

appropriate spatial and temporal resolution of any study depends on the organism and process 
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under investigation (Addicott et al., 1987; Wiens, 1989; Levin, 1992; Bennie et al., 2014). 

Organisms have adapted to regional climates by evolving unique life history strategies, dispersal 

abilities, physiological tolerances, and behaviors that affect how they experience climate (Cohen, 

1966; Levin et al., 1984; Tewksbury et al., 2008; Kearney et al., 2009). Moreover, climatic 

variation at different resolutions (e.g., daily and seasonal) can interact to have complex effects on 

these traits (Chan et al., 2016). Traits that are adapted to climate can make some species sensitive 

to fine resolution weather events and micro-climates while allowing other species to moderate 

the effect of high climatic variability (Deutsch et al., 2008; Buckley et al., 2012). Consequently, 

the appropriate resolution of climate data will depend on key species traits such as dispersal 

kernels and generation times.  

Second, the appropriate resolution of climate data likely depends on the climate within 

the focal region. Using coarse resolution climate data in climates with low variation could have 

minimal effect on climate change impact assessments because the average climate used in coarse 

resolution data will be representative of climates at finer resolutions (Woodcock & Strahler, 

1987). Stochastic population dynamics are well represented by deterministic models when 

variation is low for the same reason (Chesson, 1981). However, in regions with high climate 

variation, important climate components could be masked by using coarse resolution climate 

data (Randin et al., 2009; Early & Sax, 2011). 

Whether climate change impact assessments are using climate data with biologically 

relevant spatial and temporal resolutions is a matter of debate. A recent review compared the 

spatial resolution of species distribution models (i.e., the most common models used to evaluate 

the ecological impacts of climate change) to the body length of focal organisms (Potter et al., 

2013). The spatial resolution of species distribution models was approximately 10,000 times 
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larger than the body length of focal animals and 1000 times larger than the body length of focal 

plants (Potter et al., 2013). Potter et al. (2013) used this data to suggest a large spatial mismatch 

between the resolution of species distribution models and the scale at which species experience 

the environment. 

Bennie et al. (2014) responded to this review, however, and suggested that the body 

length of focal organisms may not be the appropriate spatial resolution to consider when 

modeling species distributions. Bennie et al. (2014) suggest that the aim of species distribution 

models is to predict the presence or absence of populations and therefore the area that 

encompasses a population could be an appropriate spatial resolution to use in climate change 

impact assessments. They further suggest that the resolution required to map population presence 

and absence is similar to the resolution of climate data, although they do not provide data to 

support this claim. 

In this paper, we first show that many climate change impact assessments are using 

coarse resolution climate data even when compared to the area that encompasses a population. 

We also evaluate the temporal resolution of climate data used in climate change impact 

assessments. In the second part of the paper we suggest that climate can be partitioned into three 

components in both space and time - trend, variance, and autocorrelation – and we discuss the 

biological relevance of each component. We then demonstrate that using coarse climate data can 

misrepresent these three important climate components, which likely affects the results of 

climate change impact assessments. Last, we use these three climate components to map eight 

global climate regimes and identify where coarse climate data is most and least likely to 

misrepresent regional climates. This analysis provides some guidance on where the use of coarse 

resolution climate data could have the biggest effect on climate change impact assessments. 
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The Resolution of Climate Data Used in Climate Change Impact Assessments 

METHODS 

We recorded the spatial and temporal resolution of future climate projections used in a 

recently compiled list of 131 climate change impact assessments evaluating extinction-risk for 

multiple species under climate change (Urban, 2015). We standardized the spatial resolution of 

climate data across studies by calculating the grid-cell area (km2) so that grid cells with unequal 

lengths and widths could be compared accurately to those with equal lengths and widths. For 

resolutions presented in degrees, we converted the latitudinal dimension to km using a factor of 

111.325 km per degree and the longitudinal dimension using cos (
𝜋

180
𝑦)111.325, where y is the 

approximate latitude of the center of the study area (Loarie et al., 2009). 

We also estimated the area of a population for 223 populations of 180 species. Some 

species were represented more than once if data from distinct studies or regions were available. 

We grouped species into five taxonomic groups:  birds (n = 45), small mammals (n = 13), large 

mammals (n = 14), herpetofauna (n = 58), and plants (n = 93). This data allowed us to evaluate if 

grid-cell area was similar to the area that encompasses a population for each of the five 

taxonomic groups. 

We estimated the area of a population for each species using Wright’s dispersal 

neighborhood (Wright, 1946); one of the most common ways to estimate the area of a population 

(Crawford, 1982; Richardson et al., 2014). Wright’s dispersal neighborhood is the area that 

encompasses 86.5% of dispersal events and is therefore an area where individuals are likely to 

interact both ecologically and genetically. We estimated the dispersal-neighborhood area as 

𝜋(2𝜎)2, where 2σ is 1.6 times the mean or 1.7 times the median dispersal distance of a species 
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(Urban, 2011). We obtained information on the mean or median dispersal distance of species 

using existing reviews on species dispersal distances (Sutherland et al., 2000; Semlitsch & 

Bodie, 2003; Vittoz & Engler, 2007). 

RESULTS 

The average spatial resolution (i.e., grid-cell area) of climate data used in 110 studies 

using spatial climate data was 3,576 km2 (SD = 16,213 km2, range = 0.0004 – 133506 km2, Fig. 

1a), which is equivalent to a square grid-cell with 60 km sides. The spatial resolution of climate 

data decreased over time; however, the resolution varied substantially in any given year, 

including recent years (Fig. 1b).  

The spatial resolution of climate data used in climate change impact assessments was 

similar regardless of the focal taxa (Fig. 1c). The spatial resolution of climate data was similar to 

the area of a population for many birds and large mammals (Fig. 1c). However, the spatial 

resolution of climate data was orders of magnitude larger than the area of a population for many 

small mammals, herpetofauna, and plants (Fig. 1c). Hence, many climate change impact 

assessments for small mammals, herpetofauna, and plants used climate data with grid cells that 

could encompass multiple populations of the focal species, which could affect predictions of 

biological responses to climate change (Randin et al., 2009; Gillingham et al., 2012; Lenoir et 

al., 2013). 

The majority of studies (89%) that used temporal climate data compared the mean of 

weather variables in a historical period to the mean of the same weather variables in one to three 

future periods (Fig. 2). This method ignores climate dynamics between the historical and future 

periods (Fig. 2). Two percent of studies used a linear change in climate between a historical and 

future period, which also ignores much of the climate dynamics between the historical and future 
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time period (Fig. 2). Only 9% of studies used an annual or decadal resolution that captures some 

of the climate dynamics that will occur between the historical and future time period (Fig. 2). 

These results suggest that many climate change impact assessments are using climate 

data that is not mapped at a biologically relevant spatial or temporal resolution. Next we 

demonstrate that climate data can be partitioned into three biologically relevant components and 

demonstrate how using coarse resolution climate data can misrepresent these components in 

climate change impact assessments. 
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Figure 1. (a) The spatial resolution of future climate projections used in 110 climate change 

impact assessments for all taxa and (b) the change in the spatial resolution used in climate 

change impact assessments over time. The trend in b is -0.119 km2 per year (p = 0.002). (c) The 

spatial resolution of future climate projections used in climate change impact assessments and 

the area of a population (i.e., the area of Wright’s dispersal neighborhood) for species from five 

taxonomic groups.  
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Figure 2. The number of climate change impact assessments using three different temporal 

resolutions. The figures below each bar provide examples of the three temporal resolutions. 

Partitioning Climate into Three Biologically Relevant Components 

Climate can be partitioned into three components over both space and time:  (1) trend, (2) 

variance, and (3) autocorrelation (Fig. 3). Climatic trend is a consistent increase or decrease in 

the mean of a weather variable (e.g., average annual temperature) over large temporal or spatial 

scales relative to biological scales (Box 1). For example, climate change is a temporal climatic 

trend and latitudinal and elevational gradients in climate are spatial climatic trends (Fig. 3). 

Climatic variance is the average deviation of climate from the trend within a time period or 

region (Fig 3). Climatic variance measures the degree of fine-scale variability (relative to 
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biological scales) in a weather variable over time or space. Climates with high variance have a 

wide range of weather conditions measured at a fine scale over time or space (Fig. 3). 

Autocorrelation is a measure of the similarity of neighboring observations of a weather variable 

in time or space. Climatic autocorrelation measures the length of periods with similar weather 

over time and the size of climatically similar patches in space (Fig. 3). Long periods of similar 

weather and large patches of similar climate occur more often in highly autocorrelated climates 

or regions (Fig. 3). Climatic autocorrelation also measures the predictability of weather over time 

and climates in space. For example, in climates with low temporal autocorrelation, the weather in 

one time period will not accurately predict the weather in future time periods (Fig. 3b). Similarly, 

for climates with low spatial autocorrelation, the climate in one location will not accurately 

predict the climate in neighboring locations (Fig. 3a). 

Climate change impact assessments have primarily focused on climatic trend. For 

example, the average rate of climate change has been associated with the magnitude of species 

range shifts under recent climate change (Chen et al., 2011) and can affect the ability of species 

to adapt in situ (Lynch & Lande, 1993; Burger & Lynch, 1995; Burger & Krall, 2004). Spatial 

trends have facilitated range shifts under climate change by allowing species to continuously 

track suitable climates as the climate changes (Chen et al., 2011). A combination of temporal and 

spatial trend has also been used to estimate the rate that species will need to move to track 

suitable climates (Loarie et al., 2009). 

Climatic variance and autocorrelation have received much less attention in climate 

change impact assessments. However, environmental variance and autocorrelation (including 

climatic variance and autocorrelation) have long been known to affect population dynamics 

(Lande, 1993; Ripa & Lundberg, 1996; Benton et al., 2002; Holt et al., 2003; Drake & Lodge, 
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2004; Schwager et al., 2006; Schreiber, 2010) and the ability of species to move across the 

landscape (With, 2002), coexist (Chesson & Warner, 1981; Caswell & Cohen, 1995; Chesson, 

2000; Büchi & Vuilleumier, 2014), and adapt to local conditions (Lynch & Lande, 1993; Burger 

& Lynch, 1995; Gomulkiewicz & Holt, 1995; Lande & Shannon, 1996; Holt, 2004; Burger & 

Krall, 2004; De Mazancourt et al., 2008; Schiffers et al., 2014). For example, both theory and 

experiments suggest that time to extinction of closed populations decreases as the temporal 

environmental variance and autocorrelation increase (Ripa & Lundberg, 1996; Benton et al., 

2002; Drake & Lodge, 2004). Temporal environmental variance and autocorrelation can also 

increase the size of open populations (Holt et al., 2003; Matthews & Gonzalez, 2007), which can 

affect the probability that a sink population will adapt to become a source (Holt, 2004). The well-

known effects of temporal and spatial environmental variance and autocorrelation on ecological 

and evolutionary dynamics suggest that climatic variance and autocorrelation will affect species 

responses to climate change. 

Relatively few studies have specifically addressed how climatic variance and 

autocorrelation affect species responses to climate change. The few that do address these 

components demonstrate strong effects on outcomes (Randin et al., 2009; Early & Sax, 2011; 

Gillingham et al., 2012; Schiffers et al., 2013; Nabel et al., 2013). For example, both spatial and 

temporal variance in the environment can maintain standing genetic variation that could allow 

species to persist under many decades of climate change (Kelly et al., 2003; Yeaman & Jarvis, 

2006) or slow the rate of evolutionary adaptation of species with dormant life stages (Rubio et 

al., 2015). Also, the magnitude of climate change to which a species can adapt decreases as the 

temporal variance and autocorrelation of the environment increases (Lynch & Lande, 1993; 

Lande, 1993; Burger & Lynch, 1995; Burger & Krall, 2004). Spatial and temporal climatic 
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variance can also prevent species from tracking suitable climates (Early & Sax, 2011; Canning-

Clode et al., 2011; Nabel et al., 2013; Bennie et al., 2013).  

More research is needed to determine how spatial and temporal climatic variance and 

autocorrelation will affect species responses to climate change, but climatic variance and 

autocorrelation are likely important. Therefore, it is critical to ensure that these components of 

climate are accurately represented in models used to assess the impacts of climate change. 
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Figure 3. Examples of (a) spatial and (b) temporal trend, variance, and autocorrelation. Examples 

with high and low values of each component are shown for contrast. Spatial trend is represented 

as a systematic change in the color from the top to the bottom of the plots. Spatial variance is 
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represented by the range of colors in each plot and spatial autocorrelation is represented by the 

size of similarly colored patches. The black points in the temporal plots represent estimates of 

mean annual temperature, the dashed line represents the temporal trend, and the gray shaded area 

represents temporal variance (+ 1 SD). Temporal autocorrelation is represented by consecutive 

years with similar temperature measurements (e.g., on the same side of the trend line). 

Where Will Coarse Climate Data Affect the Accuracy of Impact Assessments 

In order to accurately represent climatic trend, variance, and autocorrelation in climate 

change impact assessments, it is necessary to use an appropriate temporal and spatial 

neighborhood (i.e., time period and area of interest) and climate data with the appropriate spatial 

and temporal resolution (Boxes 1 and 2). 

The ability to scale climate data to the appropriate resolution for use in climate change 

impact assessments will be limited by the availability of fine-scale climate projections. Climate 

data generated by current atmospheric-ocean-general-circulation models can often be obtained 

with a fine temporal resolution (e.g., daily, hourly), but the spatial resolution is often on the order 

of 200 by 200 km (Intergovernmental Panel on Climate Change, 2014). This coarse spatial 

resolution is larger than the area that encompasses a population for most species (Fig. 1). 

Although, advances in spatial down-scaling are allowing researchers to use climate data with 

much finer spatial resolutions in climate change impact assessments (Hannah et al., 2014), it is 

still difficult to obtain climate data with an appropriate resolution for many species and many 

types of models. Hence, we need to understand where using coarse resolution climate data is 

likely to have the biggest effect on predictions of biological responses to climate change.  

The degree to which climatic trend, variance, and autocorrelation are misrepresented by 

using coarse resolution climate data depends on the magnitude of each climate component in the 
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focal neighborhood (Woodcock & Strahler, 1987; Chou, 1991). For example, spatial climatic 

variance is likely to be highly underestimated by using coarse resolution climate data in areas 

with high spatial climatic variance. This is because neighboring fine-resolution landscape cells 

with very different climate values are aggregated to their mean in the coarse resolution climate 

data, which can reduce the variance among coarse-resolution landscape cells (Woodcock & 

Strahler, 1987). However, spatial climatic variance may not be underestimated by using coarse 

resolution climate data in areas with low spatial climatic variance because the fine-resolution 

landscape cells have similar climate values to the mean in the coarse-resolution cells (Woodcock 

& Strahler, 1987). 

The magnitude of each climate component varies across the global land surface. Hence, 

we can estimate where using coarse resolution climate data will have the biggest effect on 

climate change impact assessments by first mapping global climate regimes defined by the 

magnitude of each climate component and then evaluating the degree to which using coarse 

resolution climate data will misrepresent each climate component in each climate regime. This 

analysis is one way to identify where using coarse resolution climate data is most likely to affect 

predictive accuracy of climate change impact assessments. 

METHODS 

We mapped different combinations of high and low values of trend, variance, and 

autocorrelation in mean annual temperature across the global land surface (Fig. 4). We estimated 

each of the three climate components using generalized least squares (Supporting Information).  

We estimated spatial trend, variance, and autocorrelation by first dividing the global land 

surface into 31 by 31 km spatial neighborhoods (Box 2). We chose this neighborhood size as a 

compromise between the size of the neighborhood and the computation time required to estimate 
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each climate component in the neighborhood. We estimated the spatial trend, variance, and 

autocorrelation within each neighborhood using estimates of historical annual average 

temperature mapped at a 1 km by 1 km cell resolution (Hijmans et al., 2005). This resolution is 

similar to the area that encompasses a population for many herpetofauna, plants, and small 

mammals (Fig. 1) and is the finest spatial resolution of climate data currently available at a 

global scale. We estimated temporal trend, variance, and autocorrelation using a time series of 

annual average temperature between 1900 and 2010 in each 0.5˚ by 0.5˚ grid cell covering the 

global lands surface (Harris et al., 2014). 

In both the spatial and temporal case, we reclassified estimates of trend, variance, and 

autocorrelation into categorical high and low values using the median value as the cutoff 

between high and low. We then mapped different combinations of the high and low values for 

each climate component to produce maps of eight different global climate regimes for both space 

and time (Fig. 4). For example, a climate with high spatial trend, low spatial variance, and high 

spatial autocorrelation was one of the eight climate regimes (Fig. 4). 

We chose 1000 random locations in each climate regime and estimated the trend, 

variance, and autocorrelation at each location using two resolutions. In the spatial context, we 

used a 1 by 1 km resolution and a 5 by 5 km resolution (Box 2). In the temporal context, we used 

we used a 1-year resolution and a 5-year resolution (Box 2). We could not use coarser 

resolutions because decreasing the resolution also decreases the sample size and estimates of 

trend, variance, and autocorrelation are inefficient with a small sample size. 

We evaluated the root-mean-squared-difference between estimates of each climate 

component made using the original resolution and those made using the coarser resolutions. 

Climate regimes with the highest root-mean-squared-difference for each component are the 
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climate regimes where using coarse resolution climate data has the largest effect on estimates of 

each climate component. We also evaluated the proportion of the 1000 locations that 

overestimated the magnitude of each climate component, which provides an assessment of the 

bias in each climate component caused by using coarse resolution climate data in each climate 

regime. 

SPATIAL RESULTS 

Using coarse resolution climate data had the largest effect on estimates of spatial trend 

and variance in climate regimes with high spatial trend and variance (Fig. 5). Spatial trend and 

variance were underestimated when using coarse resolution climate data in most climate 

regimes. In contrast, coarse climate data overestimated spatial autocorrelation in all climate 

regimes (Fig. 5). This overestimation was particularly high in two climate regimes:  (1) low 

trend, high variance, and low autocorrelation; and (2) high trend, low variance, and low 

autocorrelation. 

TEMPORAL RESULTS 

The effect of using coarse resolution climate data was largest in climate regimes with low 

temporal trend and high temporal variance (Fig. 5). Using coarse resolution climate data had the 

largest effect on temporal variance in climate regimes with high temporal variance and low 

temporal autocorrelation and the smallest effect in climate regimes with low temporal variance. 

Temporal variance was underestimated in all climate regimes when using coarse resolution 

climate data. Temporal autocorrelation was overestimated by a similar amount in all climate 

regimes when using coarse resolution climate data. 
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WHERE AND HOW COULD IMPACT ASSESSMENTS BE AFFECTED 

The above results suggest that using climate data with a coarse spatial resolution could 

have the largest effect on the results of climate change impact assessments in climate regimes 

with high spatial trend and high spatial variance (Fig. 5). These climate regimes are common in 

mountainous areas around the globe such as western North and South America (Fig .4). Climate 

change impact assessments in these climate regimes could overestimate the rate at which species 

will need to move to track suitable climates by underestimating the spatial trend (Loarie et al., 

2009). They could also overestimate local extinction risk by underestimating the spatial climatic 

variance, which could underestimate the number of potential climate refugia (Randin et al., 2009; 

Gillingham et al., 2012; Lenoir et al., 2013). Indeed, estimates of population persistence of high-

elevation plants were most affected by using coarse resolution climate data in areas with high 

spatial variance in temperature (Randin et al., 2009). 

Using climate data with a coarse spatial resolution could have the smallest effect in 

climate regimes with low spatial trend and low spatial variance. These climate regimes are 

common in flat regions around the globe such as the Great Plains of North America and the 

Pampas region of South America (Fig. 4). 

Using climate data with a coarse temporal resolution could have the largest effect on 

climate change impact assessments in climate regimes with high temporal variance. Climates 

with high temporal variance occur in the northern half of the northern hemisphere (Fig. 4). 

Climate change impact assessments in these areas could overestimate the rate of evolution 

(Lynch & Lande, 1993; Burger & Lynch, 1995) or the ability of species to shift their ranges 

under climate change (Early & Sax, 2011; Canning-Clode et al., 2011) by underestimating the 

temporal variance in climate. 
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Figure 4. The location of different climate regimes based on spatial (upper subpanel) and 

temporal (lower subpanel) climatic variation. The climate regimes are defined using different 

combinations of high (H) and low (L) values of climatic trend, variance, and autocorrelation in 

mean annual temperature.  Geographical patterns in the climate regimes are robust to our choice 

of climate data (Supporting Information Fig. S1). 
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Figure 5. The effect of using coarse resolution climate data on estimates of climatic trend, 

variance, and autocorrelation. Colored bars represent different climate regimes based on 

combinations of high (H) and low (L) values of each climate component. The locations of these 

climate regimes are mapped in Fig. 4. Each bar represents the root-mean-squared-difference 

between estimates of the climate component using fine and coarse resolution climate data. The 

hatching and number above each bar represent the proportion of estimates that were positively 

biased when using coarse resolution climate data.  
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Conclusion 

A rich literature exists on the effects of environmental trend, variance, and 

autocorrelation on population dynamics, adaptation, and extinction risk. However, our review 

suggests that these components of climate are being misrepresented in many climate change 

impact assessments because most studies use climate data with a coarse spatial and temporal 

resolution. By using coarse resolution climate data, climate change impact assessments are 

estimating species responses to climate change on coarse scales that do not accurately capture 

their exposure to important components of climate. This issue is especially problematic for the 

majority of organisms on earth that have short dispersal distances like we showed for many 

reptiles, amphibians, and plants. 

Climate data is currently available with a fine temporal resolution (e.g., hourly) and we 

recommend that climate change impact assessments begin to incorporate climate data with 

temporal resolutions at least as fine as the generation time of the focal species. However, climate 

data with an appropriate spatial resolution is unavailable for the vast majority of species with 

short dispersal distances. Using coarse resolution climate data may not be as problematic in all 

areas of the globe. We offer some guidance on where using coarse climate data may have 

minimal effect on climate change impact assessments and where researchers should use caution. 

We focused on average annual temperature with a 1 km by 1 km or annual resolution, but our 

framework could also be applied to other weather variables and other resolutions. For example, 

daily and seasonal variation can be important to the evolution of species traits (Chan et al., 

2016). 

We have provided guidance on where using coarse climate data is likely to have the 

biggest effect on climate change impact assessments based on properties of the regional climate. 
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More research is needed to determine how to choose the appropriate resolution of climate data to 

match the traits of the focal species and the type of climate change impact assessment being 

employed. It is unlikely that there is a single resolution that will be appropriate for any given 

species. Moreover, it is unlikely that downscaling methods will allow for the accurate 

downscaling of climate data to scales necessary for detailed physiological models (Potter et al., 

2013; Bennie et al., 2014). However, research to understand how coarse resolution climate data 

will affect climate change impact assessments and for what species can help identify key 

uncertainties and ensure that policy decisions are based on sound model results. 
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Box 1:  Scaling Climate Data to Focal Species 

 Two scaling factors will affect how climatic trend, variance, and autocorrelation are 

represented in both temporal and spatial climate data:  the neighborhood size and the resolution 

(Chou, 1991). For space, the neighborhood size is the study area and the resolution is the grid-

cell size (Fig. B1a). For time, the neighborhood size is the focal time period and the resolution is 

the time between observations (Fig. B1b). 

The definition and magnitude of climatic trend, variance, and autocorrelation can differ 

depending on the neighborhood size and resolution of the climate data. Consequently, the 

neighborhood size and resolution of climate data can greatly affect how climatic trend, variance, 

and autocorrelation are represented in climate change impact assessments. 
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Fig. B1a provides an example of how the spatial neighborhood size and resolution can 

differ between two species with very different dispersal abilities:  a mammal (Red Fox, Vulpes 

vulpes) and an annual plant (Cow Wheat, Melamoprum lineare). We scaled the spatial resolution 

to the area that encompasses a population for the two species. We scaled the spatial 

neighborhood to include 15 population areas in each cardinal direction from the center cell. This 

spatial neighborhood includes the landscape cells that are most likely to influence the population 

in the center cell over 15 generations (i.e., landscape cells that individuals from the population in 

the center cell could access and landscape cells that could contribute immigrants to the center 

cell over 15 generations via natal dispersal). 

The spatial resolution and neighborhood size is 68 times greater for the Red Fox than for 

the Cow Wheat (Fig. B1a). This difference in the spatial scaling between the two species results 

in differences in how the species might experience climate and thus respond to climate change. 

For example, Cow Wheat will experience higher spatial trend within its spatial neighborhood 

(Fig. B1a), suggesting that populations of Cow Wheat may need to move shorter distances to 

track suitable climates under climate change in this region. The spatial trend also differs in 

direction between the two species: temperature increases from south to north for the Red Fox and 

from southwest to northeast for the Cow Wheat (Fig. B1a). Hence, the direction of range shifts 

under climate change may differ between the two species in this region. The Red Fox will 

experience more spatial variance and autocorrelation in its spatial neighborhood, which increases 

the likelihood that local climate refugia will exist for Red Fox in this region (Randin et al., 

2009). 

Fig. B1b shows an example of how the temporal neighborhood size and resolution can 

differ between the same two species, which have different generation times. W scaled the 
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resolution of the time series to one generation and the neighborhood size to include 21 

generations. 

The neighborhood size and resolution is five times greater for the Red Fox than for Cow 

Wheat. This difference in temporal scaling affects how each species is likely to experience 

climate change over time. Cow Wheat will experience more temperature change (i.e., temporal 

trend) over the 21 generations (Fig. B1b). Consequently, Cow Wheat might need to adapt more 

or shift its range further per generation than the Red Fox to cope with climate change. Cow 

Wheat will also experience more temporal variance and less temporal autocorrelation than the 

Red Fox. These differences in variance and autocorrelation can affect the ability of the species to 

shift their ranges and evolve adaptations to climate change (Burger & Lynch, 1995; Burger & 

Krall, 2004; Early & Sax, 2011). 

Models that account for other traits and other important climate variables are necessary to 

determine if differences in how the species experience climate will result in different responses 

to climate change. However, many studies suggest that differences in how species experience 

climate will affect their responses to climate change (Deutsch et al., 2008; Tewksbury et al., 

2008; Palmer et al., 2015). 
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Figure B1. Examples of (a) spatial and (b) temporal climate variation for species with different 

traits. We scaled the spatial resolution (i.e., the grid cell area) to be the area that encompasses a 

population for each species. We scaled the spatial neighborhood to include 15 population areas 

in each cardinal direction from the center cell. We scaled the temporal resolution to one 

generation and the temporal neighborhood to include 21 generations. 
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Box 2:  An Example of the Effects of Resolution on Climate Data 

Fig. B2 provides one example of how using coarse resolution climate data can affect how 

trend, variance, and autocorrelation are represented in the climate data. Both the spatial and 

temporal examples are from the same location in the Cascade Mountains of Washington State 

USA (latitude = 47.3644, longitude = -120.9110). We scaled the fine-resolution spatial example 

to a 1 by 1 km resolution and a spatial neighborhood that includes 15 landscape cells in each 

cardinal direction from the center cell. We scaled the fine-resolution temporal example to a 

resolution of one year and a temporal neighborhood of 60 years. We created the coarse resolution 

examples by increasing the resolution of the climate data by five-fold. The “coarse” resolution in 

these examples is still very fine relative to the resolution of climate data used in many climate 

change impact assessments (Fig. 1). However, this small increase in resolution still affects how 

trend, variance, and autocorrelation are represented in the climate data. In both the spatial and 

temporal examples, increasing the resolution did not affect the trend; however it caused a 

decrease in the variance and an increase in the autocorrelation (Fig. B2). 
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Figure B2  One example of how (a) spatial and (b) temporal resolution can affect estimates of 

trend, variance, and autocorrelation.  
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Estimating climatic trend, variance, and autocorrelation:  a file describing how we estimated 

climatic trend, variance, and autocorrelation in both time and space. 


