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Abstract 

Purpose: Observational studies are prone to (unmeasured) confounding. Sensitivity analysis 

of unmeasured confounding typically focus on a single unmeasured confounder. The purpose 

of this study was to assess the impact of multiple (possibly weak) unmeasured confounders.  

Methods: Simulation studies were performed based on parameters estimated from the British 

Women’s Heart and Health Study, including 28 measured confounders and assuming no 

effect of ascorbic acid intake on mortality. In addition, 25, 50, or 100 unmeasured 

confounders were simulated, with various mutual correlations and correlations with measured 

confounders.  

Results: The correlated unmeasured confounders did not need to be strongly associated with 

exposure and outcome in order to substantially bias the exposure-outcome association at 

interest, provided that there are sufficiently many unmeasured confounders. Correlations 

between unmeasured confounders, in addition to the strength of their relationship with 

exposure and outcome, are key drivers of the magnitude of unmeasured confounding and 

should be considered in sensitivity analyses. However, if the unmeasured confounders are 

correlated with measured confounders, the bias yielded by unmeasured confounders is partly 

removed through adjustment for the measured confounders.  

Conclusions: Discussions of the potential impact of unmeasured confounding in observational 

studies, and sensitivity analyses to examine this, should focus on the potential for the joint 

effect of multiple unmeasured confounders to bias results. 

 

Key words:  bias; confounding; sensitivity analysis
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Introduction 

Associations between exposures and health outcomes estimated in observational studies are 

prone to confounding. Observed confounders can be adjusted for in the analysis, but 

unmeasured and residual confounding can still bias estimated effects. For example, in a large 

cohort study ascorbic acid (vitamin C) was found to reduce all-cause mortality by 52% (RR 

0.48, 95%CI 0.33-0.70, comparing highest with lowest quintile of ascorbic acid intake),1 after 

adjustment for measured confounders (age, sex, body mass index (BMI), smoking status, 

systolic blood pressure, serum cholesterol, diabetes and vitamin C supplement use). Since this 

effect was not found in randomized trials (e.g. RR 1.00, 95%CI 0.94-1.06, for vitamin C 

supplementation vs. placebo),2 it was disputed whether the observational study result was 

biased by unmeasured confounding by e.g. socioeconomic status or dietary habits.3-5  

 

Publications describing methods for sensitivity analysis of unmeasured confounding typically 

focus on the impact of a single confounding variable.6-15 It is often assumed that only a 

variable with a strong association with both exposure and outcome can materially confound 

the association under study. For example, in an observational study of influenza vaccine 

effectiveness, sensitivity analysis of unmeasured confounding was conducted by simulating a 

single unmeasured confounder under a wide range of scenarios. The authors concluded that 

“… our sensitivity analyses indicate how our estimates of vaccine effectiveness would be 

lower, though still significant, after adjustment for the effect of a strong hypothetical 

unmeasured confounder”.16 Similarly, a sensitivity analysis suggested that odds ratios between 

a confounder and both exposure and outcome would need to be at least 2.8 to nullify a 

positive association between use of a telephone health coaching service and hospital 

emergency admission rates. The authors concluded that unmeasured confounding was an 
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unlikely explanation because “… the amount of unobserved confounding would have had to 

be greater than is realistic for clinical variables”.17  

 

In the example of ascorbic acid intake and mortality, one can evaluate scenarios of a single 

binary unmeasured confounder that could cause the observed relation (OR 0.48) between 

ascorbic acid intake and mortality, if there were in truth no association. Several of such 

scenarios are shown in Figure 1 (based on the method described by Lin, Psaty, and 

Kronmal8). For example, an unmeasured binary confounder that is present in 25% of the 

population, increases the odds of the outcome seven times (OR 7), and is negatively 

associated with exposure (OR 0.2) would lead to an observed relation of OR 0.48, even 

though there were no association. Confounders that have such strong relations with exposure 

and outcome and are relatively common are probably known. Therefore, it may be hard to 

imagine that such a confounder exists, yet is unmeasured. This may therefore suggest that it is 

unlikely that the observed relation between ascorbic acid intake and mortality is due to 

unmeasured confounding. 

 

<< FIGURE 1 >> 

 

However, multiple unmeasured “weaker” confounders (i.e. each with a small association with 

both exposure and outcome) may, together, yield considerable confounding bias. These 

different representations of unmeasured confounding are displayed in Figure 2. The sufficient 

set of variables to control for confounding includes the set of measured confounders (Z) as 

well as the set of unmeasured confounders (U).18 The set of unmeasured confounders could 

consist of multiple variables (e.g., u1 – u4). The possibility that there could be multiple 

(unmeasured) confounders for any given association has been confirmed by the finding that 
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many measured subject characteristics/confounders in cohort studies are associated with one 

another, much more than would be anticipated by chance.19 Although multiple unmeasured 

confounders can be summarized into a single variable,6,8 this may be hard to conceptualize 

and the literature provides little guidance on how to construct such a summary. 

 

<< FIGURE 2 >> 

 

We argue that focusing on a single unmeasured confounder may distract from the possibility 

that multiple (possibly weak) unmeasured confounders can have a large joint effect. 

Therefore, methods or sensitivity analyses to quantify the impact of unmeasured confounding 

should also consider scenarios of multiple unmeasured confounders. Here, guidance is 

provided and sensitivity analysis of multiple unmeasured confounders is illustrated by an 

example of ascorbic acid intake and mortality. 

 

 

The bias due to multiple confounders 

The magnitude of the bias due to a confounder of the exposure-outcome association depends 

on: 1.) the strength of the association between confounder and exposure; 2.) the strength of 

the association between confounder and outcome; and 3.) the prevalence of the confounder in 

the population (for categorical confounders) or its variance (for continuous normally 

distributed confounders).8 The direction of the bias depends on the signs of the association 

between the confounder and the exposure and outcome.20 As the variance of a continuous 

confounder increases, so does the magnitude of the bias due to confounding.  
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The joint confounding effect of two continuous confounders depends on: 1.) the strength of 

the associations with exposure for each of the confounders; 2.) the strength of the associations 

with the outcome for each of the confounders; 3.) the variance of each of the confounders; and 

4.) the covariance between the confounders. This follows from the fact that the variance of the 

combination of two continuous confounders is given by: 

 

varA+B = varA + varB + 2covAB 

 

where varA and varB indicate the variance of the continuous confounders A and B, 

respectively, and covAB the covariance between these confounders. Similarly, the variance of 

the combination of more than two confounders can by calculated taking each pairwise 

covariance into account. Because the confounding effect of a continuous confounder depends 

on the variance of that confounder, the joint effect of multiple confounders depends on the 

variance of each of the confounders as well as their covariance. For example, the total 

confounding effect by two confounders that are positively correlated will be larger than the 

confounding effect by the two confounders if they were independent. Conversely, if two 

confounder are inversely correlated (i.e., negative covariance) the biases they introduce may 

(partly) cancel out.  

 

When there are several confounders, all with the same direction of effect with exposure, and 

all with the same direction of effect on the outcome, the effect estimate that is adjusted for a 

subset of these confounders (‘partially adjusted’) will be closer to the true exposure-outcome 

association than the unadjusted estimate.21 However, if the effects of some of the confounders 

on either exposure or outcome are in different directions, the partially adjusted estimate can 

actually be further away from the true exposure-outcome association than the unadjusted 
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estimate, particularly if the confounders are weakly correlated with one another. When the 

confounders are highly correlated, there is little confounding bias remaining after adjustment 

for a subset of the confounders, irrespective of the direction of confounding.21 This is 

illustrated in Figure 3.  

 

<< FIGURE 3 >> 

 

If all confounders are considered unmeasured, the amount of bias is inversely proportional to 

the variance of the exposure variable. Hence, as the variance in the exposure increases (or the 

proportion of variance explained by confounders, R2, decreases), the bias due to unmeasured 

confounding will decrease. If a subset of the confounders is considered unmeasured, 

obviously only the measured confounders can be adjusted for in the analysis. In that case, the 

bias is inversely proportional to the variance of the exposure variable and proportional to the 

variance of the combination of the unmeasured confounders, which decreases as the number 

of confounders that is adjusted for increases. The actual shape of the curve of the relation 

between the number of confounders that is adjusted for and the residual bias is a multipart 

function of the number of confounders that is adjusted for, the mutual correlation between the 

confounders, and the variance of the exposure variable (details in Appendix A). 

 

Informally, one could say that after adjustment for several correlated confounders, adding 

more confounders to the adjustment model will not make much difference, since the 

information captured by these new confounders is already part of the confounders included in 

the adjustment model. After including a number of confounders in the adjustment model, the 

exposure-outcome association indeed often appears to stabilize (little change in the estimate 

of the exposure-outcome association is observed when additional confounders are added).22,23 
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This implies that all (important) confounders are included in the model, if confounders are 

highly correlated. This relative stabilization of the exposure-outcome association upon 

adjustment for an increasing number of confounders clearly depends on the joint association 

between confounders. Note that if the unmeasured confounders are independent of the 

confounders that are included in the adjustment model, the observed stabilization falsely 

suggests absence of unmeasured confounding. 

 

 

Sensitivity analysis of multiple unmeasured confounders 

The Text box provides a description of the different steps that are needed when performing a 

sensitivity analysis of unmeasured confounding, when this unmeasured confounding may be 

the result of multiple unmeasured confounders. We stress that, as with any sensitivity 

analysis, it is necessary to make assumptions about the unmeasured confounders. The value of 

the analysis is therefore dependent on the quality of those assumptions. Even when supported 

by e.g., scientific literature these remain assumptions.  

 

This approach is illustrated by the example of ascorbic acid intake and the risk of mortality. 

The number of unmeasured confounders, as well as their characteristics are varied. However, 

we assumed all unmeasured confounders to be normally distributed variables, which is an 

approach others have taken before.8 
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Text box. Step by step guidance on sensitivity analysis of multiple unmeasured 

confounders. 

 

0. Based on the empirical data: 

a. Derive the distributions of measured confounders, exposure, and outcome  

b. Obtain estimates of the relations (e.g. covariance) between confounders 

c. Obtain estimates of the relations between confounders and exposure 

d. Obtain estimates of the relations between confounders and outcome 

1. Make assumptions about the unmeasured standardised confounders, in particular specify: 

a. The number of unmeasured confounders 

b. The correlations between confounders and exposure 

c. The correlations between confounders and outcome 

d. The correlations between unmeasured confounders  

e. The correlations between unmeasured confounders and measured confounders 

2. Simulate unmeasured confounders based on the assumptions made in step 1 

3. Evaluate the exposure-outcome relation, accounting for the (simulated) unmeasured as 

well as the measured confounders 

4. Repeat steps 1-3 for various scenarios 

5. Discuss the plausibility of those scenarios for which the exposure-outcome association 

estimated in step 3 is consistent with the null, to answer the question “If in truth the 

exposure does not cause the outcome, how much unmeasured confounding needs to be 

present to find the observed exposure-outcome relation?” 
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Example: ascorbic acid intake and risk of mortality 

We used simulated data to illustrate the bias caused by the joint effect of multiple unmeasured 

confounders. The basis for these data was the example of the study of the association between 

ascorbic acid intake and all-cause mortality. The parameters of the simulation are based on 

empirical data from the British Women’s Heart and Health Study (BWHHS), see Appendix B 

for details.3,5,24 These data were used to inform this simulation study on the impact of 

unmeasured confounding and not to draw causal conclusions. To provide realistic 

distributional assumptions for our simulation, we used baseline information on these women 

measured at inclusion in the cohort (1998 – 2000), together with follow-up data on mortality 

until September 30, 2007. For our simulations we used information on 28 confounding 

variables (based on the list in 4 and known risk factors for mortality), including demographic 

characteristics, socioeconomic indicators, behavioural and lifestyle risk factors, biomarkers, 

co-morbidity status, and medication use. The distribution of confounding variables among 

ascorbic acid groups is presented in Table A1 in Appendix B. The (Pearson) correlations 

between the confounding variables that are listed in Table A1 ranged between -0.37 and 0.46 

(95% of the observed correlations between -0.17 and 0.28). Associations between the 

confounding variables and ascorbic acid and mortality are presented in Table A2 in Appendix 

B.  

 

Simulation study  

For all simulations and analyses we used R for windows, version 3.0.3.25 We simulated 

datasets of 200,000 subjects in order to reduce simulation error. First, the 28 confounders 

were drawn from the multivariate normal distribution based on the BWHHS-based 

distributions given in Table A1 (Appendix B), using the function mvrnorm() from the library 

MASS. Six out of 28 confounders were continuous variables (age, body mass index (BMI), 
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leg-trunk ratio, systolic blood pressure, serum HDL cholesterol level, and serum LDL 

cholesterol level) and these were transformed into z-scores and assumed to be normally 

distributed. To create the 22 dichotomous confounders, continuous variables were created by 

again sampling from the multivariate normal distribution. Then, these continuous variables 

were dichotomized at zero. By fixing the mean of the continuous variable, the proportion of 

subjects in whom the dichotomous confounder is present can be controlled, while 

approximating the predefined (tetrachoric) correlation with other variables.  

 

To assess the impact of unmeasured confounding, we generated 25, 50, or 100 “unmeasured 

confounders” in addition to the 28 confounders that were observed in the BWHHS cohort. 

They were standard normally distributed variables and also sampled from a multivariate 

normal distribution. The Pearson correlation between the unmeasured confounders was varied 

between 0 and approximately 0.15. The unmeasured confounders were either completely 

independent of the measured confounders, or the correlation between the unmeasured and the 

28 measured confounders was the same as the correlation between the unmeasured 

confounders (e.g., if the correlation between unmeasured confounders was set at, say, 0.05, 

the correlations between the measured and unmeasured confounders was also set at the value 

0.05).  

 

After generating the measured and unmeasured confounders, the binary exposure was 

simulated by the following logistic model, which includes n confounders (28 measured 

confounders + 25, 50, or 100 unmeasured confounders): 

 

logit(pi,x) = a0 + a1confounder1 + a2confounder2 + …. + anconfoundern   
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The exposure was simulated by sampling from a Bernoulli distribution with pi,x the 

probability of success. For the measured confounders in this model, the coefficients of the 

model were based on the conditional associations between the confounders and ascorbic acid 

status observed in the BWHHS data (listed in Table A1 in Appendix B). For the unmeasured 

confounders in the model, the coefficient was varied between –log(1.01) and –log(1.25), in 

order to induce a negative confounding effect. Because our aim was to assess the maximum 

impact of multiple unmeasured confounders, we only considered scenarios in which the 

effects of the unmeasured confounders were in the same direction: if the effects of the 

unmeasured confounders were in opposite directions their joint confounding effect would be 

smaller. The coefficient a0 was set at 0.87 to arrive at a prevalence of exposure (highest vs. 

lowest quartile of ascorbic acid intake) of approximately 50%.  

 

Next, the binary outcome was simulated by the following logistic model, which includes the 

exposure and the same n confounders as in the exposure model: 

 

logit(pi,y) = b0 + bxexposure + b1confounder1 + b2confounder2 + …. + bnconfoundern  

 

The outcome was simulated by sampling from a Bernoulli distribution with pi,y the probability 

of success. For the measured confounders, the coefficients of the model were based on the 

conditional associations between the confounders and the mortality observed in the subsample 

of the BWHHS data (Table A2 in Appendix B). For the unmeasured confounders in the 

model, the coefficient was varied between log(1.01) and log(1.25). The effects of the 

unmeasured confounders were in the same directions for the reasons described above. The 

exposure effect (bx) was set at 0 (i.e., OR=1.00), indicating no association between ascorbic 

acid intake and mortality risk. The coefficient b0 was set at -2.37, such that an event occurred 
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in approximately 20% of the simulated subjects, which is in line with the mortality rate 

observed in the subsample of the BWHHS cohort.  

 

Analysis 

After simulating the datasets, the impact of unmeasured confounding was evaluated. In each 

simulated dataset, the effect of ascorbic acid on mortality was estimated by logistic regression 

analysis. The 28 confounders listed in Table A1 in Appendix B were considered measured 

and adjusted for by including them as covariates in the logistic regression model. The other 

simulated confounders were considered unmeasured and hence omitted from the adjustment 

model. In line with the motivating example, we simulated scenarios where the true odds ratio 

for the ascorbic acid-mortality association was 1.0, but that yielded an odds ratio of the 

ascorbic acid–mortality association of approximately 0.48 after adjustment for the 28 

measured confounders. An annotated excerpt of the simulation code is provided in Appendix 

C. 

 

 

Results 

Figure 4 shows the impact on the relation between ascorbic acid intake and mortality of 

consecutively adding confounders to the adjustment model. For this figure, a scenario was 

considered in which in addition to 28 measured confounders there were 25 additional 

unmeasured confounders. When all additional confounders are considered unmeasured (left 

side of graph), the bias of the exposure-outcome association depends on the correlation 

between the confounders (as explained above). This bias decreases as the number of 

confounders that is adjusted for increases.  
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<< FIGURE 4 >> 

 

In Figure 5, the results are presented for scenarios in which all the unmeasured confounders 

have the same mutual correlation, yet they are independent of the measured confounders. 

Hence, there is no indirect adjustment for the unmeasured confounders by the measured 

confounders. In this scenario, the estimated OR decreases with increasing correlation between 

the unmeasured confounders. Correlated unmeasured confounders do not need to be strongly 

associated with exposure and outcome in order to bias the exposure/outcome association 

considerably, provided that there are sufficiently many of them.  

 

<< FIGURE 5 >> 

 

In the scenarios presented in Figure 6, the unmeasured confounders have the same mutual 

correlation, which is equal to their correlation with the measured confounders. As the number 

of unmeasured confounders increases, the association with both exposure and outcome that is 

required in order to observe the biased association (OR=0.48) between ascorbic acid intake 

and mortality becomes smaller. For correlations between the confounders of 0.05 and higher, 

the required association of the unmeasured confounders with exposure and outcome stabilized 

(ORs of approximately 1.18, 1.10, and 1.05 for the association of the unmeasured 

confounders with both exposure and outcome in case of 25, 50, and 100 unmeasured 

confounders, respectively). This stabilization is due to a trade-off between increased bias 

caused by increasing correlations between the unmeasured confounders and decreased bias 

caused by indirect adjustment for the unmeasured confounders by the measured confounders.  

 

<< FIGURE 6 >> 
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Discussion 

Our study, based on empirical data, shows that the bias caused by multiple unmeasured 

confounders can be substantial, even if these unmeasured confounders are themselves only 

weakly associated with exposure and outcome. This especially holds true if the unmeasured 

confounders are mutually correlated and independent of the measured confounders (the latter 

are adjusted for in the analysis). However, if the unmeasured confounders are also correlated 

with measured confounders and the correlations are all in the same directions, the bias by 

unmeasured confounders is partly reduced through adjustment for the measured confounders.  

 

Various sensitivity analyses have been proposed.6-15 Some focus on unmeasured confounding 

only,7-11,13-15 whereas in other publications an encompassing framework for unmeasured and 

poorly measured confounding, together with measurement error and other sources of bias 

sensitivity analyses is proposed.6,12 Often sensitivity analyses of unmeasured confounding 

focus on a single unmeasured variable.7-10 Consequently, when thinking about the potential 

for unmeasured confounding in observational studies, researchers will often have a single 

unmeasured variable in mind. If sensitivity analysis then indicates that the unmeasured 

variable needs to have associations with exposure and outcome so strongly that it is deemed 

unrealistic that such a confounder exists, it is argued that the potential for unmeasured 

confounding is probably small.17 Our study shows that this approach can be inappropriate and 

implies that discussions of the potential impact of unmeasured confounding in observational 

studies, and sensitivity analyses to examine this, should focus much more on the potential for 

the joint effect of multiple unmeasured confounders. 

 

The potential impact of unmeasured confounding has also been assessed by others, using 

either empirical or simulated data.7-11 Our simulations were based on an empirical dataset 
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from the BWHHS cohort. This can be considered a limitation, since it hampers 

generalizability of our findings. On the other hand it shows how such simulations can be used 

as a sensitivity analysis of unmeasured confounding within a real applied study where there is 

concern about unmeasured confounding. With a realistic set of assumptions about the number 

and distribution of unmeasured confounders, we were able to replicate the OR that was 

observed in the motivating example (OR 0.48). Thus, the observed association between 

circulating ascorbic acid and all-cause mortality in the BWHHS (and similar results in other 

cohort studies) could be plausibly due to unmeasured confounding. A discussion about which 

participant characteristics could be the reason for this confounding effect or about other 

possible reasons for the observed association (e.g. measurement error) is beyond the scope of 

this manuscript. 

 

The current study shows how sensitivity analysis of multiple unmeasured confounders can be 

implemented using empirical data. We stress that in our simulations the confounding effects 

of all unmeasured confounders have the same direction, which allowed us to assess the 

maximum impact of these unmeasured confounders. This worst-case scenario is relevant for 

sensitivity analysis, even if it may not reflect reality completely. 

 

Importantly, the impact of unmeasured confounders depends on their correlation with the 

measured confounders that are already adjusted for in the analysis. In observational studies, 

confounders are almost always mutually related.19 We therefore consider the simulated 

scenario in which the unmeasured confounders are related to the measured confounders more 

realistic than the scenarios in which the two sets of confounders were assumed to be 

independent.  
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A limitation of our approach is that we focused on binary outcomes that are analyzed using 

logistic regression, while in empirical research often time-to-event data are analyzed. For a 

single unmeasured confounder, the method for sensitivity analysis proposed by Lin, Psaty and 

Kronmal has the same form for logistic models and survival models.8 In both cases, the 

observed association between exposure and outcome is multiplied by a factor that represents 

unmeasured confounding. Our approach can be likewise extended to time-to-event data, in 

which case time-to-event (or censoring), as well as the outcome status would need to be 

simulated.26  

 

In our simulations, we evaluated unmeasured confounding as a possible reason for the 

discrepancy between randomized and nonrandomized studies regarding the effect of ascorbic 

acid on mortality. Other reasons for this discrepancy include (differential) misclassification of 

the exposure or confounders, selective loss to follow-up, missing data and different durations 

of ascorbic acid exposure. Randomized controlled trials assess incident administration of a 

treatment, whereas cohort studies rarely examine exposure in that way.27 In our example, 

blood measures of ascorbic acid should be a reasonable proxy for incident (current/baseline) 

intake of ascorbic acid.  

 

We conclude that discussions of the potential impact of unmeasured confounding in 

observational studies – either etiological or non-randomized intervention studies – should 

focus much more on the joint effect of multiple unmeasured confounders. In addition to the 

strength of the associations of the unmeasured confounders with exposure and outcome, their 

mutual correlation is a key driver of the magnitude of bias resulting from unmeasured 

confounders. We support the recommendation by others,6,8-12 that researchers of observational 

studies should routinely perform sensitivity analysis of (multiple) unmeasured confounders in 
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order to guide the discussion on the possible direction, magnitude and impact of these. Expert 

knowledge of the particular research question should be used to guide values for the plausible 

number, correlation and associations of potential unmeasured confounders to be used in such 

sensitivity analyses.  
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FIGURES 

 

Figure 1. Scenarios of unmeasured confounding of the relation between ascorbic acid intake and 

mortality that nullify the observed relation (OR 0.48). 

Legend Figure 1: 

Based on the method described by Lin, Psaty, and Kronmal.10 The dotted line indicates a 

scenario in which an unmeasured confounder increases the odds of the outcome seven times, 

is negatively associated with exposure (OR 0.2), and is present in 25% of the population. 
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Figure 2. Causal diagrams of unmeasured confounding.  

Legend figure 2:  

X represents exposure, Y outcome, Z the set of measured confounders, and U represents the set of 

unmeasured confounders (which may consist of multiple ‘weaker’ confounders, u1–u4). 
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Figure 3. Relation between adjustment for a subset of the confounding variables and bias 

of the exposure-outcome relation in simulated data. 

Legend figure 3:  

Graphs are based on simulated data of 20 standard normally distributed confounders (with 

mutual correlation ρ). For each of the confounders, the values of exposure and outcome (both 

continuous, normally distributed) increase by one unit for every unit increase in any of the 

confounders. The explained variance (R2) indicates the variance in the exposure that is 

explained by the 20 confounders; i.e., in scenarios with smaller R2 values, more random error 

is added to the exposure variable, compared to scenarios with larger R2 values. 
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Figure 4. Impact of consecutively adding confounders to the adjustment model on the estimated 

relation between ascorbic acid intake and mortality.  

Legend 

figure 4: 

Results based on simulations. In all scenarios the true association between ascorbic acid intake and 

mortality risk was OR=1. In addition to 28 confounders that were considered measured, there were 25 

additional “unmeasured confounders”, which were all considered unmeasured (no. additional 

confounders = 0) or all considered measured (no. additional confounders = 25). The measured and 

unmeasured confounders were mutually correlated, indicated by Pearson’s correlation (ρ).  
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Figure 5. Overview of scenarios that resulted in a biased association (odds ratio 0.48) between 

ascorbic acid intake and mortality risk. 

Legend 

figure 5: 

In all scenarios the true association between ascorbic acid intake and mortality risk was OR=1. The 

unmeasured confounders were mutually correlated, but independent of the measured confounders.  
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Figure 6. Overview of scenarios that resulted in a biased association (odds ratio 0.48) between 

ascorbic acid intake and mortality risk. 

Legend 

figure 6: 

In all scenarios the true association between ascorbic acid intake and mortality risk was OR=1 and the 

unmeasured confounders were correlated with the measured confounders.  

 


