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Abstract 

Long lasting synaptic plasticity involves both functional and morphological changes, but how these 

processes are molecularly linked to achieve coordinated plasticity remains poorly understood. Cofilin 

is a common target of multiple signaling pathways at the synapse and is required for both functional 

and spine plasticity, but how it is regulated is unclear. In this study, we investigate whether the 

involvement of cofilin in plasticity is developmentally regulated by examining the role of cofilin in 

hippocampal long-term depression (LTD) in both young (2 weeks) and mature (2 months) mice. We 

show that both total protein level of cofilin and its activation undergo significant changes as the brain 

matures, so that although the amount of cofilin decreases significantly in mature mice, its regulation 

by protein phosphorylation becomes increasingly important. Consistent with these biochemical data, 

we show that cofilin-mediated actin reorganization is essential for LTD in mature, but not in young 

mice. In contrast to cofilin, the GluA2 interactions with NSF and PICK1 appear to be required in 

both young and mature mice, indicating that AMPAR internalization is a common key mechamism 

for LTD expression regardless of the developmental stages. These results establish the temporal 

specificity of cofilin in LTD regulation and suggested that cofilin-mediated actin reorganization may 

serve as a key mechanism underling developmental regulation of synaptic and spine plasticity.  

 

1. Introduction 

Plastic changes at glutamatergic synapses are critically important for both brain development and 

function, and deficits in these changes are responsible for a wide range of neurodevelopmental and 

neuropsychiatric disorders. Long-lasting synaptic plasticity, including long-term potentiation (LTP) 

and depression (LTD), a key mechanism for memory formation, involves changes in both synaptic 
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morphology and electrical transmission (also referred to as morphological and functional plasticity 

respectively) (Bliss and Collingridge, 1993; Malenka and Bear, 2004; Lamprecht and LeDoux, 

2004; Alvarez and Sabatini, 2007; Bourne and Harris, 2008). Although extensive studies exist to 

elucidate the molecular mechanisms underlying these two forms of plasticity individually, how these 

changes interact and are coordinated during synaptic remodeling remains poorly understood.  

      In the CA1 region of the hippocampus, where the molecular mechanisms underlying LTP and 

LTD are most extensively studied, the induction of both functional and morphological changes 

requires activation of NMDA receptors (NMDARs) and subsequent Ca2+-dependent signaling 

processes (Bliss and Collingridge, 1993; Malenka and Bear, 2004; Lamprecht and LeDoux, 2004; 

Alvarez and Sabatini, 2007; Bourne and Harris, 2008). Although AMPA glutamate receptors 

(AMPARs), the principal mediator of fast excitatory synaptic transmission, are a major target of 

these signaling processes that express and maintain functional changes (Malinow and Malenka, 

2003; Bredt and Nicoll, 2003; Collingridge et al., 2004; Malenka and Bear, 2004; Shepherd and 

Huganir, 2007; Lüscher and Huber, 2010; Collingridge et al., 2010), the actin cytoskeleton, the 

predominant structural component of the dendritic spine, is believed to be the main determinant that 

governs morphological plasticity (Luo et al., 2002; Cingolani and Goda, 2008; Asrar and Jia, 2013). 

In this regard, we and others have previously shown that Rho GTPase-activated protein kinases, 

including p21-activated kinases (PAK1 and 3), Rho-kinase 2 (ROCK2) and LIM-domain containing 

kinase (LIMK1), are critically involved in both LTP, LTD and associated spine plasticity (Meng et 

al., 2002, 2004; Meng et al., 2005; Asrar et al., 2009; Zhou et al., 2009; Huang et al., 2011; Bosch et 

al., 2014; Todorovski et al., 2015; Nishiyama and Yasuda, 2015). Importantly, these kinases all 

target cofilin, a potent regulator of the actin cytoskeleton (Bernstein and Bamburg, 2010), 

suggesting that cofilin-mediated actin reorganization may serve as a common effector to mediate, 
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and potentially coordinate functional and morphological changes during synaptic remodeling (Meng 

et al., 2003a; Jia et al.,2009; Asrar and Jia, 2013; Rust, 2015). However, how cofilin is regulated 

during plasticity remains largely unknown.   

     In this study, we investigated whether cofilin is regulated during mouse development, a process 

characterized by profound changes in both spine dynamics and functional plasticity, and if so, how 

this developmental regulation impacts its involvement in hippocampal LTD. We provide evidence 

that both cofilin expression/activity and its involvement in hippocampal LTD change dramatically as 

brain matures, suggesting that cofilin-mediated actin reorganization may serve as a key mechanism 

underling developmental regulation of synaptic plasticity. 

 

2. Methods 

 

2.1. Electrophysiology 

Electrophysiological recordings were conducted at the Schaffer/Collateral pathway in the 

hippocampus as previously described (Meng et al., 2002, 2003; Zhou et al., 2011). Briefly, the 

mouse brains of either sex were quickly removed and sagittal 300-400 µm hippocampal slices 

prepared in ice-cold artificial cerebrospinal fluid (ACSF) saturated with 95% O2/5% CO2. ACSF 

contained (in mM): 120 NaCl, 3.0 KCl, 1.2 MgSO4, 1.0 NaH2PO4, 26 NaHCO3, 2.0 CaCl2, and 

11 D-glucose. These acute slices were recovered at 22~26oC for at least 2 hours, then transferred 

to a submersion chamber perfused with 95% O2/5% CO2 saturated ACSF with (for whole-cell 

recordings) or without (for field recordings) 100µM picrotoxin. Perfusion flow rate was set at 

2ml/min. Hippocampal CA1 neurons were visualized using an infrared differential interference 

contrast microscope (Zeiss Axioscope or Olympus X51). Synaptic transmission was evoked at 
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0.05 Hz for field recordings and 0.1 Hz for whole-cell recordings and recorded with glass 

pipettes (3-4 MΩ) filled with either ACSF (for field responses) or the intracellular solution (for 

whole-cell response) containing (in mM) 130 CsMeSO4, 5 NaCl, 1 MgCl2, 0.05 EGTA, 10 

HEPES, 3 Mg-ATP, 0.3 Na3GTP, and 5 QX-314 (pH 7.25) (280-300 mOsm). For whole-cell 

experiments, cells were clamped at -65 mV throughout the experiment. Whole-cell series 

resistance was monitored throughout LTD experiments by applying a -3 mV step at the end of 

each response sweep and the experiment was excluded from analysis if resistance changed by 

more than 20%. For peptide infusion experiments, the lack of the effect of each peptide on basal 

synaptic responses was independently tested by conducting baseline recordings in the presence 

of the peptides for at least 1 hour without LTD induction. Mice at the age of 2 weeks were 

defined as ‘young mice’ and 2-3 months ‘mature mice’. In all recordings using peptides or 

chemicals, control and experimental groups were tested alternately to minimize variables. Field 

EPSP LTD induction protocols used in this study were: low-frequency stimulation (LFS, 900 

pulses at 1Hz), paired-pulse LFS (PP-LFS, 900 pairs of pulses at 1Hz with 50 ms pairing 

interval), NMDA chemical LTD (25 μM for 3 min) and DHPG chemical LTD (100 μM for 10 

min). LTD of whole-cell EPSC recordings was induced by 300 pulses at 1Hz (LFS) or 600 pairs 

of pulses at 1Hz with 50 ms pairing interval (PP-LFS) or 100 μM DHPG perfusion for 10 min. 

Data acquisition and analysis were done using pClamp 10 software (Molecular Devices, USA). N 

in all figures represents the number of slices and at most two slices from each animal were used. 

All recording data were statistically evaluated with Student's t-test.  

 

2.2. Slice treatment and biochemical assays 
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In order to correlate electrophysiological and biochemical data, protein lysates extracted from 

acutely prepared hippocampus were analyzed. The conditions for preparing and maintaining 

hippocampal slices were the same as for electrophysiological recordings. For each experiment, 

slices were recovered for at least 2 hours at room temperature in 95% O2/5%CO2 saturated 

ACSF, then transferred to a treatment chamber for additional 30 min recovery before DHPG 

treatment. The treatment experiments were divided into two groups: slices removed immediately 

before DHPG application were used as untreated control and slices treated with 100 μM DHPG 

for 10 minutes as DHPG treated group. Hippocampal slices were frozen in dry ice/ethanol slurry 

and stored at -20 oC at the end of each treatment. Samples were lysed for 50 minutes in ice-cold 

lysis buffer containing (in mM) 20 Tris pH 7.5, 150 NaCl, 1 EDTA, 1 EGTA, 1% Triton X-100, 

2.5 sodium pyrophosphate, 1 β-glycerophosphate, 1 Na3VO4, 20 NaF, 1 μg/ml leupeptin, 1 

PMSF, and 0.5% protease inhibitor cocktail (Calbiochem) and phosphatase inhibitor (Roche). 

The supernatant was collected by centrifugation at 12,000 rpm (4oC) for 10 minutes. For 

synaptosomal fraction preparation, Hippocampi were isolated, homogenized 0.32M sucrose (in 

HBSS) and transferred to polycarbonate centrifuge tube for centrifugation at 1,000g, 4°C for 10 

minutes to remove the nuclear fraction. The supernatant (S1) was collected and centrifuged at 

13,800g for 10 minutes to separate supernatant (S2) and pellet (P2) that contains 

microsomes/light membranes and crude synaptosomal fractions respectively. The P2 fraction 

was suspended in HBSS and subjected to discontinuous sucrose gradient (1.2M, 1.0M and 

0.85M in HBSS w/o sucrose) centrifugation at 82,500g for 2 hr at 4°C. The synaptosomal 

fraction was then collected from the 1.0M to 1.2M gradient and subsequently centrifuged at 

150,000g for 30 min to obtain the synaptosomal pellet. The pellet was suspended overnight at 

4°C in sample buffer containing (in mM) 50 HEPES, 2 EDTA, 0.5% Triton, 20 NaF, 1 NaVO4 
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and 0.5% protease inhibitor cocktail (Calbiochem) and phosphatase inhibitor (Roche). The 

enrichment of synaptic proteins in synaptosomal fractions was verified using synaptic markers 

synapsin and PSD95. The total protein concentration of each sample was estimated by a BCA 

assay. For each experiment, protein samples (10 µg of total proteins) of each group were loaded 

on SDS gel. Proteins were separated on 12% SDS-PAGE separation gel and electrotransfered to 

a nitrocellulose filter. Filters were then blocked with 2% dry milk or 2% fetal bovine serum in 

TBST (20 mM Tris base, 9% NaCl, 0.1% Tween-20, pH 7.6) and incubated overnight at 4oC 

with cofilin or p-cofilin antibodies in TBST. After washing and incubated with appropriate 

secondary antibodies, membranes were extensively washed with TBS and subjected to 

chemiluminescence signal detection using a Pierce HRP kit. Band intensity was analysed using 

the AlphaEaseFC software. GAPDH was used as the protein loading control. Primary antibodies 

included anti-cofilin (CST), anti-p-cofilin (CST), anti-ADF (Sigma) and anti-GAPDH (Santa 

Cruz Biotechnology).  N in the summary data represents the number of independent experiments.  

 

2.3. Peptides and chemicals 

The mice (C57BL6) were housed and maintained under a standard 12/12 light/dark cycle 

condition. All the procedures used for this study were approved by the animal care committees at 

the Hospital for Sick Children, Canada and Southeast University, China. The drugs were 

purchased from Tocris (UK) and/or Sigma Aldrich (Canada and China). Active peptides 

pepEVKI (YNVYGIEEVKI) that blocks the GluA2-PICK1 interaction and its control pepSVKE 

(YNVYGIESVKE), active pep2m (KRMKVAKNAQ) that blocks GluA2-NSF interaction and 

its control pep4c (KRMKVAKSAQ), were purchased from Tocris (UK). Peptides S3 

(MASGVAVSDGVIKVFN) that inhibits cofilin phosphorylation and pS3 
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(MASpGVAVSDGVIKVFN) that inhibits cofilin dephosphorylation were synthesized by APTC 

peptide synthesis facility (The Hospital for Sick Children, Canada) and GenScript (China). 100X 

peptide stock aliquots were added to the intracellular solution immediately before recording 

experiments. 

 

3. Results 

3.1. Both protein level and activity of cofilin is developmentally regulated  

Cofilin is a potent regulator of actin reorganization, and its activity is stringently regulated by 

protein phosphorylation at serine3, primarily by LIMK1/2 (Arber et al., 1998; Yang et al., 1998; 

Bamburg, 1999; Govek et al., 2005; Bernard, 2007). We and others have previously shown that 

cofilin-dependent actin changes are required for spine regulation and hippocampal plasticity, in 

particular LTD (Meng et al., 2002; Jia et al., 2009; Rust et al., 2010; Huang et al., 2011; Zhou et 

al., 2011; Eales et al., 2014; Todorovski et al., 2015; Liu et al., 2016), but whether its 

involvement in these processes is developmentally regulated remains unknown. This is an 

important question because LTD is strongly affected by the developmental stages of the brain 

(Kemp et al., 1999; 2000; Fitzjohn et al., 2001). To investigate this issue, we analyzed total and 

phosphorylated (inactive) form of cofilin (p-cofilin) in both young (2 weeks) and mature (2 

months) mice using antibodies specific to total and phosphorylated cofilin respectively. As 

shown in Fig. 1A, the total protein level of cofilin was much lower in mature compared to young 

mice (0.44±0.05, n=16, p<0.001). Interestingly, the level of p-cofilin was also lower in mature 

compared to young mice (0.31±0.05, n=14, p<0.001). Analysis of the ratio of p-cofilin vs cofilin 

indicated that the relative amount of p-cofilin per unit cofilin was significantly lower in mature 

mice (Fig. 1B, p-cofilin/cofilin: 0.59±0.06, n=14, p<0.001 compared with young mice). These 
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results suggest that although young mice have high levels of cofilin expression, which may 

underlie a more dynamic nature of the synapse and spine at this age, its regulation by protein 

phosphorylation/dephosphorylation may play a more pronounced role at the more stable, mature 

synapse, due to limited amount of total cofilin expressed at this age. Rapid activation and 

inactivation of cofilin by protein dephosphorylation and phosphorylation are consistent with its 

role in synaptic plasticity that requires rapid changes in the actin cytoskeleton in response to 

neuronal activities. 

     Because the protein lysis conditions that we used in above experiments were relatively mild 

(1% Trinto), it was possible that some cofilin might be associated with insoluble materials in the 

pellet that was discarded during protein extraction, and this portion of cofilin might contribute to 

the differences in cofilin between young and mature mice. To test this possibility, we also 

analyzed the pellet fraction, but the results were similar to those obtained from the soluble 

fraction (Fig. 1C, cofilin: 0.30±0.04, n=8, p<0.001; pcofilin: 0.35±0.06, n=8, p<0.001), 

indicating that the differences in cofilin level between young and mature are not likely due to its 

differential ability to be extracted or to be associated with actin filaments or other insoluble 

materials. To determine if these developmental changes in cofilin occurred at the synapse, we 

analyzed synaptosomal fractions and found that, similar to total hippocampal protein lysates, 

both cofilin and p-cofilin (Fig. 1D, cofilin: 0.51±0.09, n=5, p<0.001; pcofilin: 0.26±0.04, n=4, 

p<0.001) as well as p-cofilin/cofilin ratio (Fig. 1E, 0.41±0.06, n=5, p<0.001) were much lower in 

mature than in young mice. Interestingly, the level of ADF, another member of the ADF/cofilin 

family, showed no differences between young and mature mice in either total hippocampal 

lysates (Fig. 1F, 0.95±0.07, n=8, p>0.05) or synaptosomal fractions (Fig. 1G, 0.86±0.07, n=6, 

p>0.05), suggesting that this developmental regulation is specific to cofilin.  
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.  

     To directly investigate whether cofilin activation during plasticity is developmentally 

regulated, we analyzed the effect of the group I mGluR agonist DHPG (100 μM, 10 min) on total 

and p-cofilin in both young and mature mice. As shown in Fig. 1H and I, although the amount of 

total cofilin was not affected by DHPG, p-cofilin was significantly decreased after DHPG 

treatment in both young (Fig. 1H, cofilin: 0.94±0.07, n=5, p>0.05 compared with untreated; p-

cofilin: 0.75±0.09, n=6, p<0.05 compared with untreated) and mature mice (Fig. 1I, cofilin: 

1.08±0.06, n=5, p>0.05 compared with untreated; p-cofilin: 0.64±0.09, n=5, p<0.01 compared 

with untreated). The ratio of p-cofilin vs cofilin (Fig. 1J) was also decreased after DHPG 

treatment in both young (0.80±0.07, n=5, p<0.05 compared with untreated) and mature mice 

(0.60±0.08, n=5, p<0.01 compared with untreated). Interestingly, the degree of changes in both 

p-cofilin and the ratio of p-cofilin vs cofilin was more significant in mature than in young mice, 

suggesting that cofilin regulation by protein phosphorylation and dephosphorylation may play an 

increasingly more important role at the mature synapse.  

 

3.2. LTD can be induced in both young and mature hippocampus by using different protocols 

To investigate developmental regulation of cofilin in hippocampal LTD, we first established 

protocols to induce LTD reliably and consistently in both young and mature mice. As shown in 

Fig. 2A, low frequency stimulation (LFS, 900 pulsed at 1Hz), which is known to induce 

NMDAR-dependent LTD (NMDAR-LTD), elicited a consistent and long-lasting depression in 

young mice (73.7±5.7%, n=6, p<0.05 compared with baseline), but this LFS protocol failed to 

induce a sustained depression in slices obtained from mature hippocampus (102.6 ±5.4%, n=6, 
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p>0.05 compared with baseline). In contrast, as shown in Fig. 2B, the delivery of paired-pulse 

LFS (PP-LFS, 900 paired pulses at 1Hz with a 50 ms inter-pulse interval), readily induced LTD 

in both young (90.7±3.1%, n=9; p<0.05 compared to baseline) and mature hippocampus 

(79.1±3.8%, n=9; p<0.05 compared with baseline).  

     Because PP-LFS may induce both NMDAR-LTD and mGluR-dependent LTD (mGluR-

LTD), we also tested whether LTD could be chemically induced by application of specific 

agonists for NMDARs or mGluRs. To induce NMDAR-LTD, we used a brief (3 min) bath 

application of 25 μM NMDA. As shown in Fig. 2C, this form of LTD was obtained in both 

young and mature mice (young: 44.3±2.7%, n=5; mature: 79.5±3.6%, n=7; p<0.05 compared 

with baseline). To induce mGluR-LTD, we used bath application of 100 μM DHPG (10 min). As 

shown in Fig. 2D, LTD was also obtained in both young and mature mice (young: 72.3±6.5%, 

n=11; mature: 82.1±3.8%, n=7; p<0.05 compared with baseline). Taken together, these results 

indicate that with appropriate induction protocols, LTD can be induced in both young and mature 

hippocampus. The establishment of these protocols had enabled us to test the role of cofilin and 

other proteins in LTD regulation in both young and mature mice.  

 

3.3. NSF and PICK1 are required for LTD in both young and mature hippocampus 

Before we examined the role of cofilin, we first determined whether the LTD that we induced 

was mechanistically similar to that previously characterized. Although NMDAR- and mGluR-

LTD have distinct induction mechanisms, both appear to require the removal of AMPARs at the 

synapse (Malinow and Malenka, 2003; Bredt and Nicoll, 2003; Collingride et al., 2004, 2010; 

Lüscher and Huber, 2010). In particular, protein interactions at the GluA2 C-terminal domain 

with NSF and PICK1 are critical for AMPAR internalization and expression of LTD (Nishimune 
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et al., 1998; Song et al, 1998; Noel et al., 1999; Luthi et al., 1999; Luscher et al., 1999; Xia et al., 

1999; Daw et al., 2000; Kim et al., 2001; Braithwaite et al., 2002; Lee et al, 2002; Seidenman et 

al., 2003; Terashima et al., 2008; Jo et al., 2008; Citri et al., 2010). However, whether the 

involvement of these protein interactions is developmentally regulated is unknow. To address 

this issue, we utilized the GluA2 peptides that specifically disrupt GluA2-NSF and GluA2-

PICK1 interaction respectively in both young and mature hippocampal slices. First, we tested the 

role of the GluA2-NSF interaction using the peptide pep2m that blocks the GluA2-NSF 

interaction and its control peptide pep4c. Consistent with previous reports (Nishimune et al., 

1998; Luthi et al., 1999), the control peptide pep4c had no effect on either basal synaptic 

transmission (Fig. 3A, Ctrl: 98.4±7.5%, n=5, p>0.05 compared to the first 10 min of the 

recordings) or LTD (Fig. 3A, LFS: 67.4±4.1%, n=5, p>0.05 compared to the LTD without any 

peptide) in young mice. The control peptide also showed no effect in mature mice (Fig. 3B, Ctrl: 

100.2±6.1%, n=8, p>0.05 compared to the first 10 min of the recordings; PP-LFS: 54.2±10.7%, 

n=5, p>0.05 compared to the LTD without any peptide). In contrast, pep2m gradually depressed 

basal synaptic transmission (Fig. 3C, Ctrl: 69.0±4.5%, n=5, p<0.05 compared to responses at the 

beginning of the recordings or responses with pep4c). Interestingly, pep2m plus LFS depressed 

synaptic responses to a similar degree as pep2m alone (Fig. 3C, LFS: 75.3±5.4%, n=7; p>0.05 

compared with Ctrl). In mature mice, the active peptide pep2m also depressed basal synaptic 

transmission (Fig. 3D, Ctrl: 80.1 ± 5.4%, n = 8) to a similar degree as pep2m plus PP-LFS (Fig. 

3D, PP-LFS: 81.4 ± 7.0%, n = 5; p > 0.05 compared to Ctrl). These results indicate that in both 

young and mature mice pep2m induces synaptic depression that occluded LTD. To further 

investigate this, we attempted to induce LTD after the pep2m-induced synaptic depression had 

stabilized (i.e. 30 min after the infusion of the peptide). As shown in Fig. 3E, PP-LFS induced no 
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further depression (40-50 min: 74.4 ± 5.6%, 90-100 min: 69.2 ± 8.1%, n = 6; p > 0.05), 

supporting that GluA2-NSF interaction is required for both basal synaptic transmission and LTD 

expression.  

     To determine the role of the GluA2-PICK1 interaction, we utilized the peptide pepEVKI that 

blocks the GluA2-PICK1 interaction and its control pepSVKE (Daw et al., 2000). As shown in 

Fig. 4, while the infusion of the control peptide pepSVKE had no effect on either basal synaptic 

response or LFS-induced LTD in both young (Fig. 4A, Ctrl: 101.9±3.3%, n=5; p>0.05 compared 

to the first 10 min of the recordings; LFS: 68.3±2.9%, n=6; p<0.05 compared to the first 10 min 

of the recordings and p>0.05 compared to the LTD without any peptide ) and mature mice (Fig. 

4B, Ctrl: 97.1±5.0%, n=6; p>0.05 compared to the first 10 min of the recordings; PP-LFS: 

75.6±4.7%, n=5; p<0.05 compared to the first 10 min of the recordings and p>0.05 compared to 

the LTD without any peptide), the active peptide pepEVKI significantly attenuated LTD without 

affecting baseline response in both young (Fig. 4C, Ctrl: 96.6±2.1%, n=6; p>0.05 compared to 

the first 10 min of the recordings; LFS: 88.2±2.3%, n=10; p>0.05 compared to the first 10 min of 

the recordings) and mature mice (Fig. 4D, Ctrl: 95.3±5.8%, n=5; p>0.05 compared to the first 10 

min of the recordings; PP-LFS: 97.0±9.8%, n=4; p>0.05 compared to the first 10 min of the 

recordings). These results indicate that NSF- and PICK1-mediated AMPAR internalization is a 

common mechanism for LTD expression in both young and mature mice.  

 

3.4. Cofilin activation is required for LTD in mature, but not in young mice 

After we established that LTD requires NSF/PICK1 in both young and mature hippocampus, we 

then tested the role of cofilin-mediated actin dynamics at both ages. First, we examined the effect 

of actin depolymerization inhibitor phalloidin. As shown in Fig. 5A-C, whereas inclusion of of 
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100 μM phalloidin to the recording pipette had no effect on LFS-LTD (Fig. 5A, Ctrl: 63.0±7.2%, 

n=6; phalloidin: 62.3±5.9%, n=8; p>0.05) or PP-LFS-LTD (Fig. 5B, Ctrl: 72.0±8.4%, n=5; 

phalloidin: 66.3±7.9%, n=7, p>0.05), it completely blocked PP-LFS-LTD in mature mice (Fig. 

5C, Ctrl: 65.3±8.0%, n=8; phalloidin: 98.6 ± 8.4%, n = 8; p<0.05). To determine if the effect of 

phalloidin is mediated by cofilin-dependent actin reorganization, we tested two cofilin peptides 

S3 and pS3 known to increase and decrease cofilin activity respectively (Aizawa et al., 2001; 

Huang et al., 2011). As shown in Fig. 5D, neither S3 nor pS3 peptides had an effect on LFS-LTD 

(S3: 63.3 ± 7.0%, n = 7; pS3: 65.1 ± 6.7%, n = 5; p>0.05) in young mice. Similarly, neither 

peptides had an effect on PP-LFS-LTD (Fig. 5E), even when the concentration of pS3 was 

increased to 800 M (S3: 62.9±4.4%, n=4: pS3 at 200 M: 45.8±5.2%, n=5; high pS3 at 800 

M: 60.1±11.4%, n=7; p>0.05). However, pS3 peptide completely blocked PP-LFS- LTD in 

mature mice (Fig. 5F, S3: 45.6±9.8%, n=6; pS3: 83.4±13.7%, n=5; p<0.05). These results 

indicate that, in clear contrast to NSF and PICK1, LTD in young mice, but not in mature is 

particularly sensitive to cofilin manipulations.  

     Because PP-LFS may induce both NMDAR- and mGluR-LTD, the inhibitory effect of cofilin 

and phalloidin in mature, but not in young mice, could be due to the differences in the relative 

contribution of these two forms of LTD, rather than a developmental effect. To address this 

issue, we analyzed the effect of cofilin specifically in mGluR-LTD induced by DHPG in both 

young and mature mice. Similar to LFS-LTD and PP-LFS-LTD, neither S3 nor pS3 had any 

effect on DHPG-induced LTD in young mice (Fig. 6A, S3: 55.7±6.7%, n=9; pS3: 60.6±6.9%, 

n=7; p>0.05). In contrast, pS3 but not S3 completely blocked DHPG-induced LTD in mature 

mice (Fig. 6B, S3: 55.9±6.7%, n=6; pS3: 95.3±6.3%, n=9; p<0.05). To confirm that this DHPG-

induced LTD is also dependent on AMPAR internalization in both young and mature mice, we 
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again tested the effect of the peptide pepEVKI to disrupt GluA2-PICK1 interaction. As shown in 

Fig. 6C, while the infusion of the control peptide pepSVKE had no effect on DHPG-induced 

mGluR-LTD in young mice, the active peptide pepEVKI significantly attenuated LTD in these 

mice (Fig. 6C, SVKE: 70.0±4.6%, n=7; EVKI: 88.2±5.5%, n=7; p<0.05). Importantly, the 

active, but not the control peptide also blocked DHPG-LTD in mature mice (Fig. 6D, SVKE: 

75.3±4.8%, n=8; EVKI: 93.3±6.2%, n=6; p<0.05). These results indicate that although AMPAR 

internalization is required for LTD expression in both young and mature mice, the involvement 

of cofilin-mediated actin reorganization is developmentally regulated, being essential in mature, 

but not in young hippocampus.  

 

4. Discussion 

Cofilin is a common target of the Rho family small GTPases (Bernstein and Bamburg, 2010) and is 

shown to be important for both spine morphology, receptor trafficking and synaptic plasticity (Meng 

et al. 2004; Jia et al., 2009; Gu et al., 2010; Rust et al., 2010; Bosch et al., 2014; Eales et al., 2014; 

Rust, 2015). In particular, cofilin is indispensable for the expression of hippocampal LTD and 

associated spine plasticity (Zhou et al., 2004; Rust et al., 2010; Zhou et al., 2011; Eales et al., 

2014). However, whether the involvement of cofilin in LTD is regulated by developmental 

stages remains unknown. In this study, we systematically investigated the role of cofilin in LTD 

at hippocampal CA1 synapse in both young and mature mice. We show that both baseline cofilin 

and its activation by LTD protocols are developmentally regulated and importantly, its 

requirement in LTD expression is sensitive to the developmental stage. These results suggest that 

cofilin-mediated actin reorganization may play differential roles in different forms of plasticity 

during brain development.  
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      First, we show that the protein level of cofilin, but not of ADF, is developmentally regulated. 

Thus, in young mice, the amount of cofilin is significantly higher (by 70%) than that in mature 

mice. The high level of cofilin at this stage of development suggests that the actin cytoskeleton is 

more dynamic, consistent with rapid neuronal growth and synaptogenesis in developing brain. 

Interestingly, the level of inactive cofilin (i.e. p-cofilin) also decreases dramatically (by 80%) as 

brain matures, suggesting that although the total amount of cofilin is restricted to a low level, 

which is consistent with more stable actin cytoskeleton at mature synapse, cofilin activation by 

protein dephosphorylation may become increasingly important in mediating actin reorganization. 

Indeed, we show that DHPG treatment does not induce changes in total amount of cofilin, but a 

significant decrease in p-cofilin and this DHPG-induced cofilin activation appears to be 

significantly more in mature than young mice. Taken together, these biochemical data suggest 

that rapid regulation of cofilin activity by protein phosphorylation and dephosphorylation may be 

particularly important during synaptic plasticity at mature synapse. It is important to note that the 

antibodies used in this study do not distinguish cofilin 1 and 2, therefore their specific 

contribution will require further investigations. However, because cofilin 1 is the predominant 

brain form (Bamburg, 1999; Rust et al., 2010), the effect on LTD is likely mediated by cofilin 1. 

     Second, we establish protocols to induce and characterize hippocampal LTD in both young and 

mature mice. Consistent with previous studies (Kemp et al., 1999; Fitzjohn et al., 2001) we show that 

while synaptic stimulation with LFS induces LTD only in young mice, PP-LFS is capable of 

inducing LTD in both young and mature hippocampus. In addition, application of NMDA or DHPG 

is sufficient to induce LTD in both ages. The success of these protocols to induce LTD has allowed 

us to investigate LTD mechanisms at different developmental stages. Previous studies indicate that 

AMPAR internalization mediated by GluA2 interactions with NSF and PICK1 is critical for LTD 
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expression (Malinow and Malenka, 2003; Bredt and Nicoll, 2003; Collingridge et al., 2004; Isaac 

et al., 2007; Shepherd and Huganir, 2007; Lüscher and Huber, 2010; Collingridge et al., 2010), 

but it is unknown whether these protein interactions are developmentally regulated. Using the 

peptide approach, we show that NSF and PICK1 are required for LTD expression in both young 

and mature mice, indicating that AMPAR internalization serves as a common mechanism as the 

brain matures. It is important to emphasize that although the peptides (i.e. pep2m and pepEVKI) 

used are shown to block GluA2 interactions with NSF and PICK1 respectively based on in vitro 

biochemical assays (Nishimune et al., 1998; Luthi et al., 1999; Daw et al., 2000; Braithwaite et 

al., 2002; Lee et al, 2002), the effect on other targets in neurons cannot be ruled out. In addition, 

the effect of these peptides on LTD could be a consequence of depleting/inactivating the NSF 

and PICK1 protein, and rather than their interactions with GluA2 specifically. 

     In clear contrast with NSF and PICK1, we show that the involvement of cofilin in LTD 

expression is developmentally regulated. Thus, in young mice, while the inhibitory cofilin 

peptide pS3 has no effect on either LFS- or DHPG-induced LTD, it completely blocks both PP-

LFS- and DHPG-induced LTD in mature mice. Similar results are obtained for the actin-

depolymerization inhibitor phalloidin. Therefore, cofilin-mediated actin depolymerization is 

essential for LTD expression specifically at mature synapse. These results are consistent with the 

above biochemical data showing that DHPG-inducecd cofilin activation is more pronounced in 

mature than in young mice. It is possible that in young mice, because of the relatively high level 

of cofilin expression, the effect of cofilin peptides is not as effective as in mature mice, but this is 

unlikely because increasing the peptide concentration to four times of that used in mature mice, 

still has no effect on LTD in young mice. It is conceivable that the actin cytoskeleton at this age 

is already at a depolymerized or dynamic state, and therefore further activation of cofilin is no 
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longer needed to induce actin reorganization. Alternatively, other actin regulators such as Arp2/3 

complex known to be regulated by PICK1 (Rocca et al., 2008; Nakamura et al., 2011; Rocca et 

al., 2013) may function to mediate actin change at the young synapse. Further experiments will 

be needed to elucidate how cofilin and Arp2/3 interact to regulate LTD during developmental 

maturation. 

     In summary, we have shown that cofilin expression and activation is developmentally 

regulated and that its involvement in LTD is specific to the mature synapse. Future studies will 

include identification of actin regulatory mechanisms in young mice and how they change as 

brain matures. In this context, other effectors targeted by the Rho family small GTPases and 

associated kinases such as PAKs (Govek et al., 2005).may be important to explore.  
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Figure legend 

Fig. 1. Cofilin protein level and its activation are developmentally regulated. 

(A, B) Western blot analysis and summary graphs of hippocampal protein lysates showing that 

total cofilin (A), phosphorylated cofilin (p-cofilin) (A) and p-cofilin/cofilin ratio (B) decrease 

significantly in mature compared to young mice.  

http://www.ncbi.nlm.nih.gov/pubmed/9728920
http://www.ncbi.nlm.nih.gov/pubmed/9728920
http://www.ncbi.nlm.nih.gov/pubmed/25645926
http://www.ncbi.nlm.nih.gov/pubmed/25645926
http://www.ncbi.nlm.nih.gov/pubmed/10027300
http://www.ncbi.nlm.nih.gov/pubmed/10027300
http://www.ncbi.nlm.nih.gov/pubmed/9655398
http://www.ncbi.nlm.nih.gov/pubmed/9655398
http://www.ncbi.nlm.nih.gov/pubmed/18718479
http://www.ncbi.nlm.nih.gov/pubmed/18718479


24 

 

(C) Western blot analysis and summary graphs of hippocampal insoluble protein pellet showing 

that total cofilin and p-cofilin decrease significantly in mature compared to young mice.  

(D, E) Western blot analysis and summary graphs of hippocampal synaptosomal fractions 

showing that total cofilin (D), p-cofilin (D) and p-cofilin/cofilin ratio (E) decrease significantly 

in mature compared to young mice.  

(F, G) Western blot analysis and summary graphs of hippocampal protein lysates (F) and 

synaptosomal fractions (G) showing no differences in ADF protein level between young and 

mature mice.  

(H) Western blot analysis and summary graphs of hippocampal protein lysates showing that 

application of DHPG (100 µM, 10 min) decreases p-cofilin, but not total cofilin in young mice. 

(I) Western blot analysis and summary graphs of hippocampal protein lysates showing that 

application of DHPG decreases p-cofilin, but not total cofilin in mature mice. 

(J) Western blot analysis and summary graphs of hippocampal protein lysates showing that 

application of DHPG decreases the p-cofilin/cofilin ratio more in mature than in young mice.  

 

Fig. 2. LTD can be induced in both young and mature hippocampus using different 

protocols. 

(A) LFS induces LTD in young, but not in mature mice. 

(B) PP-LFS induces LTD in both young and mature mice.   

(C) Application of NMDA (25 µM, 3 min) induces LTD in both young and mature mice. 

(D) Application of DHPG (100 µM, 10 min) induces LTD in both young and mature mice. 
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In this and all other figures of electrophysiological experiments, the representative traces are 

averages of six successive responses at the indicated time points. Scale bars: 0.5 mV/10 ms for 

field recordings and 50 pA/50 ms for whole-cell recordings.   

 

Fig. 3. LTD requires NSF in both young and mature mice.   

(A) The control NSF peptide, pep4c, has no effect on either basal synaptic responses (Ctrl) or 

LFS-induced LTD (LFS) in young mice.  

(B) Pep4c has no effect on either basal synaptic responses or PP-LFS-induced LTD in mature 

mice. 

(C) The active NSF peptide, pep2m, alone or plus LFS depresses synaptic responses to a same 

degree in young mice. 

(D) Pep2m alone or plus PP-LFS depresses synaptic responses to a same degree in mature mice. 

(E) Pep2m occludes PP-LFS-LTD in mature mice. 

 

Fig. 4. PICK1 is required for LTD in both young and mature mice. 

(A) The control PICK1 peptide, pepSVKE, has no effect on either basal synaptic responses or 

LFS-induced LTD in young mice.  

(B) PepSVKE peptide has no effect on either basal synaptic responses or PP-LFS-induced LTD 

in mature mice.   

(C) The active PICK1 peptide, pepEVKI, inhibits LFS-induced LTD without affecting basal 

synaptic responses in young mice. 

(D) PepEVKI inhibits PP-LFS-induced LTD without affecting basal synaptic responses in 

mature mice. 
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Fig. 5. Synaptically induced LTD requires cofilin-mediated reorganization in mature, but 

not in young mice. 

(A) Phalloidin (100 M) has no effect on LFS-induced LTD in young mice.  

(B) Phalloidin (100 M) has no effect on PP-LFS-induced LTD in young mice. 

(C) Phalloidin (100 M) blocks PP-LFS-induced LTD in mature mice. 

(D) Cofilin inhibitory peptide pS3 (200 M) or enhancing peptide S3 (200 M) has no effect on 

LFS-induced LTD in young mice.  

(E) Cofilin inhibitory peptide pS3 at 200 M (pS3) or 800 M (high pS3) or enhacing peptide S3 

has no effect on PP-LFS-induced LTD in young mice. 

(F) Cofilin inhibitory peptide pS3 (200 µM) but not enhancing peptide S3 (200 µM) blocks PP-

LFS-induced LTD in mature mice.  

 

Fig. 6. DHPG-induced LTD requires cofilin-mediated actin reorganization in mature, but 

not in young mice. 

(A) Neither cofilin inhibitory peptide pS3 (200 µM) or enhancing peptide S3 (200 µM) has any 

effect on DHPG-induced LTD in young mice. 

(B) Peptide pS3, but not peptide S3, blocks DHPG-induced LTD in mature mice.  

(C, D) pepEVKI, but not pepSVKE, inhibits DHPG-induced LTD in both young (C) and mature 

(D) mice.  
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

Fig. 6 

 

 

 


