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Abstract: 15 

The movement of pedestrian crowds is a paradigmatic example for collective motion. The 16 

precise nature of individual-level behaviours underlying crowd movements has been subject 17 

to a lively debate. Here, we propose that pedestrians follow simple heuristics rooted in 18 

cognitive psychology, such as ‘stop if another step would lead to a collision’ or ‘follow the 19 

person in front’. In other words, our paradigm explicitly models individual-level behaviour as a 20 

series of discrete decisions. We show that our cognitive heuristics produce realistic emergent 21 

crowd phenomena, such as lane formation and queuing behaviour. Based on our results, we 22 

suggest that pedestrians follow different cognitive heuristics that are selected depending on 23 

the context. This differs from the widely-used approach of capturing changes in behaviour via 24 

model parameters and leads to testable hypotheses on changes in crowd behaviour for 25 

different motivation levels. For example, we expect that rushed individuals more often evade 26 

to the side and thus display distinct emergent queue formations in front of a bottleneck. Our 27 
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heuristics can be ranked according to the cognitive effort that is required to follow them. 28 

Therefore, our model establishes a direct link between behavioural responses and cognitive 29 

effort and thus facilitates a novel perspective on collective behaviour. 30 

 31 
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 35 

Introduction 36 

How do humans respond to the social environment and make decisions based on available 37 

local information? One successful theory is based on cognitive heuristics [1,2,3]. Heuristics 38 

are simple and efficient rules that do not necessarily lead to the global optimum but yield a 39 

“good-enough solution”. For instance, if you have to choose between two alternatives, you 40 

choose the one you know already rather than assessing the relative merit of both. This 41 

decision rule is called the “recognition heuristic” and there is evidence for its efficiency and 42 

use in humans [1]. In general, cognitive heuristics are “(a) ecologically rational (i.e., they 43 

exploit structures of information in the environment), (b) founded in evolved psychological 44 

capacities such as memory and the perceptual system, (c) fast, frugal, and simple enough to 45 

operate effectively when time, knowledge, and computational might are limited, (d) precise 46 

enough to be modelled computationally, and (e) powerful enough to model both good and 47 

poor reasoning” [2]. There is a wealth of research showing their effectiveness [3]. A good 48 

example of how simple rules may describe movement decision is given by McLeod and 49 

Dienes [4]: in baseball, fielders do not compute the trajectory of the ball and then move to 50 

that position. Instead, they may simply estimate whether the ball lands before or behind them 51 

and continuously adjust their position accordingly. 52 

 53 

Movement in the presence of others in particular is one context where individuals have to 54 

respond to the social environment and make decisions based on local information.  55 
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Specifically, spatial movement and social interactions play an important role in the context of 56 

pedestrian dynamics. Perceptual motor-control models can be used to describe individual 57 

steering behaviour, including collision avoidance [5,6,7]. Social interactions have been 58 

successfully studied with individual-based simulation models [8,9], which typically have a set 59 

of behavioural rules or equations of motion and are studied by varying the model’s 60 

parameters to explore differences in behaviour.  61 

 62 

In social force models [10,11], ‘social forces’ are directly translated into physical forces, 63 

which accelerate the simulated pedestrian. Force vectors representing the various influences 64 

on the simulated pedestrian are combined (e.g. interactions with other pedestrians or 65 

preferred movement direction). To compute the motion of pedestrians, a second order 66 

differential equation has to be solved. Whether the numerical scheme necessary for this 67 

computation can be considered a cognitive capacity available to humans is questionable in 68 

our opinion. In cellular automata [12,13], pedestrians move from cell to cell on a grid. The 69 

next position is determined by either drawing from a probability distribution or optimising a 70 

utility function; both options encode social interactions and personal preferences. In the 71 

‘optimal steps model’ [14], a utility function is optimised on a circle around the simulated 72 

pedestrian’s current position. The radius of the circle coincides with a pedestrian’s step 73 

length, thus emulating stepwise motion in continuous space. However, utility optimisation has 74 

been dismissed as an inaccurate description of cognitive processes [1]. Evaluating a 75 

probability function, as is common practice with cellular automata, does not seem to be a 76 

plausible model for human decision making either but may describe some observed crowd 77 

phenomena. 78 

 79 

Our approach presents a departure from previous work on pedestrian behaviour in that it is 80 

based on the paradigm of cognitive heuristics. It does not rely on analogies from physics and 81 

does not contain numerical optimisation schemes. Instead, mathematical operations used for 82 

the heuristics are based on cognitive capacities that are known or can be expected to be 83 
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available to humans and animals showing similar behaviour. The model is intended to not 84 

only describe behaviour but also cognition.  85 

 86 

Particularly relevant to our study is the work by Moussaїd et al. [15,16], who proposed a 87 

process oriented perspective on decision making of pedestrians. However, while process 88 

oriented, their proposed rules lead to a numerically complex computational task. Specifically, 89 

Moussaїd and co-workers postulate that pedestrians choose the most direct path towards 90 

their target destination, taking obstacles into account. This behaviour is implemented by 91 

finding the movement direction that minimises the value of a cost function.  In contrast to 92 

that, we propose rules that are computationally simple and therefore in our opinion more 93 

plausible as a description of the cognitive process. We show how very simple heuristics can 94 

be sufficient to produce plausible pedestrian dynamics. 95 

 96 

A key novelty of our approach is that we explicitly compartmentalise behavioural responses. 97 

More specifically, we hypothesise that pedestrians follow different cognitive heuristics that 98 

are selected depending on the environment or context. This contrasts with previous work on 99 

modelling social interactions in movement in which model parameters are adjusted to 100 

reproduce or make predictions about the dynamics in different environments or contexts (e.g. 101 

[11,17]). We suggest testable hypotheses derived from our approach. To give an example, 102 

we propose a number of heuristics that represent an increase in the level of proactiveness or 103 

competitiveness of pedestrians’ movement decisions. In heuristics that are more proactive or 104 

competitive, pedestrians tend to step to the side more often because they evaluate more 105 

options. The differences between these heuristics could be interpreted as context-dependent 106 

changes in social norms. Our approach facilitates a novel perspective on the behavioural 107 

responses of pedestrians. We argue that heuristics can be ordered according to the level of 108 

cognitive effort required to follow them, which may provide insights into decision making from 109 

another perspective. In some contexts, very simple heuristics are sufficient to produce 110 

plausible pedestrian dynamics, whereas in other contexts, they are not. In principle, this 111 
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allows us to make predictions on the extent to which pedestrians have free cognitive 112 

capacities that they can use for other mental activities in different crowd movement 113 

scenarios. Based on these insights, built environments could be designed in a way that 114 

requires less cognitive effort and hence eases navigation for visitors. 115 

 116 

To demonstrate the potential and usefulness of our approach, we report simulation results of 117 

two scenarios that commonly occur in real life: pedestrians moving in one direction through a 118 

narrow bottleneck, such as an exit door, and pedestrians moving in two directions in a 119 

corridor. 120 

 121 

Methods 122 

Simulation procedure 123 

We represent pedestrians as disks of radius 0.2 m. Following previous work, we assume that 124 

each pedestrian has a preferred speed that is drawn from a truncated normal distribution with 125 

mean 1.34 m/s and standard deviation 0.26 m/s, truncated at 0.5 and 2.0 m/s [18]. Our 126 

model simulates pedestrian movement in discrete time and space. However, pedestrians’ 127 

positions are not bound to a spatial grid and the simulation is not updated in fixed time steps. 128 

Instead, pedestrians move by making discrete steps of a fixed length at time intervals 129 

dictated by their preferred speed [19] and decide on the direction of their movement by using 130 

one of the cognitive heuristics described below. The motivation for this approach is the 131 

naturally stepwise human motion process. Additionally, there is evidence that decisions are 132 

made for each step [20]. This discretisation of pedestrian movement, albeit in combination 133 

with a utility optimisation scheme, was originally proposed with the optimal steps model [14]. 134 

Therefore, pedestrians make one decision for every step, and the step is realised in a 135 

discrete process. Additional details on the simulation procedure can be found in the 136 

supplementary information. 137 

 138 

Cognitive heuristics for pedestrians 139 
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We implement four cognitive heuristics that simulated pedestrians use to determine the 140 

direction of their next step. Throughout, we assume that pedestrian movement is directed 141 

towards a fixed target in space (e.g. the end of a corridor or an exit). Therefore, the default 142 

movement preference of pedestrians is directly towards a target [21] in all four heuristics. 143 

Targets are implemented as rectangular surfaces inside the simulated environment and 144 

pedestrians attempt to move in a direct line from their current position to the nearest point on 145 

this surface. When pedestrians reach an intermediate target, they are assigned the next 146 

target and when they reach their final target, they are removed from the simulation. Our 147 

cognitive heuristics implement this goal-directed movement, as well as the responses of 148 

pedestrians to their environment (figure 1). 149 

 150 

The step or wait heuristic describes the most basic movement behaviour that avoids 151 

collisions (fig. 2a). Pedestrians assess if a step from their current location in the direction 152 

towards their target leads to a collision. If not, they take the step. Otherwise, they remain 153 

stationary. We define collisions to occur if the pedestrian’s body overlaps with the body of 154 

another pedestrian or a wall at any point on the path between their current location and the 155 

location one step length directly towards their target. The only cognitive capacities necessary 156 

for this heuristic are the anticipation of the next step towards the target (for the neural basis 157 

of this capacity, see [22]) and the detection of a collision on the path to it (e.g. [23,5]). 158 

 159 

With the tangential evasion heuristic, pedestrians first assess a step directly towards their 160 

target. If this leads to a collision, they assess if they can make either of the two steps that 161 

tangentially avoid the closest pedestrian between them and the target, starting with the step 162 

that gets them closer to the target (see [24,25] for the estimation of distances). Only if both of 163 

these steps also lead to a collision, they remain at the current position (fig. 2b). The only 164 

additional computations necessary for this heuristic are finding the tangential evasion points 165 

and estimating the distance to the target. In our simulations, these points are determined by 166 

moving one step length along the tangents from the moving pedestrian’s centre to a circle 167 
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around the centre of the pedestrian in their way. This circle has a diameter of two pedestrian 168 

diameters, which avoids overlapping of the physical representations of pedestrians. This 169 

heuristic contains the step or wait heuristic and adds further planning, making it more 170 

demanding. We also suggest that since pedestrians evaluate more options in this heuristic 171 

when compared to the step or wait heuristic, it is a more proactive or competitive heuristic 172 

that pedestrians employ when their level of motivation to reach the target is higher. 173 

Specifically, by evading to the side pedestrians tend to overtake others in front of them. 174 

 175 

The sideways evasion heuristic extends the tangential evasion heuristic and is therefore 176 

more demanding than the previous two heuristics. If tangential evasion steps are not 177 

possible, pedestrians additionally consider evasion steps orthogonal to the direct line 178 

towards the target, starting with the step that gets them closer to the target. Only if all of 179 

these steps lead to a collision, the pedestrian remains at the current position (supplementary 180 

figure S1).The sideways evasion heuristic comprises the evaluations of the previous 181 

heuristics. Therefore, we suggest that the sideways evasion heuristic is more proactive and 182 

competitive than the tangential evasion heuristic. Behavioural rules similar to the sideways 183 

and the tangential evasion heuristics have been implemented previously [26]. However, this 184 

implementation in a cellular automaton was not motivated through cognitive heuristics and 185 

was not compared to empirical data.  186 

 187 

In dense crowds, pedestrians may use the same path chosen by another pedestrian walking 188 

in the same direction [27]. This is captured in the follower heuristic (supplementary figure 189 

S2). If agents detect a collision with someone walking in the opposite direction on the path to 190 

the target some steps ahead, they start following the closest pedestrian moving in the same 191 

direction. If that fails, they use the sideways evasion heuristic to navigate directly to the 192 

target. Collisions are detected by extending the direction to the target by 5 steps. To account 193 

for pedestrians walking in the same direction, crossing paths are only considered a collision if 194 

the other pedestrian’s last movement direction has an angle greater than 2/3 π radians to the 195 
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target direction of the focal pedestrian. In that case, a pedestrian to follow is searched for 196 

within a 10 m radius. This pedestrian must be within a range of π/2 radians relative to the 197 

current walking direction of the focal pedestrian. Furthermore, the walking directions of the 198 

two pedestrians must not differ by more than π/2 radians. While it is possible to change the 199 

parameters of this heuristic (e.g. searching radius), we focus on conceptual ideas and the 200 

general plausibility of heuristics and therefore keep parameter values fixed.  201 

 202 

The follower heuristic assumes the capacity to anticipate the own movement towards the 203 

target and detect collisions on this path, and to locate another individual moving in the same 204 

direction (see [21,28] for details on motion perception). Additionally, it contains the 205 

computational steps of the previously defined heuristics. Therefore, this heuristic is 206 

potentially more demanding than the other three, but may also be less demanding if following 207 

another pedestrian prevents tangential or sideways evasions. In contrast to the previous 208 

heuristics, which can be ordered in terms of increasing levels of proactiveness or 209 

competitiveness, the follower heuristics presents a departure from this concept. Being a 210 

forward-planning strategy, which pedestrians may employ to facilitate their progress within a 211 

crowd, it is certainly proactive. However, this strategy should not be related directly to 212 

pedestrians being competitive, as it involves following and therefore accepting not to 213 

overtake others, who move in the same direction. 214 

 215 

Pedestrian decisions in our model are essentially deterministic. Stochasticity is introduced in 216 

the simulations only through the pedestrians’ preferred speeds, initial conditions (e.g. 217 

positions of pedestrians), and the random resolution of conflicts in the order of movement 218 

events. Once the general model parameters (pedestrian radius, preferred speeds, initial 219 

conditions) have been set, the simulation proceeds according to the deterministic cognitive 220 

heuristics. The heuristics we propose do not allow pedestrian to step backwards. Instead, 221 

conflicts are resolved by evading tangentially, to the side, or by following another pedestrian 222 

ahead. If two evasion directions around a conflict position yield equal progress towards the 223 
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target, one is chosen at random. Cultural norms may result in a preference for evasions to 224 

the left or right around conflict positions (e.g. [17]) and it would be possible to include such 225 

preferences in our model. We aim to model general behaviour and therefore do not 226 

implement side preferences. Nevertheless, such preferences may have an impact on crowd 227 

dynamics and should be introduced and calibrated according to measurements when 228 

scenarios in specific contexts are studied. 229 

 230 

Our model has been designed deliberately to be a modular framework of heuristics that can 231 

easily be extended with additional behaviours. This is illustrated by the construction of new 232 

heuristics by including other heuristics and is in line with the notion of a heuristic toolbox [1]. 233 

Furthermore, a similar approach has been successfully applied in robotics [29]. The 234 

modularity not only allows for the incremental construction of behavioural rules but also 235 

facilitates extending the model to describe additional behavioural features. As discussed 236 

below, the flexibility may represent a challenge in model validation. However, we also argue 237 

that this paradigm is plausible for evolved biological behaviour [1]. 238 

 239 

In the results and discussion section, we use the terms cognitive effort and cognitive 240 

capacity. Cognitive effort is defined through the (explicitly stated) computational steps 241 

necessary for the decision. A cognitive capacity is a computational step in a heuristic. An 242 

additional discussion on the justification of the approach with cognitive heuristics can be 243 

found in the supplementary information. 244 

 245 

Bottleneck simulations 246 

We simulate pedestrians exiting a room (width 14 m, length 11 m) through a narrow 247 

bottleneck (width 2 m, length 5 m). We position an intermediate target at the entrance to the 248 

bottleneck and the final target at the end of the bottleneck (both targets are quadratic boxes, 249 

side length: 1.4 m). At the start of simulations, 180 pedestrians are randomly distributed 8 m 250 

in front of the bottleneck entrance inside a box of width 10 m and length 5 m (see also fig. 251 
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3a.1-c.1). The size of the room, bottleneck, and crowd are similar to the setup of an 252 

experiment with volunteers [30]. We can therefore compare the output of our simulations 253 

directly to experimental data. The experimental data comprises the trajectories of 179 254 

pedestrians exiting through the bottleneck in one run, and we compare this data to 10 255 

replicate simulations each for the step and wait, tangential, and sideways evasion heuristics.   256 

 257 

We use a summary statistic to quantify pedestrian movement in the bottleneck scenario 258 

(more details can be found in the supplement). This measure takes high values when the 259 

queue is spread out along the width of the room in front of the bottleneck and low values for 260 

long and narrow queues. Changes in this measure over time and across heuristics provide 261 

insights into the form and stability of pedestrian queues.  262 

 263 

Corridor simulations 264 

We simulate pedestrians moving in both directions through a 48 m long and 6 m wide 265 

corridor. Pedestrians are introduced into the corridor by being placed at a random location 266 

inside a box (width 5 m, length 2 m) at either end of the corridor. One additional pedestrian is 267 

introduced into the scenario at a fixed rate, every 0.5, 1.0 or 2.0 seconds, on both sides of 268 

the corridor. Once introduced into the corridor, pedestrians move towards a target that spans 269 

the entire width at the opposite end of the corridor. The target is located 1.5 m in front of the 270 

box in which pedestrians walking in the opposite direction are introduced into the corridor 271 

(see fig. 4a.1 for environment layout). We run simulations for 300 s and stop introducing new 272 

pedestrians after 250 s. We compare the results for 10 replicate simulations for each of our 273 

four cognitive heuristics. 274 

 275 

To compare the rate and efficiency at which pedestrians move through the corridor across 276 

heuristics, we report the flow computed as the number of pedestrians that cross the halfway 277 

mark through the corridor in either direction in 1 s. With this measure (more details can be 278 

found in the supplement), we quantify the extent to which pedestrians form lanes, an 279 
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emergent phenomenon observed in empirical data that has also been reproduced in 280 

computer simulations [10].  281 

 282 

Results and discussion 283 

To start with, we show that our heuristics produce plausible pedestrian dynamics in a 284 

bottleneck scenario (figure 3). The simulation snapshots already indicate differences in the 285 

dynamics between heuristics. The step or wait heuristic (fig. 3 a.1) produces a cone-shaped 286 

agglomeration in front of the bottleneck. The tangential evasion heuristic (fig. 3 b.1) leads to 287 

a more compact, rounded queue, and the sideways evasion heuristic (fig. 3 c.1) produces a 288 

semi-circular queue. Although the limited field of view and camera distortion make it difficult 289 

to see, it appears as if the experimental data (fig. 3 d.1) is closest to the tangential evasion 290 

heuristic. The results for the follower heuristic were similar to the sideways evasion heuristic 291 

(supplementary figure S5) because pedestrians adopting the follower heuristic revert to the 292 

sideways evasion heuristic in the case of jamming. 293 

 294 

The queue measure clearly illustrates differences between the three heuristics. The step or 295 

wait heuristic (fig. 3 a.2) yields the smallest values for the measure capturing the fact that 296 

queues produced by this heuristic are elongated and do not utilise the width of the available 297 

space in front of the bottleneck (see fig 3 a.1). For this heuristic, the pedestrian crowd also 298 

takes the longest to exit the room. The tangential evasion heuristic (fig. 3 b.2) leads to higher 299 

queue measure values and the egress time is considerably faster. The sideways evasion 300 

heuristic (fig. 3 c.2) results in even higher values for the queue measure, capturing the fact 301 

that queues are wide (fig. 3 c.1). Interestingly, this heuristic does not lead to faster egress. 302 

For the step or wait heuristic, the tangential evasion heuristic and the experiment, the queue 303 

measure attains a roughly stable value shortly after the start until just before the end of 304 

simulations. For the sideways evasion heuristic, this stable regime is either much shorter or 305 

does not exist. Across the three heuristics, the tangential evasion heuristic matches the 306 

empirical data (fig. 3 d.2) best.  307 
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 308 

Next, we investigate the steps pedestrians actually performed in simulations (e.g. sideways 309 

or forward step). We verify that the respective heuristics lead to different behaviour and 310 

reveals how the behaviour changes over time (fig. 3 a.3-d.3). For all heuristics, the dominant 311 

behaviour over most of the time is to remain at the current position because of the 312 

congestion in front of the bottleneck. At the beginning and increasingly towards the end, the 313 

less congested state of the crowd allows for both steps forward and evasion steps. The 314 

density-speed diagrams show that, in contrast to the experiment, heuristics do not reach 315 

densities higher than 5 pedestrians/m2 (supplementary figure S6 a-d). This can be explained 316 

by the fact that pedestrians in the simulation do not close gaps in front of them when the 317 

gaps are smaller than their preferred step length. However, the general shape of the density-318 

speed diagram produced by the simulations is comparable to the experimental data. 319 

 320 

Taken together, these results show that while all heuristics produce plausible pedestrian 321 

dynamics, simulations of the tangential evasion heuristic are the most similar to the 322 

experimental data. However, we suggest that in other contexts, different heuristics may be 323 

more relevant. When describing our heuristics for pedestrians, we have already introduced 324 

the notion that some heuristics capture more proactive or competitive behaviour. This 325 

suggests a testable hypothesis arising from our simulations. In situations when social norms 326 

or the context demand a high degree of cooperation or courtesy or when people are not 327 

rushed, they may use the step or wait or tangential evasion heuristic and we thus predict 328 

behaviour similar to the dynamics observed in simulations of these heuristics. These 329 

heuristics require fewer computations and are therefore less demanding cognitively. If 330 

pedestrians attempt to reduce their cognitive effort [31] this may be their default behaviour. In 331 

situations when people are highly motivated to pass through a bottleneck quickly (e.g. during 332 

stressful evacuations), they may use the sideways evasion heuristic and thus we predicts 333 

longer detours in order to overtake others. There is qualitative evidence on the shape of 334 

queues supporting this hypothesis from an experiment in which the motivation of volunteers 335 
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to walk through a bottleneck was controlled carefully [32]. In contrast to previous work where 336 

different motivation levels were captured by adjusting model parameters (e.g. [11]), we 337 

suggest that changes in motivation lead to the adoption of different heuristics.  338 

 339 

To investigate how crowd dynamics are affected by the use of different heuristics over time, 340 

we consider four combinations of heuristics in the bottleneck scenario (fig. 4). First, we 341 

randomly assign heuristics to pedestrians with equal probability at the start of simulations. 342 

Second, we let pedestrian randomly choose one of the heuristics for each step with equal 343 

probability. Third, pedestrians try to evade tangentially after having remained at one position 344 

3 times and try to evade to the side after having remained 5 times. Once they have moved, 345 

they revert back to the step or wait heuristic. Fourth, instead of reverting to the step or wait 346 

heuristic as in the third scenario, pedestrians continue to follow the respective evasion 347 

heuristic after having used it for the first time. We chose these examples to illustrate how 348 

different ways of selecting heuristics affect the collective dynamics and to explore if 349 

individuals who follow different heuristic exit faster or slower than others. 350 

 351 

We report the percentage of each heuristic used over time (fig. 4 e-h.1), the queue measure 352 

(fig. 4 e-h.2), and percentage of the observed stepping behaviours (fig. 4 e-h.3). With the 353 

random distribution of heuristics, pedestrians following the tangential or sideways evasion 354 

heuristics exit earlier than pedestrians following the step or wait heuristic (fig. 4 e.1). These 355 

simulations produce a peak in the queue measure at the start of simulations (fig. 4 e.2). The 356 

peak indicates that a broader queue shape forms, which subsequently dissolves before 357 

pedestrians following the step or wait heuristic leave the scenario (fig. 4 e.3). When 358 

pedestrians randomly select their heuristic strategy for each step with equal probability (fig. 4 359 

f.1-3), evacuation times do not differ greatly from the tangential evasion heuristic (fig. 3 b.1-360 

3). In the third scenario, where pedestrians choose a more competitive strategy after 361 

remaining at the same position for some time (fig. 4 g.1-3), the congestion builds up more 362 

slowly but finally reaches the same values as in the previous scenario (fig. 4 g.2). 363 
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Pedestrians most often chose the sideways evasion heuristic between 30 to 60 s (fig. 4 g.1). 364 

However, this does not result in frequent sidesteps, as they mostly have to remain at the 365 

current position (fig. 4 g.3). In the fourth scenario, when pedestrians switch to a more 366 

competitive heuristic after remaining at one position for some time and then keep using this 367 

heuristic (fig. 4 h.1-3), the sideways evasion heuristic increasingly dominates the other 368 

heuristics (fig. 4 h.1). Here, the egress times are shortest and similar to the tangential and 369 

sideways evasion heuristic (fig. 3 b and c). The queue measure (fig. 4 h.2) increases until it 370 

peaks at around 40 s with an equally high value as the sideways evasion heuristic (fig. 3 c.2). 371 

Interestingly, the step or wait heuristic dominating at the beginning does not lead to an 372 

increase in overall egress times. 373 

 374 

We derive additional hypotheses from these results. Pedestrians who evade sometimes after 375 

remaining at a position (fig. 4 g.1-3) do not seem to have an advantage compared to not 376 

evading at all (fig. 3 a.1-3). Nevertheless, switching to a more competitive behaviour (fig. 4 377 

h.1-3) seems to lead to the most efficient egress, that is, being cooperative first and then 378 

competitive does not seem to have a disadvantage over being competitive from the 379 

beginning. This suggests that it may be most efficient to first follow a cooperative strategy 380 

with less cognitive effort and only switch to a competitive one if cooperation fails instead of 381 

being competitive from the beginning (fig. 4 h.1-3). When there are cooperative and 382 

competitive individuals in the crowd (fig. 4 e.1-3), the competitive individuals have a clear 383 

advantage as they exit first, but there is no great difference between the tangential and 384 

sideways evasion heuristic. The less competitive individuals also seem to benefit from the 385 

competitiveness of others because the overall egress time decreased compared to full 386 

cooperation (fig. 3 a.1-3). When available, sideways evasion is rather rare (fig. 3 c.3 and fig. 387 

4 h.3) but does have a considerable impact on the queue measure. Tangential evasion 388 

seems to be the preferred choice for intermediate congestion states as it peaks twice, at the 389 

beginning and towards the end, when all evasion options are available. As our findings 390 
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depend on how exactly pedestrians select the heuristic they follow, we provide a useful 391 

illustrative indication of the implications of these dynamics. 392 

 393 

We now investigate if our heuristics also provide plausible dynamics in the second scenario, 394 

bi-directional flow in a corridor (figure 5). The snapshots give an indication for the differences 395 

in dynamics between heuristics. The step or wait heuristic (fig. 5 a.1) produces a global jam 396 

and poor usage of space (pedestrians are not evenly distributed in the available space). The 397 

tangential evasion heuristic (fig. 5 b.1) and follower heuristic (fig. 5 d.1) lead to a more even 398 

distribution of pedestrians in space, but local jams still appear. The sideways evasion 399 

heuristic (fig. 5 c.1) produces the most even distribution of pedestrians in space, and no jams 400 

are visible in the corridor for this simulation. The follower heuristic is the only heuristic for 401 

which the snapshot gives an indication of lane formation. However, pedestrians walking in 402 

opposite directions still encounter each other on both sides, that is, the two walking directions 403 

are not separated into constant stable lanes. 404 

 405 

The flow of pedestrians over time confirms these qualitative observation (fig. 5 a-d.2). In 406 

simulations with the step or wait heuristic, no steady flow of pedestrians through the corridor 407 

can be established. As pedestrians with this heuristic lack the ability to walk around 408 

oncoming pedestrians, it inevitably leads to a jam of pedestrians in the corridor (fig. 5 a.2). 409 

Although this heuristic leads to plausible crowd movement in the bottleneck scenario, in a 410 

scenario with pedestrians walking in opposite directions, it is not appropriate. In simulations 411 

with the remaining three heuristics, we can observe a constant flow of pedestrians in the 412 

corridor for low pedestrian densities (delays 1.0 and 1.5 s). At the start of the simulations, 413 

there is a transient time before a constant flow is established, and at the end of simulations, 414 

the flow decreases with the number of pedestrians still inside the corridor. However, for 415 

higher densities (delay 0.5 s), the tangential evasion and the follower heuristic sometimes fail 416 

to sustain a flow of pedestrians through the corridor. The flow initially reaches a high level, 417 

but then decreased as local jams occur, spread and gradually make the corridor impassable. 418 
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Only the sideways evasion heuristic leads to a constant flow of pedestrians at the highest 419 

rate entrance rate of pedestrians (with the exception of one run). This suggests that the 420 

tangential evasion and the follower heuristic may only apply to particular contexts (certain 421 

pedestrian densities in this case). For higher densities, a different strategy is necessary.  422 

 423 

It is a well-documented phenomenon that pedestrians form lanes by walking behind one 424 

another in dense crowds [33,27]. We found that evidence for lane formation was not very 425 

pronounced for all heuristics apart from the follower heuristic. Here, a strong, spatially 426 

localised tendency of pedestrians walking in the same direction when crossing the halfway 427 

line emerged over time (movement direction measure; fig. 5 a-d.3 and supplementary table 428 

S8). Therefore, if we take the emergence of lanes as the criterion for a plausible pedestrian 429 

model, we have to conclude that only the follower heuristic is appropriate in this context. 430 

Previously developed simulation models have also succeeded in producing lanes in 431 

pedestrian crowds. However, simulations with these models typically implement periodic 432 

boundary conditions by connecting the two ends of the corridor and have to run simulations 433 

for some time before stable lanes are formed [10]. 434 

 435 

Although experiments with volunteers on pedestrians moving in corridors have been 436 

conducted [33,8,27], a direct comparison to simulations is difficult. In experiments, 437 

participants typically enter a corridor segment centrally at one end and leave at the sides on 438 

the opposite end [34]. Individual-level target choice (i.e. which side to exit on) and forward-439 

planning (e.g. participants observe the establishment of a convention of keeping left/right) 440 

would require additional modelling steps implementing individual decision-making to 441 

meaningfully compare pedestrian simulations to such experiments. Therefore, a 442 

comprehensive comparison of our heuristics to empirical data is beyond the scope of this 443 

work. 444 

 445 
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The two simulation studies suggest that some heuristics are more plausible than others 446 

depending on the context. The step or wait heuristic produced plausible emergent behaviour 447 

in the bottleneck scenario but failed to resolve most basic conflicts in the corridor scenario. 448 

The sideways evasion heuristic both allowed for egress through a bottleneck as well as 449 

counter flow without jamming. However, it did not produce lanes in the pedestrian flow. The 450 

follower heuristic was not able to always prevent jams in the corridor but did produce lanes. 451 

In general, we suggest that heuristics are selected depending on the context. This is the 452 

crucial difference of our approach compared to most previous modelling frameworks. Instead 453 

of formulating one model that attempts to describe all aspects of pedestrian dynamics with 454 

changes in model parameters, we suggest that there is a collection of heuristics that are only 455 

activated if they are chosen for a specific task based on cues from the environment [3]. 456 

 457 

Table 1 summarises the cognitive heuristics we propose and their respective different levels 458 

of cognitive effort. Our simulations demonstrate that some heuristics can adequately 459 

describe pedestrian dynamics in some situations but that the same heuristics are inadequate 460 

for other situations (e.g. step and wait heuristic can describe queuing at exit, but not bi-461 

directional flow in a corridor). Based on this, we suggest that some situations impose a 462 

higher cognitive demand on pedestrians. This hypothesis could be tested experimentally. For 463 

instance, exposing pedestrians to such situations and measuring their performance in a 464 

separate task to be accomplished at the same time (e.g. a counting task) could reveal how 465 

much cognitive effort can be diverted away from walking in the presence of others. Previous 466 

work has already shown such effects in individuals moving in the absence of others [35]. 467 

 468 

Conclusions and future directions 469 

We proposed four cognitive heuristics that describe and can be used to simulate pedestrian 470 

behaviour (summarised in table 1). The heuristics are modular, can contain each other, and 471 

therefore vary in degree of complexity. Their computational steps are based on the cognitive 472 

capacities of humans. Hence, they are plausible hypotheses for the human decision making 473 
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process and a step towards explaining social interactions in spatial movement. We used 474 

simulations to study emergent effects in two scenarios: egress through a bottleneck and bi-475 

directional flow in a corridor. We validated our results for the former scenario by comparing 476 

simulations to a controlled experiment. The simulation results demonstrated how different 477 

heuristics lead to different group-level dynamics and we argued that a collection of heuristics 478 

is necessary to describe human behaviour for local navigation tasks. Our approach to 479 

simulating pedestrian dynamics is fundamentally different to previous models since it allows 480 

for the direct study of cognitive processes. We suggest that heuristics can help to explain the 481 

cognitive effort connected to moving in a social environment depending on the context. 482 

Additionally, we hypothesise that the motivation of pedestrians to move faster could influence 483 

the choice of heuristics. 484 

 485 

In order to draw conclusions from our model, it has to be tested against empirical 486 

observations. This poses a challenge since it is not clear when a proposed heuristic is a valid 487 

model. We argue that the simplest cognitive heuristic that can reproduce an emergent effect 488 

is the best model. This argument is supported by the principle of parsimony [36], and we 489 

additionally argue that biological organisms economise on energy consumption and hence 490 

cognitive efficiency due to evolutionary pressure. Furthermore, free cognitive capacities allow 491 

for the coordination of other mental activities and hence give an additionally evolutionary 492 

advantage. 493 

 494 

If one heuristic has been found to be inadequate for the description of some phenomenon, 495 

this does not mean the paradigm of cognitive heuristics is wrong. It may simply be the wrong 496 

heuristic for the context under consideration. At first glance this presents a potential 497 

challenge to the paradigm: it appears to allow for new heuristics for every possible novel 498 

context. To a certain extent this is plausible, as humans are likely to use a large number of 499 

cognitive heuristics [1]. However, the cognitive abilities of humans present a natural limit to 500 

the number and nature of cognitive heuristics that can be considered in our approach. 501 
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Furthermore, as more heuristics for pedestrian behaviour are developed, the usefulness of 502 

each heuristic has to be re-assessed according to the parsimonious principle outlined above. 503 

Therefore, selecting or detecting which heuristics are actually used is a key challenge in 504 

future model development. One consistent approach could be to find heuristics for the 505 

selection process. Another approach could be to use unsupervised learning methods from 506 

machines learning (e.g. [37]) to discover basic behavioural building blocks. Although large 507 

data sets are necessary for this, with technologies on the rise that allow for cheap recording 508 

of pedestrian motion and at the same time ensure anonymity and data protection (e.g. [38]), 509 

it seems feasibly to conduct such research. 510 

 511 

The explicit modelling of cognitive heuristics or rules of thumb for pedestrian dynamics has 512 

practical advantages: the description of heuristics can be given in general language and the 513 

resulting models can therefore be used more easily by experts from fields other than 514 

mathematical modelling. Although technical knowledge may be necessary for algorithmic 515 

implementations, new heuristics can be proposed by a wide community. Furthermore, tools 516 

could be developed that allow for the combination and the testing of cognitive heuristics 517 

without technical knowledge about the precise mathematical computation. 518 

 519 

In our simulation model, we have focused on an initial development of cognitive heuristics for 520 

pedestrians and on demonstrating the usefulness of this approach. Many extensions to our 521 

model are possible and may even be necessary. We have already mentioned that additional 522 

heuristics will have to be developed to capture the decision making of pedestrians in different 523 

contexts. For example, structured social interactions (e.g. with friends or family; [39]) could 524 

result in the introduction of compromise decisions in heuristics. Staying close to family 525 

members or friends may stand in contrast to moving quickly through a narrow bottleneck. In 526 

such situations, a compromise has to be found, which can be realised by linearly combining 527 

terms for different objectives [6]. Another aspect of pedestrian behaviour that naturally entails 528 

some compromise is walking around a corner. Usually humans want to keep a certain 529 
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distance to walls. This stands in contrast to passing around the corner on the shortest path. 530 

Pedestrians may accept getting very close to the wall directly at the corner but keep a 531 

greater distance otherwise [40].  532 

 533 

Our cognitive heuristics only capture the movement decisions of pedestrians. To account for 534 

microscopic aspects of movement that are based on physical (e.g. collisions) or 535 

biomechanical properties (e.g. locomotion, gait), a continuous motion process is necessary. 536 

Our heuristics-based decision process could be complemented with a physical layer. 537 

Decisions could be passed on to a physical or biomechanical model that executes the 538 

resulting movement. An advantage of this extension would be that phenomena based on 539 

physical contact, such as shock waves in crowds [15], could be simulated along with a 540 

plausible psychological decision process. The discrete stepping process and additional 541 

heuristics could be used to investigate macroscopic features of pedestrian flow through 542 

microscopic simulation and help to test assumptions about the underlying mechanisms. For 543 

example, Johansson [41] proposed that the distance pedestrians keep to others in front 544 

could be related to their stepping behaviour. He showed how this distance and the variation 545 

in speeds between individuals can determine the density-speed relation. 546 

 547 

Modelling pedestrian behaviour with cognitive heuristics opens up links in many directions. 548 

Therefore, our approach may inspire researchers from many fields to use a similar approach 549 

to study questions in their domain. Given the same paradigm, findings can also be integrated 550 

and used across disciplines. Therefore, our model could be the start of a new line of 551 

research studying social interactions. 552 

  553 
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 827 

 828 

Figure 1: Illustration of behaviours with the four heuristics. The focal pedestrian is the lower, filled 829 

(yellow) circle; the solid circles on top are other pedestrians; and the dashed circle represent possible 830 

movement steps with the respective heuristics. In all cases, pedestrians try to move towards the top. 831 

With the step or wait heuristic, pedestrians either take the step or wait if the position is already taken. 832 

With the tangential evasion heuristic, pedestrians choose steps to the side of the conflicting other 833 

pedestrian. With the sideways evasion heuristic, pedestrians move to their own side with respect to 834 

the target if the path is blocked. With the follower heuristic, they try to follow another pedestrian 835 

walking in the same direction (here, to the upper left, in green). 836 

 837 

  838 

Figure 2: Basic cognitive heuristics for pedestrian decision making. We show the ‘step or wait 839 

heuristic’ on the left and the ‘tangential evasion heuristic’ on the right. Each computational step 840 

represents a cognitive capacity that has to be available. Heuristics are shown in (yellow) boxes with 841 

rounded corners. Rectangles (in blue) show actions or calculations of pedestrians and (blue) 842 

diamonds show binary decisions. Rectangles with round corners (in yellow) show whole heuristic 843 
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building blocks, which can appear in other heuristics. For example, the tangential evasion heuristic 844 

contains the step or wait heuristic and therefore has higher cognitive demand. 845 

 846 

 847 

Figure 3: Analysis of an egress scenario with the step or wait heuristic (a.1-3), tangential evasion 848 

heuristic (b.1-3), sideways evasion heuristic (c1-3), and the results from a controlled experiment 849 

(supplementary material and methods, [29]) with a similar experimental design (d.1-3). The snapshots 850 

in the first row were taken 30 s after the start of the first simulation run (a.1-c.1) and 30 s after the start 851 

of the experiment (d.1; still image of experiment reproduced with permission of the authors in [28,29]). 852 

The camera distortion visible in d.1 was corrected in the experimental data analysed in d.2-3. In the 853 

simulations, pedestrians (blue disks) walk from their initial positions inside the blue rectangle to the 854 

intermediate target (yellow rectangle) at the beginning of the corridor and then to the final target 855 

(yellow square top of image). The queue measure in the second row (a.2-d.2) quantifies the shape of 856 

the crowd in front of the bottleneck. A queue measure of 0 would indicate that pedestrians queue in a 857 

single line in the middle of the corridor. Individual data points from 10 replicate simulation runs (a.2-858 
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c.2) and the single experimental run (d.2) are shown in green. The black line is a spline regression 859 

through the scatter plot. The peak of the queue measure towards the end of simulations is caused by 860 

insufficient pedestrian numbers to maintain long queues. The third row (a.3-c.3) shows the observed 861 

stepping behaviour of all agents averaged over the 10 replicate simulations . The three heuristics 862 

produce different shapes in front of the corridor, which can be seen in both the snapshots and the 863 

quantitative queue measure. 864 

 865 

 866 

Figure 4: Analysis of the egress scenario (fig. 3) with combinations of the step or wait, tangential 867 

evasion, and sideways evasion heuristic. In e.1-3, individuals follow one of the heuristics with equal 868 

probability throughout the simulation run. In f.1-3, the probabilities are the same, but which heuristic 869 

they follow is newly decided for each step. In g.1-3, pedestrians follow the step or wait heuristic. After 870 

not moving for 3 steps, they follow the tangential evasion heuristic, and after 5 steps not having 871 

moved, they follow the sideways evasion heuristic. If they can move, they follow the step or wait 872 

heuristic again. In h.1-3, the same scheme is used, but pedestrians follow the heuristic for the rest of 873 

the run once they have chosen another one. The first row (e-h.1) shows which heuristics pedestrians 874 
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followed over time. The second row (e-h.2) reports the same queue measure used in fig. 3 and the last 875 

row (e-h.3) shows the observed stepping behaviour. The first row visualises the number of agents 876 

present in the simulation following the respective heuristics and supplements the interpretation of the 877 

emergent behaviour in the third row. We averaged the data of 10 simulation runs and 1 s in simulated 878 

time for the first and third row. 879 

 880 

 881 

Figure 5: Results from corridor simulation study with the step or wait heuristic (a.1-3), tangential 882 

evasion heuristic (b.1-3), sideways evasion heuristic (c.1-3), and follower heuristic (d.1-3). We vary the 883 

rate at which pedestrians enter the corridor (lower delays between pedestrians imply higher rates). 884 

The snapshots are for simulations with a delay of 0.5 s and were taken 100 s after the start of the first 885 

simulation run (a.1-d.1). Blue circles depict pedestrians walking to the right and red circles pedestrians 886 

walking to the left. Pedestrians are created at the coloured rectangles (blue and red) at the ends of the 887 

corridor and walk to the opposite target (yellow rectangles). In the second row (a.2-d.2), the average 888 

flow of pedestrians in the middle of the corridor across 10 replicate simulations is shown with a 0.95 889 

confidence interval of the regression line. The last row (a.3-d.3) shows our measure for lane formation 890 
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over the width of the corridor in the middle of the corridor in one simulation run with a delay of 1.0 s for 891 

one representative simulation run (supplementary table S8 for the average across simulation runs). 892 

The abscissa (x-axis) specifies the lateral position in the corridor. Positive values indicate more 893 

homogeneous flow in one direction, negative values more homogeneous flow in the other direction. 894 

Greater absolute values indicate a higher degree of lane formation. When following the step or wait 895 

heuristic, pedestrians cannot avoid each other and stop when they meet others walking in opposite 896 

direction. The tangential evasion heuristic and follower heuristic lead to occasional jams with at a 897 

delay of 0.5 s. The sideways evasion heuristic allows for flow without jams for all three delays. The 898 

follower heuristic produces the highest degree of lane formation. 899 
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Features 
 
 
Heuristic 

Definition Emergent 
behaviour in 
Bottleneck 
scenario 

Emergent behaviour 
in Contra-Flow 
scenario 

Potential 
cognitive effort 
(ordinal  scale) 

Cognitive demand 

Step or wait 
heuristic 

Pedestrians 
anticipate the next 
step but only take it 
if it does not lead to 
a collision. 

Pedestrians do not 
overtake or walk 
around others, 
passive queueing. 

Immediate 
congestion when 
pedestrians walking 
in opposite direction 
meet. 

1 Anticipate step 
towards target, 
detect collisions 

Tangential 
evasion 
heuristic 

If the next step leads 
to a collision, 
pedestrians try to 
avoid it tangentially.  

Pedestrians 
sometimes try to 
overtake and walk 
around others, no 
queueing. 

Congestion with 
higher densities, 
minor lane 
formations 

2 (contains 
step or wait 
heuristic) 

+ determine 
tangential evasion 
directions, 
estimate distances 

Sideways 
evasion 
heuristic 

If tangential evasion 
fails, pedestrians 
then try to avoid the 
collision to the sides. 

Pedestrians very 
frequently 
overtake and walk 
around others, no 
queueing. 

Least likelihood of 
congestions, least 
lane formations 

3 (contains 
tangential 
evasion 
heuristic) 

+ determine 
sideways evasion 
directions 

Follower 
heuristic 

If a collision on the 
path towards the 
target is detected, 
pedestrians follow 
another individual 
walking in the same 
direction. 

Similar to the 
chosen proximity 
evasion heuristic, 
active queueing if 
no proximity 
evasion is used. 

Moderate likelihood 
of congestion with 
high densities, 
strongest lane 
formations 

4 (contains 
sideways 
evasion 
heuristic) 

+ determine 
walking directions 
of other 
pedestrians, select 
other pedestrian to 
follow 

 901 

Table 1: Summary and comparison of different cognitive heuristics for pedestrians. The first column 902 

gives a brief definition of the heuristic. The second and third column describe emergent effects in the 903 

bottleneck and corridor simulation scenarios. The fourth column orders the heuristics on an ordinal 904 

scale according to how demanding they are in terms of cognitive effort. We only state that a heuristic 905 

with a higher value is at least as demanding as a heuristic with a lower value, but we do not attempt to 906 

quantify by how much heuristics differ in potential cognitive effort required. The last column 907 

summarises the cognitive demand each heuristic poses. More demanding heuristics include the 908 

cognitive demand from the heuristics above (indicated with a “+”). 909 


