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SUMMARY 

This paper addresses the problem of advanced testing of systems via the principle of dynamic substructuring. 

Use is made of the hybrid simulation (HS) scheme framework to develop a new method of synthesis for the 

dynamically substructured system (DSS) scheme of Stoten and Hyde; [1]. Principal reasons for doing this are 

(i) to improve upon the original method of DSS synthesis by adopting the more intuitive framework of HS 

and (ii) to enable the amalgamation of HS and DSS into a unified substructured system (USS) scheme, so 

that the significant advantages of DSS can be incorporated into an existing HS scheme as a straightforward 

retrofit. 

Having established the common framework for HS/DSS the paper also illustrates, by way of an example, 

compensator/controller synthesis for the two schemes, together with their advantages and disadvantages. In 

doing this both schemes are retained in their basic forms, i.e. there are no additional control embellishments 

used in this work, such as delay compensation, adaptive control or other advanced control methods. In order 

to maintain as much transparency as possible, use is made of well-known classical control techniques. 

Common problems associated with the substructure testing technique are also investigated, including the 

effects of physical parameter uncertainty, pure delays in signals and a ‘split-mass’ in the substructure 

formulation. It is shown that, although the new formulation of controlled-DSS requires more design effort 

than compensated-HS, the advantages of DSS in terms of stability and robustness significantly outweigh this 

small disadvantage at the design stage. 

 

KEY WORDS:  Dynamic substructuring, automatic control, advanced testing. 
 

 

1.  INTRODUCTION 

Ever since the latter years of the last century, the concept and design of dynamically substructured 

methods of system testing have received significant interest from academic researchers, test 

institutions and industry. The ideal objective of this form of advanced testing has remained more-

or-less the same since its inception: to test physically full-size components of a complete (emulated) 

system, as if those components were in situ. Elements of the emulated system that are not part of the 

physical test are represented by a real-time numerical simulation, which must be executed in 

parallel with the physical component test. Ideally, exact synchronisation of the physical and 

numerical elements (i.e. substructures) at their interfaces is required, so that the combined 

substructures generate responses that exactly match those of the emulated system. 

The method of substructure testing is an intuitively sound concept, but there are potential pitfalls in 

realising the above ideal objective, some of which are as follows: 

(i) The necessity for additional actuation and sensing of the physical substructures. 

(ii) Parameter and structural uncertainty of the physical substructures and the actuation systems. 

Such uncertainty will often occur in the physical system under test; for example, changes in 

stiffness and damping coefficients under extreme loading conditions. Significant parameter 

uncertainty can also be present in the actuation system(s), especially if the frequency and 

amplitude ranges of the test signal are relatively large. 
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(iii) Numerical substructures with large dimensionality and complexity, which can be difficult to 

simulate in real-time. 

(iv) Pure delays in signal communications between substructures, most likely due to the use of 

discrete-time computational devices and any significant transmission distances. 

(v) The necessity for stable, robust controllers that can guarantee excellent synchronisation of the 

substructures at their interfaces, despite the presence of (i)-(iv). 

(vi) Controller design issues in (v), for example, the complexity of the control synthesis technique. 

One of the earliest attempts at solving the substructuring problem was via the method of hybrid 

simulation, sometimes referred to as real-time pseudo-dynamic testing, the hybrid method or the 

hybrid scheme (HS); [2]. This method and developments of it continue to be used with success, 

particularly in tests that have relatively low bandwidth dynamics and where dynamic uncertainty is 

not a major issue; [3], [4]. When compared with alternative techniques, the principle advantage of 

HS, in its basic form, is the relatively simple strategy of inverse-dynamics compensator design and 

implementation. However, the principle disadvantage of HS is its inherent lack of robustness to 

parameter uncertainty and communication delays. Specifically, lightly damped emulated systems, 

such as civil engineering structures, can result in the implementation of unstable HS-based test 

systems. 

Key to the success of HS is the accuracy of the dynamic model of the physical substructure’s 

actuator, since it is the inverse of this model that forms the basis of the compensator design. Some 

of the earlier approaches to HS design assumed an actuator model to be a pure time delay (e-Ts, 

where T is the delay time), so that approximate delay compensation methods were used in an 

attempt to provide the necessary cancellation; [3], [7]-[9]. However, this choice of model is counter 

to standard engineering practice, where typical servohydraulic or electrical actuators, together with 

their inner-loop controllers, are conventionally modelled as polynomial transfer functions. For 

example, a step input to a pure delay system would generate an output that is the same step delayed 

by T seconds. This is never the case in practice, where actuator (step) responses exhibit 

exponential/sinusoidal transient components; e.g. Figure 6 in [7] shows a recorded plot of this type 

of actuator response. However precise the delay compensation method, the dynamics of the real 

actuator will never be adequately cancelled, resulting in the implementation of inaccurate and even 

unstable HS schemes. 

Realisation of these problems lead later investigators to use standard models of actuator polynomial 

transfer functions, in series with a pure delay term having a smaller value of T than had previously 

been used; [10]-[12]. Effectively, the pure delay now correctly modelled the discrete-time nature of 

the actuator inner-loop controller. Hence, these later methods required the HS compensator to 

possess two types of cancellation: one for the transfer function and one for the pure delay. However, 

even if the compensator can approximately cancel the real actuator dynamics, the HS scheme per se 

can be significantly limited in terms of its stability and robustness, as is shown in §3. 

In more recent years an alternative to HS has been developed, called the dynamically substructured 

system (DSS) scheme, the main motivation being to improve upon the levels of stability and 

robustness offered by the HS scheme; [1], [13]. This has been achieved by establishing a different, 

perhaps less intuitive, substructuring framework from that of HS and using this new framework to 

synthesise a synchronising automatic controller, based upon a conventional transfer function 

approach. Implementation tests of DSS have verified the improvements in both stability and 

robustness that can be achieved by this method; [14]-[16]. Moreover, the synthesis and 

implementation of a state-space version of DSS has been shown to be a relatively straightforward 

exercise, resulting in the DSS synchronisation of multivariable substructuring problems and a test 

for ‘substructurability’, similar to the matrix rank test for controllability; [17]. 

Arguably, the original design of the DSS synchronising controller is a less intuitive and more 

demanding task than the design of the inverting compensator for HS. For this reason, one of the 

principle objectives of this current work is to use the HS framework for the synthesis of DSS 

controllers, enabling a unified substructured system (USS) approach. A significant advantage of 



A UNIFIED APPROACH FOR CONTROL OF DYNAMICALLY SUBSTRUCTURED SYSTEMS 

 

3 

 

USS is that it permits a straightforward retrofit of the new DSS approach onto an existing HS 

implementation, a technique that is also described here. 

The content in this paper is occasionally of a didactic nature and this is evident in §2, a brief 

description of the underlying substructured dynamics framework that will be used throughout the 

remaining sections. §§3, 4 present the common HS and DSS frameworks, together with the 

respective compensator and controller synthesis methods. §5 then briefly describes the USS 

framework and the method of DSS retrofit control. A simulated example of a substructured system 

and its compensator/controller design and performance is presented in §6-8. Although of a specific 

nature, the example has been designed to illustrate the following general features that can cause 

stability and robustness problems in practical test systems: 

 The interface between substructures lies within an inertial component (the so-called ‘split-

mass’ problem; [18]-[21]). 

 Parameter uncertainty can exist within the physical substructure and the actuator. 

 A pure delay can exist in the actuator and compensator/controller (collectively known as the 

transfer system), due to the discrete-time nature of some the hardware. 

In §§3-8, both the HS compensator and DSS controllers are presented in their most basic formats, in 

order to allow for balanced comparisons between the methods of design, the analytic and simulated 

results and the advantages and disadvantages of each approach. For example, there are no 

embellishments such as delay compensation, adaptive control and self-tuning control included in 

this work. Finally, the main conclusions are presented in §9. 

 

 

2.  SUBSTRUCTURED DYNAMIC SYSTEMS 

Consider a generalised form of substructured system as shown in Figure 1. At the top of the figure 

is an emulated system (ΣE), with serial multi - degree-of-freedom (DOF) dynamics that are assumed 

to be linear and comprised of inertial, conservative and dissipative components. Motion is 

constrained to the horizontal direction and disturbances, {d1, d2}, are applied to the system resulting 

in a displacement, y, at an arbitrarily defined interface. This interface represents the boundary 

between the multi-DOF numerical and physical substructures, arbitrarily selected as Σ1 and Σ2 

respectively, as shown at the bottom of the figure. Displacements of {Σ1, Σ2} at the interface are y1 

and y2 , whilst the interface (constraint) force is f. 

 

 

 

 

 

 

 

 
Fig. 1  A generalised emulated system, ΣE, and its associated substructured systems, {Σ1, Σ2}. 

 

The principle requirement of {Σ1, Σ2} is that their dynamical behaviour is identical to that of ΣE at 

the interface, so ideally: 

 1 2( ) ( ) ( )y s y s y s   (1) 

where s is the Laplace complex frequency operator (omitted from dynamic function and signal 

arguments in most of what follows, for the sake of brevity). The forward dynamics of ΣE can 

therefore be written as: 

 1 1 2 2E Ey G d G d   (2) 

d2 ΣE 

y 

f 

y1 y2 

Σ1 Σ2 

f 

Arbitrary interface 

d1 

d1 d2 
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where GE1 and GE2 are transfer functions of ΣE. Similarly, the forward dynamics of Σ1 are: 

 
1 1 1 1dy G d G f   (3) 

whilst the inverse dynamics of Σ2 are: 

 
2 2 2 2df G d G y   (4) 

Assuming that (1) is satisfied, (2)-(4) imply that ΣE can be represented by its substructures, {Σ1, Σ2}, 

in the quasi closed-loop form of Figure 2. 

 

 

 

 

 

 

Fig. 2  ΣE showing the {Σ1, Σ2} components in a quasi closed-loop form. 

 

Assuming that the dashed arrow in Figure 2 symbolically closes the loop, ΣE can be written as: 

 

1 2

1 1 2
1 2

1 2 1 21 1

E E

d d

G G

G G G
y d d

G G G G

   
    

    
 (5) 

In §3 the aim is to investigate a typical hybrid scheme (ΣHS) synthesis that ensures physical closure 

of the loop between y1 and y2 in Figure 2, and also to examine the advantages and disadvantages of 

this scheme. Then an alternative to ΣHS, the dynamically substructured system (ΣDSS) scheme, is 

presented in §4. 

 

 

3.  COMPENSATION OF HYBRID SYSTEMS 

An idealised ΣHS can be synthesised directly from Figure 2 by ensuring physical closure of the loop 

via the introduction of an actuator and compensator, GA and GC respectively, into the feedback path. 

The combination of the actuator and compensator is known as the transfer system, ΣTS , which is 

shown within the resulting ΣHS of Figure 3. An approach to compensator design is to ensure that the 

following relationship is satisfied, where ˆ
AG  is an estimate of the actuator transfer function; [10], 

[13]: 

 1ˆ
C AG G  (6) 

Hence, assuming complete parameter certainty, the synthesised ΣHS is identical to ΣE, so that the 

characteristic polynomial (CP) of ΣHS will be the same as that of ΣE, namely (1 – G1G2) from (5). 

 

 

 

 

 

 

Fig. 3  ΣHS in closed-loop form with an actuator, GA, and compensator, GC. 

 

However, the most significant problems with this approach are: 

(i) Since the CPs associated with ΣE and ΣHS are identical, the corresponding roots of their 

common characteristic equation (CE): 

f 

d1 
Gd1/G1 

+ 

+ 

(y = y1) 

(y2 = y) 

G1 

G2 

ΣE 

Σ1 

Σ2 

y1 

y2 + 
+ 

d2 
Gd2 

ΣHS ≈ ΣE 

GA 
u 

f 

d1 
Gd1/G1 

+ 

+ 

G1 

G2 

Σ1 

Σ2 

y1 

y2 + 
+ 

d2 
Gd2 

≈ y 

GC 

ΣTS: GAGC ≈ 1 
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1 21 0G G   (7) 

will also be identical. If ΣE is lightly damped, e.g. less than ~10%, the roots will be relatively 

close to the imaginary axis of the s-plane. Uncertainty of the dynamic parameters within Σ2 and 

also the actuator component of ΣTS ensure that GAGC ≠ 1, often leading to a migration of closed-

loop characteristic equation (CLCE) roots further towards the imaginary axis. In turn, this leads 

to a loss of relative stability and even to instability, should any roots cross the axis into the 

right-half s-plane.  

(ii) Moreover, the relative degree of GA will generally be r > 0, so that GC will be improper 

according to (6). In order to avoid the problem of having to generate noise-sensitive derivatives 

of y1 , GC will often have its denominator padded with additional dynamics, (1 + εs)r, where 

ε > 0 is sufficiently small. However, this modification will also decrease the relative stability of 

the HS system by increasing the phase lag around the loop. 

(iii) In addition, pure delay terms can often exist in ΣTS , due to any discrete-time elements within 

the inner-loop controller (considered to be part of the actuator dynamics, GA) and also within 

the compensator, GC. The aggregate of such pure delays, typically in the order of milliseconds, 

will inevitably lead to a loss of phase between y1 and y2; again, the consequence will be a 

reduction in relative stability and hence an increase in the potential for instability. 

In these circumstances, more representative forms of ΣHS closed-loop transfer functions (CLTF) are 

given by the expressions in (8), which will be approximately equal to GE1 and GE2: 

 

1 2

1 1 2
1 1 2

1 2 1 21 1

E E

d d

A C A C

G G

G G G
y d d

G G G G G G G G

 

   
    

    
 (8) 

and therefore, even if stability is preserved, 1y y . 

Without any further enhancement to the form of compensation described, such as delay 

compensation or self-tuning control, it is concluded that ΣHS lacks inherent robustness to the 

presence of parameter uncertainty within {Σ2 , ΣTS} and to pure delays created by any discrete-time 

computational elements within ΣTS. Therefore, a prime objective of this work is to devise a method 

based upon the principles of automatic control that builds upon the intuitive framework of ΣHS, but 

yields significant improvements in stability and robustness. This will be achieved by ensuring that 

the new method has a CL error CE (CLECE), which is different from the CLCE of ΣHS and whose 

roots can be arbitrarily assigned via well-known methods of control system design. Separately, the 

overall objective of synchronising y2 with y1 , whilst emulating the behaviour of ΣE, will also be 

satisfied. In order to do this, the concept of DSS and their control is introduced and described in §4. 

 

 

4.  AUTOMATIC CONTROL OF DYNAMICALLY SUBSTRUCTURED SYSTEMS 

The new approach taken in this section revisits the ΣDSS method of Stoten and Hyde [1], 

incorporating the ΣHS framework as the starting point for the automatic controller design. One of the 

objectives in doing this is to provide a unified substructured system (ΣUSS) and control methodology, 

i.e. to synthesise a common framework for ΣHS and ΣDSS design. A practical advantage of this new 

approach is that it will allow the retrofit of a ΣDSS control loop into an existing ΣHS implementation, 

in order to improve the accuracy and robustness of the substructured test. 

Hence, with the structure of ΣHS shown in Figure 3 and reference [1] acting as guides, the following 

linear substructuring controller (LSC) is proposed for the new ΣDSS configuration: 

 1 1 2 2 1 2;e d du K e K d K d e y y      (9) 

where e is the synchronisation error and {Ke, Kd1, Kd2} are feedback and feedforward control 

transfer functions. Figure 3 is thereby transformed into the ΣDSS shown in Figure 4. 
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Fig. 4  ΣDSS based upon the amalgamation of the ΣHS formulation of Figure 3 and reference [1]. 

 

From Figure 4: 

 1
1 1 1 2 2 2 2

1

;d
d A A

G
y G d G d G G u y G u

G

 
    

 
 (10) 

so that (9) and (10) yield the closed-loop error dynamics: 

 1 1 2 1 2 1 1 2 2
1 2

1 2 1 2

(1 ) (1 )

1 (1 ) 1 (1 )

d A d d A d

A e A e

G G G G K G G G G G K
e d d

G G G K G G G K

      
    

      
 (11) 

Assuming complete parameter certainty, solutions for the feedforward gains that ensure e → 0 are 

provided by (11): 

 1 2 1
1 2

1 2 1 2

and
(1 ) (1 )

d d
d d

A A

G G G
K K

G G G G G G
 

 
 (12) 

Robustness of the ΣDSS error dynamics in the presence of parameter uncertainty can then be ensured 

by suitable design of Ke , using the CLECE inferred from (11) as the basis for this design: 

 1 21 (1 ) 0A eG G G K    (13) 

Comparing (13) with (7), it is evident that a suitable design of Ke permits arbitrary selection of the 

CLECE roots of the ΣDSS - a result that is in sharp contrast to the simpler design outcome from ΣHS, 

which offers no such possibility.  

In addition, it is now shown that the CL response of ΣDSS (relating y1 to d1 and d2) in Figure 4 

matches the equivalent response of ΣE, independently of the design of the stabilising Ke. In the 

following, it is assumed that e ≠ 0 for the sake of generality. Thus, (9) and the second part of (10) 

yield: 

 1 2
1 1 2

1 1 1

e d d

e A e A e A

K K K
u y d d

K G K G K G

     
       

       
 (14) 

so that the first part of (10) together with (14) yield the CL response of ΣDSS as: 

 1 1 1 2 1 1 2 2 2 2
1 1 2

1 2 1 2

( )

1 (1 ) 1 (1 )

d A d e A d d A d e A d

A e A e

G G G K G G G K G G G G K G G K
y d d

G G G K G G G K

      
    

      
 (15) 

ΣDSS ≈ ΣE 

f 

d1 
Gd1/G1 

+ 

+ 

G1 

G2 

Σ1 

Σ2 

y1 

y2 + 

+ 

d2 
Gd2 GA 

e Ke 

Kd1 Kd2 

ΣTS 

+ 

- 

+ 

≈ y 

u 

+ 

+ 
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Substitution of the solutions for the forward gains from (12) into (15) ultimately yields the 

equivalence of ΣDSS and ΣE: 

 1 1 2 1 2 1 2
1 1 2

1 2 1 2 1 2 1 2

[1 (1 ) ] [1 (1 ) ]

(1 )[1 (1 ) ] (1 )[1 (1 ) ]

d A e d A e

A e A e

G G G G K G G G G G K
y d d

G G G G G K G G G G G K

      
    

        
 

since, on cancellation of 
1 21 (1 )A eG G G K   in the above equation, it is revealed that ΣDSS possesses 

an identical pair of CLTF to those defined for ΣE in (5), i.e. GE1 and GE2: 

 

1 2

1 1 2
1 1 2

1 2 1 21 1

E E

d d

G G

G G G
y d d

G G G G

   
    

    
 (16) 

Thus, the crucial aspect of the ΣDSS design approach can be stated as follows (assuming parameter 

certainty for the present): 

(a) Equation (16) implies that the LSC forces ΣDSS to have a CL dynamic response that is 

identical to the response of ΣE, with both systems having their fixed CLCE roots given by 

1 21 0G G  .  

(b) However, from (11), the synchronisation error dynamics of ΣDSS are governed by the entirely 

separate CLECE, 1 21 (1 ) 0A eG G G K   , with roots that can be arbitrarily assigned by 

suitable design of Ke. 

(c) Hence, (a) and (b) imply that ΣDSS possesses arbitrary (but finite) levels of stability and 

robustness of its error dynamics, whilst retaining a fixed CL response dynamic matching 

that of ΣE.  

The example described in §§6-8 further amplifies points (a)-(c) in a quantitative manner. In addition, 

the effects of physical parameter uncertainty and pure delays, for both ΣHS and ΣDSS, are also 

examined by way of this example. 

 

 

5.  UNIFIED SUBSTRUCTURED SYSTEMS 

Straightforward integration of ΣHS with the new ΣDSS design leads to a unified substructured system 

(USS; ΣUSS) method of control. The main motivation for this is a practical one - to improve the 

stability and robustness of an existing (probably hardwired) implementation of ΣHS, via the addition 

of a ΣDSS retrofit loop. There are at least two possible solutions to this problem, termed pre-ΣHS and 

post-ΣHS retrofit strategies, which are described below. 

The pre-ΣHS strategy is shown in Figure 5, where the summing junction for the additional ΣDSS 

control signal is placed before the ΣHS compensator, GC. The objective is to ensure that u in Figure 5 

is identical to the original ΣDSS control signal, via the action of the ΣUSS gains, {Kd11, Kd22, Ke1, Ke2}. 

Comparing the expression for u from Figure 5 with that generated by the ΣDSS controller alone, 

yields: 

 11 1 22 2 1 1 2 2 1 1 2 2 1 2[ ( 1) ]C d d e e d d e eu G K d K d K y K y K d K d K y K y           (17) 

so that the ΣUSS gains are simply given by: 

 1 2
11 22 1 2; ; 1;d d e e

d d e e

C C C C

K K K K
K K K K

G G G G
      (18) 

The advantages of this particular retrofit strategy are that all of the original ΣDSS gains are modified 

by the inverse of GC (≈ GA) and therefore the expressions in (18) remain proper or strictly proper. 

However, a potential disadvantage is that access to the summing junction may not be feasible in an 

existing, hardwired ΣHS implementation. 
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Fig. 5  ΣUSS: pre-ΣHS retrofit of ΣDSS. 

 

The alternative post-ΣHS strategy is shown in Figure 6, where the summing junction is now placed 

immediately after the compensator and the new retrofit gain set is described by{Kd11, Kd22, Kec, Ke}. 

Again, comparing the expression for u in Figure 6 with that generated by the ΣDSS controller alone, 

yields: 

 1 1 2 2 1 2 1 1 2 2 1 2( )d d ec C e d d e eu K d K d K G y K y K d K d K y K y           (19) 

Hence the only modification required to the original ΣDSS gain set is to the Ke term operating on y1: 

 ec e CK K G    (20) 

The obvious advantage of this method is that Kd1, Kd2 and Ke (for y2) are preserved from the original 

ΣDSS-LSC design. In addition, placing the summing junction prior to the actuator is likely to be a 

more feasible proposition than it was in the previous case. However, a disadvantage is that the 

expression for Kec in (20) is likely to be non-proper, so that padding of the denominator will be 

required using the same method as described in §3. 

 

 

 

 

 

 

 

 

Fig. 6  ΣUSS: post-ΣHS retrofit of ΣDSS. 

 

 

6.  AN EXAMPLE 

The purpose of this section is to present an example of dynamic substructuring that will be used in 

§§7, 8 to illustrate, in a quantitative manner, (i) the processes involved in both ΣHS and ΣDSS 

controller designs; (ii) the efficacy of the designs in terms of synchronisation performance of the 

substructures,{Σ1, Σ2}; (iii) the efficacy of the designs in terms of ΣE-tracking; (iv) the advantages 

and disadvantages of the designs. 

Key substructuring and control problems that were described in §1 will be addressed here, too: the 

‘split-mass’ problem, the effects of uncertainty in physical parameters and the effects of a pure 

delay term in the dynamics. In keeping with the didactic nature of some of this work, the approach 

to control design is relatively straightforward; classical control engineering techniques are used, 

including the Evans roots’ loci plot, the polar plot and the Nyquist stability criterion; [22]. 
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Although of a specific nature, the example is nevertheless of sufficient generality to highlight key 

features of typical substructuring problems and their control, but without the encumbrance of 

excessively large dimensionality and dynamic complexity. In particular, ΣE is a linear, serially-

connected dynamic system with 3-DOF and {Σ1, Σ2} each have 2-DOF, with uncertainty in their 

physical parameters. Thus, ΣE is the mass-spring-damper arrangement with parameters m, k, and c, 

shown at the top of Figure 7. A single external displacement disturbance, d2 (= d) is applied to the 

right-hand extremity of the system, whilst the left-hand extremity is constrained to be stationary 

(d1 = 0). The resulting {Σ1, Σ2} are shown at the bottom of Figure 7, where the adjustable interface 

is chosen to lie within the second mass, so that 
1 2 1 3 and 0 3m m m m m   . The interaction 

(constraint) force between the substructures is f and arbitrarily Σ1 is selected as the numerical 

substructure and Σ2 as the physical substructure. The interface location is also arbitrary and will 

often be chosen pragmatically, being based upon the natural boundary between a physical test 

specimen and the numerical substructure. For example, an alternative location in Figure 7 might be 

at ‘A’ and although the dynamics of {Σ1, Σ2} will change, the resulting developments will be very 

similar to those presented here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  The emulated system, ΣE (top) and the 2 substructures {Σ1, Σ2} (bottom); 

Σ1 is the numerical substructure and Σ2 is the physical substructure. 

 

Hence the dynamics of ΣE in the time domain are given by: 

 

1 1 2 1 2 1 1

2 1 2 1 3 2 3 2 2

3 2 3 2 3 3 3

( ) ( )

( ) ( ) ( ) ( ) 3

( ) ( ) ( ) ( )

E E E E E E E

E E E E E E E E E

E E E E E E E

ky cy k y y c y y my

k y y c y y k y y c y y my

k y y c y y k d y c d y my

       
 
         
          

 (21) 

and the dynamics of Σ1 are: 

 
11 11 12 11 12 11 11

12 11 12 11 1 12

( ) ( )

( ) ( )

ky cy k y y c y y my

k y y c y y f m y

       
 

      
 (22) 

so that the forward dynamics of Σ1 in the Laplace (complex frequency) domain are: 

 

1

2

12 1 12 2 2

1

2 2

( )( 2 2 ) ( )

G
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y y f G f

m s cs k ms cs k cs k

  
   

      
 (23) 

Similarly, the dynamics of Σ2 are: 
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23 22 23 22 2 22

23 22 23 22 23 23 23

( ) ( )

( ) ( ) ( ) ( )

k y y c y y f m y

k y y c y y k d y c d y my

     
 
         

 (24) 

so that the inverse dynamics of Σ2 are: 

 

2

22

2 2 2 2

2
22 2 22 2

( )

( )( 2 2 ) ( ) ( )

2 2 2 2

d d

d

y

G GG

m s cs k ms cs k cs k cs k
f y d G y G d

ms cs k ms cs k



          
      

     
 (25) 

Polynomials within the substructure transfer functions {G1, G2, Gd2 (= Gd)}, as defined in (23) and 

(25) are now written as: 

 

2

11

2 2 2

12 1

2 2 2

21 2

2 2

( )( 2 2 ) ( )

( )( 2 2 ) ( )

p ms cs k

p m s cs k ms cs k cs k

p m s cs k ms cs k cs k

   
 

       
        

 (26) 

so that: 

 
 

2

11 21
1 2

12 11 11

; ; d

cs kp p
G G G

p p p


    (27) 

Hence the substructured system is as shown in Figure 2, where the output of Σ1 is now written as 

y1 = y12 and the input to Σ2 as y2 = y22. 

In order to represent a lightly damped structure with natural frequencies of less than ~3Hz, nominal 

values of the parameters are chosen as m = 100 kg, k = 10000 N/m and c = 20 Ns/m, so that from 

(26) and (27), the dynamics of the substructures are given by: 

 

 

2 4

11
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12

4 4 3 3 6 2 5 8

21
2 2 2 4

11

2 2 5 8

2 4

11
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:
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:
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400 4 10 10
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d
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   
   

       
 

         
   

   
 

     
    

 (28) 

To confirm the natural frequency and damping characteristics, a state-space representation of (21) is 

generated, E E E Ex A x B d  , yielding the pair {AE, BE}: 

 

2 / 1 / 0 0 0 0

2 / 0 / 0 0 0 0

/ (3 ) 0 2 / (3 ) 1 / (3 ) 0 0
;

/ (3 ) 0 2 / (3 ) 0 / (3 ) 0 0

0 0 / 0 2 / 1 /

0 0 / 0 2 / 0 /

E E

c m c m

k m k m

c m c m c m
A B

k m k m k m

c m c m c m

k m k m k m

   
   

   
   

    
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   

 (29) 

where: 

     

 

1 2 3 4 5 6 1 3 5 1 2 3

2 4 6 1 2 1 2 3 2 3

,

2 2 2
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3 3 3

T

E E E E E E E E E E E E E

E E E E E E E E E E

x x x x x x x x x x y y y

k k k k k k k k
x x x y y y y y y y d

m m m m m m m m

 

      
            

      

 

From AE in (29), the numerical values for {m, k, c} yield the natural frequencies, ωn (and fn in Hz), 

and the damping ratios, ζ, of ΣE as: 

   5.28 14.1 15.5 rad/s 0.841 2.25 2.46 Hzn nf    ;       0.00528 0.0141 0.0155    
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7.  ANALYSIS AND SYNTHESIS OF THE HYBRID SIMULATION SCHEME 

This section introduces a simple first-order dynamic model for the actuator and the corresponding 

ΣHS compensator design for the example of §6. Secondly, it provides an investigation of ΣHS 

stability and robustness with respect to uncertainty in the actuator parameter, a, and at the same 

time considers the effect of three cases of split-mass ratio R = m2/m1, with a focus on the effect of 

this ratio upon stability. Thirdly, the effect of an actuator/transfer system pure delay term upon ΣHS 

stability and robustness is investigated, again in conjunction with the three cases of mass ratio, R. 

 

7.1  Actuator dynamics and ΣHS compensator design. 

Dynamic identification of a typical actuation system, for example a laboratory-based 25kN 

servohydraulic actuator, with its own discrete-time inner-loop displacement controller, yields an 

approximately first-order dynamic model for GA; [14]. Hence, with reference to the notation of 

Figure 3: 

 12
ˆ

ˆ; 42.0s
ˆ

A

y a
G a

u s a

  


 (30) 

where â  is an estimate of a. From (6), the compensator design for ΣHS is therefore given by: 

 1

1

ˆ 42ˆ
ˆ 42(1 )

C A

u s a s
G G

y a s

  
   


 (31) 

The denominator padding term, (1+εs), ensures properness of the compensator transfer function, GC, 

whilst a very small value of ε does not cause a significant noise problem in this case, since the input 

signal to GC is the numerically generated signal, y1. If GA is modelled as a higher order transfer 

function, with relative degree r, then it will be necessary to pad GC with a term such as (1+εs)r. 

 

7.2  Stability and robustness of ΣHS with respect to a physical parameter change. 

The robustness of ΣHS is now investigated with respect to variations in the actuator parameter, a. 

For the present, the transfer system is assumed to contain no pure delay term; (see §7.3). Assuming 

that 0  , from (8), (26), (27) and (31) the CLCE of ΣHS is: 

 21
1 2

12

ˆ
1 1 0

ˆ
A C

pa s a
G G G G

s a a p

   
      

   
 (32) 

Extracting a as the varying parameter, the CLCE can be written as: 

 12 21

12

ˆ ˆ( )
1 0 1 0

ˆ

ap s a p
a KF

sap

  
     

 
 (33) 

The term on the right of (33) is written in roots’ loci canonical form, i.e. K is a linearly dependent 

parameter of a that increases monotonically along the loci paths and F is a monic transfer function. 

Hence, from the given value of â : 

 2 2

1 1
ˆ 42 42

am ma aR
K

am m

 
   

 
 (34) 

Three cases of the split-mass ratio R = (m2/m1) are considered in the following roots’ loci analyses 

of ΣHS robustness to changes in a:  R = {0.5, 1.0, 2.0}. These are labelled as cases 1, 2 and 3, 

respectively, and in each case m1+m2 = 3m = 300 kg. From (26) and the given parameter data, 

{m, k, c}, the expressions for K and F in (33) are: 

 

5 4 3 2

4 3 2

5 4 3 2

4 3 2

126.6 367.2 33640 13360 840000
Case 1: 0.01191 ;
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s s s s s
K a F

s s s s s

s s s s s
K a F

s s s s s
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    
 

   

    
 

   


5 4 3 2

4 3 2

63.50 283.6 16820 6680 420000
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( 0.6000 300.0 40.00 10000)

s s s s s
a F

s s s s s

 
 
 
  
 
 
     
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 (35) 
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a = 111 

so that the corresponding CLCE roots’ loci for each case are as shown in Figure 8. 

 

 

 

 

 

 

 

 

      (a)             (b)     (c) 

Fig. 8  ΣHS roots’ loci plots for a varying actuator constant, a. 

(a) Case 1: R = (m2/m1) = 0.5     (b) Case 2: R = (m2/m1) = 1.0     (c) Case 3: R = (m2/m1) = 2.0 
 

From Figure 8, it can be seen that (a) case 1 results in instability when 0.102 ≤ a ≤ 25.7, (b) case 2 

is unconditionally stable (a > 0) with four left-half plane pole/zero cancellations and (c) case 3 

results in instability when a ≥ 111. However, in all cases of a stable ΣHS, poor relative stability will 

result since the dominant oscillatory roots are typically in the region of -0.1±5j, yielding a very 

small phase margin in the order of ~2°. 

The purpose of the following simulations is to investigate the above stability analysis when the 

external disturbance, d, is a linear sinusoidal sweep signal of amplitude 3.0 mm and duration 200 s. 

The sweep starts at a frequency of 0.0 Hz and ends at a frequency of 4.0 Hz, thereby spanning the 

system natural frequencies. (In the following time plots, the frequency of excitation at a particular 

time t can therefore be determined as f = t/50 Hz). Figure 9 shows the resulting responses of ΣE, 

{yE1, yE2, yE3}, which remain constant throughout this work. When comparing results from stable 

system simulations, the difference between two signals will often be characterised in terms of 

performance indices defined as 
200

2 0.5

12 1 2
0

[ ( ) ]I y y dt  and 
200

2 0.5

21 2 1
0

[ ( ) ]E EI y y dt  , which are 

the indices of {Σ1, Σ2}-synchronisation and ΣE-following (by Σ1, at the substructure interface). 

 

 

 

 

 

 

 

 

Fig. 9  ΣE responses {yE1, yE2, yE3} 

 

For the present, no pure delay is assumed to exist in the dynamics of {Σ1, Σ2}. Delays have a 

significant effect upon stability and robustness results and this phenomenon is investigated in §7.3. 

 

Case 1: R = (m2/m1) = 0.5; ΣHS response. 

As expected, the nominal value of the actuator parameter, a = 42.0 s-1, results in stable and near-

perfect responses with baseline performance indices of I12 = 0.0 mm.s and IE21 = 1.8 mm.s. Of more 

interest is the effect of a variation in the parameter to a = 30.0 s-1, where ΣHS is predicted to remain 

stable; the resulting responses of {Σ1, Σ2} are presented in Figure 10(a). In particular, it is noted that 

the outputs {y1, y2} have mediocre levels of synchronisation and ΣE-following, with relatively large 

values for the performance indices of I12 = 77.7 mm.s and IE21 = 798 mm.s. Roots’ loci analysis 

predicted instability when 0.102 ≤ a ≤ 25.7. Thus, with a = 25.0 s-1, the resulting unstable responses 
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of {Σ1, Σ2} outputs are as shown in Figure 10(b); note that the synchronisation error, e, is also 

unstable.  In fact, unstable responses exhibiting slow growth are generated up to the limits of the 

inequality 0.102 ≤ a ≤ 25.7 (again, the results are not presented here). 

 

 

 

 

 

 

 

 

        (a)          (b) 

Fig. 10  ΣHS case 1: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2.       (a) a = 30 s-1     (b) a = 25 s-1 

 

Case 2: R = (m2/m1) = 1.0; ΣHS response. 

This is the only case that guarantees unconditionally stable ΣHS responses for a > 0, assuming 

that no pure delay is present. One set of results is presented. Retaining the parameter varied value of 

a = 30.0 s-1, the corresponding response is shown in Figure 11. As predicted, the responses are 

stable, with improved performances compared with case 1: I12 = 49.5 mm.s and IE21 = 24.7 mm.s. 

 

 

 

 

 

 

 

Fig. 11  ΣHS case 2; a = 30 s-1: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2. 

 

Case 3: R = (m2/m1) = 2.0; ΣHS response. 

Again, with the actuator parameter changed to a = 30.0 s-1, ΣHS is predicted to be stable. This is 

evident from Figure 12(a), where the response accuracy lies between those of case 1 and case 2; 

performance figures are I12 = 39.6 mm.s and IE21 = 296 mm.s. However, the roots’ loci analysis 

does predict instability when a ≥ 111 s-1. Hence, setting a = 130 s-1, for example, results in the 

unstable responses of Figure 12(b). Instability also occurs when a = 111+ s-1 with an inevitably slow 

growth of the outputs; (these results are not presented here). 

 

 

 

 

 

 

 

 

        (a)          (b) 

Fig. 12  ΣHS case 3: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2.      (a) a = 30 s-1     (b) a = 130 s-1 
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7.3  Stability and robustness of ΣHS with respect to a pure delay term within the dynamics. 

In addition to physical component parameter variations, the other phenomenon that can often beset 

substructured system control is a pure delay term within the dynamics. As described in §1, pure 

delays are most often the consequence of discrete-time computational elements within ΣTS, or 

perhaps due to signal communication delays between geographically distant substructures. 

Therefore, ΣHS is analysed in terms of its stability and robustness to the introduction of a pure delay 

term, e-τs, within ΣTS. Here, τ is the pure delay time, which is typically of the order of milliseconds. 

Due to the transcendental nature of the pure delay in the complex frequency domain, the 

algebraically rational roots’ loci method (without modification) is no longer an appropriate 

approach to analysis. Therefore an alternative technique, based on classical Nyquist stability theory, 

is used to directly analyse the effect of pure delays. 

Incorporating the pure delay in series with the compensator dynamics, GC, (32) yields the revised 

ΣHS CLCE as: 

 21
1 2

12

ˆ
1 ( ) 1 0

ˆ

s s

A C

pa s a
G G e G G e

s a a p

     
      

   
 (36) 

Assuming that the actuator parameter, a, is perfectly known for the purposes of this analysis, the 

CLCE in (36) becomes: 

 21

12

1 1 0s

H

p
e H

p

 
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 

 (37) 

and, according to Nyquist stability theory, the modulus and argument of open-loop transfer function, 

H(jω), satisfy the following expressions at the point of closed-loop instability: 

 

     

21
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21 12

( )
( ) 1

( )

( ) ( ) ( )

p j
H j

p j

H j p j p j






    

 
  

 
 
       

 (38) 

Moreover, in the three-mass example, (p21/p12) has no poles or zeros in the right-half plane. Hence, 

the Nyquist right-hand rule (or ‘Nyquist rule’, for short) can be invoked: for the preservation of 

closed-loop stability, the polar plot of H must cross the negative real axis to the right of the critical 

point, -1+j0. In this work, the form of the polar plot of H at high frequencies is of crucial 

importance; from (26) and the left-hand side of (30), let ω → ∞: 

      21 2
21 12

12 1

;
p m

H R H p p
p m  



 
 



             (39) 

i.e. at high frequencies the polar plot of H describes a circle of radius R = (m2 / m1), centred on the 

origin of the complex plane. Hence, via the Nyquist rule, the following result is valid for all τ > 0: 

The HS scheme is unstable if the split-mass ratio R = (m2 / m1) ≥ 1, i.e. if m2 ≥ m1  

Inevitably a pure delay, however small, will be present when discrete-time elements are used in the 

transfer system, so the above result places a significant and general restriction upon the applicability 

of the HS scheme when ‘split-mass’ substructured systems are to be tested. Although this is a 

sufficient, high-frequency condition for the existence of ΣHS instability, it is not (by itself) necessary. 

The complete picture can be seen when re-investigating cases 1-3, whilst making use of the Nyquist 

rule over the entire frequency range of the polar plot. 

 

Case 1: R = (m2/m1) = 0.5; ΣHS polar plot. 

The above condition for instability is not satisfied by the value of R = 0.5. However, analysis of 

the resulting polar plot leads to the conclusion that ΣHS nevertheless will become unstable for values 

of τ exceeding a certain limit. Figure 13(a) shows the polar plot of H for this case. At very high 

frequencies, the curve describes the predicted circle of radius R = (m2 / m1) = 0.5, centred on the 
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origin. Via a trivial iterative procedure, the value of pure delay that ensures the negative real axis is 

tangential to the curve at the critical point, -1+j0, is found to be τ = 0.0147 s (at a frequency of 

ω = 5.28 rad/s). Increasing τ beyond this value will cause the polar plot to initially cross the real 

axis to the left of the critical point. Therefore the Nyquist rule predicts instability when τ ≥ 0.0147 s. 

 

Case 2: R = (m2/m1) = 1.0; ΣHS polar plot. 

In this case, p21 = p12, so that the only non-cancelled term within H is e-jωτ. Hence, when τ > 0, 

the entire polar plot is a circle of radius R = (m2/m1) = 1.0, centred on the origin. Under these 

conditions ΣHS will always be unstable according to the Nyquist rule. 

 

Case 3: R = (m2/m1) = 2.0; ΣHS polar plot. 

Now the high frequency section of the polar plot has a radius R = (m2/m1) = 2.0, so again ΣHS is 

always unstable when τ > 0. The complete polar plot is shown in Figure 13(b), arbitrarily drawn for 

a pure delay time τ = 0.003 s. 

 

 

 

 

 

 

 

 

 

 

 

              (a)          (b) 

Fig. 13  ΣHS scheme polar plots of H(jω) for varying mass ratio, R. 

(a) Case 1: R = (m2/m1) = 0.5    (b) Case 3: R = (m2/m1) = 2.0 

 

The following time-domain responses generated by the three cases, each with judicious selection of 

τ, provide additional insight into the problems associated with stability of ΣHS. 

 

Case 1: R = (m2/m1) = 0.5; ΣHS response with pure delay. 

This case exhibits conditional stability with increasing τ. Therefore when τ  = 0.003 s, for 

example, a stable response is predicted by Figure 13(a) and the responses in Figure 14(a) bear this 

out. Synchronisation of {Σ1, Σ2} outputs is acceptable, although ΣE-following is less so, with 

performance measures of I12 = 17.6 mm.s and IE21 = 158 mm.s. However, instability is predicted if 

the delay is increased to τ = 0.016 s, for example, and Figure 14(b) shows the resulting responses. 

 

 

 

 

 

 

 

 

        (a)          (b) 

Fig. 14  ΣHS case 1: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2.       (a) τ = 0.003 s     (b) τ = 0.016 s 
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Case 2: R = (m2/m1) = 1.0; ΣHS response with pure delay. 

This case is unstable for all τ > 0, according to the Nyquist rule. For example, when τ = 0.003 s 

the unstable response of Figure 15(a) is generated. 

 

Case 3: R = (m2/m1) = 2.0; ΣHS response with pure delay. 

Again, this case is unstable for all τ > 0 so that when τ = 0.003 s, the unstable response of 

Figure 15(b) is the result. 

 

 

 

 

 

 

 

 

        (a)          (b) 

Fig. 15  ΣHS ; τ = 0.003 s: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2. 

(a) Case 2      (b) Case 3 

 

 

8.  ANALYSIS AND SYNTHESIS OF THE DYNAMICALLY SUBSTRUCTURED SYSTEM 

(DSS) SCHEME 

This section introduces details of the DSS scheme when applied to the example of §6, in a similar 

manner to the approach taken with the HS scheme in §7. 

 

8.1  ΣDSS linear substructuring controller (LSC) design 

The LSC has two components for design, Kd (= Kd2) and Ke, where the expression for Kd is 

determined using (12). From the expressions for the dynamics of {Σ1, Σ2} and the actuator in (26), 

(27) and (30), after some manipulation (12) yields: 

 
2

1
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 (40) 

which is of relative degree 1. The term 2 2 2

12 21( ) ( 2 2 )(3 2 2 ) 2( )p p ms cs k ms cs k cs k         

in (40) is invariant for any mass ratio R = m2/m1, so that Kd is also invariant. Hence, the LSC 

forward transfer function is: 
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Also, the ΣDSS CLECE is determined from (13) as: 
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 (42) 

so that the zeros of F1 are invariant with the mass ratio, whereas the poles are not. Nevertheless, all 

poles and zeros of F1 will be in the left-half s-plane, so the following stable pole/zero cancellation 

design is proposed for the LSC feedback transfer function, Ke: 
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where kp and ki are proportional and integral gains, yet to be determined. Selecting the gain ratio 

ˆ/i pk k a , the CLECE in (42) is then independent of the mass ratio and can be written as: 

 
1

ˆ
1 1 0e p

a a s a
F K k

s a s a s

    
       

     
 (44) 

Assuming for the purposes of design that ˆ 42a a  , (44) reduces to the first-order CLECE: 

 42 0ps k   (45) 

so that setting kp = 1, (and hence ki = 42), yields a CL error transient settling-time of ~0.1 s. 

 

8.2  Stability and robustness of ΣDSS with respect to a physical parameter change. 

The feedback component of the LSC design, characterised by the CLECE in (44), is examined for 

its effect on stability and robustness to changes in the key actuator parameter, a. Therefore, 

assigning a as the parameter of variation, (44) can be re-written in roots’ loci canonical form as: 
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 (46) 

The resulting roots’ loci are shown in Figure 16, indicating that the ΣDSS-LSC strategy is 

unconditionally stable for all a > 0, (and for all cases of mass ratio), which is in sharp contrast to the 

stability and robustness results for the ΣHS scheme shown in Figure 8. 

 

 

 

 

 

 

 

Fig. 16  ΣDSS scheme roots’ loci for a varying actuator constant, a; valid for all mass ratios. 

ΣDSS responses are compared with those of ΣHS, for the values of mass ratio, R, and actuator 

parameter, a, previously used. As in §7.2, there are no pure delay terms yet included within the 

substructure dynamics (see §8.3 for detailed comments on the issue of ΣDSS with pure delays). 

 

Case 1: R = (m2/m1) = 0.5; ΣDSS response. 

Figure 17(a) shows the ΣDSS responses when the actuator parameter value is varied from the 

nominal value to a = 30 s-1. Comparing this with the equivalent ΣHS responses in Figure 10(a), the 

synchronisation error, e, of ΣDSS is seen to be of a consistently smaller amplitude than that of ΣHS, 

yielding I12 = 12.5 mm.s, a factor of ~6.2 improvement. In addition, the responses of {Σ1, Σ2}, y1 

and y2, generated by ΣDSS are now much closer to the desired emulated response, yE2, shown in 

Figure 9. The associated IE21 = 12.1 mm.s represents a ~66 improvement over the ΣHS result. 

Decreasing the actuator parameter to a = 25 s-1 results in instability of ΣHS, but as predicted ΣDSS 

remains stable. See Figure 17(b), which illustrates the excellent {Σ1, Σ2} synchronisation and 

correspondence with the emulated response, yE2, yielding I12 = 21.4 mm.s and IE21 = 21.2 mm.s. 

Note: Due to the efficacy of control, subsequent ΣDSS and ΣUSS responses closely match those in 

Figure 17 and will not be presented here. However, the resulting performance indices are presented 

and also included in the comparative Table 1 at the end of this section. 
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      (a)          (b) 

Fig. 17  ΣDSS case 1: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2.      (a) a = 30 s-1     (b) a = 25 s-1 

 

Case 2: R = (m2/m1) = 1.0; ΣDSS response. 

This is the only case that ensures unconditional stability of ΣHS (with no pure delay present).  

Setting a = 30 s-1, the resulting ΣHS response of Figure 11 yields I12 = 49.5 mm.s and 

IE21 = 24.7 mm.s, which are significantly outperformed by the corresponding ΣDSS, with indices 

I12 = 16.2 mm.s and IE21 = 9.81 mm.s. 

 

Case 3: R = (m2/m1) = 2.0; ΣDSS response. 

With a = 30 s-1, ΣHS is shown to be stable in Figure 12(a), yielding I12 = 39.6 mm.s and 

IE21 = 296 mm.s. The equivalent ΣDSS again yields a superior performance, with I12 = 22.8 mm.s and 

IE21 = 22.7 mm.s. Increasing the parameter value to a = 30 s-1 yields an unstable ΣHS response (see 

Figure 12(b)), whereas the equivalent ΣDSS response remains stable. The resulting ΣDSS performance 

indices are I12 = 36.3 mm.s and IE21 = 37.7 mm.s. 

 

8.3  Stability and robustness of ΣDSS with respect to a pure delay term within the dynamics 

In a similar manner to the development in §7.3, the Nyquist rule is applied to the polar plot of the 

open-loop transfer function, H, of ΣDSS when there is a pure delay term, e-τs, in the actuator transfer 

function, GA. Using the LSC design from §8.2 and assuming that the actuator parameter is known 

exactly, i.e. â a , from (44) the CLCE is given by: 
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Hence, H satisfies the following conditions for the onset of closed-loop instability: 
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where ωc and τc are the values of the frequency and pure delay at the critical point, -1+j0. From §8.2, 

kp = 1, so that ωc = 42 rad/s and τc = 0.0374 s. Note that this result is independent of the mass ratio, 

R, and that the limit on the pure delay is significantly higher than for ΣHS. The corresponding polar 

plot is shown in Figure 18, when τ = 0.0374 s. 

 

 

 

 

 

 

 

Fig. 18  ΣDSS scheme polar plot of H(jω). 
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For case 1 of the mass ratio, the resulting ΣDSS responses are examined for the pure delays 

τ = 0.003 s and τ = 0.016 s. When τ = 0.003 s, the performance indices are I12 = 3.99 mm.s and 

IE21 = 3.81 mm.s, which compare favourably with the equivalent results from ΣHS, (Figure 14(a)), 

where I12 = 17.6 mm.s and IE21 = 158 mm.s. However, with an increase in pure delay to τ = 0.016 s 

ΣHS is unstable, (Figure 14(b)), but as expected ΣDSS remains stable with performance indices 

I12 = 22.1 mm.s and IE21 = 21.5 mm.s. 

The pure delay is now fixed at τ = 0.003 s and the ΣDSS responses are compared with those of ΣHS 

for the mass-ratio cases 2 and 3. In both cases ΣHS is shown to be unstable; see Figure 15. However, 

as predicted ΣDSS remains stable with case 2 performance indices of I12 = 5.27 mm.s and 

IE21 = 4.70 mm.s, whilst for case 3 the indices are I12 = 7.44 mm.s and IE21 = 7.69 mm.s. 

The two retrofit ΣUSS strategies are examined for the mass-ratio of case 3 and a pure delay time 

τ = 0.003 s, in order to compare the responses with those of the equivalent ΣDSS. The resulting 

nearly-exact correspondence is borne out by the performance indices: again, for ΣDSS 

I12 = 7.44 mm.s and IE21 = 7.69 mm.s; for the ΣUSS pre-ΣHS retrofit I12 = 7.44 mm.s and 

IE21 = 7.69 mm.s; for the ΣUSS post-ΣHS retrofit I12 = 7.41 mm.s and IE21 = 7.80 mm.s. Based on these 

results, the ΣUSS pre-ΣHS retrofit strategy has performed exactly the same as ΣDSS. There is a 

marginal difference between the ΣUSS post-ΣHS retrofit strategy and ΣDSS, which can be explained by 

the padding required within the denominator of Kec. 

Finally, Table 1 summarises the performance indices for all stable simulations conducted in §§7, 8, 

from which the relative effectiveness of ΣHS can be compared with ΣDSS and ΣUSS. 

Test Conditions 
(Italics indicate nominal 

parameters. Unlisted 
parameters are also nominal) 

Performance Indices 

ΣHS ΣDSS  (ΣUSS) 

Case 

 

a 

[s-1] 

τ 

[ms] 

I12 

[mm.s] 

IE21 

[mm.s] 

I12 

[mm.s] 

IE21 

[mm.s] 

1 42 0 0.0 1.8 0.0 1.8 

1 30 0 77.7 798 12.5 12.1 

1 25 0 Unstable 21.4 21.2 

2 30 0 49.5 24.7 16.2 9.81 

3 30 0 39.6 296 22.8 22.7 

3 130 0 Unstable 36.3 37.7 

1 42 3 17.6 159 3.99 3.81 

1 42 16 Unstable 22.1 21.5 

2 42 3 Unstable 5.27 4.70 

3 42 3 Unstable 7.44 7.69 

3 42 3  (7.44) (7.69) 

3 42 3 (7.41) (7.80) 

 

Table 1  Performance indices I12 and IE21 for all stable tests. 

 

 

9.  CONCLUSION AND DISCUSSION 

The main conclusions to be drawn from this work are as follows: 

(1) The essential elements of a substructured testing system are a numerical substructure (Σ1), a 

physical substructure (Σ2) and a transfer system (ΣTS), where the latter links {Σ1, Σ2} together 

at their interface, all within a closed-loop configuration. In turn, ΣTS consists of an actuator 

and a compensator/controller. The purpose of the compensator/controller is to ensure 

satisfaction of the principal objective for a substructured testing system (see (2)). 

(2) The principle objective is to ensure that the substructured system dynamics and its responses 

closely match those of a pre-defined emulated system, ΣE. More specifically, the requirement 
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at the substructure interface is for close synchronisation and ΣE-following of the {Σ1, Σ2} 

outputs. In addition, this should be achieved despite the presence of any physical parameter 

uncertainties and pure delays in signal transmissions. 

(3) Parameter uncertainty will usually occur within the dynamics of the actuator and Σ2. Pure 

delays will usually occur within ΣTS, and specifically within the actuator’s inner-loop 

controller, which is usually a discrete-time device. 

(4) With reference to the last comment in (1), the hybrid simulation (ΣHS) scheme is frequently 

used for the design of an inverting compensator in ΣTS, whereas the dynamically substructured 

system (ΣDSS) scheme is used for the design of an automatic controller. 

(5) It has been shown that ΣHS and ΣDSS can share a common framework for analysis and synthesis 

of substructured systems. 

(6) The structure of ΣHS admits an intuitively simple design for the compensator. Hence, use of 

the common framework enables ΣDSS and its associated linear substructuring controller (LSC) 

to be synthesised in a more intuitive manner than has been hitherto possible using the original 

techniques described in [1]. 

(7) Classical control techniques are effective tools for the analysis of ΣHS or ΣDSS and the 

synthesis of the associated compensator/controller. 

(8) It was shown that the ΣHS formulation can achieve excellent results under conditions of 

parameter certainty and no pure delays in the system. Otherwise, stability and robustness of 

the method were degraded significantly, to the point of crossing the boundary of instability. 

This is especially so with lightly damped ΣHS, such as structural systems. 

(9) Conversely, the ΣDSS formulation possesses significantly improved levels of relative stability 

and robustness, so that it can satisfy the principle objective under conditions of parameter 

uncertainty and pure delays present in the system. 

(10) The fundamental reasons for the conclusions in (8) and (9) are as follows. Firstly, ΣE and ΣHS 

have identical closed-loop characteristic equations (CLCE), so that lightly-damped 

characteristics of ΣE automatically appear as poor relative stability and robustness 

characteristics in ΣHS. Secondly, although ΣDSS and ΣE also have an identical CLCE, the 

closed-loop error dynamics of ΣDSS can be configured separately to have arbitrary (finite) 

levels of relative stability and robustness, via a suitable design of the LSC. 

(11) The common framework enables a unified substructured system (ΣUSS) retrofit strategy, 

whereby a ΣDSS-synthesised control loop can be added to an existing ΣHS implementation in 

order to improve synchronisation accuracy, stability and robustness. 

(12) A simulation example was presented to illustrate and support the above comments and 

assertions. In particular, the example was configured to show the effects of the substructured 

interface occurring within an inertial element (the split-mass problem), physical parameter 

uncertainty and the presence of a pure delay in ΣTS. 

(13) This investigation has been primarily concerned with linear dynamical systems. However the 

use of an adaptive control algorithm, specifically tailored to the DSS framework, can 

significantly improve robustness to parameter uncertainty and the presence of non-linear 

dynamics (such as hardening/softening behaviour in compliant elements); [1], [14], [15]. 

(14) To summarise: the principle advantages of DSS over HS are significantly improvements in 

stability margins, robustness to parameter uncertainties and accuracy of responses. The main 

disadvantage is the additional design effort that is required. USS retains the advantages of 

DSS, with the additional advantage that the commonly-used HS strategy can be retained 

within the test system. 

 

A brief discussion on the results generated by the simulated example now follows. The general 

observation has been that ΣDSS consistently outperforms ΣHS in terms of {Σ1, Σ2} synchronisation 
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and ΣE-following. To quantify this observation over the set of all stable ΣHS and ΣDSS simulations, S, 

the mean time responses of the synchronisation index, 
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   , are shown in Figure 19. It is evident that 

performance improvements of ΣDSS over ΣHS, as measured at the end of the simulations, are 

~2.8-fold in terms of {Σ1, Σ2} synchronisation and ~20-fold in terms of ΣE-following. Furthermore, 

the consistency-ratio between the two indices, defined as 21 12:EI I  at the end-times, are ~0.95 for 

ΣDSS and ~6.9 for ΣHS. The implication is that ΣDSS is remarkably consistent at satisfying both 

aspects of the principle objective, whilst ΣHS is particularly poor at the task of ΣE-following. 

 

 

 

 

 

 

 

 

 

Fig. 19  Mean performance index time-trajectories for the ΣHS and ΣDSS schemes 
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ABBREVIATIONS 

     General:    PID Proportional-integral-derivative (controller) 

CE Characteristic equation    TS Transfer system; (ΣTS) 

CL Closed-loop     USS Unified substructured system; (ΣUSS) 

CLCE Closed-loop characteristic equation    Systems (Σ): 

CLECE Closed-loop error characteristic equation  Σ1 (Numerical) substructure 

CP Characteristic polynomial   Σ2 (Physical) substructure 

DOF Degree of freedom    ΣDSS Dynamically substructured system 

DSS Dynamically substructured system; (ΣDSS)  ΣE Emulated system 

HiLS Hardware-in-(the)-loop simulation  ΣHS Hybrid simulation system 

HS Hybrid simulation (system); (ΣHS)   ΣTS Transfer system 

LSC Linear substructured (system) controller  ΣUSS Unified substructured system 
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Fig. 1  A generalised emulated system, ΣE, and its associated substructured systems, {Σ1, Σ2}. 
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Fig. 2  ΣE showing the {Σ1, Σ2} components in a quasi closed-loop form. 
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Fig. 3  ΣHS in closed-loop form with an actuator, GA, and compensator, GC. 
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Fig. 4  ΣDSS based upon the amalgamation of the ΣHS formulation of Figure 3 and reference [1]. 

  

ΣDSS ≈ ΣE 

f 

d1 
Gd1/G1 

+ 

+ 

G1 

G2 

Σ1 

Σ2 

y1 

y2 + 

+ 

d2 
Gd2 GA 

e Ke 

Kd1 Kd2 

ΣTS 

+ 

- 

+ 

≈ y 

u 

+ 

+ 



A UNIFIED APPROACH FOR CONTROL OF DYNAMICALLY SUBSTRUCTURED SYSTEMS 

 

27 

 

 

 

 

 

 

 

 

 

Fig. 5  ΣUSS: pre-ΣHS retrofit of ΣDSS. 
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Fig. 6  ΣUSS: post-ΣHS retrofit of ΣDSS. 
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Fig. 7  The emulated system, ΣE (top) and the 2 substructures {Σ1, Σ2} (bottom); 

Σ1 is the numerical substructure and Σ2 is the physical substructure. 
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      (a)             (b)     (c) 

Fig. 8  ΣHS roots’ loci plots for a varying actuator constant, a. 

(a) Case 1: R = (m2/m1) = 0.5     (b) Case 2: R = (m2/m1) = 1.0     (c) Case 3: R = (m2/m1) = 2.0 
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Fig. 9  ΣE responses {yE1, yE2, yE3} 
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        (a)          (b) 

Fig. 10  ΣHS case 1: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2.       (a) a = 30 s-1     (b) a = 25 s-1 
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Fig. 11  ΣHS case 2; a = 30 s-1: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2. 
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        (a)          (b) 

Fig. 12  ΣHS case 3: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2.      (a) a = 30 s-1     (b) a = 130 s-1 
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              (a)          (b) 

Fig. 13  ΣHS scheme polar plots of H(jω) for varying mass ratio, R. 

(a) Case 1: R = (m2/m1) = 0.5    (b) Case 3: R = (m2/m1) = 2.0 
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        (a)          (b) 

Fig. 14  ΣHS case 1: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2.       (a) τ = 0.003 s     (b) τ = 0.016 s 
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        (a)          (b) 

Fig. 15  ΣHS ; τ = 0.003 s: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2. 

(a) Case 2      (b) Case 3 
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Fig. 16  ΣDSS scheme roots’ loci for a varying actuator constant, a; valid for all mass ratios. 
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      (a)          (b) 

Fig. 17  ΣDSS case 1: {Σ1, Σ2} responses {y1, y2} and the error e = y1 - y2.      (a) a = 30 s-1     (b) a = 25 s-1 
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Fig. 18  ΣDSS scheme polar plot of H(jω). 
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Fig. 19  Mean performance index time-trajectories for the ΣHS and ΣDSS schemes 
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Test Conditions 
(Italics indicate nominal 

parameters. Unlisted 

parameters are also nominal) 

Performance Indices 

ΣHS ΣDSS  (ΣUSS) 

Case 

 

a 

[s-1] 

τ 

[ms] 

I12 

[mm.s] 

IE21 

[mm.s] 

I12 

[mm.s] 

IE21 

[mm.s] 

1 42 0 0.0 1.8 0.0 1.8 

1 30 0 77.7 798 12.5 12.1 

1 25 0 Unstable 21.4 21.2 

2 30 0 49.5 24.7 16.2 9.81 

3 30 0 39.6 296 22.8 22.7 

3 130 0 Unstable 36.3 37.7 

1 42 3 17.6 159 3.99 3.81 

1 42 16 Unstable 22.1 21.5 

2 42 3 Unstable 5.27 4.70 

3 42 3 Unstable 7.44 7.69 

3 42 3  (7.44) (7.69) 

3 42 3 (7.41) (7.80) 

 

Table 1  Performance indices I12 and IE21 for all stable tests. 

 

 


