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CIRCLE PACKING WITH GENERALIZED BRANCHING

JAMES ASHE, EDWARD CRANE AND KENNETH STEPHENSON

Dedicated to C. David Minda on the occasion of his retirement

Classical analytic function theory is at the heart of David Minda’s research
and of many of the results in this volume. It has been a pleasure in recent
years to discover that simple patterns of circles called circle packings could
find themselves in such tight company with this classical theory. David
himself contributed to this topic in [10] and on his retirement will surely
have time to dive back into it.

Let us briefly review the circle packing story line. In 1936 Koebe showed
in [?] that for every abstract triangulation K of a topological sphere there
exists an essentially unique configuration of circles with mutually disjoint
interiors on the Riemann sphere P whose pattern of tangencies is encoded
in K. That is, there is a circle packing P for K in P. This fact was
rediscovered in the 1970s by Andreev [1, 2] as a special case of a classification
of hyperbolic polyhedra in terms of their dihedral angles, (see also [?] for
a correction and commentary). It was noticed again by Bill Thurston in
the 1980s. Inspired by the rigidity of circle packings, Thurston made a
remarkable proposal at the 1985 Conference in Celebration of de Branges’
Proof of the Bieberbach Conjecture, that one could use such circle packings
to approximate conformal mappings. The subsequent proof of Thurston’s
conjecture by Burt Rodin and Dennis Sullivan [11] established circle packing
as a topic in its own right and opened its most widely known aspect, the
approximation of classical analytic functions.

As this approximation theory developed, a second aspect that we will
call discrete analytic function theory, began to emerge. For it became in-
creasingly clear that classical phenomena were already at play within circle
packing — mappings between circle packings not only approximated an-
alytic functions, they also mimicked them. The literature shows an ever
growing list of conformal notions being realized discretely and often with
remarkable geometric fidelity. Moving circle packing into the hyperbolic ge-
ometry of D led to infinite packings and the consequent classical type con-
ditions — the spherical, hyperbolic, and euclidean trichotomy. Then came
the discrete uniformization theorem, discrete Riemann surfaces and cover-
ing theory, connections with random walks, and notions of branch points
and boundary conditions. Discrete analogs of familiar classes of functions
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were developed: polynomials, exponentials, and the Blaschke products and
Ahlfors functions that play their roles in this paper.

Part and parcel in these developments has been a third aspect, computa-
tion. Circle packings demand to be seen; that has led to packing algorithms,
followed by experiments, then new — often surprising — observations, aug-
mented theory, more computations, on and on. The work here was motivated
by computational challenges, and the images behind our work are produced
with the open software package CirclePack, [13].

Step after step in this story one can observe the remarkable faithfulness of
the discrete theory to its continuous precedents so that today one can claim a
fairly comprehensive discrete world parallel to the classical world of analytic
functions (and invariably converging to it in the limit as the combinatorics
are refined). Yet this discrete world can never be fully comprehensive, one
always faces “discretization issues”. This paper is a preliminary description
of new machinery for addressing the principal remaining gap in the foun-
dation of discrete function theory, the existence and uniqueness of discrete
meromorphic functions. The sphere is a difficult setting for circle packing.
On the practical side, there is no known algorithm for computing circle
packings in situ, restricting the experimental approach; essentially all circle
packings on P have been obtained via the stereographic projection of hyper-
bolic or euclidean packings. More crucially, the compactness of the sphere
brings conformal rigidity, with topologically mandated branching and no
boundary to provide maneuvering room.

Difficulties caused by the rigidity of branching locations are the discretiza-
tion issue we address here. We introduce generalized branching, which be-
gan with the thesis of the first author, [3]. We believe general branching will
provide the flexibility necessary to construct the full spectrum of discrete
branched mappings while keeping two main objectives at the fore: (1) dis-
crete analytic functions should display qualitative behaviors parallel to their
classical counterparts, and (2) discrete analytic functions should converge
under refinement to their classical counterparts.

1. Classical Models

We use two types of classical functions to motivate this work: finite
Blaschke products on the unit disc and Ahlfors functions on annuli. We
review these in preparation for their discrete versions.

Blaschke Products: A classical finite Blaschke product B : D → D is a
proper analytic self map of the unit disc D. In particular, B has finite
valence N ≥ 1, it maps the unit circle N times around itself, and it has N−1
branch points in D, counting multiplicities — that is B′ has N − 1 zeros in
D. The function B is known as an N -fold Blaschke product. Topologically
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speaking, B maps D onto an N -sheeted complete branched covering of D.
The images of the branch points under B are known as branch values.

As a concrete example, let us distinguish two points p1 6= p2 in D. It is well
known that there exists a 3-fold Blaschke product B with p1, p2 as simple
branch points. It is convenient to assume a standard normalization, so by
post-composing with a conformal automorphism (Möbius transformation) of
D we may arrange further that B(0) = 0 and B(i) = i. This is the function
we will have in mind for discretization later.

Ahlfors Functions: Our next model is defined on a proper annulus Ω. By
standard conformal mapping arguments, we may take Ω to be a standard
annulus, Ω = {z : r < |z| < 1/r}, with 0 < r < ∞. Designating a point
z0 ∈ Ω, one may consider the extremal problem: maximize |F′(z0)| over all
analytic functions F : Ω→ D. The solution A(z) is known to exist, is unique
up to multiplication by a unimodular constant, and is referred to as an
Ahlfors function for Ω. Ahlfors functions are also characterized, however, by
their mapping properties. They are the proper analytic mappings A : Ω→ D
which extend continuously to ∂Ω and map each component of ∂Ω 1-to-1 onto
the unit circle. Any such map will be a branched double covering of D with
two simple branch points, p1, p2 ∈ Ω. It is fundamental to function theory
on Ω and is analogous to the 1-fold Blaschke products on D, i.e., Möbius
transformations. The Ahlfors function for Ω is determined uniquely by r
(up to pre- and post-composition by conformal automorphisms).

To have a concrete example in mind for discretization, let us suppose
that z0 is on the midline of Ω, say z0 = 1. From elementary symmetry
considerations we deduce that A(1) = A(−1) = 0 and that the branch
points in Ω lie at p1 = i and p2 = −i. A normalization in the range, D, will
put the branch values on the imaginary axis, symmetric with respect to the
origin.

Note that while both classes of functions are characterized by their topo-
logical mapping properties, only with the Blaschke products do we get any
choice in the branch points — for Ahlfors functions, the branch point loca-
tions are (up to normalization) forced on us by the conformal geometry of
the domain.

2. Discrete Versions

We will now describe and illustrate discrete versions of these classical
functions. We assume a basic familiarity with circle packing, as presented in
[14] for example. However, a brief overview might help, and with the images
here should aid the intuition, even for those not familiar with details.
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A discrete analytic function is a map between circle packings. The do-
main, rather than being a Riemann surface, will now be a triangulated
topological surface with combinatorics encoded as a simplicial 2-complex
K: thus, we will be selecting K to be a combinatorial disc or a combina-
torial annulus, as appropriate. A circle packing for K is a configuration
P of oriented circles (or discs), P = {cv} with a circle cv associated with
each vertex v of K. The circle packing may live in the euclidean plane, C,
in the hyperbolic plane, represented as the unit disc D, or on the Riemann
sphere, P. In the hyperbolic plane we allow horocycles in place of circles
to represent vertices on the boundary of K, taking the ‘center’ of the horo-
cycle to be its basepoint in the ideal boundary; in the Poincaré model this
is the point of tangency with the unit circle. The only requirements for a
packing are that whenever 〈v, w〉 is an edge of K, then circles cv, cw must
be (externally) tangent, and when 〈u, v, w〉, is an oriented face of K, then
the circles cu, cv, cw must form an oriented triple of mutually tangent circles.
There is no requirement that the interiors of the discs be mutually disjoint;
if they are then we say the packing is univalent. The carrier of P , denoted
carr(P ), is the polyhedral surface obtained by equipping each face 〈u, v, w〉
of K with the geometry of the geodesic triangle joining the centers of the
circles cu, cv, cw. That is, carr(P ) is a realization of the abstract triangula-
tion K as a concrete oriented triangulated surface equipped with a metric
and a map to the ambient space C, D or P. When the packing is univalent,
we can think of the carrier as embedded in the ambient space. A packing
can be locally univalent, meaning that the star of each vertex in carr(P ) is
embedded in the ambient space, without being globally univalent; then the
map to the ambient space is an immersion. A packing that is not locally
univalent is called a branched circle packing.

At the foundation of the theory is the fact that each complex K has a
canonical maximal packing PK = {Cv : v ∈ K}. This is a univalent circle
packing, meaning the circles have mutually disjoint interiors, which fills D or
a conformal annulus, as the case may be. The packing PK serves as the do-
main for discrete analytic functions associated with K. The image will be a
second circle packing P for K which lies in D. The discrete analytic function,
then, will be the map f : PK → P which identifies corresponding circles.
(One may also treat f as a piecewise affine mapping f : carr(PK)→ carr(P )
by mapping circle centers to circle centers and extending via barycentric
coordinates to edges and faces.)

We are now ready for the discrete constructions. Central to our work is
the issue of branching, as we will see in this first discrete example.

2.1. Discrete Blaschke Product. In a sense, discrete function theory be-
gan with the introduction of discrete Blaschke products; see [9] and [14,



CIRCLE PACKING WITH GENERALIZED BRANCHING 5

§13.3]. The construction here will serve to remind the reader of basic nota-
tion and terminology while providing an example directly pertinent to our
work.

A discrete finite Blaschke product b is illustrated in Figure 1, with the
domain circle packing PK on the left and the image circle packing P on the
right, both in D. There is nothing special in the underlying complex K, a
combinatorial disc — it is just a generic triangulation of a topological disc,
though there are minor combinatorial side conditions to avoid pathologies
once we impose branching.

b

D D

PK P

Figure 1. A 3-fold discrete Blaschke product b, domain and
range.

Begin with the domain packing for b on the left, the maximal packing
PK = {Cv : v ∈ K}. The boundary circles are horocycles (euclidean circles
internally tangent to ∂D). A designated interior vertex α has its circle Cα
centered at the origin and a designated boundary vertex γ has its ‘circle’
(actually a horocycle) Cγ ‘centered’ at z = i, the basepoint of the horocycle
on the ideal boundary of the Poincaré model. The horocycle representing
γ appears here as dark blue. The classical Blaschke product B discussed
earlier involved branch points p1, p2; we assume these are the two black dots
in the domain. To mimic this, we have identified interior circles Cv1 , Cv2 ,
red circles, whose centers are nearest to p1, p2, respectively.

Note that the unit disc is treated as the Poincaré model of the hyper-
bolic plane, so circle centers and radii are hyperbolic and the carrier faces
are hyperbolic triangles. The boundary circles, as horocyles, are of infi-
nite hyperbolic radius and have hyperbolic (ideal) centers at their points
of tangency with the unit circle. The set of hyperbolic radii is denoted by
RK = {RK(v)}. The existence of PK follows from the fundamental Koebe-
Andreev-Thurston Theorem, [14, Chp 6], as does its essential uniqueness
up to conformal automorphisms of D. In practice, however, it is computed
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based on angle sum conditions. The angle sum θRK
(v) at a vertex v is the

sum of angles at v in all the faces to which it belongs and is easily computed
from the radii RK using basic hyperbolic trigonometry. Clearly, one must
have θRK

(v) = 2π for every interior v. This, along with the condition that
RK(w) =∞ for boundary vertices w, is enough to solve for RK . There are
several numerical methods available for computing RK . One method is to
use a variational principle, finding the minimum of a carefully chosen convex
function of (functions of) the radii, whose critical point corresponds to the
solution. This idea was first introduced by Y. Colin de Verdière [?], and
a number of such functionals for the hyperbolic case are described in [?].
Alternatively one can use an iterative method based on the upper Perron
method of [5], computing a pointwise decreasing sequence of approximations
to RK . We give some more details of this below in §5. Faster methods exist
and are implemented in CirclePack see for example [7].

Let us now move to the more visually challenging range packing in Fig-
ure 1, denoted P = {cv : v ∈ K}. This, too, is a hyperbolic circle packing
for K, though it is clearly not univalent. We have arranged that the circle
cα is centered at the origin and that the circle cγ is a horocycle centered at
z = i, just as in PK . The boundary circles are again horocycles, and if one
starts at cγ and follows the counterclockwise chain of successively tangent
horocycles, one finds that they wraps three times about the unit circle. This
mimics the behavior of our 3-fold classical Blaschke product B.

The image of P is a bit too fussy to show its carrier, but it is in fact a
3-sheeted branched surface. Hidden among the interior circles of P are the
two associated with vertices v1, v2, the branch vertices. These circles, red
in both domain and range, are difficult to pick out, but since branching is
the central topic of the paper, we have blown up the local images at v1 in
Figure 2. We now describe what you are seeing.

PK P

Figure 2. Isolated flowers for the branch vertex v1 in the
domain PK and range P of the discrete Blaschke product b.

This branching will be termed traditional; conceptually and computation-
ally very simple, this mechanism for achieving branching in a circle packing
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has, until now, provided all the branching for discrete function theory, [14,
§11.3]. The flower for vertex v, the central circle (red) and its neighboring
circles (its petals), are shown for PK on the left and for P on the right.
Whereas the six petals wrap once about Cv1 in the domain, a careful check
will show that they wrap twice around cv1 in the range. If R denotes the
set of hyperbolic radii for P , we may compute the angle sum θR(v1) at cv1 .
Expressed in terms of angle sums, the branching is reflected in the fact that
θRK

(v1) = 2π in the domain, while θR(v1) = 4π in the range. Mapping
the faces about Cv1 onto the corresponding faces about cv1 realizes a 2-fold
branched cover in a neighborhood of the center of cv1 — meaning a branched
covering surface in the standard topological sense. Similar behavior could
be observed locally at the other branch vertex, v2, while at all other interior
vertices the map between faces is locally univalent.

In summary, the circle packing map b : PK → P is called a discrete
finite Blaschke product because it displays the salient mapping features of
the classical Blaschke product B: namely, b is a self-map of D, a 3-fold
branched covering, it maps the unit circle 3 times about itself, and it harbors
two interior branch points. We have even imposed the same normalization,
b(0) = 0 and b(i) = i.

Existence and uniqueness theorems for discrete finite Blaschke products of
arbitrary degree, and additional features of such discrete analytic functions
were developed in [5, 6, 9]. The combinatorial side condition mentioned
above says that in order for the branched packing to exist, there must be
no simple closed cycle of fewer than 2n+ 3 edges in the complex that winds
around any n branch points, counted with multiplicity.

Note in Figure 2 how much the circles for a branch vertex shrink under b;
this ratio of radii mimics the vanishing of the derivative at a branch point.
Note in Figure 1 how b draws the interior circles together; this is the discrete
hyperbolic contraction principle. Note that the circles for α are centered at
the origin in both PK and P , but the latter is much smaller: this reflects
the discrete Schwarz Lemma. On the other hand, the horocycle associated
with γ (blue) is much larger in P than in PK , reflecting the behavior of
angular derivatives at the boundary. Discrete analytic function theory is
rife with such parallel phenomena for a wide variety of situations, including
the Ahlfors example that we treat next.

2.2. Discrete Ahlfors Function. We build a clean example that mimics
the classical Ahlfors function A described earlier. Our complex K trian-
gulates a topological annulus. Its maximal packing PK is represented in
Figure 3.

A bit of explanation may help here: The maximal packing actually lives
on a conformal annulus A, with circles measured in its intrinsic hyperbolic
metric. However, as D is the universal cover of A, we can lift the packing
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D

PK

a

Figure 3. Maximal packing PK for a combinatorial annulus
K, represented in a fundamental domain in D.

to lie in a fundamental domain within D — that is what we see in Figure 3.
The boundary edges in red represent the lifts of a cross-cut of A and are
identified by the hyperbolic Möbius transformation γ of D which generates
the covering group for A. Applying γ to the circles of Figure 3, one would
get new circles which blend seamlessly along the cross-cut.

We have chosen K with foresight, as it displays two particularly helpful
symmetries. The line in the center of Figure 3 marks the combinatorial
midline of the annulus: K is symmetric under reflection in this. Moreover,
there is an order two translational symmetry along this midline, by the
hyperbolic Möbius transformation

√
γ whose square is γ. This carries PK

to itself, modulo the group generated by γ. Topology demands, as with
the classical Ahlfors function A(z), that we have two simple branch points.
Choose the midline vertices v1 and v2, their circles are red in Figure 3;
these two are fixed by the reflective symmetry and interchanged by the
translational symmetry. Prescribing traditional branching at v1, v2 results
in the branched circle packing, P , of Figure 4. The mapping a : PK → P is
thus a discrete analytic function from A to D.

Due to its mapping properties, we refer to a as a discrete Ahlfors function.
In particular: The boundary circles of PK are horocycles; in Figure 3, those
on one boundary component are blue, those of the other, green. We would
expect the boundary circles of P to be horocycles as well, meaning that a
maps each boundary component to the unit circle. With a careful look in
Figure 4, one can disentangle the closed chain of blue horocycles reaching
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D

Figure 4. The branched packing P for combinatorial annulus K.

once around the unit circle and the second closed chain of green horocycles
doing the same. The branch circles, Cv1 , Cv2 in PK , and their images, cv1 , cv2
in P , are red. We have normalized by applying an automorphism to D that
centers cv1 and cv2 on the imaginary axis and symmetric with respect to the
origin. Thus, P represents in a discrete way a double covering of D branched
over two points. These are all hallmarks of the image of an Ahlfors function
and mimic the classical function A. For reference, in P we have drawn in
red the edges of P corresponding to red cross-cut in PK .

The computation of P deserves special attention. The upper Perron
method of Bowers [5] allows one to compute a hyperbolic packing label
R for K so that R(w) =∞ for each boundary vertex w ∈ K and angle sums
θRK

(vj) = 4π for v1, v2. There is nothing special in computing R. There
is a second step, however: with R in hand, one then lays out the circles.
This means that one chooses tangent positions for the circles representing
vertex α and a neighbor vertex β and then computes the locations in D of
all the other circles in turn, to satisfy the tangency and orientation condi-
tions: whenever there is a face of K for which the location of the circles
representing two of the vertices is known then the location of the third can
be deduced. Finally one applies a normalizing Möbius transformation to get
the packing P of Figure 4. But why does this second step work so nicely?
In circle packing, the laying out of circles is akin to analytic continuation
of an analytic function element, and since K is an annulus, its fundamental
group is generated by some simple, closed, nonnullhomotopic loop Γ. Ana-
lytic continuation along Γ would generically lead to a non-trivial holonomy:
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that is, given a function element f defined at a point of Γ, one would an-
ticipate a non-trivial automorphism m of D so that analytic continuation of
f about Γ would lead to a new element m(f), m(f) 6= f. In discrete terms,
after laying out the circle cv for some vertex v of Γ, and then laying out
successively tangent circles for the vertices along Γ, one would not expect
that upon returning to v one would lay out the same circle cv. Generically,
there is a non-trivial automorphism m so that upon returning to v one lays
out m(cv) 6= cv. As it happens here, things work out because of the symme-
tries built into K — we will prove that these symmetries force the holonomy
m to be trivial, so the layout process results in a coherent branched circle
packing P . In fact the translational symmetry of K is represented under
the holonomy by an element g ∈ Aut(D) such that g2 = m. The reflec-
tion symmetry of K is represented by an orientation-reversing isometry h
of D, which has a hyperbolic geodesic of fixed points; we can take to be the
imaginary axis, as illustrated in Figure 4. Since g and h commute, g fixes
the imaginary axis setwise. The branch vertex v1 is fixed by the reflection
so its circle is centred on the imaginary axis. The simple branching at v1

then forces g to reverse the orientation of the imaginary axis. Hence g is an
elliptic involution and m is the identity. In Figure 4 the fixed point of g is
at 0. The holonomy issue is key to later considerations.

The good news is that we have successfully created discrete analogues for
our two classical models: Blaschke products and Ahlfors functions. Let us
now look into the bad news.

3. The Discretization Issue

Whenever a continuous theory is discretized, whether in geometry, topol-
ogy, differential equations, or p-adic analysis, problems will crop up. Re-
placing a continuous surface by a triangulated one, for example, leads to
combinatorial restrictions. For example a simple branch vertex must be an
interior vertex and must have at least 5 neighbors: it is simply not possi-
ble for four or fewer circles to form a closed chain of petals wrapping twice
around another circle. Likewise a double branch vertex must have at least
7 neighbors for the petals to be able to wrap around three times, and so
on. However, there is another important discretization effect: there are
only finitely many possible locations for discrete branching. Our discrete
Blaschke product could not branch precisely at the points p1, p2 prescribed
for its classical model B, and we instead chose to branch using the nearby
circles Cv1 and Cv2 . This effect is admittedly minor — the qualitative be-
havior of the discrete function is little affected by the misplaced branching.
For the Ahlfors function, however, this problem is existential — discrete ver-
sions may fail to exist. We will illustrate the problem in the Ahlfors cases
— and return to fix it in §6.
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Nearly any break in the combinatorial symmetries of the complex K be-
hind Figure 3 will cause the subsequent Ahlfors construction to fail. Most
such failures will be difficult to fix, so we choose carefully: we make two
small changes via edge flips so that we preserve the reflective symmetry but
break the translational symmetry. The new complex will be denoted K ′.
Repeating the Ahlfors construction from §2.2 with K ′ and using the same
v1, v2 as branch vertices gives the result of Figure 5.

D

Figure 5. A failed attempt at an Ahlfors function using
traditional branching. The non-trivial holonomy shows up
in misalignment of the cross-cuts, and the failure of the gray
circles to be tangent to one another.

There is no difficulty in computing the branched packing label R′ for K ′,
however, the layout process does not give a coherent circle packing. The
problem might be difficult to see in Figure 5, but look at the red edge paths,
which correspond to layouts of the cross-cut: they are no longer coincident,
as they were in Figure 4. One is a shifted copy of the other, reflecting a non-
trivial holonomy associated with the generator of the fundamental group for
K ′. More precisely, there is a non-trivial hyperbolic Möbius transformation
m of D, which maps one of these red cross-cut curves onto the other. One
would have to follow things very closely in the image to confirm the problem,
but we illustrate with the two gray circles, which are supposed to be tangent
to one another.

As it happens, no matter what pair of vertices of K ′ are chosen as branch
points, the Ahlfors construction will fail — there will be no coherent image
packing. It has been a long road to get to this point, but this is where
our work begins: Our goal is to introduce generalized branching with the
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flexibility to make the discrete theory whole. We will illustrate it in action
in §6 by creating an Ahlfors function for this modified complex K ′.

4. Generalized Branching

Branching is perhaps most familiar in the analytic setting. Let f : G→ C
be a non-constant analytic function on an open domain G ⊂ C. Suppose z ∈
G and w = f(z). For δ > 0, consider the disc D = D(w, δ) = {ζ : |ζ−w| < δ}
and the component of the preimage U = f−1(D(w, δ)) containing z. For δ
sufficiently small, U will be a topological disc in G and the restriction of f to
the punctured disc U ′ = U\{z} will be a locally 1-to-1 proper mapping onto
the punctured disc D′ = D\{w}. In particular, one can prove the existence
of some N ≥ 1 so that every point of D′ has N preimages in U ′. In this
analytic case, if N > 1, then f (k)(z) = 0 for k = 1, 2, · · · , N − 1 and we say
that z is a branch point of order N − 1 for f . We refer to w as its branch
value.

This is, in fact, a topological phenomenon having little to do with analyt-
icity: by Stöılow’s Theorem, [?, Thm 5.1, p. 198], the same local behavior
occurs whenever the map f is an open, continuous, and light mapping. In
particular, this applies to the piecewise affine map from the carrier surface
of a branched circle packing to the ambient space of the packing. One sees
it on display for the traditional branch point illustrated in Figure 2.

We now change our viewpoint slightly, and think of a branched circle
packing as a packing of discs on a branched covering surface S of a domain
U in the Riemann sphere, complex plane or unit disc. Although their pro-
jections to U overlap, these discs must have disjoint interiors when thought
of as subsets of S. The discs are closed balls in the metric obtained by
lifting the Riemannian metric (spherical, Euclidean or hyperbolic) to the
covering surface. This pullback metric on the covering surface fails to be a
Riemannian metric with respect to the natural smooth structure on the cov-
ering surface, because it has conical singularities at the branch points each
with total angle in the set {4π, 6π, 8π . . . }. Nevertheless, if a closed ball in
S does not contain a branch point in its interior then projects one-to-one
onto a disc in U . A closed ball in S whose center is a branch point projects
as a proper branched covering of a disc in U , as long as it contains no other
branch point. Thus we have an interpretation of both unbranched circles
and traditional branch circles as discs in S.

What else can happen? It is not possible for a branch point p to lie in
a non-empty open interstice between three mutually tangent discs on S,
because each disc subtends an angle less than π at p and the total angle
around p on S is at least 4π. However, it is possible for three or more
unbranched circles to meet at a branch point on S, yet still have disjoint
interiors. In fact, at a branch point of multiplicity k, where k+1 sheets of S
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meet, up to 2k+2 circles can fit together with disjoint interiors. If only three
discs meet at a simple branch point (k = 1) then there is some flexibility in
the configuration, and we will later parameterize this. We call the situation
where three or more discs meet at a branch point singular branching.

We have also opened up the possibility of using a closed metric ball on S
that contains a branch point z in its interior but not at its center, x. Under
the projection to U , the image of the boundary of such a ball is a pair of
circles: a large circle centered at the projection of x and a smaller circle that
is internally tangent to the large circle, centered at the branch value w, that
is the projection of z. We call this situation shifted branching.

With our generalized notion of branched circle packing, we can now iden-
tify the precise location of each branch value, and branch values need not be
the images of the center of any of the circles in the packing. That is to say,
although it is a discretization, the packing precisely determines a branched
covering map from the carrier to the ambient space.

Given a classical finite Blaschke product f : D → D, and a finite combi-
natorial disc K, we may now ask whether there exists a packing of K with
generalized branching that lives on the Riemann surface of f and whose
boundary discs are tangent to the boundary of the surface, so that they
project to horocycles in D. If so, is this discrete Blaschke product unique up
to normalization, for example if we fix the positions of two adjacent bound-
ary circles? In particular, can we make a discrete finite Blaschke product b̃
with generalized branching that lies on the Riemann surface of the classi-
cal degree 3 Blaschke product B discussed earlier? We are asking whether
the extra real degrees of freedom afforded by shifted and singular branching
allow us to make the branch values lie exactly at p1 and p2.

We do not yet have a complete answer to these questions. However,
we can get close, using the metric packing theorem of Oded Schramm [12].
This remarkable topological theorem concerns representations of finite tri-
angulations of the sphere by packings of closed metric balls with respect to
an arbitrary Riemannian metric on the sphere. The packing exists and is
unique once three mutually tangent balls have been specified to represent
three given vertices belonging to one face of the triangulation. Note that in
this generality the balls do not even have to be topological discs, but can be
multiply connected!

Here is an approach to our question using Schramm’s theorem. Given a
finite Blaschke product f : D → D, of degree d, say, there exists a unique
polynomial p of degree d such that f and p have the same finite branch
values and monodromy. Let S be the Riemann surface of p. In this case, S
and U are both copies of the Riemann sphere and p represents the branched
covering projection from S onto U . Let K̂ be the triangulation of the sphere
obtained by adding one extra vertex, labelled v∞, to K, making it adjacent
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to all of the boundary vertices of K. Our goal is to find a packing of K̂ on S,
such that the disc representing v∞ is the preimage in S of the complement of
the open unit disc. Thus v∞ will be a branch vertex of valence d. Restricting
the packing to the Riemann surface of f will then yield a discrete Blaschke
product with the same branch values and monodromy as f .

For normalization, we choose two adjacent neighbors of v∞, and choose
mutually tangent discs to represent them on S. These last two prescribed
discs should contain no branch points. We would like to apply Schramm’s
metric packing theorem using the pullback metric on S whose length element
is given by |p′(z)| |dz|/(1 + |p(z)|2). This is the pullback of the spherical
metric by p. But there is a difficulty: this infinitesimal metric vanishes at
the branch points of p, including ∞, so it does not define a Riemannian
metric.

To proceed, we mollify the pullback metric in the neighbourhood of each
singularity by adding the spherical metric element multiplied by a smooth
circularly symmetric bump function supported in a small disc around the
singularity. In this way we can produce a sequence of Riemannian metrics
that converges to the pullback metric. For each metric in the sequence, the
three prescribed circles are the boundaries of metric balls. So we can apply
Schramm’s theorem to each metric in this sequence, to obtain a sequence
of packings of K̂, all with the same boundary normalization given by our
three prescribed discs (which remain balls in the mollified metrics). Now
we extract a convergent subsequence of these packings. The limit packing
will respect all the required tangency conditions and will be a packing of
closed metric balls in the pullback metric. So why are we not finished? The
issue is that some of these balls could have radius zero in the limit. As we
approach the limit, parts of the packing may degenerate, being sucked into
singular branch points. Whether or not this happens depends in a compli-
cated way on K and f and the choice of normalization. For a reasonable
existence and uniqueness theorem, it seems that packings in which some
vertices are represented by single points have to be allowed. We do not yet
have a uniqueness proof, perhaps because we lack a stability version of the
uniqueness statement in Schramm’s theorem.

In any case, Schramm’s theorem is not constructive, in the sense that it
does not come with an algorithm to approximate numerically the packings
whose existence it guarantees. Do we have any hope of computing packings
with generalized branching, in the way that we can compute packings with
traditional branching? The answer is yes, and how to do this will be the
focus of the next two sections. The price we pay is that we will not get
to specify in advance the covering surface that the packing lies on. Instead
we get to specify where the branching lies with respect to the triangulation.
By way of analogy, it is easy to write down a polynomial with given branch
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points, but it is a much harder computational problem to find a polynomial
with given branch values and monodromy.

Mimicking the individual classical Blaschke product B exactly may seem
to be a lot of effort for little gain. However, if one thinks more broadly of
the family of degree 3 Blaschke products parameterized continuously by the
points p1 and p2, the goal of continuously parameterized discrete versions
makes more sense. It also makes more sense when the very existence of
the discrete versions depends on this added flexibility, as with our broken
Ahlfors example. Let us now describe the mechanics.

5. Local Mechanics

We will describe local combinatorial modifications that coerce the stan-
dard iterative circle packing algorithm into producing the two forms of dis-
crete generalized branching that correspond to a simple branch point. Recall
that these are singular and shifted branching. For each type of branching,
we first identify a black hole H, which is a small combinatorial locale to
support the branching, and its event horizon Γ = ∂H, the chain of sur-
rounding edges. Outside of the event horizon, our circle packing mappings
are defined in the usual way, so that in an annulus about the black hole one
may observe the typical topological behavior described earlier. Adjustments
hidden inside the black hole, however, incorporate extra vertices and edges
which do not correspond to vertices and edges of the original triangulation.
Some of these new vertices represent guide circles which overlap with their
neighbors. The overlap angle parameters provide the two real degrees of
freedom needed to move the branch point around.

5.1. Background. We have recalled some circle packing mechanics, but as
our work involves new features, we review the basics.

A complex K is assumed to be given. The fundamental building blocks
of K are its triangles and flowers. The triangles are the faces 〈v, u, w〉. The
flowers are sets {v; v1, v2, · · · , vn+1} where v is a vertex and v1, · · · , vn+1 is
the counterclockwise list of neighbors in K. These neighbors, the petals,
define the fan of faces containing v. Here n is the number of faces, so when
v is interior, then vn+1 = v1.

In talking about a circle packing P for K, the radii and centers are, of
course, the ultimate target. However, proofs of existence and uniqueness
(and computations) depend on the standard Perron methods first deployed
in [4]. Given K, the fundamental data lies in three lists: the label R =
{R(v) : v ∈ K}, edge overlaps Φ = {Φ(e) : e = 〈u, v〉}, and target angle
sums A = {A(v) : v ∈ K}. Each will require some extension.

• Labels: The labels R(v) are putative radii (they become actual radii
only when a concrete packing is realized).
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• Overlap Angles: For an edge e = 〈v, w〉 of K, the overlap Φ(e)
represents the desired (external) angle between the circles cv, cw in
P . Interest is often in “tangency” packings; in this case, Φ is iden-
tically zero and hence does not appear explicitly. However, from
Thurston’s first introduction of circle packing, non-tangency pack-
ings were included and we need them here.

• Target Angle Sums: Given R and Φ, one can readily compute
for any triangle 〈u, v, w〉 the angle which would be realized at v if
a triple of circles with the given labels (as radii) and edge overlaps
were to be laid out. The angle sum θR,Φ(v) is the sum of such angles
for all faces containing v. The target angle sum, A(v) is the intended
value for θR,Φ(v). It is typically prescribed only when v is interior,
and then must be an integral multiple of 2π, A(v) = 2πk; this is

precisely the result when petal circles cv1 , cv2 , · · · , cvn wrap A(v)
2π = k

times about cv.

A circle packing for K is computed by finding a label R, termed a packing
label, with the property that θR,Φ(v) = A(v) for every interior vertex v.
Typically, the valuesR(w) for boundary vertices w are prescribed in advance.
With label in hand, one can position the circles in the pattern of K to get P .
This positioning stage is a layout process analogous to analytic continuation
for analytic functions. Only after the layout does one finally realize circle
centers. Our work will be carried out in hyperbolic geometry, where we use
the fact that boundary radii may be infinite when associated with horocycles.
The various existence, uniqueness, and monotonicity results needed for our
applications would hold in euclidean geometry as well.

The Perron method for computing a packing label proceeds via super-
packing labels, that is, labels R for which the inequality θR,Φ(v) ≤ A(v)
holds for all interior v and which has values no less than the designated val-
ues at boundary vertices. It is easy to show that the family of superpacking
labels is nonempty and that the packing label is the family’s infimum. This
infimum may be approximated to any desired accuracy by an iterative ad-
justment process — this is basically how CirclePack computations are car-
ried out. The following condition (?) is required to ensure non-degeneracy:
If {e1, e2, · · · , ek} is a simple closed edge path in K which separates some
edge-connected non-empty set E of vertices from ∂K, then the following
inequality must hold

(?)
k∑
1

(π − Φ(ej)) ≥ 2π +
∑
v∈E

(A(v)− 2π).

Our work here requires the following extensions to the given data:

• Zero Labels: We will introduce situations in which labels for cer-
tain interior vertices go to zero, corresponding with circles that in
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the final configuration have degenerated to points, namely to their
centers. Zero radii actually fit quite naturally into the trigonometric
computations, but we will only encounter them for isolated vertices.

• Deep Overlaps: When introducing circle packing, Thurston in-
cluded specified overlaps Φ(e), as we do. In general, however, the
restriction Φ(e) ∈ [0, π/2] is required for existence. We will allow
deep overlaps, that is overlaps in (π/2, π]. Note that overlaps may
already be specified as part of the original packing problem under
consideration, but these will remain in the range [0, π/2]. It is only
in the modifications within black holes that deep overlaps may be
needed, and these will carry clear restrictions.

• Branching: Traditional branching, described earlier in the paper, is
associated with target angle sums A(v) = 2πk for k ≥ 2. These are
subject to the condition (?) noted above, which concerns interactions
of combinatorics and angle sum prescriptions. It traces to the simple
observation that it takes at least 5 petal circles to go twice around
a circle. The tight conditions emerged first in work on branched
tangency packings in [8] and [5]. These were modified to incorporate
overlaps in [6]; Condition (?) parallels the conditions there while
allowing equality, which is associated with zero labels in black holes,
as we see shortly.

The monotonicities behind the Perron arguments depend on our ability to
realize any face 〈u, v, w〉 with a triple of circles {cv, cu, cw} having prescribed
radii and overlaps. To include deep overlaps and zero labels, it is relatively
easy to see that some side conditions on Φ are required. What we need is
given in the following lemma, a minor extension of the hyperbolic results in
[3].

Lemma 1. Given three hyperbolic radii, r1, r2, r3, at least two of which
are non-zero, and given three edge overlaps φ12, φ23, φ31 ∈ [0, π] satisfying
φ12 + φ23 + φ31 ≤ π, there exists a triple 〈c1, c2, c3〉 of circles in D which
realize the given radii and overlaps.

The angles α, β, γ of the triangle T formed by their centers are continuous
functions of the radii and overlaps and are unique up to orientation and
conformal automorphisms of D. Moreover α is strictly decreasing in r1,
while area(T ) is strictly increasing in r1. Likewise, β (resp. γ) is strictly
increasing in r1 (assuming r2 (resp. r3) is finite).

In our generalized branching, zero labels and deep overlaps are temporary
devices only within black holes; we modify the combinatorics and set over-
lap parameters in there to control apparent branch locations. The results,
however, are then used to layout a circle packing P for the original complex
K; P itself does not involve any zero labels or deep overlaps, and aside from
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ambiguity about one circle in the shifted branching case, P is a normal circle
packing configuration.

We conclude these preparations by noting the two conditions which are
necessary to guarantee existence and uniqueness of the packings. Namely,
condition (?) and this condition (??)

(??) Φ(e1) + Φ(e2) + Φ(e3) ≤ π if edges {e1, e2, e3} form a face of K.

With this, we may now describe our two discrete generalized branching
mechanisms.

5.2. Singular Branching. Singular branching is used to simulate a branch
point lying in an interstice of PK . The interstice is defined by a face
〈v1, v2, v3〉, corresponding to red, green, and blue circles, respectively, in
our illustrations. The black hole is the union of the target interstice and
the three interstices sharing its edges. The combinatorics imposed and the
event horizon are illustrated in Figure 6. The complex K, modified inside

the black hole, will be denoted K̃ and serves as our complex for subsequent
computations. The circles of Figure 6 are a device for display only and are
not part of the final circle configuration. Indeed, before computing the cir-
cles of the branched packing we need to prescribe target angle sums, A, and
edge overlaps, Φ.

v1

v2 v3

event
horizon

guide circle
h3

Figure 6. Combinatorics for a singular black hole.

Interior to the event horizon we have introduced 4 additional vertices.
Three of these, h1, h2, h3, are termed guide circles since they help guide the
circles for v1, v2, and v3; we label h3 in Figure 6. A fourth vertex g, in the
center, is called the vanishing circle. Specify target angle sums A(v) ≡ 2π

for all interior vertices v ∈ K̃ with the exception of g, setting A(g) = 4π.

Singular branching is controlled via overlap parameters associated with a
partition of π, γ1 + γ2 + γ3 = π. For i = 1, 2, 3, the value γi > 0 represents
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the overlap angle prescribed in Φ for the edges from vi to the guide circles
on either side. These three pairs of edges are color coded in Figure 6. We

set Φ(e) = 0 for all other edges of K̃.

Before describing how these parameters are chosen, observe that we are

assured of a circle packing P̃ for K̃ with label R̃, interior angle sums A,
and overlaps Φ. In particular, if Γ denotes the chain of 6 colored faces sur-
rounding the vanishing circle, g, then condition (?) holds whenever the angle
sum prescription A(g) satisfies A(g) ≤ 4π, with equality when A(g) = 4π.
Traditional Perron and layout arguments imply the existence and unique-

ness of the circle packing P̃ in which the circle for g has radius zero. An
example of the result is illustrated in Figure 7. For this we set roughly
γ1 = 0.22π, γ2 = 0.40π, and γ3 = 0.37π.

cv1

cv2

cv3

w

Figure 7. Image circle packing in the neighborhood of sin-
gular branching, and detail zoom.

This image takes some time to understand. The circle for g has degener-
ated to a point, the branch value, which is at the common intersection point
of the circles for v1, v2, v3 and also for guide circles h1, h2, h3; it is labeled
w in the detail zoom. The branching is confirmed in the larger image by
observing how the event horizon wraps twice about the branch value. If we
disregard the guide circles and the vanishing circle, the remaining circles of

P̃ realize a tangency circle packing for the original complex K. That is,
the black hole structure was needed only to guide the layout of the original
circles.

This portion of the layout illustrates singular branching as we described
it in Section 4: the circles lie on a locally two-sheeted surface S branched
above w. Note, for instance, that the overlap of the red and blue circles
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is only in their projections to the plane: in actuality, the red part of the
intersection is on one sheet of S and the blue is on the other. This shows in
the orientation of the red, green, blue, which in projection is the reverse of
their orientation in PK .

Finally, what about choosing parameters γ1, γ2, γ3 to get the desired
branch point? Figure 8 illustrates our scheme. We have isolated the in-
terstice formed by circles for v1, v2, v3 in PK . The dashed circle is the com-
mon orthogonal circle through the intersection points and defines a disc D
which will be treated as a model of the hyperbolic plane. Point p indi-
cates a location where one might wish to have branching occur. Hyperbolic
geodesics connecting p to the three intersection points on ∂D determine an-
gles α1, α2, α3, indexed to correspond with the vertices v1, v2, v3. We then
define γj = π − αj , j = 1, 2, 3. One has complete freedom to choose γ1 and
γ2 in this scheme, subject to conditions γ1, γ2 > 0 and γ1 + γ2 < π. We
will be seeing examples for p and the other three red branch points later, in
Figure 13.

α1

α2

α3

p

DCv1Cv2

Cv3

Figure 8. The parameter scheme for singular branching.

5.3. Shifted Branching. Shifted branching simulates a branch point lying
within an interior circle of PK . Of course, when that point is the center, then
traditional branching would be the easy choice. This will be incorporated
naturally in our parameterized version, however, so we need not separate
out this case.

Suppose v is the interior vertex whose circle is to contain the shifted
branch point. The black hole combinatorics shown in Figure 9 are imposed
on the flower for v. (Note that once again, the circles here are used for
display but are not part of our target packing.)



CIRCLE PACKING WITH GENERALIZED BRANCHING 21

t1
t2

j1
w1

j2
w2

event
horizon

guide circle
h2

overlap γ1

Figure 9. Combinatorics for a shifted black hole.

The event horizon is the chain of edges through the original petals of the
flower for v (seven petals, in this case, green and blue). Interior to this
horizon, we split v, replacing it with the twin vertices, denoted t1 and t2
and corresponding to the circles in two shades of red. We introduce two
guide circle vertices h1, h2, respectively green and blue, and a vanishing
circle vertex g, black; we label only guide circle h2 in the figure. With these

combinatorics inside the event horizon, we again have a new complex K̃, for
which we need target angle sums A and edge overlaps Φ.

Each guide circle neighbors two original petals, denoted wi and ji. The
petal ji is known as the jump circle because its guide circle hj and an asso-
ciated parameter γi facilitate its detachment from one twin and its attach-
ment to the other. The parameters here are γ1 and γ2, chosen independently
within [0, π], and used to define overlaps with the guide circles. In partic-
ular, for i = 1, 2, prescribe Φ(〈hi, wi〉) = γi and Φ(〈hi, ji〉) = π − γi; the
edges are shown as solid and dashed lines, respectively, in Figure 9. The
other overlaps in Φ are zero, so Condition (??) holds. Target angle sums

are defined as before, namely, A = 2π at interior vertices of K̃, save for the
vanishing circle, with A(g) = 4π.

Putting aside the choice of jump circles and parameters for now, we are

assured of a circle packing P̃ for K̃ with label R̃, interior angle sums A, and
overlaps Φ. If Γ is the chain of edges through the four neighbors of g, edges

for which tangency is specified, then equality holds in condition (?), so in R̃
the radius of the vanishing circle is necessarily zero.

Figure 10 illustrates the circle packing for K̃ before we prescribe the
branching, in other words, with the target angle sum at g kept at 2π. We
abuse notation by referring to circles by their vertex indices. The original
petal circles, starting with j1 and ending at w2, are shown in green: these
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are tangent to twin t2. Likewise, those starting at j2 and ending at w1 are
shown in blue: these are tangent to twin t1.

t1t2

j1
w1

h1

h2

j2

w2

Figure 10. The jump circles and parameters are set for a
shifted black hole before the branching is imposed.

We consider the action at guide circle h1. First, recall two facts: (1) When
a triple of circles has edge overlaps summing to π, then the three share a
common intersection point; and (2) when circles overlap by π then one is
interior to the other. Here is how the machinery works at h1. The circle
for w1 is tangent to twin t1, j1 is tangent to twin t2, while h1 is tangent
to both twins. When γ1 = 0, the overlap of π between h1 and j1 forces
the jump circle j1 to be tangent to t1. As γ1 increases, however, the jump
circle separates from t1 until, when γ1 reaches π, w1 has been pulled in to be
tangent to t2. In other words, γ1 acts like a dial: when positive, it detaches
the jump circle from t1, and as it increases, it moves the jump further around
t2. The mechanism is similar for guide circle h2, as γ2 serves to detach the
jump circle j2 from t2 and move it further around t1.

Typical parameters γ1 = 0.7π and γ2 = 0.4π were specified for Figure 11.
Maintaining these while adding branching at g, i.e., setting A(g) = 4π, gives
the configuration of Figure 11. As usual with branching, the image is rather
difficult to interpret, so we point out the key features: The twin circles and
guide circles are all tangent to g, and the radius for g is zero, so these four
circles meet at a single point. The twin circles (red) are nested, as are the
guide circles (green and blue). The branch value is the white dot in the
detail zoom, at the center of the small twin circle and labeled w; we explain
this shortly. To confirm the topological behavior of generalized branching,
note that the circles for the original petals of v wrap twice around w — just
follow the image of the event horizon in the larger image as it goes through
the petal centers and tangency points. The petals are green and blue in the



CIRCLE PACKING WITH GENERALIZED BRANCHING 23

larger image, corresponding, as in Figure 10, to which twin they are tangent
to. The jump circles j1, j2 are also labeled.

w

j1

j2

Figure 11. Image circle packing in the neighborhood of
shifted branching, with detail zoom.

As with the singular branch image, the configuration of Figure 11 first
our description in Section 4: on treats the image as the projection of circles
lying on a two-sheeted surface S branched over w. To see this, consider
the twins in the detail zoom: t1 is the larger twin, with center at the black
dot and radius r1. The smaller twin has center at w and radius r2 < r1.
Now imagine attaching a string of length r1 at the black dot and using it
to draw the circle for t1 on S. As the string sweeps around, it will snag on
the white dot at w and, like a yo-yo, trace out the smaller twin on S before
finishing t1. In other words, the union of the two twin circles together is the
projection of all points on S which are distance r1 from the center of t1 (that
is, distance within S). Exactly this thought experiment was the genesis of
shifted branching.

If we disregard the guide circle circles and twins, the remaining circles
constitute a traditional tangency circle packing P for K, with the caveat
that generically the circle for v is ambiguous — neither the circle for t1
nor for t2 alone can serve as cv. We need to live with this ambiguity to
achieve the branching behavior we want outside the event horizon. (Having
said this, there are (many) settings which lead to identical twin circles, so
P then has this common circle as cv. All these configurations are identical
and are nothing but the circle packing we get when we choose traditional
branching at v.)
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This brings us to the matter of configuring black hole combinatorics and
parameters for this shifted branching; that is, choosing the jump circles j1, j2
and their associated overlap parameters γ1, γ2. We describe our scheme by
referring to Figure 12, which is the flower for Cv in PK .

Cv

x

L

L⊥
p

ρ

Figure 12. Choosing jumps and overlap parameters for
shifted branching.

The ultimate goal is to simulate branching at some point within Cv, such
as the indicated point p. In mapping to the branched image packing P , the
image of the boundary of Cv wraps continuously around the boundaries of
both twin circles (as we described earlier in referring to the branched surface
S). The jump circles and parameters serve to split the boundary of Cv into
two arcs, the blue one will be carried to t1, the green, to t2.

Here we need to observe how the jump and its parameter work together.
Recall that in the image packing, γ1 ∈ [0, π] acts like a dial: The value
γ1 = 0 forces j1 to be tangent to both twins. As γ1 increases, it pushes
j1 away from t1 and further onto t2. When γ1 reaches π, it forces the
counterclockwise petal w1 to become tangent to t2. This is a transition
point — at this juncture, we could designate w1 as the jump circle and reset
γ1 to 0 without altering anything in the image packing. By then increasing
the new γ1 with the new jump circle, we could push yet more boundary onto
t2. In summary, then, our circle packing map pushes more of Cv onto t2 by
increasing γ1 and/or moving the designated jump j1 clockwise. Likewise, on
the other side it pushes more of Cv onto t2 by decreasing γ2 and/or moving
the designated jump j2 counterclockwise.

To illustrate with the point p of Figure 12, the scheme uses the various
labeled quantities: The point x where the radial line L from the center of
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Cv through p hits Cv; the distance ρ from p to x; the circular arc (dashed)
through p and orthogonal to Cv; and the diameter L⊥ perpendicular to L.

To inform our choice of jumps and parameters, we take inspiration from
the properties of the branch value w in the eventual image packing — that
is, the center of the smaller twin, t2. In qualitative terms, the blue arc of
Cv should map to t2, the rest of Cv to t1. The point x should map to the
point of t2 antipodal to the tangency point of t1 and t2. The ratio of ρ to
the radius of Cv should reflect the ratio of the radii of the two twins. Thus,
when p moves close to Cv, twin t2 gets smaller, while as p approaches the
center of Cv, the radius of t1 approaches that of t2. There is no way to
ensure these outcomes precisely — one cannot know, a priori, the outcomes
in the image packing, as all the circles get new sizes during computation. We
will not burden the reader with the messy details, but we have implemented
methods which realize these qualitative behaviors. We illustrate for p and
the other three red branch points later, Figure 14.

6. Fixing an Ahlfors Function

After successfully constructing a discrete Ahlfors function w for a com-
binatorial annulus K in §2.2, we showed in §3 how easily that construction
can fail. Making small modifications to K that broke its translational sym-
metry, we obtained a new combinatorial annulus K ′ which does not support
a discrete Ahlfors function. The problem is non-trivial holonomy, and we
illustrated in Figure 5 with an attempt at traditional branching using the
same midline vertices v1, v2 we had used for w.

It seems clear that for K ′ the missing translational symmetry can be
blamed for the failure. We now apply the flexibility of generalized branching
to repair the damage. Since K ′ still has a midline and reflective symmetry
across it, we adopt the following strategy: proceed with traditional branch-
ing at vertex v1, but use shifted branching near v2. Symmetry simplifies
our search for the correct branching parameters in the black hole for v2:
namely, if we choose vertex j1 to be symmetric with w2 across the midline,
and likewise, j2 symmetric with w1, and if we specify γ2=π − γ1, then the
shifted branch value must remain on the midline. After some experimental
tinkering, one can in fact annihilate the holonomy and replicate the success
we saw for the original complex K — the process works. We do not show the
image packing P because it is essentially indistinguishable from Figure 4.
The point is that we are able to make the red cross-cuts coincident.

Admittedly, the fix was (almost) in for this example: we depended on
reflective symmetry to reduce the parameter search from a two- to a one-
dimensional problem. Nonetheless, it demonstrates well the need and po-
tential for generalized branching. We close by discussing the broader issues.
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7. Parameter Space

This paper is a preliminary report on work in progress. We have focused
on generalized branching at a single point p in the interior of PK . The loca-
tion of p is continuously parameterized — e.g, by its x and y coordinates. We
have defined discrete generalized branching which seems to handle patches
of this parameter space. Thus, when p lies in an interior interstice, singular
branching involves two real parameters, γ1, γ2. When p lies in an interior
circle, shifted branching involves jump circles and parameters, but in our
description of the mechanics it is clear that this, too, is just two real param-
eters. The continuity of these parameterizations may be phrased in terms
of the branched packing labels R restricted to vertices on and outside of the
event horizon.

While a proof remains elusive, experiments strongly suggest that this
continuity does hold. For example, Figure 13 displays the branched circle
packings associated with branching at the four red dots in Figure 8, pro-
gressing from lower left to upper right (the third of these is the packing for
the distinguished point p from Figure 8). The branch value is roughly at the
center in each image. Subject to this and related normalizations, the radii
and centers of P appear to be continuous in γ1, γ2.

Figure 13. Singular branching for the four red branch
points of Figure 8.

Figure 14 provides a similar sequence of shifted branched packings for
the four red dots of Figure 8 (caution: the guide circles play different roles
now). Again we have positioned the branch values roughly at the center in
each image; the third one corresponds to Figure 11. Here, too, experiments
suggest continuity in radii and centers as we manipulate the two shifted
branching parameters.

Concatenating the 8 frames in these last two figures highlights another
parameterization issue: How are our various patches of parameter space
sewn together? If p lies on the mutual boundary of a circle and an interstice,
for instance, its generalized branched packing may be treated as a limit of
either singular branching from the interstice side or shifted branching from
the circle side. We have ad hoc methods for such transitions, though we have
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Figure 14. Shifted branching for the four red branch points
of Figure 12.

yet to formalize the details of parameter alignment. Nevertheless, our images
may give a feel for the transition: The interstice formed by {Cv1 , Cv2 , Cv3}
in Figure 8 is contiguous to the circle Cv of Figure 12; that is, v = v1. So the
8 frames from Figure 13 and Figure 14 together are part of a movie as the
branch point transitions from singular to shifted. Image circles {cv1 , cv2 , cv3}
remain red, green, and blue, respectively, throughout these 8 frames. In the
last frame from Figure 13 note that these three appear to be in clockwise
order (as we discussed earlier). Compare this to the first frame of Figure 14:
the red circle has now split into twins, with the branch value in the smaller
twin, so the (small) red, green, and blue are again correctly oriented —
the branch point has successfully punched though from the interstice to the
circle, and in the last frame of Figure 14, it is nearing traditional branching
at v. This is the type of experimental evidence supporting our contention
that the two parameter patches can be aligned to maintain continuity.

8. Global Considerations

We stated in the introduction that our aim is to bridge the principal gap
remaining in discrete function theory, namely the existence and uniqueness
of discrete meromorphic functions. Although we have local machinery, we
have not confronted the global problem head-on. A few words are in order.

Naturally, one of the first goals would be a more complete theory for dis-
crete rational functions, branched mappings from P to itself. Here K would
be a combinatorial sphere and one would need 2n branch points for a map-
ping of valence n + 1. Our hands-on approach still faces many hurdles in
practice. On the sphere, for instance, there is no packing algorithm — Per-
ron methods rely on the monotonicity of Lemma 1, which fails in the positive
curvature setting. And in the setting of the discrete Ahlfors function, we
depended on a symmetry of the complex K to reduce the search for correct
overlap parameters to a one-dimensional problem. Though we believe gener-
alized branching provides the flexibility to overcome the holonomy obstruc-
tions for a general complex, early attempts have faltered due to the curse of
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(even small) dimension: we don’t yet know how to search a two-dimensional
space for parameters that will annihilate non-trivial holonomies.

We face other global difficulties as well. We list a few. We have restricted
attention to simple branching; at least in the case of shifted branching, one
can see a chance to allow higher order branching — replacing twins with
triplets, etc. In general, one also needs to allow branching at more than
one point, but the existence of branched packings then encounters global
combinatorial issues. The notion of black holes will also need to be extended,
since combinatorics may lead to patches of degenerate radii (versus isolated
degenerate radii) for branch points in certain combinatorial environments.

In other words, there is considerable work to be done. Nevertheless, we
contend that discrete generalized branching addresses — in theory if not
in practice — the key obstruction remaining in discrete analytic function
theory. This obstruction, of course, is not the only one — so get to work,
David!
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