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Abstract: An analysis method of identifying materials using muon scattering tomography is pre-
sented, which uses previous knowledge of the position of high-Z objects inside a container and
distinguishes them from similar materials. In particular, simulations were performed in order
to distinguish a block of Uranium from blocks of Lead and Tungsten of the same size, inside a
concrete-filled drum. The results show that, knowing the shape and position from previous anal-
ysis, it is possible to distinguish 5 × 5 × 5 cm3 blocks of these materials with about 4h of muon
exposure, down to 2 × 2 × 2 cm3 blocks with 70h of data using multivariate analysis (MVA). MVA
uses several variables, but it does not benefit the discrimination over a simpler method using only
the scatter angles. This indicates that the majority of discrimination is provided by the angular
information. Momentum information is shown to provide no benefits in material discrimination.
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1 Introduction

Muon scattering tomography (MST) was first developed as an alternative to X-ray imaging of cargo
containers [1], using cosmic-ray muons instead. Their main advantages are the fact that they are a
natural source, present all over Earth’s surface, that they are highly penetrating, even in dense and
big objects, not possible with X-rays, and that it is not possible to trigger against the scanning. MST
is particularly useful to determine the content of containers without opening them or introducing
additional radiation.

Cosmic muons have been used to scan objects such as cargo containers [2], nuclear waste
containers [3] and geological formations [4]. This paper shows a study of the application of muon
scattering tomography to improve material identification, using the particular example of a nuclear
waste container. This is important in the case of legacy nuclear waste, because some containers
contain unknown materials, or materials which have changed over time, for example with some
materials expanding, or some new material being produced. In order to proceed with the waste
disposal and assess the respective costs, it is necessary to know what materials each vessel contains.

Some attempts at material identification have been made before, for example in [5], but for
high-Z materials, such as lead and denser objects this distinction has not been possible.

The present work is based on the assumption that it is possible to know the shape and position
of high-Z materials in a background material with a lower Z. This is possible using several different
methods, such as the one described in [6], [5], [7] and [8]. In [9] a method is described to identify
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the edges of small blocks of material inside concrete, with a precision of 1.20±0.37 mm. Hence, it
is possible to find lumps and using this technique as a second step to find their edges. The next step
in identifying the material would be comparing the object of interest to data from known typical
high-Z materials, to find which most resembles the unknown material. It is shown in this paper that
by selecting the tracks that passed through the high-Z material and comparing them for different
materials, we are able to distinguish those materials. We compare typical waste fuel material,
uranium, with benign shielding materials of tungsten and lead.

1.1 Muon Scattering Tomography

Muon scattering tomography is a technique which uses the muons present in natural cosmic radia-
tion as probes to scan objects like nuclear waste drums or cargo containers.

Muons undergo multiple scattering in matter [10, 11], where the 2D projected scattering angle
distribution is approximately Gaussian, with width σ dependent on the radiation length of the
material traversed,

σ ≈
13.6 MeV

βcp
z
√

X/X0(1 + 0.038 ln(X/X0)), (1.1)

where p is the momentum of the muon, βc its velocity, z its charge number, X the thickness of the
material, and X0 the radiation length [12] which is given by

X0 ≈
A · 716.4 g/cm2

ρ · Z (Z + 1) ln (287/
√

Z )
, (1.2)

where A is the mass number, Z the atomic number and ρ the density.

2 Methods

It is possible to measure the scatter angles by determining the incoming and outgoing tracks of
the muons using several resistive plate chambers (RPCs). By analysing the reconstructed tracks,
information can be extracted regarding the differences in Z of the materials and their position and
shape.

2.1 Geant4 Simulations

All the simulations were performed using Geant4, which is a toolkit for the simulation of the
passage of particles through matter [13]. The muon spectrum of energies and angles was taken
from CRY, a database of cosmic ray data [14], which creates a source plane for the muons, with
realistic momentum distributions at sea level. It simulates 420000 muons per hour, of which about
5800 were recorded; the amount of data will be shown in terms of time of muon exposure. Each
event is a single muon, and multiple muons in the same time window are not considered because
in reality they would be vetoed.

The simulation geometry is represented in Figure 1. The RPCs have a sensitive area of 1×1 m2

and 6 mm thickness. Each XY pair has a 19 mm spacing and there are 58 mm between each of
the pairs. The distance between the top and the bottom layers is 548 mm. The waste drum placed
in the centre is 40 cm long, has a 13 cm radius and is encased in steel with a thickness of 1.5 cm
around the cylinder and 3.5 cm in its caps. The RPCs strips have a 1.5 mm pitch, and a 450 µm

– 2 –



intrinsic resolution, taken from the value of real RPCs, measured and published in [15]. As in that
system, the simulation has six pairs of RPCs: three pairs above and three pairs below the waste
drum. Figure 2 shows the muon scattering principle and setup.

Figure 1: Illustration of the simulation geometry.

Figure 2: Illustration of the muon scattering principle and some variables obtained.
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2.2 Multivariate Analysis

The output of the Geant4 simulation was then analysed by a ROOT [16] application: a fit of the
upper and lower tracks (3 RPCs each, for x and y directions) was calculated using MINUIT [17].
This fit is described in [7]. The variables from this fit were analysed in order to choose the ones
most sensitive to different materials. This was done by comparing the variables distributions from
simple simulations of different materials irradiated by mono-energetic vertical muons. The chosen
variables were then used as inputs into a multivariate analysis (MVA) to compare pairs of mate-
rials, using the ROOT package TMVA [18], more specifically using the method of Fisher’s linear
discriminant [19].

The variables used were the 2D projected and 3D scatter angles, the offsets – between the
upper (lower) track extrapolated to the first lower (last upper) layer and the measured hit position
in that layer –, the χ2 of a six points linear track fit, the χ2 of the combined fit of incoming and
outgoing tracks, including the reconstructed vertex, and the momentum of the muon. Some of these
variables are shown in Figure 3.

The MVA compared two materials each time and consisted of three steps: training, testing and
application. The training was done for each block size using the same geometry as the application,
taking a few seconds for each geometry. The material with highest Z was assigned as signal and
the other as background.

Only the tracks that passed through the block were selected for the training from a boolean
variable in the Monte Carlo which was true for each track that crossed the block. For this reason,
the amount of tracks actually used was less than the recorded tracks: 10h of muon exposure for
10×10×10 cm3 and 5×5×5 cm3 blocks yielded about 26000 and 6000 selected muons respectively,
50h for the 3 × 3 × 3 cm3 and 2 × 2 × 2 cm3 blocks yielded about 12000 and 1800 muons, and
100h for the 1 × 1 × 1 cm3 block yielded about 2700 muons. Although different values were used
for different geometries, it was observed that increasing the amount of data for the training would
not improve the results, when using at least 1200 muons. The testing was done by TMVA with the
same amount of data as the testing. For the application of MVA, the selected tracks were the ones
whose reconstructed vertex was inside the block.

The 2D angles and offsets are highly correlated with the 3D angle, with linear correlation
coefficients over 80%. The different χ2 have coefficients between 50% and 70% with the 3D
angle. The momentum correlates to the 3D angle by about 22% (in absolute value).

As an example, the output of the training for the Fisher discriminant comparing Uranium and
Lead can be seen in Figure 4. The trained classifier was then applied to several sets of events (an
event is a simulation with one cosmic muon), each set with a fixed time of muon exposure. For
each set, a Fisher distribution output histogram was produced, from which discriminator values
were calculated: values that should be different for signal and background, such as the mean,
the integral over a cut (where the signal started being higher than the background), the integral
weighted more for higher values, and the weighted integrals over and under a cut.

To evaluate the performance, ROC graphs (Receiver Operating Characteristics), which plot the
true positive rate (identifying the “signal” material correctly) against the false positive rate (identi-
fying the background material as the signal material) were produced. A detailed description of this
type of graphs can be found in [20]. A measure of the quality of the discrimination performance is
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(f) Momentum.

Figure 3: Variables used in MVA training for uranium and lead, for a 10× 10× 10 cm3 block. The
histograms are normalised to integral 1.
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the area under the curve (AUC) of the ROC graphs. The AUC is shown in this paper in percentage,
where 50% would correspond to a random classifier and 100% to an ideal classifier, where signal
and background distributions are perfectly separated. An example of a ROC curve is in Figure 5b,
distinguishing a 10 × 10 × 10 cm3 cube Uranium from Lead, for 1h of muon exposure. Each point
on the curve corresponds to a cut made on each bin of the histogram in Figure 5a.

The confidence intervals of the ROC curves and respective AUC were calculated using the R
package pROC [21], which uses the DeLong method described in [22].

The mean of the Fisher output showed overall higher AUC than the other discriminator values
considered, therefore the mean was chosen as the discriminator for all the results. An example of
the mean distributions for Uranium and Lead is in Figure 5a, where each entry of the histogram is
the mean value of the Fisher discriminant method, distinguishing a 10×10×10 cm3 cube Uranium
from Lead, for a set of cosmic muons of 1h exposure.. The shift to higher values of the distribution
in the Uranium graph confirms that the mean is a good discriminator value.
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Figure 4: Output of the Fisher MVA method, comparing uranium and lead, on linear (a) and
logarithmic (b) scales, to highlight the differences between the distributions, for a 10×10×10 cm3

block.

2.3 Momentum smearing

One of the variables used in the MVA is the incoming muon momentum which, combined with
the angle, should show some material discrimination. This is because a large scatter angle from a
high momentum muon strongly indicates localised scattering in a high-Z material, while the same
large angle from a low momentum muon can also be a common scattering angle due to multiple
scattering in lower-Z material.

Although it would be possible in principle using the multiple Coulomb scattering process [23],
the momentum is not yet measured in our current RPC setup. Since the momentum resolution in
experiments is expected to be large, the Monte-Carlo truth momentum was smeared by adding a
random value from a Gaussian distribution centred in zero and with 50% of the true momentum
as the standard deviation (as done in [2]). All the results used this smearing, except where stated
otherwise.
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Figure 5: Mean value (a) and ROC curve (b) from the Fisher discriminant method, distinguishing
Uranium from Lead, 10 × 10 × 10 cm3 cube, 1h.

A comparison was made between using the true momentum, smearing the momentum and
not using the momentum information at all. As will be shown in the Results section, momentum
information does not improve the method.

3 Results

Figure 6 shows the size dependence of the AUC for a fixed time (2h), where the ROC curves
improve for larger blocks. Figure 7 shows the time dependence of the AUC for a block of Uranium
with 5 × 5 × 5 cm3, which is almost completely distinguished from Lead after 4h.

Figure 8 shows the area under the curve of the ROC curves distinguishing Uranium from Lead
(Figure 8a) and from Tungsten (Figure 8b) for different sizes and exposure times; it is clear that
increasing the muon exposure time can improve the material separation.

For the smaller blocks, longer times of 10h, 40h and 70h were also tested (Figure 9). The
3 × 3 × 3 cm3 and 2 × 2 × 2 cm3 blocks show an improvement over the shorter times, so even for
such small objects it is possible to have a good separation given a longer time. The the 1×1×1 cm3
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Figure 6: ROC curves for the mean of the Fisher determinant distinguishing Uranium from Lead
for different block sizes, with a muon exposure time of 2h. The cubic blocks have a side of 2 × 2 ×
2 cm3 (a), 5 × 5 × 5 cm3 (b) and 10 × 10 × 10 cm3 (c).
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Figure 7: ROC curves for the mean of the Fisher determinant distinguishing Uranium from Lead
for different muon exposure times, for a cubic block with 5 cm side. The muon exposure times are
1h (a), 2h (b) and 4h (c).

does not show a significant improvement over 50%, which indicates that it would need a longer data
taking time.

3.1 Results without momentum information

The momentum information, combined with the scatter angle, was expected to improve the ma-
terial discrimination, by attributing more weight to a high scatter angle from a high momentum
muon (more likely from a high-Z material) than from a low momentum muon. However, without
momentum information, the results did not alter significantly, as can be seen by comparing the
AUC of the 5 × 5 × 5 cm3 block with and without momentum information, in Table 1.
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Figure 8: Area under the curve of ROC curves distinguishing Uranium from Lead (a) and Uranium
from Tungsten (b), for different block sizes. The error bars are the confidence intervals of the AUC.
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Figure 9: Area under the curve of ROC curves distinguishing Uranium from Lead (a) and Uranium
with Tungsten (b), for different block sizes. The error bars are the confidence intervals of the AUC.

Time with true momentum with momentum smearing without momentum
1h 87.0 ± 2.7% 87.0 ± 2.7% 87.1 ± 2.7%
2h 95.2 ± 2.0% 95.2 ± 2.0% 95.3 ± 2.0%
4h 99.5 ± 0.5% 99.7 ± 0.3% 99.6 ± 0.4%

Table 1: AUC of several ROC curves from the mean of the Fisher discriminant for the 5×5×5 cm3

block, distinguishing Uranium from Lead, with and without momentum information.
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3.2 Using the scatter angle instead of multiple variables

In this study, the most significant variable is the scatter angle, and almost all the others are corre-
lated to it. Therefore, the same method used to select a material based on the mean of the Fisher
output was applied to the scatter angle: for each run of a given duration, the mean of the angle was
selected, and a ROC graph was plotted from all the runs of each duration. The values of AUC were
compared to the ones using the Fisher discriminant. Some examples can be seen in Table 2.

Time scatter angle Fisher
1h 86.3 ± 2.8% 87.0 ± 2.7%
2h 94.6 ± 2.2% 95.2 ± 2.0%
4h 99.1 ± 0.9% 99.7 ± 0.3%

Table 2: AUC of several ROC curves from the mean of the scatter angle and the Fisher discriminant
for the 5 × 5 × 5 cm3 block, distinguishing Uranium from Lead.

4 Discussion

This technique relies on a previous analysis, which can use longer scanning times than even the
longest shown in this paper of 70h. For example, in [9] the total data taking time for a complete
3D image is 2 weeks. If the edge finding method is also used, the data taking time becomes even
longer. This indicates that the method presented here does not need more data than the one already
necessary for imaging.

The smallest object of 1 × 1 × 1 cm3 is under the limit of discrimination given by the angular
resolution of this system.

For the training sets considered here, the use of MVA showed little or no improvement (for
Lead and Tungsten respectively) over the use of the scatter angle. While MVA methods are very
useful tools to combine variables, they also depend on the amount of data used for training which,
combined with a set of correlated variables, can result in the same results as using only one of those
variables.

5 Conclusion

Good material separation was found for blocks of at least 5× 5× 5 cm3 in concrete, when compar-
ing high-Z materials to Uranium, in particular Lead and Tungsten, with 4h muon exposure using
multivariate analysis to analyse muon tomography data. For smaller objects, a longer exposure
time is needed: 40h is enough for the 3 × 3 × 3 cm3 block and 70h for the 2 × 2 × 2 cm3 block.

It is shown that in both cases, MVA and angle only, the knowledge of the position and shape
of simple objects inside concrete can be used to discriminate between typical high-Z materials.

It is also shown that discrimination based on MVA of multiple variables provides no benefit
over a simpler discrimination based on scattering angles. In addition, for the method described here,
it was found that momentum information provides no benefit to material discrimination. These are
important null results, which strongly inform our work moving ahead. Future work will be trying
this method simulating other typical materials and verifying it with real data.
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