
                          Gómez-Martínez, F., Alonso-Durá, A., De Luca, F., & Verderame, G. M.
(2016). Seismic performances and behaviour factor of wide-beam and deep-
beam RC frames. Engineering Structures, 125, 107-123.
https://doi.org/10.1016/j.engstruct.2016.06.034

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.engstruct.2016.06.034

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at http://www.sciencedirect.com/science/article/pii/S0141029616303066. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/96779505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.engstruct.2016.06.034
https://doi.org/10.1016/j.engstruct.2016.06.034
https://research-information.bris.ac.uk/en/publications/seismic-performances-and-behaviour-factor-of-widebeam-and-deepbeam-rc-frames(5de4f2f5-d614-4983-9528-e6ab85573c08).html
https://research-information.bris.ac.uk/en/publications/seismic-performances-and-behaviour-factor-of-widebeam-and-deepbeam-rc-frames(5de4f2f5-d614-4983-9528-e6ab85573c08).html


 

SEISMIC PERFORMANCES AND BEHAVIOUR FACTOR OF        
WIDE-BEAM AND DEEP-BEAM RC FRAMES 

Fernando Gómez-Martínez*1,2,    Adolfo Alonso-Durá2, 
Flavia De Luca3,    Gerardo M. Verderame1 

      
1Department of Structures for Engineering and Architecture, DIST, University of Naples Federico II, 

Via Claudio, 21, 80125 Naples, Italy 
2Department of Mechanics of the Continuum Media and Theory of Structures, Polytechnic University of 

Valencia, Camino de Vera, s/n, 46022 Valencia, Spain 
3Department of Civil Engineering, University of Bristol, Queen’s Building University Walk, BS8 1TR, 

Bristol, UK  
 

 
ABSTRACT 
Reinforced Concrete Wide-Beam Frames (WBF) are a common architectural solution in Mediterranean 

countries. On this structural typology there is not yet a uniform approach among European codes: while 

Eurocode 8, as other relevant seismic codes in USA and New Zealand, considers WBF capable of high 

ductility performances, still in recent versions of Spanish and Italian seismic codes there is cap to the 

maximum behaviour factor (q) for this structural system. In order to verify the appropriateness of such 

provisions, seismic performances of WBF and conventional deep beam frames (DBF) are comparatively 

assessed through nonlinear static analyses. The same architectural layout of a typical Mediterranean 5-

storey RC housing unit is designed according to Eurocode 8, adopting different stiffness assumptions, 

and according to the Spanish seismic code NCSE-02. Based on detailed assessment results, a simplified 

parametric assessment of 72 frames designed according to Eurocode 8, Italian seismic code NTC and 

NCSE-02 is then considered assuming similar q for WBF and DBF. Results suggest that any reduction of 

behaviour factor prescribed for wide-beam frames is at least obsolete. In fact, even if wide beams show 

lower local ductility than deep beams, generally WBF provide at least similar global seismic capacities 

than DBF, especially in frames whose design is ruled by serviceability limit state (i.e., damage 

limitation). 

KEYWORDS: Wide beams, deep beams, seismic codes, behaviour factor, chord rotation, ductility, 

effective period, collapse mechanism 
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NOMENCLATURE 

DB Deep beams 
DBF Deep-beam reinforced concrete frames 
DCH High ductility class 
DCL Low ductility class 
DCM Medium ductility class 
DLS Damage limitation limit state 
IDR Interstorey drift ratio 
ULS Ultimate limit state 
WB Wide beams 
WBF Wide-beam reinforced concrete frames 
ag Peak ground acceleration in soil type A 
agR Reference peak ground acceleration in soil 

type A 
bb Beam gross section width 
bc Column width 
bw Beam web width 
CP-Δ Amplification factor accounting for P-Δ 

effects 
Cs Spectral acceleration capacity 
dbi Maximum beam bar diameter passing 

through the joint 
dbo Maximum beam bar diameter passing 

outside the joint 
dc Maximum column bar diameter 
Du Top displacement capacity 
e Beam-column eccentricity 
EcIc Member stiffness 
fck Concrete characteristic compressive 

strength 
fconf Confinement contribution to θu 
fK,sec Ratio between the stiffness degradation of 

connections in WBF with respect to DBF 
fyk Steel characteristic yield strength 
H Building height 
hb Beam depth 
hc Column depth 
hf Upper slab tension flange thickness 
Hmec Height of the building involved in the 

collapse mechanism 
i Number of the storey 
Keff/ Effective stiffness 
Kel Elastic stiffness 
L Member length 
LV Shear span 
MRb Moment of resistance at beam end 
MRc Moment of resistance at column end 

n Number of storeys 
PGAc Capacity peak ground acceleration 
PGAd Demand peak ground acceleration 
q Behaviour factor 
RD Spectral contribution to q 
RS Structural overstrength 
Rα Structural overstrength from first yielding 

to global mechanism 
Rμ Ductility strength reduction factor 
Rω Structural overstrength until first yielding 
S Soil amplification factor 
Sa(Teff) Effective spectral acceleration demand 
Sae(T) Elastic spectral acceleration of design 
Sae(T)’ Equivalent elastic spectral acceleration of 

design 
Sdu Maximum spectral displacement capacity 
Sdy Yielding spectral displacement 
SF Structure global safety factor 

(capacity/demand) 
T100%EI Design period for gross uncracked member 

stiffness 
T50%EI Design period for member stiffness 50% of 

the gross uncracked one 
Tcode Simplified code design period 
Teff Effective period 
Tel Elastic period 
Vd Storey shear demand 
VR Storey shear strength 
w Outer cantilevered beam width respect to 

narrower column core 
Γ First mode participation factor 
ΔK Relative interstorey difference of stiffness 
Δm Relative interstorey difference of mass 
θu Ultimate chord rotation 
θu,min Minimum θu between members involved in 

the collapse mechanism 
θULS Maximum chord rotation attaining ULS 
θy Yielding chord rotation 
λ Normalised first mode participating mass 
μθ Chord rotation ductility 
ν Normalised axial load 
ρ Bottom longitudinal reinforcement ratio 
ρ’ Top longitudinal reinforcement ratio 
ρtot Total longitudinal reinforcement ratio 
ρw Transverse reinforcement ratio 
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1. INTRODUCTION 

Traditionally, seismic codes have been quite cautious in allowing the use of wide-beam 

reinforced concrete frames (WBF) as the only lateral resisting system of buildings 

[1][2][3][4][5][6][7][8][9][10] [11][12]. Conversely, more recent seismic codes do not make any 

explicit difference between WBF and conventional deep-beam frames (DBF) with the exception 

of some requirements on beam-column connections. 

Still, some national seismic codes of the Mediterranean area, such us the Italian NTC [13] 

and the Spanish NCSE-02 [14], do not consider WBF as a system that can be designed in High 

Ductility Class (DCH). Thus, they prescribe lower behaviour factors (q, also called “strength 

reduction factor”) for WBF with respect to DBF. On the contrary, Eurocode 8 part 1 [15] (EC8 in 

the following) does not prescribe any limitation to the behaviour factor of reinforced concrete 

(RC) WBF. 

Reasons for limiting q in Mediterranean codes are not explicitly stated. Experimental and 

analytical background suggests that WBF may present some drawbacks when compared to DBF: 

(i) deficient stress transfer within connections, (ii) lower lateral stiffness and (iii) poorer energy 

dissipation of beams. However, recent literature studies [10][12] provide evidence that design 

provisions in modern seismic codes may overcome such deficiencies, directly or indirectly. 

Literature evidence on WBF is mainly based on experimental and analytical studies focusing on 

local structural behaviour [1][2][3][4][5][6][7][9][16][17][18][19]. Still, there is a lack of 

systematic studies addressing global performances of WBF against equivalent DBF fulfilling the 

requirements of different codes. Herein, a comparison of seismic assessment of both structural 

types is carried out. The final aim is to verify whether the whole framework of modern 

performance-based codes can balance the disadvantages of WBF with respect to DBF, and in 

which local context (if any) a reduction of q can be justified. 

Diverse analytical studies regarding relative performances of WBF compared with DBF 

[1][3] show very similar performances for both types. However, these studies cannot be yet 

defined neither systematic nor generalizable. Firstly, they have been carried out within the 

American framework of codes and construction practice. In [1], planar frames are assessed, not 

buildings; and lower interstorey heights are used for WBF. In [3], the tested buildings have wide 

beams (WB) in the internal frames, deep beams (DB) in the external ones, and intermediate shear 

walls; thus, the collapse mechanism is not ruled by WB, making any comparison unfeasible. 
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Moreover, both works use chord rotation values obtained from mix lumped plasticity and fibre 

models matching with their own experimental results, but not fitted to any larger database in 

accordance to the common approach employed in the last ten years among the scientific 

community, and adopted by recent codes. Some other analytical studies, corresponding to the 

Spanish framework, have been carried out [20][21][22][23]. Unfortunately, the last three works 

only focus on WBF, while, in the first study, WBF and DBF are designed to different q values, 

thus preventing any comparison for DCH. 

Hence, the scope herein is to provide a systematic and generalizable analytical comparison of 

WBF and DBF performances. The latter is carried out through nonlinear static analyses of a 5-

storey building model designed alternatively with WB and DB, according to both EC8 and 

Spanish NCSE-02. The comparison is made for different design hypotheses and evaluating the 

consequences of the design assumptions on the nonlinear performances. Finally, simplified 

assessment of a parametric set of 72 frames representing residential buildings in Europe, 

corresponding to different codes (EC8, NTC and NCSE-02) is carried out in order to extrapolate 

and generalise the results obtained for the specific case study. Large-span WBF, as those typical 

in Australia and described in [7] or [16], are out of the scope of this paper. 

2. CODE PROVISIONS ON WIDE-BEAM FRAMES 

Due to historic uncertainties about the seismic performance of WBF, more restrictive 

provisions have been proposed for WBF with respect to DBF, such as limitations to their use in 

high seismicity areas, or reduction of the behaviour factor (q). The same restrictions are often 

referred also to flat-slab structures, to which seismic behaviour of WBF used to be assimilated. 

However, the vast majority of current codes only impose geometric and mechanical limitations to 

wide beam-column connections as a condition for the application of standard design procedures, 

in order to ensure proper stress transfer and the consequent exploitation of the full capacity of 

elements. 

However, some national codes in the Mediterranean area, where the use of WBF is more 

widespread [20][21][22][23][24][25], still prevent WBF to be designed in High Ductility Class 

(DCH). Italian NTC reduces q of WBF to 2/3 of that provided for DBF, downgrading them to 

Medium Ductility Class (DCM). Spanish NCSE-02 reduces q to 1/2, downgrading WBF to Low 

Ductility Class (DCL). 
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Design provisions for both ultimate (ULS) and damage limitation limit states (DLS) 

regarding WBF and flat-slab structures corresponding to different Mediterranean codes –Italian 

NTC, Spanish NCSE-02, Turkish TSI [26] and Greek EAK 2000 [27]— together with other 

benchmark international codes such as EC8, American ACI 318-08 [28], or New Zealander NZS 

3101 [29] are summarized in Table 1 and Fig. 1. For both structural systems, all the codes set 

maximum interstorey drift ratio (IDR) with the exception of NCSE-02. In the case of WBF, 

codes regulate local design of connections, especially concerning the restriction of beam width 

(bw), in order to make it agree with the effective width, i.e. the fraction of the total beam width 

which satisfies flexural equilibrium of forces when framing a narrower column. Only Australian 

AS3600 [30] does not impose any restriction to beam width. Other provisions (e.g. amount of top 

reinforcement to be placed within column core, maximum effective width of upper slab flange 

and that of joint panel) underpin the same basic principles, while some geometrical restrictions 

are oriented to ensure adequate bond behaviour of the longitudinal reinforcement. 

Code provisions have a counterpart in experimental and analytical studies showing different 

disadvantages of WBF with respect to DBF. The main issues related to WBF as the principal 

horizontal load carrying systems can be grouped as follows [12]: 

1) Lower elastic lateral stiffness: WB have lower depth with respect to DB, when similar 

geometric and mechanical properties are assumed for the rest of the structure. It 

results in more significant non-structural damage and second order effects. 

2) Deficient stress transfer in beam-column connection [1][2][3][4][5][6][7][9][16][19]: 

the equilibrium of the fraction of the beam section passing outside the column core 

(“outer” part) requires sufficient transverse torsional behaviour and proper bond in 

longitudinal reinforcement bars; otherwise, full capacity cannot be attained. 

3) Higher stress demand in joint panels: lower depth of WB with respect to DB often 

causes higher compression in the diagonal struts within joint panels. 

4) Poorer local ductility of beams [1][21]: the increment of ultimate chord rotation (θu) in 

WB with respect to DB is not as high as the increment of yielding chord rotation (θy), 

because plastic hinge length is lower for WB rather than for DB. 

5) Poorer energy dissipation of connections [2][5][6][9]: deficient bond in reinforcement 

bars passing through the connection in WBF leads to higher “pinching” of hysteretic 

cycles. 



 

Table 1: Prescriptions regarding flat-slab and wide-beam frames systems according to different codes (from [12]) 

CODE  

(seismic, RC, connections) 

Max. 
IDR(1) 
[%] 

 

BEAMLESS TWO-WAY FLAT SLAB 

 

WIDE BEAMS 

Max. ag 
[g] 

Deforma
-bility 
restric-
tions 

Max. duct. 
class (q; q 
reduction 

from DCH) 

Min. hb 
[cm] 

Max. duct. 
class (q; q 
reduction 

from DCH) 

Min. hc 
[cm] 

Max. w (outer part of bw) for % upper 
reinf. within 
column core Member web 

Reinf. 
(both 
sides) 

Edge beam 
bb from 
max. e 

Joint 
shear 

Upper slab tension 
flange reinforcement 

Beam 
shear 

Greece: EAK (2000) [27], 

EKOS (2000) [31] 1.25 - 
Stiffness 
required 

(5) 
DCH (q=3.5) 

Stiffness 
required 

(5) 

DCH  

(q=3.5) 25 min{0.25hc; 
0.5bc}(8,9) - 0.66bc - hf·{0;2;2.5;4} (17) -(21) - 

New Zealand: NZS 1170.5 

(2004) [32], NZS 3101 (2006) 

[29] 
2.5(2) - IDR≤ 

0.9% 

DCL(q=1.25;

-79%) 
≈27dc≈ 
43(6,7) 

DCH  

(q=3.5) 
≈30dbi 
≈48(6,7) - 0.25hc

(9,11) 0.25hc 
0.25hc 

(16) 

min{L/8;8hf;hb; 
hc·{0.5;0.75}(18)};  

min{L/8;8hf;3hb}(19) 

0.25hc 
(22) 90%(24) 

Spain: NCSE-02 (2002) [14], 

EHE-08 (2008)a [33] - - - 
DCL (q=2; 

-50%) - 
DCL (q=2; 

-50%) 25-30 - 0.0; 0.5hb
(12) 0.5bc - hf·{0;2;2;4} 

*(17) 0.0 (23) - 

Italy:  

NTC (2008) [13] ≈1.3(3) - - 
DCH 

(q=5.85) - 
DCM (q=3.9; 

-33%) 
≈36dbi 
≈55(6,7) 

min{0.5hb; 
0.5bc

(8)}(10) - 0.5bc
(14) 0.25hc 

(8) hf·{0;2;0;2}(17) -(21) 75% 

Europe:  

EC8 (2004) [15] 1.0 min{0.08; 
0.1/S} - 

DCL (q=1.5; 

-74%)b - 
DCH 

(q=5.85) 
≈36dbi 
≈55(6,7) - min{0.5hb; 

0.5bc}a(8,9,13) 0.5bc 
0.25hc 

(8) hf·{0;2;2;4}(17) - - 

Turkey:  

TSI (2007) [26] 2.0 0.20 H≤13m 
DCM (q=4; 

-50%) 
min{3hf; 

30} 

DCH  

(q=8) 25 0.5hb
(8) - - 0.0 - -(21) - 

USA: ASCE/SEI 7-10 (2010) 

[34], ACI 318-08 (2008) [28], 

ACI 352R-02 (2002)a [35] 

1.0-
2.5(4) - - 

DCM (q=4; 

-38%) - 
DCH  

(q=8) 
20dbo 
≈32(7) 

min{0.75hc; 
bc}(9) - -(15) 0.0 

min{L/20-bw/2;8hf}; 
min{L/8-bw/2;8hf; 

hc}≥2bb
 (19) (20)

 

-(21) 33% 

a          Recommendations, not mandatory 
b          Current version of EC8 does not cover flat slab, 1.5 is the basic assumption for 
elastic design; new version in progress 

(1) For DLS but obtained from ULS displacements 
(2) Specific for ULS 
(3) Obtained from specific DLS demand spectrum 
(4) Depending on ag and number of storeys 
(5) Sufficient stiffness to ensure frame –not cantilever— behaviour in all columns 
(6) Formulation depending in most of the cases on ductility class, material 

strengths, axial load, reinforcement ratios and location of the joint 
(7) Considering ϕw=16mm 
(8) Edge beams not explicitly considered 
(9) Not for low-ductility design 

(10) Referred to gross section, not to web 
(11) Referred to the 90% of the required flexural reinforcement; 

remaining 10% within (19) 
(12) Required transverse beam for external connections or internal 

connections with moment inversion 
(13) Not mandatory, only for taking advantage of the column 

compression on the bond behaviour 
(14) Higher values only if proper perpendicular reinforcement is 

placed 
(15) Further research is needed 
(16) Also reciprocal requirement for columns in the case of wide 

column – narrow beam connection 

(17) Exterior connection with and without transverse beam, and analogous for 
interior connection, respectively 

(18) Exterior connection with and without transverse beam, respectively 
(19) For beam flexural designing and for overstrength evaluation for column and 

joint designing, respectively 
(20) Torsional evaluation of spandrel beam in external connections required 
(21) Maximum bw limitation may control both flexural and shear behaviour 
(22) Uncertain, not explicitly indicated 
(23) Value at the column face; 0.5hb at distance of higher than 0.5hb from the 

column face; intermediate values from linear interpolation 
(24) Not column core but joint effective width; strut-and-tie analysis required for 

lower values 

 

   
Fig. 1: Graphic description of variables used in Table 1, corresponding to: plan of interior connection (a), and elevation of connection belonging to  

central (b) and edge (c) frame (from [12]) 

(a) (b) (c) 



 

All the issues, with exception of those related to local ductility, are overcome by specific 

design provisions in modern seismic codes [12][35]. As long as design to DLS –controlling 

IDR— and second order (P-∆) corrections are implemented, the stiffness of WBF must be rather 

similar to that of DBF by means of the use of larger column sections. Specific design of joints 

prevents any compression failure of the diagonal strut. Stress transfer in connections is 

guaranteed if beam width restrictions and other detailing rules are observed (see Table 1). Those 

provisions may also overcome to a great extent pinching in WBF, according to [35] and also 

from results observed in [17][19]. Other evidences of decrease of global capacities of WBF with 

respect to DBF (around 9% [2][9] or higher [5][6]) due to pinching may have lower reliability 

because poorer local detailing is not consistent with European codes’ framework. 

Hence, the strongest reason for any q reduction on WBF may be the lower local ductility of 

WB with respect to DB. However, the extrapolation from local ductility to q can be 

inappropriate, because q refers to global capacity, and global ductility does not depend on local 

ductility of beams only [10][12]. 

3. CASE STUDY: DESIGN 

A case study building is designed to medium-high seismic level according to different codes 

and modelling assumptions. Then, their respective performances are assessed. 

In Fig. 2, a typical Mediterranean 5-storey RC multi-family housing unit, according to [36] 

and [37], is presented. Design gravitational loads are similar for all the storeys: dead loads 

(6.2kN/m2), live loads (2.0kN/m2), and brick walls dead loads (7, 5 and 3kN/m for exterior, 

dividing, and parapet walls, respectively). The same NCSE-02 horizontal demand elastic 

spectrum is chosen for all the cases (Fig. 3).  

3.1 Three design alternatives: EC850-50, EC8100-50 and NCSE-02 

Two different seismic codes are considered: EC8 and NCSE-02. The last one imposes a q 

reduction of 50% for WBF, while EC8 does not provide any cap to q. 

Effective stiffness of WBF plays a very important role in their relative performance; thus, the 

assumption of certain design stiffness for members is a crucial decision. NCSE-02 does not 

suggest any reduction of stiffness. EC8 suggests a reduction of 50% both for ULS and 

Serviceability Limit State (i.e. DLS), while American ASCE/SEI 41-06 [38], up to a 70% for 
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beams and 30-70% for columns; NTC from 0% to 50%; NZS 3101, 60-73% and 0-70% for 

beams and columns in ULS, respectively, and 0-65% for DLS. 

 

 
Fig. 2: Case study: distribution (a) and structural arrangement in plan (b), and in elevation (c). 

 

 
Fig. 3: Elastic horizontal demand acceleration spectrum; parameters follow EC8 terminology 

 

(a) 

(b) (c) 
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In order to cover a wide range of design choices, two different versions of design according 

to EC8 are considered. A different assumption is made on elastic members' stiffness for DLS 

design. In the designed alternative “EC850-50”, both elastic stiffness at DLS and ULS are assumed 

as 50% of the uncracked one. In “EC8100-50”, 100% of uncracked stiffness is employed for DLS, 

and 50% for ULS. Even if the design hypothesis EC8100-50 can seem not realistic, it well 

represents an upper bound design version aimed at providing more robust conclusions with 

regard to personal choices of design. EC8 does not regulate some relevant assumptions regarding 

stiffness of the elements: contribution of member ends within joint panels, contribution of upper 

slab or joists [12], contribution of outstanding (bb-bw) in wide beams [12], and does not specify 

quantitative procedure for the evaluation of regularity of stiffness in elevation. Thus, EC8100-50 

could represent a feasible design result, less dependent on DLS limitation, and a capacity 

designed structure according to Mediterranean codes such as that of Italy and Spain. Finally, this 

design hypothesis is relevant in this study for further investigation of the effect of damage 

limitation prescriptions on the design of WBF structures. 

3.2 Mechanical properties and design strategies 

The design procedure is carried out in order to minimise cross section of members and thus 

avoiding unnecessary overstrength that could affect the relative performances of DBF and WBF. 

Concrete fck=25MPa and steel fyk=500MPa are used. Different stiffness contributions of joint 

regions are considered. NCSE-02 does not consider any contribution; conversely, EC8 suggests 

considering it, but no clear modelling strategy is proposed. Fardis [39] suggests placing only rigid 

offsets in beams, leading to a decrease of elastic stiffness which is proportional to beam depths, 

so it is higher for DBF rather than WBF. Such behaviour is coherent with the experimental 

evidences [40], and it is adopted herein for EC8 structures. Upper slab contribution is not 

considered in terms of stiffness, which is conservative for DLS design. 

Values of q for EC8 buildings are 5.85 or 4.68 for structures regular in elevation or not, 

respectively, if default –non-explicit— values of overstrength factor are assumed. Regularity in 

elevation is evaluated through the quantitative criteria provided by NTC. In NCSE-02, q is 4.0 

(DCH) and 2.0 (DCL), and DCH is only allowed if there is no bending moment inversion. Such 

restriction, rather than being based on ductility considerations, seems to compensate the absence 

of joint detailing rules and the low confidence in their capacity to alternate bending moments 

[41]. Thus, only within the scope of this paper, DCH with moment inversion is allowed. Storey 
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amplification of seismic action due to reduction of masonry infills and due to P-Δ effect are 

adopted only in EC8 buildings, as NCSE-02 does not provide any quantitative provision. 

Full cyclic flexural and shear capacities are considered for WB, provided that all the code 

prescriptions regarding geometric and mechanical restrictions in beam-column connections are 

satisfied (see section 2).  

Design redistribution of bending moments in beams, which is allowed by EC8, is not 

considered in the design phase aimed at homogeneity between the different design cases. 

Negative moments in WB are higher than those in DB due to their lower relative stiffness with 

respect to columns. Thus, higher redistribution would be needed for WB with respect to that of 

DB in order to equalise maximum hogging and sagging moments, which would eventually lead 

to the attainment of pre-emptive yielding in WB ends. 

Beam section dimensions are assumed to be similar in all the building, while column 

dimensions are assumed to be similar at each storey. They cannot be reduced considerably within 

two consecutive storeys, especially for WBF, because spliced bars from the lower column cannot 

separate significantly from the vertical configuration when passing through the joint. Sizing of 

columns in WBF is influenced also by beams width limitation and maximum eccentricity 

requirements in edge beams. 

NCSE-02 capacity design rules have been demonstrated to be inefficient and sometimes 

impossible to be employed because it imposes the strength hierarchy by increasing the safety 

factor of the brittle element/mechanism (e.g., column with respect to beam) instead of 

dimensioning them based on the capacity of the ductile element/mechanism [10][25][41][42]. 

Thus, the same quantitative expressions established by EC8 for column-to-beam and shear-to-

bending capacity design are taken into account for NCSE-02, but adopting lower prescribed 

capacity design ratios (1.1). Capacity design of joints is not considered for this code. 

Regarding local detailing, DCL rules are more severe for NCSE-02 than those of EC8 in 

medium-high seismicity [41][42], while, in NCSE-02, DCH local ductility detailing rules are 

more relaxed than in EC8 [10][41]. Furthermore, NCSE-02 prescriptions regarding detailing of 

columns are mandatory depending on ag·S (i.e., the anchoring acceleration value) of the design 

spectra, instead of depending on the ductility class. 
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3.3 Results of design 

In Tables 2, 3 and 4, characteristics of the 6 design versions are summarised, being i the 

storey; L the member length; LV the shear span; bc and hc the width and height of column 

sections; and bw and hb the width and height of beam sections.  

Design results confirm the severity of the requirements of EC8 not related to the force-based 

design: base shear capacities are always larger than NCSE-02 ones even for higher q. In Fig. 4, 

deformed shapes of all the models are compared. 

DLS design is the critical condition in EC850-50 buildings. Especially for WBF, very large 

columns are required in order to compensate the lower stiffness of beams, which together with 

minimum longitudinal ratio and minimum number of bars due to maximum spacing of stirrup 

legs, provide very high storey shear overstrengths (VR/Vd) and column-to-beam capacity design 

ratios (ΣMRc/ΣMRb). Important cantilever behaviour (i.e. shear span in 1st storey column larger 

than half the interstorey height) is observed. In EC850-50 buildings, huge section dimensions of 

first and second storey columns may constitute a great shortcoming regarding architectural 

functionality. The WBF frame dimensions for EC850-50 design hypothesis represent an upper 

bound for the buildability of the structure  

In EC8100-50 buildings, the design to DLS is not so relevant, especially in DBF, resulting in 

smaller sections with reinforcement ratios slightly higher than the minimum. In this case, DBF 

and WBF present similar columns. On the other hand, NCSE-02 buildings are mainly force-

based, so smaller sections and higher reinforcement ratios can be observed also in WBF design to 

DCL, and. lower local ductility of members is expected (see Fig. 5). 

WBF induces lower relative demand in beams than DBF, especially in higher storeys (due to 

minimum reinforcement ratios) and in lower storeys, due to cantilever effect: LV in columns 25-

42% higher in WBF rather than in DBF (Table 2), which is also the cause of their regularity in 

elevation notwithstanding the greater interstorey height (Table 3, being Δm and ΔK the relative 

interstorey differences regarding storey mass and stiffness, evaluated according to NTC 

quantitative definitions). 
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Table 2: Geometric design properties of each model ((*)mean) 

MODEL 
 Columns Beams 
i bc hc (LV/L)X (LV/L)Y (LV/hc)min ν(*) ρtot

(*) ρw,b ρw,h bw hb ρ’(*) ρ(*) ρmax/ρmin
(*) ρw 

- [mm] [mm] - - - - [%] [%] [%] [mm] [mm] [%] [%] - [%] 

EC
8 5

0-
50

 D
B

F 

5 300 300 

≈0.50 

10.0 0.08 1.8 0.67 0.67 

300 500 

0.28 0.37 1.37 

0.48 
4 300 300 10.0 0.11 1.4 0.67 0.57 0.32 0.37 1.24 
3 400 350 7.5 0.14 1.1 0.54 0.57 0.43 0.38 1.13 
2 500 350 6.0 0.15 1.0 0.56 0.57 0.50 0.47 1.14 
1 600 400 0.75 0.75 6.7 0.17 1.3 0.56 0.67 0.57 0.53 1.21 

W
B

F 

5 500 500 

≈0.50 

7.5 0.03 1.0 0.54 0.54 

650 300 

0.30 0.23 1.29 

0.44 
4 600 550 6.0 0.06 1.1 0.67 0.54 0.45 0.26 1.77 
3 700 550 5.0 0.07 1.0 0.67 0.61 0.58 0.39 1.53 
2 800 550 4.4 0.08 1.0 0.67 0.61 0.62 0.45 1.41 
1 800 550 0.95 0.97 5.0 0.11 1.0 0.67 0.61 0.59 0.41 1.47 

EC
8 1

00
-5

0 D
B

F 

5 400 350 

≈0.50 

7.7 0.05 1.4 0.67 0.57 

300 500 

0.28 0.37 1.36 

0.48 
4 450 350 6.7 0.10 1.3 0.60 0.57 0.33 0.37 1.24 
3 500 350 6.0 0.14 1.1 0.54 0.57 0.44 0.45 1.26 
2 550 350 5.5 0.17 1.3 0.61 0.57 0.57 0.54 1.19 
1 600 350 0.55 0.60 6.7 0.20 1.1 0.56 0.57 0.64 0.63 1.14 

W
B

F 

5 400 350 

≈0.50 

7.7 0.05 1.4 0.67 0.57 

500 300 

0.33 0.25 1.34 

0.53 
4 450 350 6.7 0.10 1.3 0.60 0.57 0.50 0.31 1.59 
3 500 350 6.0 0.14 1.1 0.54 0.57 0.61 0.42 1.46 
2 550 350 5.5 0.17 1.3 0.61 0.57 0.73 0.56 1.32 
1 600 350 0.69 0.83 6.7 0.20 1.1 0.56 0.57 0.78 0.56 1.40 

N
C

SE
-0

2 D
B

F 

5 300 300 

≈0.50 

10.0 0.08 1.9 0.45 0.45 

300 500 

0.31 0.41 1.32 

0.48 
4 300 300 10.0 0.17 2.8 0.45 0.45 0.34 0.41 1.21 
3 350 300 8.6 0.22 2.4 0.38 0.45 0.43 0.41 1.12 
2 400 300 7.5 0.27 2.1 0.50 0.45 0.49 0.46 1.20 
1 450 300 0.53 0.55 8.9 0.30 2.3 0.45 0.45 0.61 0.57 1.22 

W
B

F 

5 300 300 

≈0.50 

10.0 0.08 2.8 0.48 0.48 

450 300 

0.54 0.50 1.11 

0.45 
4 350 300 8.6 0.14 3.0 0.38 0.67 0.94 0.68 1.42 
3 400 300 7.5 0.19 3.1 0.50 0.67 1.36 1.02 1.41 
2 500 300 6.0 0.21 2.5 0.40 0.67 1.61 1.28 1.30 
1 600 300 0.75 0.78 6.7 0.22 3.5 0.45 0.67 1.56 1.30 1.22 

 

Table 3: Mechanic design properties of each model ((*)mean) 

MODEL 
 IDR limitation P-Δ amplification Capacity design ratio Regularity in elevation 
i IDRX IDRY CP-Δ,X CP-Δ,Y (ΣMRc/ΣMRb)X

(*) (ΣMRc/ΣMRb)Y
(*) Δm ΔKX ΔKY (VR/Vd)X (VR/Vd)Y qd 

- [%] [%] - - - - [%] [%] [%] - - - 

EC
8 5

0-
50

 D
B

F 

5 0.45 0.47 1.00 1.00 - - - - - (3.73) (3.61) 

4.68 
4 0.46 0.46 1.00 1.00 1.48 1.77 11.3 41.2 43.0 3.71 3.61 
3 0.48 0.45 1.00 1.00 1.89 2.20 1.6 22.5 26.1 3.50 3.46 
2 0.49 0.45 1.00 1.00 2.19 2.28 1.5 14.8 17.6 3.99 3.97 
1 0.44 0.42 1.11 1.00 2.67 2.68 5.2 -7.7 -13.9 3.43 3.40 

W
B

F 

5 0.30 0.30 1.00 1.00 - - - - - (10.29) (10.17) 

5.85 
4 0.45 0.44 1.00 1.00 4.50 5.93 10.1 17.4 17.0 8.69 8.56 
3 0.50 0.50 1.12 1.11 5.39 6.23 3.5 15.7 15.7 9.51 9.37 
2 0.50 0.50 1.14 1.13 6.66 7.19 2.2 15.9 15.9 9.84 9.72 
1 0.32 0.32 1.00 1.00 8.03 8.54 6.1 24.5 23.0 7.07 7.00 

EC
8 1

00
-5

0 D
B

F 

5 0.17 0.18 1.00 1.00 - - - - - (6.42) (6.25) 

4.68 
4 0.30 0.29 1.00 1.00 1.81 2.21 9.7 13.8 15.8 4.07 3.97 
3 0.36 0.35 1.00 1.00 1.89 1.90 0.8 7.3 10.0 3.50 3.43 
2 0.41 0.38 1.12 1.00 1.92 2.03 0.8 9.0 10.0 3.71 3.65 
1 0.38 0.37 1.14 1.13 1.96 1.98 4.2 -15.8 -20.1 2.91 2.82 

W
B

F 

5 0.25 0.24 1.00 1.00 - - - - - (9.29) (9.14) 

5.85 
4 0.40 0.39 1.15 1.15 2.55 3.34 9.7 8.0 7.6 6.27 6.16 
3 0.49 0.48 1.24 1.23 2.38 3.09 0.8 3.3 4.7 5.57 5.48 
2 0.50 0.50 1.32 1.29 2.51 3.01 0.8 7.7 8.8 5.97 5.89 
1 0.40 0.40 1.26 1.25 2.97 3.38 4.2 10.1 8.8 4.56 4.53 

N
C

SE
-0

2 D
B

F 

5 0.21 0.22 

- 

- - 

- 4.00 
4 0.40 0.42 1.36 1.72 
3 0.56 0.57 1.39 1.71 
2 0.57 0.55 1.56 1.61 
1 0.63 0.62 1.62 1.63 

W
B

F 

5 0.33 0.34 

- 

- - 

- 2.00 
4 0.53 0.52 1.52 1.71 
3 0.65 0.63 1.47 1.45 
2 0.64 0.62 1.53 1.57 
1 0.43 0.42 2.32 2.25 
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Fig. 4: Lateral deformed shape in both directions for all the models (adapted for comparison) 

 

 
Fig. 5: Mean and maximum storey values of ρmax/ρmin in relation with the EC8 limitation for 

design to DCH, for all the cases 
 

Design periods (T50%EI or T100%EI, corresponding to EC850-50 and EC8100-50, respectively) are 

quite higher than those suggested by codes (Tcode) (Table 4). In EC850-50 and NCSE-02, 

stiffnesses of WBF and DBF are similar (Fig. 4). For NCSE-02, the latter is an indirect 

consequence of low q values for WBF rather than DBF. Conversely, in EC850-50 buildings, the 

cause is the strict IDR limitation. If similar IDR are required for both types, storey stiffnesses 

must be also similar, and global stiffness and elastic period (Tel) will likely do so, as well. 

Moreover, for EC850-50 frames, periods of design are even 7% lower for WBF, because column 

sections in upper storeys are slightly oversized with respect to the maximum IDR, due to 

limitation in the interstorey reduction of column sections and beam effective width requirements. 

Hence, in EC850-50 buildings also P-Δ requirements are fulfilled (through amplification factors 

CP-Δ, see Table 3), while in EC8100-50 buildings such factors are considerably higher. 
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Table 4: Dynamic properties for each model (bold: design to ULS; italics: design to DLS) 

MODEL 
Modal properties Spectral demand acceleration 

Tcode T100%EI T50%EI Γ λ Sae(T) Sae(T)’ Sad(T) 
[s] [s] [s] - - [g] [g] [g] 

EC850-50 
DBF X 

0.60 

0.69 0.98 1.36 0.83 0.466 0.597 0.128 
Y 0.67 0.95 1.39 0.82 0.480 0.552 0.118 

WBF X 0.64 0.90 1.34 0.80 0.505 0.659 0.113 
Y 0.63 0.89 1.34 0.80 0.515 0.669 0.114 

EC8100-50 
DBF X 

0.60 

0.71 1.00 1.29 0.87 0.456 0.596 0.127 
Y 0.69 0.97 1.29 0.87 0.471 0.611 0.131 

WBF X 0.90 1.28 1.30 0.85 0.357 0.544 0.093 
Y 0.88 1.24 1.30 0.85 0.368 0.548 0.094 

NCSE-02 
DBF X 

0.45 

1.00 - 1.26 0.89 0.454 0.454 0.114 
Y 0.99 - 1.27 0.89 0.461 0.461 0.115 

WBF X 1.11 - 1.31 0.83 0.412 0.412 0.206 
Y 1.09 - 1.32 0.83 0.419 0.419 0.210 

 

The equivalent real elastic spectral acceleration of design Sae(T)’ (see Table 4) is obtained 

from the original value Sae(T) by considering CP-Δ and equivalent amplification for accidental 

eccentricity of masses.  

4. CASE STUDY: N2 ASSESSMENT 

In this section, performances and capacities of all the models are assessed by means of 

nonlinear static analysis (“pushover”, SPO) and N2 spectral method [44][45].  

Lumped plasticity is adopted for nonlinear modelling of the structures. Chord rotations' 

capacity thresholds are based on EC8 part 3 [46] formulations, fitted to a large experimental 

database [47]. Chord rotation capacities (θULS) correspond to the threshold of Limit State of 

Significant Damage according to EC8. 

Consistently with the design assumptions, rigid offsets are only placed in beam ends, and 

plastic hinges are placed at the faces of joint panels. Values of LV=0.5·L are assumed for all the 

members except for first storey columns (Table 2), for which the elastic moment distribution 

made this assumption unrealistic. 

Mean values for material properties are adopted. For concrete, Eurocode 2 [48] provisions 

are assumed, while for steel, typical factors of around 1.26 between mean and characteristic yield 

strengths are observed [49], which is equivalent to a factor 1.45 between mean and design values. 

In Fig. 6, the ranges of values for θy and θULS in all the buildings are presented; in first-storey 

columns, values correspond only to the bottom of the elements. Results are similar for both 

directions. Beams in the X-direction have higher rotation variability than in the Y-direction, 
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because in the first case beams present different spans. Rotations in first storeys are higher with 

respect to all other locations of the buildings, especially for WBF, due to their larger LV. 

Higher θy, lower θULS and, in turn, lower chord rotation ductility (μθ) are shown for NCSE-

02. θULS of WB are on average 38% higher than DB ones, similar to the results obtained in [12]. 

Lower μθ for WB are obtained with respect to DB: 13% and 28% lower for EC8 and NCSE-02, 

respectively, consistent with the average 27% obtained in the parametric study in [12]. 

 

Fig. 6: θy and θu ranges in each storey of each model 
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4.1 SPO analyses 

Nonlinear analyses are carried out with the commercial software SAP2000 v15 [50]. Two 

different lateral load patterns are considered for SPO: “MODE”, proportional to modal 

displacement and masses, and “MASS”, proportional to masses. Conventional collapse is attained 

when the first plastic hinge reaches θULS. In Fig. 7, “MODE” mechanisms and top displacement 

capacities (Du) of all the models are shown. The height involved in the mechanism (Hmec) 

depends mainly on column-to-beam capacity design ratios (Table 3), which is higher for WBF 

than DBF, especially for EC850-50. Hmec is higher in the Y-direction with respect to the X-

direction. EC850-50, EC8100-50, and NCSE-02 buildings show decreasing Hmec. Even in the case in 

which capacity design ratios are quite similar for both WBF and DBF (e.g., NCSE-02), a 

difference of one or two storeys favourable to WBF is observed. 

In EC850-50 buildings, first yielding occurs only in a beam end, while in the rest of the cases 

yielding is attained simultaneously at some columns bases and in some beams. Beams usually 

present lower design section overstrength with respect to columns, especially in EC850-50. Still, 

column bases, which are fixed to the foundation, increase their chord rotation demand more 

quickly than the surrounding hinges (also X-direction shorter bay beams experiment such 

behaviour). When this occurs, those column bases are also the first in attaining θULS. Most 

demanded columns are usually central columns, thus the last plastic hinges forms in lateral 

columns heads of last storey involved in the mechanism. 

In Fig. 8, pushover curves are plotted; bilinearization according to EC8 is performed even if 

it is proven not being the option guaranteeing the minimum error [51]. In most cases, ULS 

capacity of frames is attained before the complete formation of the collapse mechanism; local 

ductility capacity is exhausted beforehand. Maximum base shear in each case is consistent with 

storey overstrengths (see Table 3): higher for WBF rather than DBF in EC850-50 due to DLS 

design, and a similar trend is found in NCSE-02 due to lower q for WBF. Lower base shear in 

WBF rather than DBF is observed in EC8100-50 due to lower demand (see Table 4) and less 

relevance of DLS design.  
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Fig. 7: Mechanism of collapse of each model for “MODE” lateral load distribution 
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Fig. 8: Pushover curves and piecewise linear fits of each model 

4.2 Assessment of capacities 

N2 spectral method is used in order to assess performances and peak ground acceleration 

capacities (PGAc) of all the structures. Bilinear pushover curves are expressed as capacity curves 

in the acceleration-displacement response spectrum (ADRS) format. Only “MODE” distribution 

results are considered, as rather similar relative capacities between both structural types are 
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obtained for “MASS” cases. Results are shown in Table 5 and ADRS graphical format is shown 

in Fig. 9. Effective periods (Teff) for the equivalent single degree of freedom of N2 method and 

their corresponding spectral effective acceleration demand (Sa(Teff)) are obtained. 

 

Table 5: Performance properties for each model 

MODEL 
 Bilinear capacity curve Overstrength 

Tel Teff Teff/Tel Cs Sdy Sdu Sa(Teff) Rω Rα Rμ RD q PGAc SF 
[s] [s] - [g] [cm] [cm] [g] - - - - - [g] - 

EC850-50 
DBF X 0.65 1.43 2.19 0.249 12.6 33.6 0.320 1.51 1.29 2.67 1.87 9.73 0.59 2.08 

Y 0.63 1.40 2.21 0.242 11.8 38.6 0.326 1.57 1.30 3.28 1.69 11.38 0.69 2.43 

WBF X 0.60 1.37 2.28 0.275 12.9 42.5 0.332 1.84 1.32 3.30 1.99 15.96 0.78 2.73 
Y 0.59 1.40 2.38 0.249 12.2 50.8 0.325 1.87 1.17 4.17 2.06 18.69 0.91 3.19 

EC8100-50 
DBF X 0.67 1.42 2.13 0.248 12.5 31.9 0.321 1.50 1.30 2.56 1.86 9.27 0.57 1.98 

Y 0.65 1.39 2.16 0.243 11.7 33.6 0.328 1.54 1.21 2.87 1.87 9.97 0.61 2.13 

WBF X 0.85 1.82 2.14 0.205 16.9 40.0 0.250 1.73 1.27 3.27 2.17 11.33 0.55 1.94 
Y 0.83 1.84 2.22 0.177 14.9 50.8 0.248 1.65 1.15 3.42 2.21 14.27 0.70 2.44 

NCSE-02 
DBF X 0.95 1.81 1.91 0.200 16.3 31.9 0.252 1.44 1.22 1.96 1.80 6.23 0.44 1.56 

Y 0.93 1.80 1.92 0.196 15.7 33.3 0.254 1.45 1.17 2.12 1.82 6.55 0.47 1.64 

WBF X 1.05 1.83 1.75 0.317 26.5 48.5 0.249 1.28 1.20 1.83 1.65 4.67 0.67 2.33 
Y 1.03 1.81 1.77 0.314 25.6 50.1 0.252 1.28 1.17 1.96 1.66 4.88 0.70 2.44 

 

Capacity curves are defined by three values: maximum spectral acceleration capacity (Cs) 

and yielding and maximum spectral displacement capacities (Sdy and Sdu, respectively). Provided 

behaviour factor is calculated as q=RS·RD·Rμ. Structural overstrength is obtained as RS=Rα·Rω, 

where Rα is the ratio between Cs and the acceleration corresponding to first structural yielding, 

and Rω is the ratio between the last value and the elastic spectral acceleration of design employed 

in the design (Sae(T)’, see Table 4). Spectral contribution is calculated as RD=Sae(T)’/Sa(Teff). 

Ductility contribution (Rμ) is obtained by means of the Rμ-μ-T relationship suggested in EC8, 

from which IN2 curves are obtained [52]. This procedure does not account for any possible 

difference of cyclic energy dissipation between DBF and WBF, as hysteretic models for WBF 

designed to EC8 need further research (see section 2). 

Aimed at a homogeneous comparison of global seismic capacities, PGAc is obtained in all 

the cases through the adoption of proportional spectra (Fig. 9). Finally, safety factors 

SF=PGAc/PGAd (Fig. 10) are obtained for each design alternative, being PGAd=ag·S the demand 

peak ground acceleration. 
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Fig. 9: ULS spectral performance and maximum capacity of each model, obtained with N2 method 

 

Similar overstrengths (Table 5) are obtained for all the cases, while NCSE-02 frames show 

lower ductility. In general, inelastic behaviour at ULS demand is limited for all the buildings 

(Fig. 13), especially in NCSE-02 WBF, which remains in equivalent elastic field. The 
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quantification of different sources of overstrength is coherent with the design assumptions. Rω is 

1.56 on average, slightly higher with respect to the steel overstrength of 1.45 (see section 3.1), 

while Rα is 1.23, slightly lower than αu/α1=1.30 proposed by EC8. RD (mean 1.89) corresponds to 

mean period elongation, i.e., effective-to-elastic period ratio Teff/Tel, equal to 2.21 for EC8 frames 

and 1.84 for NCSE-02 ones; such difference is caused by the higher reinforcement ratio of 

sections of NCSE-02 frames (Table 2). Thus, the corresponding mean effective-to-elastic 

stuiffness ratio (Keff/Kel) is 0.20 (EC8) and 0.30 (NCSE-02), which in both cases is lower than the 

assumed value for ULS design (0.50). It is worth noting that 0.20 is also the mean value for 

secant-to-elastic stiffness ratio for members suggested in [53]. 

 

 
Fig. 10: Global SF=PGAc/PGAd of all the models 

 

In the following, ratios for any parameter A between WBF and DBF are indicated as AW/D 

(rather than using the heavier notation AWBF/ADBF), and analogously AW-D≡AWBF-ADBF. Subscripts 

c and b refer to columns and beams, respectively 

WBF show similar or even greater global seismic capacities with respect to DBF in all the 

cases (Table 5 and Fig. 9): SF of WBF are 31%, 6% and 49% higher than those for DBF on 

average, in the case of EC850-50, EC8100-50 and NCSE-02, respectively. Moreover, if no reduction 

of q due to irregularity in EC8-DBF had been adopted, still better relative performances would 

have been expected for WBF. The causes of such good performances of WBF in comparison with 

DBF are: (i) higher Hmec (Fig. 8); (ii) higher θu,min (Fig. 6), due to lower hb and higher LVc (Table 

2); (iii) in EC8 buildings, sufficient stiffness of WBF, and (iv) in NCSE-02 buildings, higher base 

shear due to lower design q. Such range of increase for SF of WBF with respect to that of DBF, 
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in EC8 structures, may balance any possible rise of displacement demand due to poorer cyclic 

behaviour, which has shown to be likely limited for code-compliant structures (see section 2). 

Teff of WBF (Table 3) show similar values than DBF for EC850-50 and NCSE-02. In EC8 

buildings it is an expected result, since DLS design is the critical condition; while for NCSE-02, 

such low difference in periods is likely a coincidence, because the increment of stiffness is not a 

target, but a secondary consequence of the increment of strength, in turn depending on whether 

such increment is achieved by means of bigger sections or higher reinforcements. In EC8100-50 

WBF show higher Teff with respect to DBF. 

Assessment of DLS performance of EC8 frames is carried out according to the stiffness 

assumptions exposed in section 3.2. DLS results (Fig. 11) confirm that, at least in this particular 

case study, assuming gross elastic stiffness for members might not be appropriate. However, DLS 

is not either fully satisfied in EC850-50, because the effective stiffness for DLS is, on average, 45% 

of the elastic one, which is slightly lower than the assumed value for design, 50%. Such results 

are more in accordance with estimation of stiffness degradation suggested by other codes (see 

section 3.1). 
 

 
Fig. 11: DLS spectral performance of EC8 models 
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5. COMPLEMENTARY ASSESSMENT OF PARAMETRIC SET OF FRAMES 

The previous results, corresponding to three different design alternatives and two directions 

of analysis, suggest that: (i) WBF designed for DCH, adopting similar q than DBF and satisfying 

different DLS limitations, may provide at least similar capacities than DBF; and (ii) WBF 

designed to DCL, adopting much lower q than DBF and without satisfying any DLS limitations, 

may provide much larger capacities than DBF. Thus, Mediterranean code limitations on q for 

WBF may not be justified in most cases. In order to evaluate whether such conclusion could be 

generalised to RC-MRF residential building stock designed according to different codes, a higher 

set of case studies is evaluated. 

Hence, a parametric design is carried out, resulting in 72 different planar frames, 

corresponding to 12 couples of WBF and DBF with different geometry and designed to low and 

high seismicity complying three different codes: EC8, NTC and NCSE-02. In each code, q 

corresponding to DCH is assumed also for WBF. EC8 represents the most favourable code for 

WBF due to its strict reduction of member stiffness (EcIc) for DLS design (50% of the elastic 

one). Frames corresponding to NTC can be designed assuming uncracked stiffness of members 

(thus rather equivalent to design EC8100-50, see section 2.2), which is the most unfavourable 

hypothesis for WBF. Frames corresponding to NCSE-02 have no design to DLS, but in this case 

similar q are adopted for WBF and DBF, in order to check if also in codes with no IDR limitation 

it is possible to remove the limitation of q for WBF. 

Aimed at covering the widest possible range of situations of design, a parametric study based 

on relevant design features is carried out, assuming different realisations for each parameter: 

number of storeys (n): 3, 6 and 9; spans (L): 3.5 and 5.5m, i.e. a representative range for 

residential buildings in Europe [36][37]; and agR: 0.12g and 0.25g. Elastic spectra are obtained in 

analogy with Fig. 3, and similar material mechanical properties and design strategies are adopted. 

Geometry of the frames is shown in Fig. 12. All of them have four bays with similar spans, and 

interstorey heights are 3m with the exception of the ground storey, which is 4m. 

Aimed at an agreement between accuracy and computational demand, the assessment of 

relative performances between WBF and DBF is carried out by means of the simplified approach 

proposed in [12], based on similar approaches already used in other studies 

[36][37][54][55][56][57]. It considers that collapse of structures is attained by means of a “rigid” 

mechanism of n storeys, without any pre-yielding contribution neither of the (n-1) upper storeys 
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nor of the intermediate column ends, and assuming similar evolution of chord rotations in all the 

member ends involved. This approach is quite conservative from the point of view of WBF, i.e. 

unfavourable for WBF with respect to DBF, because higher Hmec for WBF rather than for DBF 

are not taken into account. 

 

 
Fig. 12: Geometry of the different frames of the set 

 

In all the following, subscript 1 and n refer to the storey of interest (first or last, 

respectively); θu,min is the minimum θu between members involved in the collapse mechanism; 

fconf is the confinement contribution to θu; and fK,sec is the ratio between the stiffness degradation 

of connections in WBF with respect to DBF, see [10][12] for further details. 

Results of design are presented in Table 6. They confirm the trends observed in the specific 

case studies. DLS is likely to be the critical condition of design for WBF with respect to DBF. 

For EC8 frames, this is the most frequent critical condition for both types, with the exception of 

low seismicity cases. For NTC frames, the critical conditions are DLS for high seismicity and 

gravity load combination for low seismicity cases. Conversely, for NCSE-02 frames, seismic 

situation is the critical one in most cases, due also to the lower q corresponding to DCH than in 

the other codes. In general, capacity design of columns in WBF does not often affect the 

dimensions because of the higher overstrength due to DLS design. 

 



 

Table 6: Results of design and assessment of the whole set of frames, considering Hmec,W/D=fK,sec=1.0 
(G: gravitational, S: seismic, D: deformability; I: Tel,W/D≈1, II: Tel,W/D>1; C: first θu attainment in column, B: first θu attainment in beam) 

Design parameters WBF DBF W/D 

Code 

Member stiffness 

n 
L agR Crit. 

cond- 
ition 

(G/S/D) 

Geometric properties Mechanic properties Modal prop. Crit. 
cond- 
ition 

(G/S/D) 

Geometric properties Mechanic properties Modal prop. Scen- 
ario 

Sub- 
scenario SFW/D DLS ULS bw hb hc,1 hc,n fconf,b fconf,c νc,1 LVc,1 θub,min θuc,min Tel Γ bw hb hc,1 hc,n fconf,b fconf,c νc,1 LVc,1 θub,min θuc,min Tel Γ 

[%EcIc] [%EcIc] [m] [g] [mm] [mm] [mm] [mm] - - - [m] [rad] [rad] [s] - [mm] [mm] [mm] [mm] - - - [m] [rad] [rad] [s] - (I/II) (CC/CB/ 
/BB) - 

EC
8 

50 50 

3 
4.0 0.12 D 400 300 300 250 1.14 1.24 0.12 2.17 0.067 0.061 0.90 1.23 D 200 400 300 250 1.01 1.24 0.12 2.15 0.054 0.060 0.87 1.23 I CB 1.09 

0.25 D 500 300 500 400 1.18 1.26 0.05 2.82 0.068 0.054 0.48 1.28 D 250 450 450 300 1.04 1.29 0.06 2.38 0.052 0.054 0.48 1.30 I CB 1.06 

6.5 0.12 D 600 300 350 350 1.15 1.21 0.15 2.31 0.080 0.058 0.88 1.21 D 300 500 350 250 1.05 1.21 0.14 2.15 0.061 0.056 0.83 1.28 I CC 1.02 
0.25 D 700 350 600 500 1.13 1.31 0.06 3.08 0.073 0.053 0.47 1.28 D 300 550 500 350 1.03 1.26 0.07 2.41 0.058 0.052 0.50 1.29 I CC 1.11 

6 
4.0 0.12 D 400 300 350 250 1.14 1.21 0.18 2.32 0.067 0.058 1.45 1.31 D 200 400 350 250 1.01 1.21 0.18 2.27 0.053 0.057 1.38 1.32 I CB 1.04 

0.25 D 700 330 550 450 1.13 1.33 0.09 2.76 0.063 0.054 0.75 1.31 D 250 450 500 300 1.04 1.26 0.10 2.60 0.052 0.053 0.82 1.37 I CB 1.20 

6.5 0.12 D 600 300 400 350 1.15 1.32 0.23 2.54 0.080 0.059 1.50 1.28 G 300 500 400 300 1.05 1.32 0.22 2.25 0.061 0.057 1.29 1.30 II CC 0.91 
0.25 D 800 350 750 550 1.16 1.32 0.08 4.08 0.074 0.054 0.83 1.34 D 300 600 500 300 1.02 1.26 0.15 2.36 0.055 0.051 0.88 1.38 I CC 1.16 

9 
4.0 0.12 G 400 300 350 250 1.14 1.21 0.28 2.33 0.067 0.058 1.99 1.35 G 200 400 350 250 1.01 1.21 0.27 2.28 0.053 0.057 1.88 1.35 I CB 1.03 

0.25 D 700 330 550 450 1.13 1.33 0.13 2.78 0.063 0.054 1.14 1.31 D 300 500 450 250 1.05 1.29 0.18 2.27 0.051 0.053 1.20 1.42 I CB 1.22 

6.5 0.12 D 600 300 450 350 1.15 1.29 0.32 2.82 0.079 0.058 2.08 1.30 G 300 500 450 300 1.05 1.29 0.27 2.40 0.060 0.054 1.68 1.35 II CC 0.89 
0.25 D 1000 350 900 750 1.12 1.32 0.09 5.03 0.071 0.055 1.13 1.34 D 300 650 500 300 1.01 1.26 0.23 2.29 0.053 0.051 1.24 1.38 I CC 1.22 

N
TC

 

100 50 

3 
4.0 0.12 D 400 300 300 250 1.07 1.07 0.12 2.17 0.067 0.053 0.90 1.23 D 200 400 300 250 1.01 1.24 0.12 2.15 0.054 0.053 0.87 1.23 I CC 0.97 

0.25 D 400 300 400 300 1.19 1.07 0.07 2.48 0.067 0.053 0.63 1.27 D 200 400 350 250 1.01 1.21 0.09 2.26 0.053 0.050 0.71 1.28 I CC 1.20 

6.5 0.12 D 600 300 350 350 1.07 1.07 0.15 2.31 0.080 0.051 0.88 1.21 S 300 500 300 250 1.05 1.24 0.19 2.08 0.061 0.052 0.97 1.22 I CC 1.09 
0.25 D 600 300 550 450 1.15 1.19 0.06 3.31 0.079 0.050 0.59 1.29 D 300 500 400 300 1.05 1.32 0.11 2.24 0.061 0.051 0.68 1.26 I CC 1.09 

6 
4.0 0.12 G 400 300 300 250 1.07 1.07 0.25 2.18 0.067 0.053 1.55 1.30 G 200 400 300 250 1.01 1.24 0.24 2.16 0.054 0.053 1.49 1.30 I CC 0.96 

0.25 D 400 300 450 250 1.18 1.18 0.12 2.78 0.066 0.052 1.09 1.38 D 200 400 450 250 1.01 1.29 0.11 2.67 0.053 0.052 1.06 1.37 I CC 0.98 

6.5 0.12 G 600 300 400 350 1.19 1.19 0.23 2.53 0.080 0.054 1.52 1.27 G 300 500 400 300 1.05 1.32 0.22 2.25 0.061 0.052 1.29 1.30 II CC 0.91 
0.25 D 700 300 750 450 1.18 1.18 0.07 5.01 0.080 0.052 0.99 1.37 D 300 500 450 300 1.05 1.29 0.18 2.39 0.060 0.050 1.12 1.32 I CC 1.14 

9 
4.0 0.12 G 400 300 350 250 1.07 1.07 0.28 2.33 0.067 0.051 1.99 1.35 G 200 400 350 250 1.01 1.21 0.27 2.28 0.053 0.051 1.88 1.35 I CC 0.95 

0.25 D 500 300 450 250 1.18 1.18 0.18 2.66 0.069 0.052 1.55 1.38 D 200 400 450 250 1.01 1.29 0.19 2.69 0.053 0.052 1.55 1.37 I CC 1.00 

6.5 0.12 G 600 300 450 350 1.18 1.18 0.27 2.81 0.079 0.053 2.11 1.30 G 300 500 450 300 1.05 1.29 0.27 2.40 0.060 0.050 1.68 1.35 II CC 0.87 
0.25 D 700 330 700 450 1.19 1.18 0.13 4.22 0.074 0.051 1.45 1.34 D 300 500 450 300 1.05 1.29 0.27 2.40 0.060 0.050 1.59 1.35 I CC 1.13 

N
C

SE
-0

2 

- 100 

3 
4.0 0.12 S 400 300 300 250 1.07 1.07 0.12 2.17 0.067 0.053 0.90 1.23 S 200 400 300 250 1.01 1.14 0.12 2.15 0.054 0.053 0.87 1.23 I CC 0.97 

0.25 S 500 300 350 300 1.07 1.07 0.09 2.24 0.067 0.050 0.71 1.23 S 250 450 350 300 1.04 1.15 0.09 2.15 0.053 0.049 0.61 1.23 II CC 0.87 

6.5 0.12 S 600 300 350 350 1.07 1.07 0.15 2.31 0.078 0.051 0.88 1.21 S 300 500 350 300 1.05 1.12 0.14 2.15 0.061 0.049 0.80 1.22 II CC 0.94 
0.25 S 600 300 400 350 1.19 1.19 0.12 2.49 0.077 0.053 0.79 1.24 S 300 500 400 350 1.05 1.12 0.11 2.24 0.061 0.051 0.66 1.22 II CC 0.85 

6 
4.0 0.12 S 400 300 300 250 1.07 1.07 0.25 2.18 0.067 0.053 1.55 1.30 S 200 400 300 250 1.01 1.14 0.24 2.16 0.054 0.053 1.49 1.30 I CC 0.96 

0.25 S 500 300 400 300 1.19 1.19 0.15 2.42 0.067 0.053 1.18 1.30 S 250 450 400 300 1.04 1.15 0.14 2.27 0.052 0.052 1.02 1.31 II CC 0.89 

6.5 0.12 G 600 300 400 350 1.19 1.19 0.23 2.53 0.077 0.054 1.52 1.27 G 300 500 400 300 1.05 1.12 0.22 2.25 0.061 0.052 1.29 1.30 II CC 0.91 
0.25 S 700 330 450 450 1.18 1.18 0.19 2.56 0.076 0.051 1.19 1.27 S 300 550 450 300 1.03 1.13 0.18 2.30 0.058 0.049 1.05 1.33 II CC 0.96 

9 
4.0 0.12 G 400 300 350 250 1.07 1.07 0.28 2.33 0.067 0.051 1.99 1.35 G 200 400 350 250 1.01 1.14 0.27 2.28 0.053 0.051 1.88 1.35 I CC 0.95 

0.25 S 500 300 400 300 1.19 1.19 0.22 2.43 0.067 0.053 1.71 1.32 S 250 450 400 300 1.04 1.15 0.22 2.28 0.052 0.052 1.47 1.33 II CC 0.89 

6.5 0.12 G 600 300 450 350 1.18 1.18 0.27 2.81 0.077 0.053 2.11 1.30 G 300 500 450 300 1.05 1.12 0.27 2.40 0.060 0.050 1.68 1.35 II CC 0.87 
0.25 S 700 330 500 450 1.16 1.18 0.24 2.80 0.075 0.050 1.71 1.28 S 300 600 450 300 1.02 1.13 0.27 2.25 0.055 0.049 1.36 1.35 II CC 0.86 

 
Table 7: Mean values of ratios of significant parameters between WBF and DBF extracted from Table 6 

Code hb,W/D hc,W/D fconf,b,W/D fconf,c,W/D νc,W-D LVc,1,W/D θu,min,W/D Tel,W/D ΓW/D SFW/D 
EC8 0.66 1.16 1.11 1.02 -0.02 1.26 1.06 1.02 0.97 1.08 
NTC 0.68 1.16 1.12 1.01 -0.03 1.24 1.02 1.00 1.00 1.02 

NCSE-02 0.65 1.01 1.10 1.00 0.00 1.09 1.03 1.14 0.99 0.91 



 

Beams dimensions are generally conditioned by gravitational deflection limitation in the case 

of large spans and by seismic situation for short spans. For frames with large spans designed 

according to EC8 and NTC in high seismicity conditions, high depths are required for WB: up to 

350mm, which can be considered as a cost-effective limit for such beams [21]. Moreover, in 

these frames very large depths of columns are required (up to 900mm), and it may not be possible 

to reduce them very much in higher storeys, because WB have also large width due to DLS 

limitation, and thus large widths of columns are required in order to satisfy width limitation of 

WB. The last condition not only determines depth of columns but also widths, so it may not be 

possible in most of cases to place “wall-type” columns integrated within non-structural walls. 

Hence, WBF may not be a feasible cost-effective solution for such situations. 

Regarding chord rotations, θub,min,W/B (mean 1.29) is lower than that obtained in both the 

specific case study and in the numeric analysis carried out in [12]. This is only due to lower 

values of hb,W/D (see Table 7), given that confinement contribution is higher for WB, similar in all 

three studies. Such lower hb,W/D is caused by the adoption in the actual procedure of small depths 

of DB for low spans, which is not possible to be pursued in buildings with different spans 

because hb is usually similar for all the beams and depends on the largest span of the building. On 

the other hand, θuc,min,W/B (mean 1.07 for EC8 and NTC and 1.02 for NCSE-02) is almost only 

proportional to LV, which is larger for WBF than for DBF (mean 1.25 times for EC8 and NTC, 

and only 1.09 times for NCSE-02). Still, such values correspond to limited favourable influence 

of LV in the performance of WBF with respect to DBF (not higher than 8% on average). 

Contributions of hc, ν and fconf,c are limited and balanced between each other (Table 7). 

Notwithstanding the large values of LV in columns of WBF, the critical element is always a beam, 

while for DBF it occurs only in 6 cases of 36, all of them corresponding to EC8. The last is due 

to higher transverse reinforcement in columns rather than in NTC, causing larger fconf,c in EC8 

(1.28) rather than in NTC (1.14), on average. 

Regarding Tel, WBF whose critical condition is DLS show similar or even lower Tel than 

DBF, especially in the case of high seismicity. Again, the reason is the greater cantilever 

behaviour and the required high dimensions in upper storeys, as it is shown in previous specific 

case study EC850-50 and in Fig. 13: DBF can be designed to show almost linear deformed shape, 

thus each storey show similar IDR, slightly lower than the limit; conversely, in WBF the storeys 

in the central part rules completely the design, thus top and bottom storeys show higher stiffness 
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than corresponding storeys of DBF. The above effect causes lower Tel but not as much as it 

would correspond to the increment of global stiffness, because the requirement of greater 

structural members can increase total mass up to 25%. Hence, almost all the buildings designed 

according to EC8 and NTC show Tel,W/D≈1, even for some cases in which DLS design is not the 

critical condition. Only two out of 12 buildings for each code show periods up to 25% higher for 

WBF than DBF. Conversely, most NCSE-02 couples (nine out of 12) show Tel,W/D>1 (1.14 on 

average) (Table 7). On the other hand, such different deformed shape implies values of Γ slightly 

lower for WBF with respect to DBF, as observed in the specific case study. 

 

  
Fig. 13: Deformed shape for seismic situation of DBF (a) and WBF (b) with n=9 and L=5.5m 

designed to EC8 for agR=0.25g 
 

Results of relative performances between WBF and DBF (SFW/D), obtained without 

accounting for favourable influence of Hmec in WBF, are presented in Fig. 14. EC8 and NTC 

show mean values of SFW/D favourable to WBF (1.08 and 1.02, respectively, see Table 7), while 

for NCSE-02 mean performance is poorer for WBF than for DBF (mean 0.91). In 83% of the 

EC8 buildings, WBF show better performance than DBF. For NTC the ratio decreases until 50%. 

Conversely, every single couple designed to NCSE-02 show SFW/D<1.0. Dispersion of values is 

very low (coefficients of variation is approximately 10% for EC8 and NTC and only 5% for 

NCSE-02), thus likely correlations between q adopted in design and the use of one or another 

structural typology are suitable. In Fig. 14, “CB” or “CC” in the legend stands as reference for 

the first attainment of θu in WBF and DBF respectively, where C stands for first θu attainment in 

column, and B stands first θu attainment in beam, see also data in Table 6. 

The cause of the satisfactory performance of WBF in EC8 and NTC (also without any 

consideration of Hmec,W/D) is that they often show sufficient stiffness, and whenever it is lower 

than the corresponding stiffness of DBF, the difference is so small that it gets largely overcome 

(a) (b) 
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by the rest of the beneficial contributions to performances, which may also balance the possible 

decrease of capacity in WBF due to poorer hysteretic behaviour. 

 

 
Fig. 14: Estimated relative performance between WBF and DBF (SFW/D) for each code 

considering Hmec,W/D=fK,sec=1.0 (I: Tel,W/D≈1, II: Tel,W/D>1; C: first θu attainment in column, B: first θu 
attainment in beam, in WBF anf DBF) 

 

Thus, based on the results of the approximate assessment, within the actual framework of 

Italian NTC, the design of WBF for high ductility, adopting the corresponding q, can be allowed 

without any further design recommendation than the local geometric limitations in connections 

(already provided by the code in its present form). Regarding NCSE-02, it is not possible to state 

with sufficient confidence that q limitations for WBF can be removed within the actual 

framework, which does not provide any DLS design. It is worth noting that design strategies 

reflect always personal choices, and those conclusions are generalizable to the extent of the 

design choices (still reflecting common practice in European countries) adopted in this study. 

Notwithstanding the mean satisfactory performance of WBF, even better than DBF, in some 

cases WBF may be not cost-effective or even a feasible structural system solution. However, the 

adoption of one or another system should be a decision of the designer, without any further 

penalisation of seismic code, as the reduction of q. 
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6. CONCLUSIONS 

Different assessments of a typical Mediterranean 5-storey RC housing unit are carried out in 

order to evaluate the relative performance of wide-beam frames with respect to deep-beam 

frames, aimed at finding out whether the reduction of behaviour factor (q) for wide-beam frames, 

proposed by Italian and Spanish national seismic codes, are justified. Different design 

alternatives are considered: Eurocode 8, assuming diverse stiffness modelling approaches, and 

Spanish seismic code NCSE-02. The first code allows designing wide-beam frames in high 

ductility class, without any reduction of q with respect to deep-beam frames, while the Spanish 

code prescribes 50% reduction of q for wide-beam frames. Assessment is carried out by means of 

the N2 method. Finally, results are generalised through a simplified parametric assessment of a 

set of 72 high ductility frames corresponding to both wide and deep-beam frames designed 

according to Eurocode 8, Italian seismic code NTC, and NCSE-02, adopting similar q for both 

lateral load carrying systems. 

Results show that, notwithstanding the lower local ductility of wide beams with respect to 

deep beams, global seismic capacity of wide-beam frames get substantially improved thanks to 

some effects increasing both their effective stiffness and their maximum deformation capacity. 

These causes, regarding wide-beam frames, can be organised in three groups: 

1) Mechanical causes. Higher cantilever behaviour results in higher ultimate chord 

rotation at column bases, and beams show also higher ultimate chord rotation; both 

resulting in higher displacement capacity. Also, lower shear deformability of joints 

can result in higher effective stiffness. 

2) Code limitations. Beam-to-column width limitation makes it hard to reduce column 

sections at upper storeys, and both design to Damage Limitation State (DLS) and 

corrections due to second order effects lead to greater column sections in the mid-low 

part of the building. These provisions cause higher overstrength in columns, leading to 

collapse mechanisms involving higher number of storeys, and cause also higher 

stiffness. 

3) Construction/executive practice causes. As larger column sections are required in 

lower storeys, it is not possible for spliced bars to make important reduction of 

column sections when rising to the upper storeys. 
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Therefore, high-ductility wide-beam frames may provide similar or even better performances 

with respect to deep-beam frames when Damage State Limitation is among design criteria. 

Hence, within the design choices adopted in this study, it is suggested that design of wide-beam 

frames in high ductility class, adopting the corresponding q, could be allowed within the actual 

framework of NTC without any additional provision than local geometric limitations in 

connections (already prescribed in the current version). Regarding NCSE-02, it is not possible to 

state with sufficient confidence that q limitations for wide-beam frames can be removed within 

the actual framework as long as it does not provide any serviceability limit state design 

prescription (i.e. damage limitation). Further experimental research would be required aimed at a 

more accurate definition of the hysteretic behaviour of wide-beam frames in comparison with 

deep-beam frames, so that nonlinear dynamic analyses could be carried out and more reliable 

results of the relative performance between both types would be obtained. 
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