

Rigothier, C. C., Saleem, M. A., Bourget, C., Mathieson, P. W., Combe, C., & Welsh, G. I. (2016). Nuclear translocation of IQGAP1 protein upon exposure to puromycin aminonucleoside in cultured human podocytes: ERK pathway involvement. *Cellular Signalling*, *28*(10), 1470-1478. https://doi.org/10.1016/j.cellsig.2016.06.017

Peer reviewed version

License (if available): CC BY-NC-ND

Link to published version (if available): 10.1016/j.cellsig.2016.06.017

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at http://www.sciencedirect.com/science/article/pii/S0898656816301516. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

1 Supplementary material

2

3 Figure S1

4 IQGAP1 expression in total cell extracts

5 A. Western blot analysis of IQGAP1 and β -actin expression on total cell extracts (n=8) at

6 different times of exposure to PAN.

7 B. IQGAP1 expression determined by densitometry at each condition. No difference was

- 8 detected (Repeated measures ANOVA).
- 9 IQGAP1 mRNA expression in PAN treated podocytes.

10 C. IQGAP1 mRNA expression was evaluated by quantitative polymerase chain reaction,

11 using as housekeeper gene β -actin. The IQGAP1 values for each condition: control, PAN 60

- 12 and PAN 90 were plotted to β -actin values. No difference of IQGAP1 mRNA expression was
- 13 observed (n=4, Friedman test).
- 14 D. Quantification of the expression of podocyte proteins on total cell extracts was quantified
- 15 with the Biorad[®] software. No difference was detected (n=5, Wilcoxon's test).

		Contr	Condition			
	-				Ctl	PAN 90
Chromatin	-	+	+	+	+	+
Rabbit IgG	1.51		+	-		1.7
Histone H3 Ab	12	12	2	+	2	121
IQGAP1 Ab	-			-	+	+
PCR/Primers template	+/-	+/+	+/+	+/+	+/+	+/+
					DI 20 mi	-
			RI	ſ-PCR : R	PL30 pri	mers
В			RI	ſ-PCR : R	PL30 pri	imers
в		MW	R1 Input	ſ-PCR : R	PL30 pri	imers
B	lgG	MW	R1 Input	T-PCR : R	PL30 pri	imers

17 Figure S2

18 Additional Western blots

A	Control					Condition	
					Ctl	PAN 90	
Chromatin	-	+	+	+	+	+	
Rabbit IgG		10	+	20	-	-	
Histone H3 Ab	12	1	12	+	2	-	
IQGAP1 Ab			-	-	+	+	
PCR/Primers template	+/-	+/+	+/+	+/+	+/+	+/+	
	No.	RT-PCR : RPL30 primers					
			R	PL30 primers			
В							
_		MW	Inpu	t			
IP	lgG			H3			
		E		-	WB:	IQGAP1	

19

20 Figure S3

- 21 Interaction of ERK and P-ERK with IQGAP1 on total cell extracts
- 22 IQGAP1 co-immunoprecipitations with ERK and P-ERK were performed on total extracts.
- 23 Protein A/G agarose beads (Prot A/G) were used as negative control. Control: untreated
- 24 podocytes, PAN 90: podocytes exposed 90 min to PAN (n=5).
- 25 Interaction between IQGAP1 and nuclear P-ERK increased significantly and was confirmed
- by densitometry data (n=5, \pm p<0.05, Paired t-test).

27

28 Figure S4

29 Podocyte proliferation assay was performed with control cells (untransfected and

- 30 lipofectamine or Luc siRNA transfected podocytes) in comparison with siRNA IQGAP1
- transfected. Control and transfected cells were treated with PAN. Control: Control podocytes,
- 32 siRNA: siRNA IQGAP1 transfected podocytes (n=5).