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Study Importance Questions 

 

1. What major reviews have already been published on this subject? 

 

a) Loos, R.J.F. (2012) Genetic determinants of common obesity and their value in prediction, 

Best Practice & Research Clinical Endocrinology & Metabolism, 26(2): 211-226.   

This paper reviews the discovery of loci associated with obesity-related traits, and 

subsequently focuses on the body mass index (BMI) loci in particular to explore whether 

there is sufficient evidence for these loci to be used as clinical predictors.  It does not 

consider use of loci in causal analyses. 

 

b) Burgess, S. et al. (2015) Mendelian randomization: where are we now and where are we 

going? International Journal of Epidemiology, 44(2): 378-388. 

This editorial considers developments in the methodology and application of Mendelian 

randomization to study causal mechanisms in health and disease over the past decade.  It 

does not consider adiposity, BMI or obesity specifically. 

 

2. What does our study add? 

 

Progress in the field of applied genetic epidemiology and in particular in the application of 

Mendelian randomisation has been rapid in the last few years, driven largely by developments in a 

variety of omics technologies.  This review provides a reflection on what has been achieved so far 

in dissecting the causal relationship between body mass index (BMI) and disease and gives 

comment on the likely future directions of this field.  We also present a sobering discussion of the 

potential limitations of these approaches which are becoming commonplace in the field of 

complex trait analysis, especially for BMI in light of large-scale consortium science. 

Page 2 of 30

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Obesity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3 

Abstract 

Objective: To review progress in understanding the methods and results concerning the causal contribution 

of body mass index to health and disease. 

 

Method: In the context of conventional evidence focused on the relationship between BMI and health, we 

consider current literature on the the common, population based, genetic contribution to body mass index 

BMI and how this has fed into the developing field of applied epidemiology.  

 

Results: Technological and analytical developments have driven considerable success in identifying genetic 

variants relevant to BMI.  This has enabled the implementation of Mendelian randomization to address 

questions of causality. The product of this work has been the implication of BMI as a causal agent in a host 

of health outcomes. Further breakdown of causal pathways by integration with other omics technologies 

promises to deliver additional benefit.   

 

Conclusion:  Considerable progress has been made, though gaps remain in our understanding of BMI as a 

risk factor for health and disease. Whilst promising, applied genetic epidemiology should be considered 

alongside alternative methods for assessing the impact of BMI on health and in light of potential 

limitations which relate to inappropriate or nonspecific measures of obesity and the improper use of 

genetic instruments. 

 

 

 

 

 

Introduction 

The pandemic status of high BMI (obesity) has been attributed to the rise of an “obesogenic” environment 

which tips the balance between energy intake and energy expenditure, driving individuals towards 
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 4 

increased adiposity along environmentally determined lines (1, 2). Despite this it is important to realise 

that, within the same environment, not all individuals become overweight or obese and those that do have 

differential disease risk. In reality, a complex interplay of both genetic and environmental factors must be 

considered in order to better understand BMI and why it appears to have such a great health impact. 

Focusing on BMI specifically, whilst it is absolutely clear that there are strong and replicable associations 

between this risk factor and health, the interpretation of existing associations is not straightforward. In 

reality, a complex interplay of both genetic and environmental factors must be considered in order to 

better understand BMI as a phenotypic proxy for adiposity, why it appears to have such a great health 

impact and how this impact might be mitigated in future both at the individual and the population level.  

 

The underlying aetiology of relationships between BMI and health outcomes is clearly complex and likely 

to be heterogeneous across differing populations, apparently healthy individuals and those with disease. It 

is perhaps not surprising that efforts to counter the impact of ~2.3billion overweight, >700million obese 

and ~$100billion per annum care bill (including targeted dietary intervention (3), weight loss programmes 

(4, 5) and pharmaceutical interventions (6, 7)) have failed to deliver lasting reductions in BMI (>2yr) at least 

at the level of the population. Currently, the only effective intervention for weight reduction is bariatric 

surgery, which is costly, not favourable for the treatment of moderate obesity (8).  

 

Questions therefore remain as to why we continued to focus on BMI when we struggle to understand it as 

a measurement and fail to control or augment it at a policy or population level? More so, if we are content 

that the ease of BMI measurement is a justification for continued use, how might we gain insight into how 

and why BMI appears to be causally related to disease? In the context of conventional evidence focused on 

the relationship between BMI and health, this review aims to consider the current literature around the 

common, population based, genetic contribution to BMI/adiposity and how this has fed into the 

developing field of applied epidemiology in an effort to assess if and how the metric kg/m2 exerts a causal 

effect on health. In doing this, we will discuss the complications of measurement, complex genetic 

aetiology and idiosyncrasy of human phenotyping (and its effect on analysis and inference) before 
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 5 

attempting to suggest likely future moves for BMI research. 

 

Conventional approaches to the analysis of BMI and health 

 More than 1.9 billion adults, 18 years and older, were overweight with over 600 million obese in 2014. 

This represents the worldwide prevalence of obesity more than doubling between 1980 and 2014 and the 

consequences of this are put into morbid focus when one is reminded that raised BMI is a substantial risk 

factor for disease cardiovascular disease (which were the world leading cause of death in 2012), diabetes, 

musculoskeletal disorders and some cancers (endometrial, breast, and colon) (World Health Organisation, 

2015). The evidence for these relationships comes from a variety of sources, but importantly the relative 

simplicity of height and weight measurement has allowed for the formation and analysis of substantial 

BMI related data sets focused on these relationships.  

  

Examples of this include the Prospective Studies Consortium (able to assess observational relationships 

between baseline BMI and mortality in a collection of 57 studies delivering 894,576 participants mostly 

from Western Europe and North America(9) and an equally well sized initiative in Asian population based 

samples (including more than 1.14 million people recruited in 20 cohorts in Asia(10)) which have been able 

to give estimates as to the likely contribution of BMI variation to the risk of death and specific disease 

outcomes. Away from population specific differences hinting at the potential importance of body 

composition in BMI related effects, the relationship between BMI and mortality (with a marked 

cardiovascular component) is broadly consistent. Whilst not proven to be fully causal, these studies 

present a compelling illustration of these relationships.  

 

This type of work has not been limited to the collection of semi-focused, large-scale investigations of 

mortality and common disease outcome, but also has been undertaken in a manner targeting specific 

disease outcomes. For example, a detailed examination of UK Clinical Practice Research Datalink (CPRD, 

www.cprd.com) was able to characterize the observational associations between BMI and cancer risk for 

the 22 most common cancer sites seen in UK medical record data(11). In this work, more than 5 million 
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individual records reporting over 160000 cancers were investigated yielding evidence of association 

between BMI and 17 of 22 disease sub-types. Outside of likely confounding events driven by smoking, 

compelling association between BMI and disease risk are evident for cancers of the uterus, kidney, thyroid 

and leukaemia with more complex association signatures seen for liver, colon, ovarian breast cancers and 

together add to the growing range of non-specific disease risk alterations that appear linked to population 

based fluctuations in BMI. 

 

Outside the realm of observational epidemiology, interventional studies in the form of randomized control 

trials (RCTs) have of course been applied. The most commonly evaluated interventions for BMI involve 

modifications to diet and/or physical activity levels as implemented in both children (12, 13) and adults (5, 

14, 15, 16, 17).  There are also RCT that have tested the efficacy of pharmacological interventions, most 

often alongside behavioural changes with the most commonly tested agent being Orlistat (4, 18, 19) .  

However, the potential for pharmacological intervention is somewhat limited due to a lack of suitable 

drugs with favourable properties (20). Whilst most, although not all (12, 13), behavioural and/or 

pharmacological interventions result in a reduction in adiposity (as assessed by BMI or body weight), a 

major limitation of these studies with respect to inferring causality between BMI and health, is the lack of 

long-term follow-up, with a 12-month endpoint being typical. Therefore, the conversion of this reduction 

in BMI to a reduced incidence of disease later in life is not well evidenced. Indeed, apparently beneficial 

changes in cardiovascular risk factors, such as lipid profile and blood pressure, have been used to bolster 

conclusions regarding health benefits despite results from at least one longer-term trial suggesting that 

the assumed link between these intermediates and cardiovascular mortality may not be valid (14).  

 

In contrast to most behavioural intervention studies, RCTs of surgical intervention have had longer follow-

up periods allowing a more direct assessment of the impact of weight reduction on mortality.  The long-

term health impact results of RCTs for surgical intervention have been mixed and whilst there is evidence 

of a reduction in mortality following surgery (21, 22, 23), concerns have been raised around the potential 

for differences between surgical cases and untreated controls to complicate analyses (22). There is also no 
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 7 

assurance that the effects seen after these procedures is directly related to BMI/weight reduction, with 

short term impact of surgery being marked and arguably independent of weight(24). Furthermore, the 

cost-effectiveness of surgery depends on the patient’s level of obesity on admittance and the relative 

improvement in quality of life and health achieved subsequently (25). 

 

Taken together, whilst there is a deep literature focused on the examination of associations between BMI 

and common health outcomes within both observational and intervention designs, these approaches 

remain limited in their ability to assess the causal contribution of BMI to disease. Observational studies 

have been undertaken at scale, but retain the conventional limitations to inference in confounding, bias 

and reverse causation and although trials of BMI intervention are conceptually more inceptive, limitations 

to the interventions themselves and the ability to alter BMI hamper the interpretation of long term health 

implications. 

 

Genetic contributions to BMI 

Common form obesity, assessed simply by BMI level and which does not segregate in families, has a 

multifactorial basis. Individuals may carry any number of common genetic variants which contribute to 

variation in BMI at the level of the population, but most of these exert only small effects on adiposity. 

Genomewide association studies (GWAS) employ a hypothesis-free approach to identify variants 

consistently associated with complex traits (26) and use genotyping chips with the ability to score 

hundreds of thousand to millions of single nucleotide polymorphisms (SNPs) positioned across the entire 

genome. This approach has revolutionised the search for genetic associations and the interrogation of the 

common disease/common variant hypothesis specifically (27) and in the case of BMI, the first real progress 

in the application of GWAS approaches came with a study of just under 40,000 participants and from an 

initial search for type 2 diabetes loci (28). This work identified a locus with common variants reliably 

associated with BMI where carriers of two copies of the minor allele at FTOrs9939609 were on average 3kg 

heavier than the major allele carriers (29). Immediately after this first wave of GWAS analyses, it was 

acknowledged that substantially larger sample sizes, greater genomic coverage through advanced 
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 8 

reference panel use and imputation (30) and more rigorous discovery and replication phases through 

extensive consortia derived meta-analysis were needed to fully explore the common genetic contribution 

to complex traits like BMI (31, 32). The most recent of these involves 125 independent cohort studies and 

totalling nearly 340,000 participants and has brought the list of confirmed associated genetic variants to 

97 (Figure 1) (33).   

 

Despite the recent success in identifying and verifying almost 100 loci with confirmed BMI association, 

together they only explain in the region of 2.7% of the phenotypic variance in BMI (33).  Even with the 

addition of these new associated genetic variants, it is evident that although each new (bigger) GWMA 

offers new biological insight through novel gene discovery, the newly discovered associations are the 

product of larger studies and not larger effects (Figure 2). Saving the scaling up of population based 

sequencing initiatives with the capacity to score rare variants(34), the next steps are therefore to make use 

of the variants we have to try to understand the effects of BMI. Importantly even small genetic effects are 

potentially useful for this in the correct conditions and the development of MR has given utility to the “so 

what” gene variant associations GWAS is efficient at capturing. 

 

Applied genetic epidemiology and Mendelian randomisation 

Developments in the genetics of obesity have opened up a new avenue of investigation to researchers 

interested in dissecting the relationship between BMI and health – Mendelian randomisation (MR). In 

contrast to direct measurement, germline genotypes reliably associated with risk factors can act as proxy 

measurements for risk factors offering several advantages: Genotypes are relatively easy to measure, are 

stable through time, are largely immutable and are not correlated with confounding factors as a result of 

the mechanisms of Mendelian inheritance(35, 36). An alternative approach to the analysis of BMI is 

therefore to use genetic predictors to act as proxies of the feature (or exposure) one is concerned with in 

order to help investigate causality(37, 38, 39)(Figure 3A&B). In MR, genetic variation fulfils the role of an 

instrumental variable (40) where the presence of variance in BMI explained by genotype is orthogonal to 

confounding factors and where genotype is assumed only to exert effect on health outcome through BMI. 
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 9 

Whilst these assumptions are clearly open to challenge (through pleiotropy and other phenomena 

discussed at the end of this review), this approach provides an important contribution to the weight of 

evidence that may exist around a given epidemiological association. It is important to note that applied 

genetic epidemiology and MR is just one approach to the assessment of causality outside of RCTs(41). 

 

The first application of MR to BMI followed rapidly on from the discovery of FTO(rs9939609) and examined 

10 metabolic traits.  Authors of this study concluded that the FTO genotype was associated with metabolic 

traits to an extent entirely consistent with its effect on BMI although power limitations meant causal 

relationships could only be confirmed for fasting insulin, glucose, triglycerides and lower high-density 

lipoprotein cholesterol (HDL-C) (42).  By exploiting the ability of genetic variants to model lifetime 

exposure, researchers have also been able to explore the potential long-term effects of increased adiposity 

on health. To date, MR studies using BMI-associated variants have provided evidence of a causal effect of 

greater adiposity on a number of indicators of reduced cardiovascular health, including increased blood 

pressure (43), increased fasting glucose and insulin (44), decreased HDL-C (44) and increased systemic 

inflammation (45).  Causal inference with respect to complex diseases is challenging however, a causal role 

for increased adiposity has been evidenced for type 2 diabetes T2D) (44) and ischaemic heart disease (IHD) 

(46).  There are also examples of MR being applied to outcomes and traits beyond the classical 

cardiometabolic outcomes, including mental health (47, 48), childhood asthma (49), bone mass in 

childhood (50), uric acid (51), cancer (52) and trans-generational effects such as foetal over nutrition (40). 

 

As well as these simple investigations of the causal impact of BMI on health-related factors, bidirectional 

assessments (39) have also been undertaken (Figure 3C).  For example, exploring the relationship between 

the acute phase reactant C-reactive protein (CRP) and BMI, bidirectional MR has been used to exploit 

variation at independent BMI and CRP associated variants to evaluate whether BMI had a causal effect on 

CRP and simultaneously variation at the CRP loci to assess whether CRP had a causal effect on BMI (53).  

This work has provided evidence implicating BMI as a causal agent in inflammation and asserting 

directionality in an otherwise unclear network of complex phenotypes (45, 54). Other cases where causal 

Page 9 of 30

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Obesity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 10

association is likely to run in both directions or suitable instruments are unavailable, results may be less 

clearly interpreted. Work implicating BMI in the aetiology of activity patterns in young participants 

recently illustrated this point - whilst the impact of BMI on activity was marked and likely to be real, the 

reciprocal relationship (which is likely to be present) was not possible to either exclude or describe 

precisely (55). 

 

One of the key parts of the MR process is the referral of evidence for causal relationships generated 

through the use of genetic data back to the existing observational estimates. A good example of this and 

the potential impact of MR analyses can be seen in that of C-reactive protein and the marked differences 

in effect estimates that have been generated from observational and MR analyses with respect to effects 

on cardiovascular health outcomes(56, 57, 58, 59, 60). In this case, it is the contrast between MR derived 

and observational estimates which provides information given a lack of support for strong observational 

effects. In contrast to this, one of the paradoxically dissatisfying observations from MR analyses of BMI as 

a risk factor is the breadth of apparenlty causal associations (bar perhaps dental caries and depression and 

foetal overnutrition(61, 62, 63, 64).  

 

Blood pressure and cardiovascular health outcomes serve to illustrate this welll with both within study 

(Figure 4) and between studies(9, 43), however this is the case elswhere. Bone health(50), cancer(52), 

asthma(49), T2D(27, 44), osteoarthritis(65) have all shown some level of agreement in the associations 

delivered by the best available observational studies and MR. Indeed a novel approach to the examination 

of BMI as a causal risk factor(66) looking across a large number of possible intermediate phenotypes was 

able to chart a broad spread of BMI related effects.  This highlights one of the key problems in the analysis 

of BMI in that, unlike others so far, there seems to be an underlying causal contribution to a large number 

of health related outcomes. This therefore leaves questions as to what are the underlying pathways and 

mechanisms responsible for these apparently causal relationships flagged by the broad exposure “BMI” 

and also as to the validity of these MR tests. 
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BMI effects: breaking down pathways 

Despite the demonstration of the likely causal relationships between BMI and IHD, it is possible that 

weight itself is not the causal agent in disease, rather that there are a suite of intermediate phenotypes 

between BMI and outcome that deliver risk.  Work not dissimilar to that originally published exploring the 

downstream impact of genetic variation at the FTO locus on cardiometabolic traits (42) used multiple 

intermediate phenotypes and also the health outcomes T2D and CHD (44) to try and unpick the pathways 

of BMI effect. In a relatively large collection of European participants (4,407 T2D, 6,073 CHD, and 3,813 

stroke cases) the causal effect of a change in BMI of 1kg/m2 on fasting glucose, fasting insulin, interleukin-

6, systolic blood pressure, reduced HDL-C and low-density lipoprotein cholesterol (LDL-C) was estimated 

alongside the change in odds for disease outcome given the same exposure. This work was able to identify 

a host of intermediate risk factor associations and related this to the strongest health outcome effects 

(T2D), although additional power was needed to obtain precise estimates of BMI effect on CHD.    

 

Coming from a similar methodological approach, MR can be employed in network analyses to identify 

causal risk factors in efforts to locate refined targets for therapeutic intervention (67). Any network of 

observational associations can be explored by the use genetic variants that independently predict the 

nodes of that network. A simple exposition of this network MR approach has been applied to break down 

the association between BMI and IHD (believed to be causal from previous MR analysis (46)) through the 

use of available intermediate risk factors measured in a population and novel instruments for each of them 

that have come from new GWAS studies.  In an example of this, the Copenhagen General Population 

Study (N=71,407) and the Copenhagen City Heart Study (N=10,314) and a case-control study, the 

Copenhagen Ischemic Heart Disease Study (N=5,262), have been used to attempt to further dissect the 

BMI/IHD association using MR and causal mediation analyses (68) (Figure 5). This work suggests that it is 

likely that BMI driven elevations of non-fasting remnant cholesterol and LDL-C, elevated blood pressure 

and possibly elevated non-fasting glucose levels may contribute causally to risk of IHD.  

 

Intermediate phenotype and the “omics” revolution 
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Mendelian randomization studies have generally focused on a limited number of intermediate 

phenotypes, but recent applications of omic technologies into large scale population-based studies 

present new opportunities for identifying predictive biomarkers and causal links between established 

phenotypes and disease outcomes (69, 70, 71, 72, 73, 74). This has particular gravity for the types of 

network analysis being proposed above where, the combination of large-scale genetics data (and 

successful associations) are able to provide genetic proxy measures for an equally large collection of 

pathway specific intermediate risk factors. There is of course no guarantee that use of multi-omic 

phenotype data will avoid any of the problems encountered in observational epidemiology, but in 

combination with MR approaches, there is an opportunity to undertake network MR at scale. Omic 

technologies are now generating phenotypic data at a staggering rate and the use of these data in large 

scale population-based studies is presenting new opportunity for identifying novel predictive biomarkers 

and causal links between established phenotypes and disease outcomes (75, 76, 77, 78, 79, 80).   

 

As an example of this, it is known that metabolite profiles are useful in the prediction of cardiometabolic 

disease (81, 82), but that their role as modifiable targets for intervention or causal mediators of disease 

risk remains unclear. It is also known that many metabolites have substantial heritability and that it is 

possible to find robust associations between genetic genetic variation and the same metabolite features 

(83, 84). Together, it is then possible to examine the causal role of risk factors (in this case BMI) in the 

formation of metabolomics profiles(85) and then in a second stage (currently not applied to BMI 

systematically) to consider the causal role of those BMI driven metabolites in disease outcomes.  This is a 

process termed two-step MR(69) and when applied across multiple collections with measurements of BMI, 

intermediate phenotypes (such as metabolites) and health outcomes, has the potential to informatively 

reduce the omics measure data space (to a set of anchoring genetic variants(39)) and to breakdown causal 

pathways to disease. 

 

Challenges and limitations in the causal analysis of BMI 

(i) Measurement – the idiosyncrasy of human phenotyping 
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The options available to both clinicians and researchers for measuring adiposity are many and varied.  

They range from simple indices of body weight for stature (e.g. BMI as focused on here) to detailed 

imaging protocols using magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, DXA 

and electron microscopy.  As well as permitting the differentiation of body fat compartments relevant to 

health, such as subcutaneous versus visceral fat, such advanced technologies as combined positron 

emission tomography (PET)-CT, allow even finer resolution such that quantities of brown fat (containing 

mitochondria-rich brown adipocytes) can be measured.   

 

The statistical construct that is BMI (weight(kg)/height(m)2) was first proposed as an index of relative 

bodyweight by Adolphe Quetelet in 1842 (86).  Promoted more formally in 1972, BMI was suggested to be 

the optimum derivation for weight given stature based on the fact that, in a population of healthy men 

aged 18 to 60 years this index had lowest correlation with height and the highest correlation with 

measures of body fatness(87).  Perhaps surprisingly, considering the technological advances of recent 

years, a recent commentary on the evolution of BMI came to much the same conclusion as that of Keys 

over forty years ago – that BMI is “a robust, useful and surprisingly accurate measure of fatness in ‘healthy’ 

adults” (88). 

 

However, there remain two serious limitations of BMI as a measure of adiposity that are likely to hinder 

causal analyses.  Firstly, there is the apparent inability of BMI to adequately describe body composition 

and related to the specific characteristics of different subgroups of the population.  Comparisons of BMI 

both with alternative indices of body weight such as waist circumference, and with MRI and DXA derived 

measures of body composition have shown that BMI fails to discriminate well between major contributors 

to body composition. For example, studies have shown that short and tall individuals and those from 

different ethnicities have similar but not identical body compositions (89, 90). This type of limitation has a 

bearing on the generalisability of BMI as a measure and has driven the development of both alternative 

measures of adiposity, such as a body shape index (ABSI)(91) and modifications to BMI itself, for example, 

by optimising the power term for height to minimise its influence (92).   
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Secondly, BMI is clearly not specific.  Whilst the correlation of BMI with health outcomes is undeniable, the 

biological interpretation of these relationships is complex.  This problem was rather eloquently described 

by Wells who stated “Paradoxically, it seems that the various limitations of BMI as a specific index of 

adiposity may also be its strengths as a composite index of cardio-metabolic risk” (88).  But this concept of 

BMI as a “composite index of risk” is what makes its use in causal analyses so challenging. It is of course not 

impossible to consider the utility of specific genetic variants or collections thereof to help dissect more 

specific components of BMI, though this has not been systematically undertaken to date. 

 

(ii) Undertaking MR - don’t trust your genetic proxies 

Statistical power, correlation between genetic variants (linkage disequilibrium (LD)), the non-specificity of 

genetic effects (pleiotropy), developmental plasticity (or “canalization”(93)) and population stratification 

have all been recognised as potential limitations to the MR approach(38). However, it has become possible 

to assess and overcome issues of statistical power, LD and population stratification through the 

combination of large data sets which are based in homogeneous population based collections and that use 

independent genetic variants for analyses. Canalisation and pleiotropy remain potentially serious 

limitations. The former of these has yet to really escape the bounds of theory and if present, may only act 

to nullify genetic associations before they are found. On the other hand, pleiotropy and more generally the 

blind use of biologically complex genetic variation (and potentially large collections of complex genetic 

proxies from GWAS studies) remains one of the real challenges to these applied approaches.  

 

It is becoming increasingly clear that there are important potential complications in the formation of 

genetic proxy measures for MR studies. Through either the analysis of complex or derived phenotypic 

outcomes which can generate genetic associations which are driven by artefactual biases(94) or just the 

presence of complex biological underpinnings, the chosen genetic variation for MR studies may bring just 

as many complications as they appear to avoid. In circumstances where well-characterised, candidate 

driven and biologically understood genetic variants as proxy measures (relied upon in previous MR studies 
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derived from smaller scale genetic association studies) are unavailable, but where extremely large GWAS 

consortia yield apparently reliable association signals, it is tempting to use exhaustive lists of genetic risk 

factor in a genetic risk scores to undertake MR analyses (95).  

 

Taking the example of educational attainment (a complex, biologically distal and poorly measured 

phenotype not dissimilar to BMI), a large-scale GWAS identified three genetic variants reliably correlated 

with education (96) but these signals represent less than a tenth of the expected difference between girls 

and boys in educational attainment (97). Faced with the lack of a strong genetic proxy for substantive MR 

study, an alternative strategy is to generate composite genetic proxy measures from collections of 

genomewide data (easily done through blind application of refined software interfaces such as PLINK 

(98)). In this example specifically, a composite genetic proxy measure for educational attainment can 

explain up to ~3% of the variance in this exposure would therefore be a valuable tool for MR studies 

focused on compelling hypotheses such as the impact of education on income/lifetime earning ability.   

 

However, the formation of genetic proxy measures in this way can have complex flaws. Through the 

combined impact of genetic contributions from many different biological pathways and the possible 

biasing effects of pleiotropy, the use of genomewide proxy measures can produce effect estimates that 

are biased towards the confounded observational estimates MR is attempting to avoid. Furthermore, with 

the expansion of GWAS study sample size and power and the consequent discovery of increasingly distal 

contributions to outcome variance, looks set to introduce these complications even in the presence of 

apparently robust genetic association discoveries. The expansion of genetic association consortia for the 

analysis of BMI is now spilling way over n=300000 and with targets of up to n=1000000 in a single meta-

analysis, the abundance of genetic proxy measures for BMI is set to grow. It is therefore with these 

limitations in mind that we should approach the use of novel findings that carry with them as much 

complication as clarification.  
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This is not to remove applied genetic epidemiology and MR as a logical extension to the analysis of causal 

relationships, rather to suggest that in an era of proliferation for genetic analysis, we should remain 

sceptical of the performance of any one analysis type. Triangulation of evidence should be sought where 

possible and MR viewed as a valuable contributor rather than a sole answer(37, 38). What is clear is that the 

success of MR and its move to mainstream analysis should not become the worst enemy of this approach. 

Furthermore, the growing presence of high quality functional biological data to help understand genetic 

associations and novel statistical approaches(99) to undertaking MR will help to relieve some of the 

problems mentioned above. 

 

Conclusion 

This review has considered major contributions to non-genetic approaches to assessing the causal impact 

of BMI on human health and current knowledge concerning the common, population based, genetic 

contribution to BMI and how this has fed into the developing field of applied epidemiology. We have 

revised complications of complex genetic aetiology and phenotypic measurement, and considered 

potential development and application of multiple omic data sources to help unpick the largely 

misunderstood relationships between BMI and human health and disease. Lastly, we have brought to 

attention the importance of appropriate use of applied genetic analyses in that whilst potentially complex, 

the ability to de-confound and add clarity to the prevailing weight of evidence is a superb possibility in 

suitable conditions.  

 

Obesity and adiposity, measured principally via the faithful stand-in BMI, is of course a major risk factor 

when considering variance in risk for all sorts of health outcomes. There have now been a series of 

established study designs (prospective observational studies and MR analyses in particular) which have 

supported the notion of BMI as a causal agent in the formation of disease risk. For any given patient, 

however, it is unlikely to be the label “33kg/m2” that causes morbidity or mortality. Understanding the 

detailed routes from the biology reported (on average) by BMI to disease by employing new measurement 

techniques and through advanced causal analysis methods will be crucial for future preventative medicine. 
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Combinatorial investigations incorporating multi-omic examination of patients going through radical 

changes in BMI via surgical intervention, population based analyses of BMI affect through MR and analyses 

aimed at identifying modifiable risk factors able to modify exposure will be essential to the future 

breakdown and understanding of how BMI exerts a causal effect on health.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure titles: 

 

Figure 1: 

Manhattan plot showing body mass index (BMI)-associated variants with loci identified prior to 2015 

in blue and novel loci identified by Locke et al. (33) in red. Novel loci are labelled with the nearest gene, 

and the y-axis is truncated to allow easier observation of novel associations.  This plot is reproduced from 

Locke et al. (33) with the permission of the authors. 
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Figure 2: 

The interplay between increased variance explained and diminishing marginal return as the number 

of confirmed body mass index (BMI)-associated genetic loci has increased. The single line represents 

the cumulative variance explained and the double line the marginal return, calculated as the cumulative 

variance explained divided by the number of loci (29, 33, 100, 101, 102). 

 

Figure 3:  

Mendelian randomisation; the use of genetic proxy measures of risk factors to allow causal inference. 

(A) In general, a genotype of use to this study is associated with the exposure, is independent of measured 

or unmeasured confounders and can only influence outcome via the causal effect of the exposure. 

(B) The presence or absence of association between the BMI associated genotype and disease risk (from 

existing genomewide association study data sets) give evidence that the BMI is a causal risk factor for 

disease. 

(C) Here genotype acts as a proxy measure for an exposure potentially affecting the BMI in a reciprocal 

analysis. This type of reciprocal analysis allows for a triangulation or network approach to the assessment 

of the effects of and effects on BMI.   

 

Figure 4:  

The comparison of observational and Mendelian randomisation derived estimates for blood pressure 

and ischaemic heart disease. 

(A) Linear relationships between body mass index and blood pressure derived from observational and 

Mendelian randomization analyses. Upper scatter indicates systolic blood pressure and the lower diastolic. 

Grey areas around the estimated relationships indicate 95%CI for Mendelian randomisation estimates and 

in black those for observational estimates (plot generated from analysis for (43)). Note that for this 

analysis the log of body mass index was regressed on sex, age, age squared, log(height), and an age-sex 

interaction and exponentiated to give an individual’s “relative BMI,” that is, the ratio between his or her 

actual BMI and that expected for his or her sex, age, and height. 

(B) Meta-analysis forest plots of observational and instrumental variable estimates of the relationship 

between ischaemic heart disease and body mass index. Odds ratios are for a 4kg/m2 increase in body mass 

index (plot generated from analysis for (46)). 

 

Figure 5:  

A two-step Mendelian randomization design applied to intermediate phenotype analysis in body 

mass index (BMI) and ischaemic heart disease (IHD). In Step 1 (shown in red), BMI-associated variants 

are used to estimate the causal effect of BMI on relevant intermediates.  In Step 2 (shown in green), 

variants associated with each of the intermediate traits are used to estimate the causal effect for those 

traits on IHD.   
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 28 of 30

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Obesity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



FIGURE 4 
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FIGURE 5 
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