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Abstract	

Clusterin,	also	known	as	apoJ,	is	a	lipoprotein	abundantly	expressed	within	the	

CNS.	It	regulates	Aβ	fibril	formation	and	toxicity	and	facilitates	amyloid-β	(Aβ)	

transport	across	the	blood-brain	barrier.	Genome-wide	association	studies	have	

shown	variations	in	the	clusterin	gene	(CLU)	to	influence	the	risk	of	developing	

sporadic	Alzheimer’s	disease	(AD).	To	explore	whether	clusterin	modulates	the	

regional	deposition	of	Aβ,	we	measured	levels	of	soluble	(NP40-extracted)	and	

insoluble	(guanidine-HCl-extracted)	clusterin,	Aβ40	and	Aβ42	by	sandwich	

ELISA	in	brain	regions	with	a	predilection	for	amyloid	pathology	−	mid-frontal	

cortex	(MF),	cingulate	cortex	(CC),	parahippocampal	cortex	(PH)	−	and	regions	

with	little	or	no	pathology	−	thalamus	(TH)	and	white	matter	(WM).	Clusterin	

level	was	highest	in	regions	with	plaque	pathology	(MF,	CC,	PH	and	PC),	

approximately	mirroring	the	regional	distribution	of	Aβ.	It	was	significantly	

higher	in	AD	than	controls,	and	correlated	positively	with	Aβ42	and	insoluble	

Aβ40.	Soluble	clusterin	level	rose	significantly	with	severity	of	cerebral	amyloid	

angiopathy	(CAA),	and	in	MF	and	PC	regions	was	highest	in	APOE	ε4	

homozygotes.	In	the	TH	and	WM	(areas	with	little	amyloid	pathology)	clusterin	

was	unaltered	in	AD	and	did	not	correlate	with	Aβ	level.	There	was	a	significant	

positive	correlation	between	the	concentration	of	clusterin	and	the	regional	

levels	of	insoluble	Aβ42;	however,	the	molar	ratio	of	clusterin:Aβ42	declined	

with	insoluble	Aβ42	level	in	a	region-dependent	manner,	being	lowest	in	regions	

with	predilection	for	Aβ	plaque	pathology.	Under	physiological	conditions	

clusterin	reduces	aggregation	and	promotes	clearance	of	Aβ.	Our	findings	

indicate	that	in	AD,	clusterin	increases,	particularly	in	regions	with	most	



abundant	Aβ,	but	because	the	increase	does	not	match	the	rising	level	of	Aβ42,	

the	molar	ratio	of	clusterin:Aβ42	in	those	regions	falls,	probably	contributing	to	

Aβ	deposition	within	the	tissue.	

	

Introduction	

Alzheimer’s	disease	(AD)	is	believed	to	be	initiated	by	the	accumulation	and	

aggregation	of	amyloid-β	(Aβ)	peptides	(the	so-called	amyloid	cascade	

hypothesis	(1)).	The	steady-state	level	of	Aβ	reflects	the	balance	between	its	

production	and	removal	from	the	brain	(2).	Aβ	peptides	are	produced	by	

sequential	cleavage	of	amyloid-β	protein	precursor	(APP)	and	mostly	end	at	

amino	acid	40	or	42.	Aβ42	is	the	more	amyloidogenic	form	–	relatively	insoluble	

in	the	interstitial	fluid	and	prone	to	parenchymal	deposition.	Aβ40	is	more	

soluble,	less	prone	to	parenchymal	deposition	but	more	likely	to	accumulate	in	

the	walls	of	cortical	and	leptomeningeal	blood	vessels	(3,	4).	Most	mutations	in	

familial	AD	are	associated	with	increased	amyloidogenic	processing	of	APP	and	

elevated	Aβ42	or	an	increase	in	the	Aβ42:Aβ40	ratio	(5-8).	In	sporadic	AD,	which	

accounts	for	most	cases,	the	accumulation	of	Aβ	is	thought	largely	to	reflect	

alterations	in	the	pathways	responsible	for	the	removal	of	Aβ	(reviewed	in	(2))	

or	altered	expression	of	chaperone	proteins,	such	as	apoE	and	clusterin	(also	

known	as	apoJ)	that	regulate	the	structure,	toxicity,	and	clearance	of	Aβ	

(reviewed	in	(9)).	

Aβ	peptides	are	produced	throughout	life	(10,	11)	but	begin	to	

accumulate	and	aggregate	in	the	brain	more	than	a	decade	before	the	onset	of	AD	



(12,	13).	Risk	factors	for	AD,	such	as	ageing	and	APOE	genotype	(14),	accelerate	

the	parenchymal	deposition	of	Aβ.	The	deposition	of	Aβ	within	the	brain	follows	

a	hierarchical	sequence	first	appearing	in	the	neocortex	and	spreading	to	limbic	

areas,	deep	cerebral	grey	matter	and	brain	stem	regions	and	finally	the	

cerebellum	(15).	The	determinants	of	regional	variability	in	the	susceptibility	of	

different	brain	regions	to	Aβ	deposition	remain	unclear.	No	link	was	found	

between	the	distribution	of	plaque	pathology	and	the	regional	distribution	of	

enzymes	involved	in	the	amyloidogenic	processing	of	APP	(APP,	APP-CRFB,	

BACE-1,	PS-1)	(16-19).	However,	Shinohara	and	(19)	found	a	strong	inverse	

relationship	between	apolipoprotein	E	(apoE)	level	and	Aβ	deposition	in	brain	

tissue	from	cognitively	normal	elderly	people	and	those	with	mild	cognitive	

impairment	(MCI).	The	authors	suggested	that	apoE	had	a	role	in	preventing	Aβ	

accumulation	and	was	reduced	in	brain	regions	that	would	later	develop	

significant	plaque	pathology.	

Clusterin,	also	known	as	apolipoprotein-J,	is	a	78-80	kDa	heterodimeric	

glycoprotein	that	is	abundantly	expressed	in	the	CNS	(20).	Genome-wide	

association	studies	have	identified	several	single	nucleotide	polymorphisms	

(SNP)	within	the	clusterin	gene	(CLU)	that	are	risk	factors	for	AD	(21-24).	

Clusterin	is	up-regulated	in	the	brain	in	AD	(25,	26)	and	is	present	in	plaques	

(27,	28).	In	vitro	studies	suggest	that	clusterin	influences	Aβ	fibril	formation	and	

neurotoxicity	(reviewed	in	(29,	30))	and	can	facilitate	the	transport	of	Aβ	across	

the	blood-brain	barrier	(31).	We	have	undertaken	a	comprehensive	analysis	of	

the	regional	distribution	of	clusterin,	soluble	and	insoluble	Aβ40	and	Aβ42	in	

post-mortem	brain	tissue	across	a	number	of	brain	regions	that	vary	in	their	



predilection	to	amyloid	pathology.	Our	findings	indicate	that	clusterin	level	rises	

with	the	accumulation	of	insoluble	Aβ42	but	the	molar	ratio	of	clusterin:Aβ42	

falls,	which	probably	influences	the	regional	distribution	of	Aβ	deposition.	

	

Materials	and	Methods	

Case	selection	

Brain	tissue	was	obtained	from	the	South	West	Dementia	Brain	Bank	(SWDBB),	

University	of	Bristol,	UK	with	local	research	ethics	committee	approval.	All	

brains	had	been	retrieved	within	72	h	of	death.	The	right	cerebral	hemisphere	

had	been	fixed	in	10%	formalin	for	three	weeks	before	the	tissue	was	processed	

and	paraffin	blocks	were	taken	for	pathological	assessment.	The	left	cerebral	

hemisphere	had	been	sliced	and	frozen	at	-80°C	until	used	for	biochemical	

assessment.	According	to	the	NIA-AA	guidelines	AD	neuropathological	change	

was	considered	an	adequate	explanation	for	the	dementia	in	all	cases	in	the	AD	

group	(32).	Controls	were	defined	by	an	absence	of	clinical	history	of	cognitive	

decline	or	other	neurological	disease	and	a	lack	of	neuropathological	

abnormalities	apart	from	sparse	neuritic	or	diffuse	plaques	in	some	of	the	older	

cases,	all	of	which	were	of	Braak	tangle	stage	III	or	lower.	APOE	genotyping	and	

assessment	of	severity	of	cerebral	amyloid	angiopathy	(CAA)	had	been	

performed	as	previously	reported	(33,	34).	Demographic	information,	

neuropathological	findings	and	MRC	identifiers	for	each	case	are	shown	in	

supplementary	Tables	1	and	2.β		

	

	 	



Brain	tissue	

Brain	tissue	(200	mg)	was	dissected	from	the	midfrontal,	cingulate,	

parahippocampal	and	medial	parietal	cortex,	thalamus	(pulvinar)	and	white	

matter	underlying	the	parietal	cortex.	Brain	tissue	samples	were	prepared	using	

a	Precellys	24	homogenizer	(Stretton	Scientific,	Derbyshire,	UK)	with	2.3	mm	

ceramic	beads	(Biospec,	Stratech,	Suffolk,	UK)	as	previously	described	for	Aβ	

measurements	in	human	post-mortem	tissue	(10,	11,	35,	36).	Soluble	and	

insoluble	extracts	were	prepared	sequentially	following	initial	homogenization	

in	1%	NP-40	buffer	containing	140	mM	NaCl,	3	mM	KCl,	25	mM	TRIS,	5	mM	

ethylenediaminetetraacetic	acid	(EDTA)	and	2	mM	1,10	phenanthroline).	The	

homogenates	were	spun	at	13,000 × g	for	15	min	at	4°C	and	the	supernatant	was	

removed	and	stored	at	−80°C.	Insoluble	extracts	were	prepared	by	

homogenisation	of	pelleted	insoluble	material	in	6	M	GuHCl	and	were	left	for	4	h	

at	room	temperature	(RT)	before	storage	at	−80°C.	

 

Measurement	of	clusterin	levels	by	sandwich	ELISA	

Clusterin	level	was	measured	by	sandwich	ELISA	(duoset	kit	#	DY5874,	R&D	

systems,	Oxford,	UK)	according	to	the	manufacturer's	guidelines.	96-well	

Maxisorp	plates	(R&D	systems,	Oxford,	UK)	were	coated	at	room	temperature	

(RT)	overnight	with	mouse	anti-human	clusterin.	We	washed	the	plates	in	

phosphate-buffered	saline	(PBS)/tween-20	(0.01%),	added	1%	PBS/BSA	at	

room	temperature	for	1	h	to	block	non-specific	binding,	then	added	recombinant	

human	clusterin	(62.5-4,000	pg/ml)	and	tissue	homogenates	(2.5	µl	supernatant	

diluted	in	3.125	ml	PBS,	and	1.8	µl	insoluble	extract	diluted	in	10	ml	PBS)	for	2	h	



at	room	temperature.	After	a	further	wash,	the	plate	was	incubated	for	2	h	at	

room	temperature	with	biotinylated	mouse	anti-human	clusterin.	The	plate	was	

again	washed	and	incubated	with	streptavidin-horseradish	peroxidase	(HRP)	

(1:200	in	0.01%	PBS:Tween-20)	for	20	min	at	RT	in	the	dark,	washed,	and	

incubated	for	10	min	with	chromogenic	substrate	(TMBS,	R&D	systems,	Oxford,	

UK).		Absorbance	was	read	at	450	nM	in	a	FLUOstar	Optima	plate	reader	(BMG	

Labtech,	Ayelsbury,	UK)	after	the	addition	of	50	µl	of	2	N	sulphuric	acid.	

Measurements	were	repeated	in	duplicate	and	across	two	plates	to	ensure	that	

there	was	minimal	plate-to-plate	variation.		

	

Measurement	of	Aβ40	and	Aβ42	by	sandwich	ELISA	

We	measured	Aβ40	and	Aβ42	level	in	both	soluble	(NP1-40)	and	insoluble	

(guanidine-HCl-extracted)	brain	tissue	fractions	by	sandwich	ELISA	as	

previously	described	(10,	11,	34-39).	For	the	Aβ40	ELISA,	mouse	monoclonal	

anti-human	Aβ	(clone	6E10,	raised	against	amino	acids	1-16;	Covance,	

Harrogate,	UK),	2	µg/ml	in	PBS,	was	incubated	overnight	at	RT,	washed	and	then	

blocked	with	300	µL	protein-free	PBS	blocking	buffer	(Thermo	Fisher	Scientific,	

Loughborough,	UK)	for	2	h	at	RT.	Samples	of	brain	homogenate	(diluted	1:49	for	

guanidine	extracts	and	1:3	for	soluble	extracts)	or	recombinant	human	Aβ1-40	

(Sigma	Aldrich,	Dorset,	UK)	diluted	in	PBS	containing	1%	1,10	phenanthroline	

(Sigma	Aldrich,	Dorset,	UK)	to	prevent	degradation	of	Aβ	(40),	were	incubated	

for	2	h	at	RT	on	a	rocking	platform.	After	a	further	wash,	the	plates	were	

incubated	for	2	h	at	RT	with	mouse	anti-human	Aβ1-40	(1	µg/ml)	(11A50-B10;	

Covance,	Harrogate,	UK)	that	had	been	biotinylated	using	Lightning-Link	

Biotinylation	Kit	(Innova	Biosciences,	Cambridge,	UK)	according	to	the	



manufacturer’s	guidelines.	Streptavidin-HRP	(R&D	Systems	Europe,	Abingdon,	

UK)	diluted	1:200	was	added	to	each	well	for	20	min	at	RT	before	they	were	

washed	and	substrate	solution	(TMB;	R&D	Systems	Europe,	Abingdon,	UK)	was	

added	for	30	min	in	the	dark.	The	reaction	was	stopped	with	2N	sulphuric	acid	

(R&D	Systems	Europe,	Abingdon,	UK)	and	the	optical	density	of	each	well	read	at	

450	nm	in	a	FLUOstar	plate	reader	(BMG	Labtech,	Aylesbury,	UK).	

For	the	Aβ42	ELISA,	anti-human	Aβ1-42	(12	F4,	Covance)	diluted	0.5	

μg/ml	in	PBS	was	used	as	the	capture	antibody.	Tissue	samples	(insoluble	

extracts	diluted	1:9,	soluble	extracts	diluted	1:3)	were	incubated	at	RT	for	4	h.	

Biotinylated	anti-human	Aβ	(Thermo	Fisher	Scientific)	diluted	to	0.1	μg/ml	in	

PBS	was	used	for	detection	and	left	overnight	at	4°C.	After	washing,	streptavidin-

HRP	was	added	for	1	h	and	chromogenic	substrate	for	20	min	in	the	dark	after	a	

further	wash.	Aβ1-42	concentration	in	brain	tissue	was	interpolated	from	a	

standard	curve	generated	by	serial	dilution	(16,000	to	1.024	nM)	of	recombinant	

human	Aβ1–42	(Sigma	Aldrich).	Each	sample	was	assayed	in	duplicate.	The	Aβ1-

42	ELISA	did	not	detect	Aβ1-40,	and	the	Aβ1-40	ELISA	did	not	detect	Aβ1-42.	

	

Statistical	analysis	

Unpaired	two-tailed	t-test	or	ANOVA	with	Dunnett's	post-hoc	analysis	was	used	

for	comparisons	between	groups,	and	Pearson’s	or	Spearman’s	test	was	used	to	

assess	linear	or	rank	order	correlation,	as	appropriate,	with	the	help	of	SPSS	

version	16	(SPSS,	Chicago)	and	GraphPad	Prism	version	6	(GraphPad	Software,	

La	Jolla,	CA).	P-values	<	0.05	were	considered	statistically	significant.	

 

	 	



Results	

Regional	distribution	of	soluble	and	insoluble	Aβ40	and	Aβ42	in	AD	

We	examined	the	regional	distribution	of	soluble	(NP-40-soluble)	and	insoluble	

(after	guanidine-HCl	extraction)	Aβ40	and	Aβ42	in	sequentially	extracted	brain	

homogenates	from	the	following	regions	in	AD	and	age-matched	controls:	

midfrontal	cortex	(MF),	cingulate	cortex	(CC),	parahippocampal	cortex	(PH),	

medial	parietal	cortex	(PC),	thalamus	(TH)	and	parietal	white	matter	(WM)	(Fig.	

1).	In	CC,	MF,	PH	and	PC,	the	concentrations	of	insoluble	Aβ40	and	Aβ42	were	

significantly	higher	in	AD	than	age-matched	controls.	The	differences	between	

AD	and	control	brains	in	TH	and	WM	did	not	reach	significance.	

In	both	control	and	AD	groups,	the	concentration	of	insoluble	Aβ40	and	

Aβ42	tended	to	decrease	in	the	following	order:	CC	>	MF	>	PH	>	PC	>	TH	and	WM	

(Fig.	1A	and	1B).	In	AD,	the	concentration	of	insoluble	Aβ40	and	Aβ42	was	

significantly	higher	in	neocortex	(MF	and	CC)	than	in	other	regions	(Fig.	1A	and	

Fig.	1B).	

The	regional	distribution	of	soluble	Aβ40	and	Aβ42	differed	substantially	

from	that	of	insoluble	Aβ40	and	Aβ42.	The	concentration	of	the	soluble	forms	of	

Aβ	was	lowest	in	MF	and	CC	and	tended	to	be	higher	in	PC,	PH,	TH	and	WM	(Fig.	

1C	and	Fig.	1D).	Soluble	Aβ	level	did	not	differ	to	a	statistically	significant	extent	

between	AD	and	controls,	with	the	exception	of	increased	Aβ42	in	AD	within	

WM.	In	general	the	concentration	of	Aβ	in	grey	matter	regions	was	much	lower	

in	the	soluble	than	the	insoluble	tissue	fractions.	In	contrast,	Aβ40	and	Aβ42	

concentration	was	higher	in	the	soluble	than	the	insoluble	tissue	fractions	of	



WM,	and	soluble	Aβ	level	was	several-fold	higher	in	WM	than	cortex.	Soluble	

Aβ42	level	was	also	relatively	high	in	PH.	

The	relative	contribution	of	soluble	and	insoluble	Aβ40	and	Aβ42	to	

‘total’	Aβ	load	in	all	regions	studied	is	shown	in	supplementary	Figure	1.	‘Total’	

Aβ	was	highest	in	MF	and	CC	and	tended	to	decrease	in	PH	>	PC	>	TH.	Total	Aβ	in	

MF	and	CC	consisted	almost	entirely	of	insoluble	Aβ40	and	Aβ42.	In	contrast,	in	

WM,	most	of	the	Aβ	consisted	of	soluble	Aβ40	with	a	small	amount	of	insoluble	

Aβ40	and	negligible	Aβ42.		

	

Regional	distribution	of	clusterin	in	AD	

We	examined	the	regional	distribution	of	clusterin	in	the	same	soluble	and	

insoluble	brain	fractions	in	AD	and	age-matched	controls	that	we	had	used	to	

measure	Aβ	levels	(Fig.	2).	In	AD,	clusterin	level	within	both	the	soluble	and	

insoluble	extracts	was	highest	in	CC,	MF	and	PH	and	PC	and	lowest	in	the	TH	and	

WM	(approximately	mirroring	the	regional	distribution	of	'total'	Aβ).	The	level	of	

soluble	clusterin	was	less	variable	between	regions	in	the	controls	but	was	

significantly	higher	in	CC	than	PC	or	TH	(Fig.	2A).	Clusterin	level	in	the	insoluble	

extract	was	significantly	higher	in	all	grey	matter	regions	than	in	the	WM	(Fig.	

2A).	

The	level	of	soluble	clusterin	was	significantly	higher	in	AD	than	controls	

in	most	regions	(CC,	MF,	PH	and	PC)	(Fig.	2A)	and	was	increased	in	the	insoluble	

extract	in	MF	and	PH	(Fig.	2B).	Clusterin	level	within	the	soluble	and	insoluble	

extracts	correlated	significantly	with	soluble	and	insoluble	Aβ42	and	Aβ40	in	MF	



(with	the	exception	of	insoluble	Aβ42)	(Table	1).	A	similar	trend	was	observed	

between	clusterin	and	Aβ	levels	within	the	soluble	extract	in	the	PC	but	not	the	

insoluble	extract.	A	strong	correlation	was	observed	in	the	CC	between	clusterin	

and	soluble	and	insoluble	Aβ40.	There	was	less	correlation	between	clusterin	

and	Aβ	in	the	TH	and	WM	(Table	1).	

	

Regional	association	of	clusterin	and	Aβ	

To	assess	whether	variations	in	clusterin	concentration	might	influence	the	

regional	distribution	of	soluble	and	insoluble	Aβ40	or	Aβ42,	we	looked	at	the	

correlation	between	Aβ	level	and	clusterin	concentration	across	all	regions.	

There	was	a	significant	correlation	between	the	concentration	of	soluble	

clusterin	and	the	level	of	insoluble	Aβ42	within	the	AD	cohort	and	a	weaker,	

non-significant	trend	in	the	controls	(Fig.	3	A-B).	A	trend	approaching	

significance	was	observed	between	clusterin	in	the	insoluble	extract	and	

insoluble	Aβ42	in	both	controls	and	AD	(Fig.	3C-D).	We	did	not	find	significant	

correlations	between	clusterin	concentration	and	the	level	of	soluble	Aβ42,	

soluble	Aβ40	or	insoluble	Aβ40.	

To	investigate	further	whether	clusterin	might	promote	the	accumulation	

of	insoluble	Aβ42,	we	calculated	the	molar	ratio	of	insoluble	clusterin	to	

insoluble	Aβ42	in	the	different	regions.		In	both	controls	and	AD,	the	molar	ratio	

of	insoluble	clusterin:insoluble	Aβ42	was	lowest	in	regions	with	the	highest	

concentration	of	insoluble	Aβ42	(Fig.	4A-B)	and	vice	versa.	

	



Clusterin	levels	influenced	by	APOE	genotype	

Clusterin	level	was	highest	in	APOE	ε4	homozygotes	in	MF	and	PC	(Figure	5)	and	

rose	significantly	with	severity	of	CAA.	Post-hoc	analysis	revealed	significantly	

higher	clusterin	level	in	ε4/4	than	ε3/3	brains	in	PC	(P	<	0.05),	and	in	ε4/4	than	

ε3/4	(P	<	0.01)	or	ε3/3	(P	<	0.05)	in	MF.	Post-hoc	analysis	also	showed	clusterin	

level	in	MF	and	PC	to	be	significantly	higher	in	brains	with	severe	than	absent	

CAA	(P	<	0.05	for	both	regions).	Insoluble	clusterin	level	did	not	vary	

significantly	in	relation	to	APOE	genotype	or	CAA	severity.	

	

Discussion	

We	have	examined	the	relationship	between	clusterin/apoJ	level	and	the	

regional	distribution	of	Aβ	within	the	brain.	Although	the	concentration	of	

clusterin	was	elevated	in	AD	and	was	highest	in	cortical	regions	with	the	most	

abundant	Aβ	deposition,	the	molar	ratio	of	clusterin:Aβ	was	lowest	in	those	

regions	and	was	highest	in	parts	of	the	brain	with	little	or	no	amyloid	pathology,	

such	as	in	the	thalamus	and	white	matter.	These	findings	in	human	brain	tissue	

support	experimental	studies	indicating	that	(i)	clusterin	level	rises	in	

association	with	increasing	Aβ,	(ii)	within	the	physiological	range	of	clusterin:Aβ,	

clusterin	reduces	aggregation	and	promotes	clearance	of	Aβ,	but	(iii)	when,	

despite	a	rise	in	clusterin,	Aβ	level	increases	to	an	extent	that	causes	clusterin:Aβ	

to	fall	below	the	physiological	range,	Aβ-clusterin	complexes	tend	to	aggregate	

and	deposit	within	the	brain	parenchyma.	We	have	also	shown	that	clusterin	



concentration	is	influenced	by	APOE	genotyope,	being	highest	in	brain	tissue	

from	ε4	homozygotes,	and	rises	in	relation	to	the	severity	of	CAA.	

Clusterin	is	highly	expressed	in	the	CNS,	within	which	it	is	present	at	a	

similar	concentration	to	that	of	apoE	(20).	Variations	in	the	clusterin	gene	(CLU)	

are	associated	with	sporadic	AD	(21),	and	previous	studies	showed	that	clusterin	

is	increased	in	the	CSF	(41,	42)	and	brain	tissue	(25,	26)	in	AD.	Clusterin	is	

detectable	immunohistochemically	within	plaques	(27,	28)	and	increases	in	

association	with	neuritic	plaque	density	(43-45).	In	a	transgenic	APP/PS1	mouse	

model,	clusterin	level	was	elevated	in	plasma	and	brain	tissue	and	found	to	co-

localise	with	amyloid	plaques	(42).	Present	findings	show	that	the	concentration	

of	clusterin	in	human	brain	tissue	in	AD	is	highest	in	regions	with	the	greatest	

concentration	of	Aβ.	Within	those	regions,	clusterin	concentration	correlates	

closely	with	Aβ	level	(as	was	also	shown	in	transgenic	mouse	models	of	AD	

expressing	mutant	APP	(46)).	These	findings	are	in	keeping	with	clinical	

evidence	of	a	correlation	between	raised	plasma	clusterin	level	and	accelerated	

clinical	progression	of	disease	(41,	42),	and	imaging	studies	showing	that	

increased	plasma	clusterin	levels	were	a	strong	predictor	of	brain	amyloid	load	

in	AD	patients	(42).	Within	sub-cortical	regions	that	have	a	much	lower	level	of	

Aβ,	clusterin	concentration	does	not	differ	significantly	between	AD	and	

controls.		

In	vitro	studies	indicate	that	clusterin	binds	to	Aβ	and	influences	both	

fibril	formation	and	toxicity	(47,	48).	Yerbury	and	colleagues	(49)	reported	that	

clusterin	co-precipitates	with	Aβ	as	insoluble	aggregates	when	Aβ	is	present	in	

large	molar	excess.	We	have	found	the	molar	ratio	of	clusterin:Aβ42	to	be	lowest	



in	regions	that	have	the	greatest	accumulation	of	Aβ	(almost	entirely	in	the	

insoluble	tissue	fraction)	even	though	clusterin	levels	are	highest	in	those	

regions.	In	contrast,	within	the	white	matter	and	thalamus,	which	had	the	

highest	ratio	of	clusterin:Aβ42,	Aβ	was	almost	all	in	a	soluble	form.	It	seems	that	

when	the	clusterin:Aβ	ratio	falls	low	enough,	clusterin	actually	promotes	rather	

than	simply	fails	to	prevent	the	precipitation	of	Aβ,	as	evidenced	by	in	vitro	data	

(49).	These	data	are	consistent	with	experimental	evidence	in	PDAPP	mice	

(homozygous	for	the	APPV717F	transgene)	showing	that	clusterin	stimulates	

amyloid	aggregation	when	Aβ	is	present	in	excess.	PDAPP	mice	homozygous	for	

knock-out	of	the	clusterin	gene	have	significantly	fewer	fibrillar	Aβ	deposits	and	

dystrophic	neurites	than	PDAPP	mice	expressing	clusterin	(50).	The	rise	in	

clusterin	concentration	that	occurs	with	increasing	Aβ	seems	likely	to	be	a	

consequence	of	the	latter.	Thamsbietty	et	al.	(42)	reported	that	plasma	clusterin	

level	was	elevated	almost	10	years	in	advance	of	fibrillary	Aβ	deposition,	

suggesting	that	clusterin	production	is	raised	at	an	early	stage	in	the	disease	

process,	although	we	know	from	other	studies	that	Aβ	starts	to	accumulate	even	

earlier	(51,	52).		

ApoE	is	also	highly	expressed	within	the	CNS	and	has	been	implicated	in	

the	pathogenesis	of	AD.	The	APOE	gene	is	a	strong	risk	factor	for	sporadic	AD	and	

individuals	possessing	the	ε4	allele	have	more	abundant	plaque	and	

cerebrovascular	deposition	of	Aβ	and	a	higher	level	of	this	peptide	(33,	34,	53).	

In	vitro	studies	demonstrated	that	apoE	interacts	with	and	influences	Aβ	

fibrillogenesis	and	clearance	(54-58).	However,	apoE	and	clusterin	play	

somewhat	divergent	roles	in	the	progression	of	AD.	In	contrast	to	clusterin,	apoE	



concentration	shows	a	strong	inverse	correlation	with	regional	Aβ	load	(19),	and	

while	fibril	formation	was	reduced	in	clusterin-deficient	PDAPP	mice	(50)	it	was	

significantly	increased	in	PDAPP	mice	deficient	in	both	clusterin	and	apoE	(59).	

It	is	of	interest	that	no	regional	association	was	found	between	Aβ	level	and	

molecules	involved	in	APP	processing	(APP,	APP-CTFβ,	BACE-1	or	PS-1)	or	

enzymes	involved	in	Aβ	clearance	(neprilysin	and	insulin-degrading	enzyme).	

Together,	these	data	suggest	that	the	regional	distribution	of	Aβ	is	influenced	to	

a	greater	extent	by	apoE	and	clusterin	expression	than	by	pathways	involved	in	

the	production	or	enzymatic	degradation	of	Aβ.	

Clusterin	has	also	been	shown	to	facilitate	the	clearance	of	Aβ	at	the	

blood-brain	barrier	(31)	and	is	localised	not	only	to	plaques	but	also	arterioles	

and	capillaries	within	the	brain	(43-45).	A	recent	immunohistochemical	study	

showed	that	clusterin	was	associated	with	vascular	Aβ,	particularly	Aβ40,	in	CAA	

(60).	Co-localisation	of	clusterin	with	perivascular	Aβ	deposits	and	our	finding	of	

increased	clusterin	level	in	relation	to	CAA	severity	is	supportive	of	a	role	in	the	

perivascular	drainage	of	Aβ,	which	is	impaired	in	CAA	(61,	62).	Craggs	and	

colleagues	(60)	also	reported	increased	clusterin	in	the	frontal	white	matter	in	

cerebral	autosomal	dominant	arteriopathy	with	subcortical	infarcts	and	

leukoencephalopathy	(CADASIL),	suggesting	that	clusterin	may	also	accumulate	

as	a	consequence	of	failed	perivascular	drainage	of	interstitial	fluid.	

In	conclusion,	we	have	shown	that	clusterin	level	is	elevated	in	AD	in	

regions	with	a	predilection	for	plaque	deposition.	Yet	despite	that	elevation,	the	

molar	ratio	of	clusterin:Aβ	is	lowest	in	those	same	regions,	which	is	likely	to	



influence	the	regional	distribution	of	Aβ	by	promoting	its	aggregation	and	

precipitation.	
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Figure	1.	Bar	charts	showing	regional	levels	of	Aβ	level	in	control	(black	bars)	

and	AD	brains	(red	bars),	in	mid-frontal	cortex	(MF),	cingulate	cortex	(CC),	

parahippocampal	cortex	(PH),	medial	parietal	cortex	(PC),	thalamus	(TH)	and	

parietal	white	matter	(WM).	Bars	indicate	the	mean	and	SEM.	*P	<	0.05	**P	<	

0.01	***P	<	0.001	****P	<	0.0001.	Lines	indicate	significant	differences	between	

regions,	in	the	controls	(black	lines)	and	AD	groups	(red	lines);	the	thickness	of	

the	line	indicates	the	significance	of	the	difference	between	the	two	regions,	

ranging	from	P	<	0.01	to	P	<	0.0001.	

	



Figure	2.	Bar	chart	showing	regional	levels	of	clusterin	level	in	control	(black	

bars)	and	AD	brains	(red	bars),	in	the	soluble	and	insoluble	brain	tissue	

fractions.	Bars	indicate	the	mean	and	SEM.	*P	<	0.05	**P	<	0.01	***P	<	0.001.	

Lines	indicate	significant	differences	between	regions,	in	the	controls	(black	

lines)	and	AD	groups	(red	lines);	the	thickness	of	the	solid	lines	indicates	the	

significance	of	the	difference	between	the	two	regions,	ranging	from	P	<	0.01	to	P	

<	0.0001.	The	interrupted	horizontal	lines	indicate	differences	significant	at	the	

P	<	0.5	level.	



	

Figure	3.	Regional	association	between	clusterin	and	insoluble	Aβ42	levels.	The	

concentration	of	clusterin	in		soluble	(A-B)	and	insoluble	(C-D)	brain	tissue	

fractions		was	plotted	against	insoluble	Aβ42	level	in	each	region	in	controls	and	

AD	cases.	The	solid	circles	and	thin	bars	indicate	the	mean	values	and	SEM	for	

clusterin	(horizontal	bars)	and	Aβ42	(vertical	bars).	The	thick	solid	and	dotted	

lines	indicate	the	best-fit	linear	regression	and	95%	confidence	intervals.	

	



Figure	4.	The	ratio	of	clusterin:insoluble	Aβ42	was	lowest	in	regions	with	a	

predilection	for	Aβ42	deposition.	The	solid	circles	and	bars	indicate	the	mean	

values	and	SEM.	

	



Figure	5.	Bar	charts	showing	clusterin	level	in	relation	to	APOE	genotype	(A-C)	

and	severity	of	CAA.	Bars	indicate	the	mean	and	SEM.	*P	<	0.05	**P	<	0.01.	

Clusterin	level	was	highest	in	APOE	ε4	homozygotes	in	MF	and	PC	and	increased	

with	severity	of	CAA.	

	



Supplementary	Figure	1.	Stacked	bar	chart	illustrating	regional	differences	in	

the	relative	contributions	of	soluble	and	insoluble	Aβ40	and	Aβ42	to	‘total’	Aβ	

load	in	AD	and	control	brains	in	MF,	CC,	PH,	PC,	TH	and	WM.	

	

	


