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ON AGMON METRICS AND EXPONENTIAL

LOCALIZATION FOR QUANTUM GRAPHS

EVANS M. HARRELL II AND ANNA V. MALTSEV

Abstract. We investigate the rate of decrease at infinity of eigenfunc-
tions of quantum graphs by using Agmon’s method to prove L2 and
L∞ bounds on the product of an eigenfunction with the exponential of
a certain metric. A generic result applicable to all graphs is that the
exponential rate of decay is controlled by an adaptation of the standard
estimates for a line, which are of classical Liouville-Green (WKB) form.
Examples reveal that this estimate can be the best possible, but that
a more rapid rate of decay is typical when the graph has additional
structure. In order to understand this fact, we present two alternative
estimates under more restrictive assumptions on the graph structure
that pertain to a more rapid decay. One of these depends on how the
eigenfunction is distributed along a particular chosen path, while the
other applies to an average of the eigenfunction over edges at a given
distance from the root point.

1. Introduction

The goal of this article is to study the rate of decrease of eigenfunctions
on infinite quantum graphs (Γ, H), as the distance (arc length along edges)
from a designated root point 0 goes to infinity. In fact our results apply
more generally to any L2 ∩AC1 solution of the eigenvalue equation

Hψ := −ψ′′ + V (x)ψ = Eψ (1)

on infinite subgraphs Γ0 ⊂ Γ, which can be disconnected from Γ by the
removal of a compact subset of the graph S, and on which the requisite
conditions are satisfied at the vertices, without regard to what happens on
other portions of the full graph Γ. (For us a subgraph Γ0 is taken to consist of
a subset V0 of the vertices V(Γ) along with a subset of edges E(Γ) connected
to vertices in V0. A compact subset is closed and contained within the
union of a finite set of vertices and edges, with finite total edge length.) For
brevity we shall refer to solutions of (1) on infinite subgraphs as exterior
eigenfunctions.

The philosophy introduced by Agmon [1] for proving exponential localiza-
tion of (exterior) eigenfunctions of equations like (−∆+V (x))ψ(x) = Eψ(x)
on Rd is to introduce an Agmon multiplier F (x) in terms of which
any solution ψ ∈ L2 on an exterior domain D must additionally satisfy
Fψ ∈ L2(D). We in fact go beyond this and show that Fψ is finite in Sobolev

norm. The canonical case is when F = eρ(0,x), or, typically, F = e(1−ε)ρ(0,x),
for an Agmon metric ρ(0,x) that tends to infinity as x → ∞. With some
further effort such integrated bounds establish exponential decrease in the

Key words and phrases. Quantum graph, Agmon metric.
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2 EVANS M. HARRELL II AND ANNA V. MALTSEV

pointwise sense. A great success of the Agmon method was to extend to the
case of PDEs some estimates which, in sharper one-dimensional versions,
date from Liouville and Green and are more widely known as the WKB ap-
proximation in semiclassical analysis. We refer to [1, 7] for a full account of
the Agmon method and to [11] for a definitive account of the Liouville-Green
approximation with rigorous error control.

Quantum graphs offer an interesting middle ground between the one-
dimensional and higher-dimensional situations, and our intent here is to
explore how the Agmon philosophy can be adapted to prove exponential
localization of eigensolutions of quantum graphs. We are unaware of previ-
ous treatments of this question, although localization on quantum graphs in
different contexts has been considered in, e.g., [5, 6] and references therein.

We recall that a quantum graph consists of a metric graph Γ for which a
one-dimensional Schrödinger operator

H = − d2

dx2
+ V (x)

is applied to functions on the edges e, and vertex conditions connecting the
values on adjacent edges are imposed. The Hamiltonian H of the quantum
graph is defined as a self-adjoint operator on

L2(Γ) := ⊕eL2(e, dx)

by extending a symmetric quadratic form initially given on the Sobolev space
H1(Γ), which is by definition the subspace of ⊕eH1(e) consisting of functions
that are continuous at the vertices, cf. [2], Definition 1.3.6. The norm on
H1(Γ) is defined by ‖φ‖2H1 =

∑
e

´
(|φ′|2 + |φ|2)dx. Following [2, 8, 9], we

shall assume a global lower bound `min to the length of the edges of Γ and
choose the potential-energy function V (x) to be continuous and to satisfy

V (x) > E > −∞ (2)

for some eigenparameter E, outside a finite part of the graph. (Throughout
this article E will be treated as a fixed parameter.) The vertex conditions
we impose will be of Kirchhoff type, viz.

Definition 1.1. For any connected subgraph Γ0 ⊂ Γ, K(Γ0) will designate
the set of functions f ∈ AC1 on all edges (considered as open sets) in Γ0,
such that at each vertex v, f is continuous, and∑

e∼v
f ′e(v

+) = 0. (3)

The notation in the summand indicates the limit along the edge e of f ′(x)as
x → v, calculated in the outgoing orientation from v. We shall dispense
with the explicit reference to Γ0 when the context is clear. We refer to the
functions in K(Γ0) as satisfying Kirchhoff conditions.

In our analysis, the edges of Γ0 will sometimes be oriented with increasing
distance from a root point 0, according to a metric ρ on the graph. This will
be termed the distance orientation according to the metric ρ. If the graph
contains cycles, the assignment of edge orientation will break down for any
edge containing a xc at the same distance from 0 by two or more distinct
paths. We refer to any xc connected to 0 by two or more distinct paths with
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the same distance ρ(xc, 0) as a cut point, and find it convenient to regard
any edge containing an interior cut point as a pair of distinct oriented edges
joined by a degree-2 vertex located at xc. In particular, in Definition 1.4
we use Euclidean distance by which we mean the Euclidean length of a
path. Furthermore, in our integrals dx e.g. in (16) and (18) the orientation
plays no role and the integrals could be taken with respect to arclength ds.
However, dx was chosen for ease of notation.

Given an edge orientation defined by a metric, the Kirchhoff condition at
a vertex v, if not also a cut point, reads∑

e∼v,ρ(e)≥v

f ′e(v
+) = f ′incoming e(v

−).

Thus each daughter edge e` spawned at v carries forward a certain fraction
of the incoming derivative

pv` := f ′e`(v
+)/f ′incoming e(v

−) (4)

with
∑

` pv` = 1. In this paper we will sometimes work with a path P from
a root to ∞. In this case, only one edge spawned at a vertex will lie on the
path P and the subscript ` can be dropped from the notation for pv` . The
quantities pv will be crucial in Theorem 1.2.

We note that the Kirchhoff conditions are analogous to classical Neumann
boundary conditions in that they are the boundary conditions associated by
the Friedrichs extension with the quadratic form (1), viz.

φ→
∑
e

ˆ
e

(
|φ′|2 + V (x)|φ|2

)
dx (5)

for φ ∈ H1(Γ) According to [9], Theorem 9, when V = 0 this extension is a
nonnegative self-adjoint operator, since the vertex operator included there
vanishes. By [12], §X.3, the same is true when we add a potential that
is bounded from below. All quantum graphs considered in this article are
defined by such Friedrichs extensions. We first prove several basic properties
of exterior eigensolutions. We show that solutions exist for general graphs in
Proposition 2.1, and we offer a partitioned uniqueness result for graphs with
additional structure in Corollary 2.2. Furthermore, in Section 4.5 we offer
an example demonstrating that such solutions are not unique in general.

Then, implementing an Agmon-style argument, we will show that L2

solutions multiplied by a certain growing function F , will still have a finite
Sobolev norm. Our key technical estimate is the following:

Proposition 1.1. Let Γ0 be a subgraph of Γ and assume that lim inf V (x, ψ)−
E > 0 on Γ0 \ S1, where S1 is compact. Suppose that ψ ∈ L2(Γ0) and that

on each edge of Γ0 \ S1, 0 < ψ ∈ AC1 and ψ
′′ ≥ (V (x, ψ) − E)ψ. Let a

function F defined on each edge be such that 0 < F ∈ AC1 and for some
δ > 0,

V (x, ψ)− E −
(
F ′

F

)2

≥ δ. (6)
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Then we have the following bound on the Sobolev norm of Fψ:

‖Fψ‖2H1(Γ0) ≤ C1

‖ψ‖2H1(S2) +
∑

v∈Γ0\S2

∑
e∈Γ0\S2,e∼v

F 2ψeψ
′
e(v+)

 , (7)

where S2 is a compact set such that S1 ⊂ S2 and S2\S1 contains no vertices,
and ψ′e(v+) indicates the outward derivative.

We caution that although Fψ has a finite Sobolev norm, we have as yet
said nothing about its continuity at the vertices, without which it may not
belong to the space H1(Γ). We shall construct three different possibilities
for F . In all of them, we ensure that the second term on the right side of
(7) vanishes. Our aim is to construct an F that grows as rapidly as possible
under the constraint (6) in order to obtain the best control on ψ.

In our first estimate, we show that exterior eigenfunctions exhibit at least
as rapid exponential decay estimates as is the case for the line. Since one
would expect, correctly, that the familiar one-dimensional Liouville-Green
expressions will play a central role in extending Agmon’s method to quan-
tum graphs, we introduce notation for the metric that corresponds to the
Liouville-Green approximation, extending the definition of the standard Ag-
mon metric to the setting of graphs in the following way:

Definition 1.2. Let the classical action metric from 0 to x be given by

ρa(y, x;E) := min
pathsP y tox

ˆ
P

(V (t)− E)
1/2
+ dt. (8)

For simplicity we usually set y = 0 for a designated root point and when
clear from the context write ρa(x;E) or ρa(x) in place of ρa(0, x;E).

Our first application of Proposition 1.1 shows that the classical action
estimate applies universally to quantum graphs as a bound on the Sobolev
norm. (In fact the improvement from an L2 estimate to a Sobolev estimate
in the following also goes through in the classical cases [1, 7], but this is not
widely remarked upon.)

Theorem 1.1. Suppose that Γ0 ⊂ Γ is a connected, infinite subgraph on
which lim inf(V (x)− E) > 0. If ψ ∈ L2(Γ) ∩ K(Γ0) satisfies

−ψ′′ + V (x)ψ = Eψ

on the edges of Γ0, then for any δ < lim inf(V − E),

eρa(x;E−δ)ψ ∈ H1(Γ0)∩L∞(Γ0). (9)

Generically this decay estimate cannot be improved. In Section 4.5, we
discuss the ladder graph which has an exterior eigenfunction that exhibits
the decay in (9). However, other examples indicate that more rapid decay is
in some circumstances typical. Our motivating example is the tree or, more
generally, a graph which is composed of a union of trees outside of a set of
compact support. The illustrative case of a regular tree with equal lengths
and equal branching numbers is treated in Section 4.1. In particular, we see
in Section 4.1 that for a regular tree the exterior eigenfunction is in L1 and
not just L2. We generalize this phenomenon in the next theorem, in which we
make the crucial assumption that the exterior eigenfunction has a negative



AGMON ON GRAPHS 5

derivative. We show in Corollary 2.1 that a graph which is a union of trees
outside of a set of compact support satisfies this assumption. We introduce
an Agmon metric adapted to a given path and a given eigenfunction, and
this new metric exceeds ρa by an additional contribution from the vertices.

Definition 1.3. Let P be a path from the root 0 to x and let ψ be an exterior
eigensolution such that ψ′ < 0. Suppose that at each vertex v ∈ P , pv as
in (4) is the fraction of the derivative continuing down edge e ∈ P that is
adjacent to the vertex v. Let the Agmon path metric ρP be given by

ρP (x,E) =

ˆ
P

(V (t)− E)
1/2
+ +

1

2

∑
{v∈P : pv>0}

δv(t) log(1/pv)

 dt, (10)

which yields an Agmon multiplier of

FP (x,E) =

 ∏
{v∈P : pv>0}

√
1

pv

 e
´
P (V (t)−E)

1/2
+ dt.

Using this new version of the Agmon metric we formulate the next theo-
rem, which captures the additional decay particular to a given path.

Theorem 1.2. Suppose that Γ0 ⊂ Γ is a connected, infinite subgraph on
which lim inf(V (x)− E) > 0 and that ψ ∈ L2(Γ) ∩ K(Γ0) satisfies

−ψ′′ + V (x)ψ = Eψ

on the edges of Γ0 and ψ′ < 0 outside of a set of compact support. Consider
any infinite path P ⊂ Γ0, on which the fraction of the derivative exiting from
a vertex v is designated pv. Then for any δ < lim inf(V −E), eρP (x,E−δ)ψ ∈
L2(P ). That is, √∏

v∈P

1

pv
eρa(x,E−δ)ψ ∈ L2(P ) ∩ L∞(P ).

At first sight the utility of this theorem could be questioned because the
information it provides about ψ seems to depend on knowing ψ. However,
we shall show in Section 4 that it is sometimes possible to determine the
fractions pv from the structure of the graph. Moreover, our final theorem,
which is a consequence of Theorem 1.2, will eliminate the use of the pvj
by averaging. Specifically, for a category of regular graphs, we shall show
that an average of an exterior eigenfunction over the edges of the same
generation always decreases more rapidly than the one-dimensional estimate
of Theorem 1.1.

Recall that a rooted tree is regular in the sense of Naimark and Solomyak
[10, 14] if the vertices and edges occur in generations at equal distances from
the root 0, and for each j = 0, 1, . . . ,

• All vertices of the j-th generation have the same branching number
bj .
• The edges emanating onward from a vertex of the j-th generation

have identical lengths.
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By convention the root 0 corresponds to j = 0.

We extend this definition to include certain graphs that may contain
cycles, and we allow non-uniformity in the potential energy in the following
definition.

Definition 1.4. Consider a rooted graph Γ with the distance orientation
with respect to Euclidean distance y. Vertices are assumed to occur on all
paths from 0 whenever y = vj, where vj is an increasing sequence with
vj+1− vj ≥ ε for some ε > 0. This implies that the edges of each generation
have identical lengths, as in the case of regular trees. In addition, at each
generation j,

• Every vertex at vj has the same ongoing branching number bj ≥ 2.
• Every vertex at vj has the same arriving branching number aj ≥ 1.

Such a metric graph will be termed a regular braided graph; the case of
a regular tree corresponds to aj = 1 for all j. We define a quantum graph
on a regular Γ with the usual Kirchhoff conditions at the vertices and refer
to it as having regular topology. On a graph of regular topology, given an
L2 eigensolution ψ, we define an averaged wave function, depending on
y ∈ R+, by

Ψ(y) :=
∑

e:∃x∈e:dist(0,x)=y

 ∏
j:vj<x

(
aj
bj

)ψe(x), (11)

We observe that
∑

e:∃x∈e:dist(0,x)=y

(∏
j:vj<y

(
aj
bj

))
= 1, thus making our use

of the term “averaged” justified. Indeed Ψ(y) is the average of ψ(x) over all
points x at a given Euclidean distance y from the root.

Theorem 1.3. Suppose that Ψ is the averaged eigenfunction on a quantum
graph with regular topology corresponding to a solution ψ of (1), for which
ψ ∈ L2(Γ) ∩ K, and that for all x such that dist(0, x) = y, V (x) ≥ Vm(y),
where lim inf(Vm(y)− E) > 0. Define

Fave(y,E) :=

 ∏
j:vj<y

√
bj
aj

 e
´ y
0

√
Vm(t)−E dt. (12)

Then for each 0 < δ < lim inf(Vm − E),

Fave(y,E − δ)Ψ ∈ H1(R+) ∩ L∞(R+).

The rest of the paper is organized as follows. In Section 2, we prove
several basic facts. We first show existence of eigensolutions in general. In
the case where the graph is a finite union of trees outside of a set of compact
support, we also prove a limited uniqueness and the crucial fact that ψ′ < 0.
In Section 3 we offer proofs of our theorems. The final section of this article
(Section 4) contains case studies of illustrative examples, including regular
trees and trees with a lesser degree of regularity involving two lengths (see
4.2). We also include a study of the ladder graph, which is not a union of
trees outside of a set of compact support, and thus provides a good testing
ground for the validity our theorems in general settings.
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2. Existence, uniqueness, and basic properties of eigensolutions

In this section we collect some useful facts about eigensolutions of quan-
tum graphs. Since we allow E to be an arbitrary real parameter, it might
be asked whether L2 solutions exist and, if so, whether they can be charac-
terized with a degree of uniqueness. We first tackle existence.

Proposition 2.1. Consider a Hamiltonian on an infinite graph Γ satisfying
the assumptions in the introduction, and fix a connected subset of positive
measure i0 ⊂ Γ. Then for any E < infΓ\i0(V ), there exists a function

ψ(x) ∈ L2(G) that satisfies

− ψ′′ + V (x)ψ = Eψ (13)

and the Kirchhoff conditions on Γ \ i0.

Proof. As shown in [9], the assumptions guarantee that the Friedrichs ex-
tension of (5) defines a nonnegative self-adjoint operator. We now perturb
this operator by adding a potential of the form

αw(x),

where w ≥ 0 is a C∞ function supported in a finite subinterval of i0 ∩ e
for some edge e (and not identically 0). We first note that that αw(x) is a
relatively form compact perturbation of H and therefore leaves its essential
spectrum unchanged, by the following fairly standard argument based on
Problem XIII.39 of [13]: It suffices to show that multiplication by w is a
compact mapping from H1(Γ) to its dual space H−1(Γ). Now, multiplication
by w is a bounded map H1(Γ)→ H1

0 (I) for some compact interval I, and the
latter space is compactly embeddable in H−1(I), which is in turn isomorphic
to a subspace of H−1(Γ). It follows that σess(H + αw) = σess(H).

Therefore, if E < 0 is in the spectrum of σess(H + αw), it is an eigen-
value of finite multiplicity ([13], §XIII.4), implying that there exists an L2

eigenfunction ψ solving

(H + αw)ψ = Eψ

on Γ. In particular (13) holds outside i0.
Now, since multiplication by w is a bounded operator, the spectrum de-

pends continuously on α ([13], §XII.2). Thus consider a normalized test
function ϕ supported in suppw and note that

〈ϕ, (H + αw)ϕ〉 = E(ϕ) + α

ˆ
i1

w|ϕ|2 dx

tends continuously to −∞ as α→ −∞. The Rayleigh-Ritz inequality states
that

inf σ(H + αw) ≤ 〈ϕ, (H + αw)ϕ〉 ,
so by continuity, for any given E < 0, there exists a value of α for which

E ∈ σ(H + αw),

which finishes the proof of existence. �

As a variant of standard fact, to be found for example in [2], we note that
exterior eigensolutions are in H1(Γ):
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Proposition 2.2. If ψ is an L2 eigensolution of (1) on a subgraph Γ0 where
V − E ≥ 0, and Γ0 can be disconnected from S := {x : V − E < 0} by the
removal of a finite number of points xk, k = 1, . . . kmax then ψ′ ∈ L2(Γ0)
and
√
V − E ψ ∈ L2(Γ0).

Proof. By integrating by parts and invoking the vertex conditions, (1) im-
plies that

ˆ
Γ0

(
|ψ′|2 + (V − E)ψ2

)
dx =

kmax∑
k=1

(±ψ(xk)ψ
′(xk)),

showing that a finite quantity is the sum of the squared norms of ψ′ and√
V − Eψ. �

In Sturmian theory, the characterization of the solution set is related to
unique continuation. In particular, if lim inf V (x) > 0, then there can only
be a finite number of nodes for any solution of −ψ′′ + V (x)ψ = Eψ on a
finite or infinite interval. In contrast, there are examples of quantum graphs
for which the zero set of an eigenfunction contains intervals or an infinite
number of discrete nodes (cf. the ladder example in Section 4.5). However,
the following proposition allows a generalization of the classical statement
about the finite number of nodes:

Proposition 2.3. Assume that a connected infinite quantum graph has a
minimal edge length and that outside a compact subset S, V (x) − E > 0.
Assume that x0 /∈ S is a boundary point of the zero set Z(ψ) := {x : ψ(x) =
0} of an exterior L2 eigenfunction ψ. (The point x0 is either an isolated node
of ψ or else a vertex that abuts an edge on which ψ vanishes identically.)
Then there are at least two oriented paths beginning at x0, along each of
which |ψ(x)| strictly increases until the path enters S.

Proof. As mentioned, x0 could either be a node in the interior of an edge
or a vertex, and if a vertex there are two possibilities, viz., it may touch an
edge on which the eigenfunction is identically zero, or else it touches at least
two other edges on which the eigenfunction is not identically zero. In any of
these cases, by the existence-uniqueness theorem for ODEs there must be at
least one edge E0 leaving x0 on which ψ′(x+

0 ) > 0, and, due to the Kirchhoff
condition, one edge where ψ′(x+

0 ) < 0. (In the case where x0 is a node we
regard it as a vertex of degree 2 and consider the edge where it is located as
two distinct edges.) We discuss only the case ψ′(x+

0 ) > 0, as the argument
for the case where ψ′(x+

0 ) < 0 is the same with a systematic sign difference.
Therefore there is an interval in E0 of the form (0, ε) in the variable which
= distance from x0, for which ψ(x) > 0 and ψ′(x) > 0. Since V − E > 0
in Sc, ψ′′ > 0, which means that ψ(x) and ψ′(x) must increase on all of
E0. Call the vertex at which E0 terminates v1. Because of the Kirchhoff
condition, there is at least one edge E1 6= E0 emanating from v1 such that
ψ′(v+) > 0. Repeating the argument, ψ(x) and ψ′(x) increase on all of E1

and on a continuing chain of edges Ek, k = 1, . . . . Recall that the length of
each edge is bounded from below. Such a chain can therefore not include an
infinite number of vertices, because in that case ψ /∈ L2(Γ). The remaining
possibility is that the chain on which ψ(x) and ψ′(x) increase enters S. �
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Corollary 2.1. If Γ has only a finite number of cycles, and ψ is an exterior
eigenfunction, then the null set Z(ψ) has at most a finite number of con-
nected components. Furthermore, there exists a compact set S such that on
Γ \ S, ψ is monotonically decreasing as a function of the distance from S.

The proof is a straightforward consequence of the observation that at most
a finite number of paths can enter S and thus only a finite number of paths
as described in Proposition 2.3 are possible given that the number of cycles
is bounded. We shall henceforth refer to such functions ψ as monotonic
exterior eigenfunctions.

It is not excluded that ψ may vanish identically on certain maximal con-
nected infinite subgraphs, but there can be at most finitely many such sub-
graphs ΓZ , and any such ΓZ connects to Γ\ΓZ at only a finite set of vertices.
Thus, for graphs with V −E > 0 and treelike structures outside a compact
set, there is no loss of generality in assuming that the exterior eigenfunctions
are positive, decreasing, and convex.

A further corollary of Proposition 2.3 is a partitioned uniqueness theorem
for L2 solutions of Hψ = Eψ on trees.

Corollary 2.2. Assume that a graph Γ contains only a finite number of
cycles and that V − E ≥ 0 outside a compact set. Then there is a (possibly
different) compact set S such that Γ \ S can be partitioned into a finite
number of maximal connected subgraphs {Tk}, intersecting only at vertices,
such that any exterior eigenfunction ψ is a linear combination of functions
supported on exactly one of the {Tk}. Moreover, the solution set supported
in each {Tk} is one-dimensional.

Proof. Suppose that there were two linearly independent L2 solutions of
the eigenvalue equation, ψ1,2, and that their supports contain an interval in
common. Since they are linearly independent, some linear combination

ψ3 = aψ1 − bψ2

must change sign on T . However, this contradicts Proposition 2.3, by which
no solution that changes signs on T can belong to L2.

�

3. Agmon estimates for quantum graphs

In this section we prove decay estimates for exterior eigenfunctions on
quantum graphs. In some regards we follow the line of reasoning laid out in
the book by Hislop and Sigal [7], which contains a treatment of the Agmon
method in the standard case. However, we not only adapt their argument
to graphs, but generalize it in some ways, in particular by providing Sobolev
estimates in addition to L2 estimates. The adaptation of Agmon’s method
to graphs begins with analogues of two simple integration-by-parts lemmas
from [7]. As a matter of convenience, we state our results in the case of real
functions defined on a quantum graph. The extension to complex solutions
is immediate, since the real and imaginary parts of a complex eigensolution
are real eigensolutions.

The first lemma, replacing [7], Lemma 3.6, is an elementary identity:
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Lemma 3.1. Suppose that φ and F > 0 are real-valued functions on the
metric graph Γ such that φ ∈ AC1 and F ∈ AC. Then for any x in an edge
of Γ,

(Fφ)′
(
φ

F

)′
= (φ′)2 −

(
F ′

F

)2

φ2. (14)

Moreover, on any subgraph Γ0 ⊂ Γ∑
e∈Γ0

ˆ
e
Fφ

(
− d2

dx2
+ V (x)− E

)
1

F
φdx = −

∑
v∈Γ0

∑
e∈Γ0,e∼v

Fφ
d

dx

[
1

F
φ

]
(v+)

+
∑
e∈Γ0

ˆ
e
|φ′|2 +

(
V − E −

∣∣∣∣F ′F
∣∣∣∣2
)
|φ|2dx.

(15)

The notation in (15) is meant to convey that the derivatives are taken in
the outward sense at the vertex.

Remark 3.1. In [7] Lemma 3.6, F is assumed to be bounded. By keeping
track of boundary terms in this lemma we are able to eliminate the need for
this assumption.

Proof. The first identity (14) is an easy calculation. The other form follows
by integration by parts, the result of which is that∑
e∈Γ0

ˆ
e

Fφ

(
− d2

dx2
+ V (x)− E

)
1

F
φdx = −

∑
e∈Γ0

Fφ
d

dx

(
1

F
φ

) ∣∣∣∣ef
ei

+
∑
e∈Γ0

ˆ
e

(
|φ′|2 +

(
V − E −

∣∣∣∣F ′

F

∣∣∣∣2
)
|φ|2

)
dx,

(16)

where ei is the initial vertex of the edge e and ef the final vertex. The depen-
dence on the edge orientation in this expression is only apparent, however:
At each vertex, all derivatives in the integrated term are summed with an
inward orientation. Thus when the integrated terms are collected at each
vertex, the result is the expression (15) which does not depend on how the
edges are oriented. �

Our second lemma replaces [7] Lemma 3.7.

Lemma 3.2. Let S1 ⊂ S2 be two compact subsets of a subgraph Γ0, such
that S2 \ S1 contains no vertices. Let η ≥ 0 be a smooth function supported
in Γ0 \ S1 such that η(x) = 1 on Γ0 \ S2. Furthermore, let ψ > 0 satisfy
ψ′′≥(V (x, ψ)− E)ψ on each edge. Then for each x ∈ Γ0 \ S1,

F 2ηψ

(
− d2

dx2
+ V (x)− E

)
ηψ ≤ C0χsupp η(x)(ψ)2(x) +G′(x), (17)

where C0 is a finite constant and G := −1
2((Fψ)2(η2)′).

Remark 3.2. The left side of (17) is the integrand in (14) after setting
φ = Fηψ, as we shall do in the proof of Proposition 1.1. Furthermore, we
note that G as above is 0 on all vertices since η is chosen in such a way that
supp η′ contains no vertices.
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Proof. Expanding the derivatives and using that ψ is a subsolution, we get
that

F 2ηψ

(
− d2

dx2
+ V (x)− E

)
ηψ = −F 2ηψ(η′′ψ + 2η′ψ′ + ηψ′′) + (V − E)(Fηψ)2(x)

≤ −F 2ηψ(η′′ψ + 2η′ψ′)

= −(Fψ)2ηη′′ − 1

2
F 2(η2)′(ψ2)′

= −(Fψ)2ηη′′ − 1

2
((Fψ)2(η2)′)′ +

1

2
(F 2(η2)′)′ψ2

= ψ2

(
1

2
(F 2(η2)′)′ − F 2ηη′′

)
− 1

2
((Fψ)2(η2)′)′.

Since the first term is supported within supp η′ and supp η′ contains no
vertices, it is dominated by C0χsupp η(x)ψ2(x) as claimed, establishing (17).

�

With these two lemmas in hand we are ready to prove our theorems,
following the philosophy of Agmon.

Proof of Proposition 1.1. We let η be a smoothed characteristic function
such that η = 0 on S1 and 1 outside S2, and set φ = Fηψ. Using (15) and
(6) we get∑
e∈Γ0

ˆ
e

F 2ηψ

(
− d2

dx2
+ V (x)− E

)
ηψ dx ≥

∑
e∈Γ0

ˆ
e

((Fηψ)′)
2

+ δ(Fηψ)2dx

=
∑
e∈Γ0

ˆ
e

η2
[
((Fψ)′)

2
+ δ(Fψ)2

]
dx+

∑
e∈Γ0

ˆ
e

(η′)2(Fψ)2 + 2ηη′((Fψ)2)′

=
∑
e∈Γ0

ˆ
e

η2
[
((Fψ)′)

2
+ δ(Fψ)2

]
dx+

∑
e∈Γ0

ˆ
e

(η′)2(Fψ)2 − (ηη′)′(Fψ)2

=
∑
e∈Γ0

ˆ
e

η2
[
((Fψ)′)

2
+ δ(Fψ)2

]
dx−

∑
e∈Γ0

ˆ
e

ηη′′(Fψ)2.

(18)

To establish an upper bound we integrate (17) over Γ0 to get∑
e∈Γ0

ˆ
e

η2
[
((Fψ)′)

2
+ δ(Fψ)2

]
dx ≤

∑
e∈Γ0

ˆ
e

ηη′′(Fψ)2 dx+C0χsupp η(x)(ψ)2(x)+G′(x).

(19)

Thus, ∑
e∈Γ0

ˆ
e
η2
[(

(Fψ)′
)2

+ (Fψ)2
]
dx ≤ C2‖ψ‖2L2(supp(η′)),

where in the last line we used that G is 0 on all vertices to handle the last
term in (19), and C2 is a constant large enough to incorporate C0, the finite
maximum value of ηη′′F 2 on the compact set supp(η′), and the effect of
making the coefficients 1 and δ uniform on the left side.

To complete the proof of Proposition 1.1 on both sides we add∑
e∈Γ0

ˆ
e
(1− η2)

[(
(Fψ)′

)2
+ (Fψ)2

]
dx,
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which is dominated by a constant times ‖ψ‖2L2(S2) + ‖ψ′‖2L2(S2), because the

support of 1− η2 is contained in the compact set S2. �

Proof of Theorem 1.1, Step 1. In Step 1 we establish the finite Sobolev norm
of F (x,E − δ)ψ(x) with F (x,E) := eρa(x,E). Since by assumption ψ is an
exterior eigenfunction and F (x,E−δ) satisfies assumption (6) of Proposition
1.1, (7) follows. Since F is continuous and ψ satisfies Kirchhoff conditions
at the vertices, the vertex contributions to (7) vanish, establishing that

eρa(x;E−δ)ψ ∈ H1(Γ0).
�

Step 2 is to show that the H1 bound that has been established above
implies a pointwise bound on Fψ. This is immediate from the following
lemma, choosing φ = Fψ.

Lemma 3.3. Suppose that φ ∈ AC1 on the edges of Γ0, and that

‖φ‖2H1 ≤ ∞.
Then φ ∈ L∞(Γ0).

Proof. Although φ is not assumed continuous at the vertices, being in H1 on
the edges implies that φ has well-defined finite limits as x tends to a vertex
along any given edge.

We now fix x0 ∈ Γ0, and choose a function χ supported in {x : dist(x, x0) ≤
`min

2 }, χ ∈ C
1 on all edges intersecting this set, and continuous and equal to

1 at x0. (The circumlocution is only necessary in case x0 is a vertex. Here
if x0 is a vertex, we interpret φ(x0) as the limiting value along any given
edge.) The function χ is to be chosen so that its C1 norm does not depend
on x0.

Because of the assumption that there is a minimum edge length, we can
write χφ(x) as the integral of its derivative over an interval, which we may
assume without loss of generality, by choosing an orientation for x, to be of

the form I =
(
x0 − `min

2 , x0

)
, finding

|φ(x0)| = |χ(x0)φ(x0)| =

∣∣∣∣∣
ˆ x0

x0−
`min

2

(χ(y)φ(y))′dy

∣∣∣∣∣
=

∣∣∣∣∣
ˆ x0

x0−
`min

2

(
χ′(y)φ(y) + χ(y)φ′(y)

)
dy

∣∣∣∣∣
≤ 1

2

ˆ x0

x0−
`min

2

(
(χ′)2(y) + (φ(y))2 + (χ(y))2 + (φ′(y))2

)
dy,

(20)

which is bounded independently of x0 by the assumptions of the lemma. �

Proof of Theorem 1.2. We again apply Proposition 1.1. The Agmon multi-
plier eρP (x,E−δ) has been chosen so that the boundary terms in (7) vanish

when Γ0 is identified with P . This establishes that eρP (x,E−δ)ψ has finite H1

norm and therefore finite L2 norm. (It fails, however, to have the continuity
necessary to belong to the space H1(P ).

The L∞ bound follows as before by an application of Lemma 3.3.
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�

We now turn to the proof of Theorem 1.3, showing that in the case of reg-
ular braided graphs, when the number of vertices in generation j increases
without bound, the exterior eigenfunctions as defined in Definition 1.4 de-
crease on average more rapidly than the one-dimensional upper bound of
Theorem 1.1. As a consequence of Proposition 2.3 we may assume that each
ψe(x) > 0, and consequently that the averaged wave function Ψ(y) > 0.

Proposition 3.1. Let ψ be an exterior eigenfunction on a regular braided
graph and suppose V (x) ≥ Vm(y) where lim inf(Vm(y) − E) > 0. Then
the averaged wave function Ψ(y), as defined in (11), enjoys the following
properties:

(1) Ψ is continuous and decreasing in magnitude.
(2) Except at the positions of the vertices y = vj, Ψ satisfies

Ψ′′ ≥ (Vm(y)− E) Ψ ≥ 0.

(3) The derivative Ψ′ is discontinuous at y = vj, decreasing in magni-
tude by a factor pj =

aj
bj

.

Proof. 1. Ψ must decrease in magnitude as a consequence of Proposition 2.3.
To see that Ψ is continuous, first, for any y ∈ Γ, define Wt :=

∏
vertices

leading to t

av
bv

,

and observe that
∑

t:dist(0,t)=yWt = 1. Since Ψ(y) =
∑

t:dist(0,t)=yWtψ(t),

each time a y passes a value vj , a contribution of
(∏

k<j
ak
bk

)∑aj
`=1 ψj−1,`(v

−)

to Ψ(y) is replaced by∏
k<j

ak
bk

 · aj
bj

bj∑
n=1

ψj,n(v+
k ) =

∏
k<j

ak
bk

 aj∑
`=1

ψj−1,`(v
−)

by the continuity of ψ.
2. This is clear by linearity.
3. When y passes a value vj , aj summands of the form ψ′e′(v

−
j ) are replaced

by
∑

e>vj

aj
bj
ψ′e(v

+
j ) =

∑
e′<vj

ψ′e(v
−
j ), according to the Kirchhoff condition.

�

Proof of Theorem 1.3. We note that the averaged wave function can be con-
sidered as an exterior eigenfunction on a path as in Theorem 1.2, where

pj =
(
aj
bj

)
. Although it is possible that some of the pj > 1, this does not

affect the proof of the theorem, and convergence is not at issue, because of
the following argument:

The number of vertices at the j-th generation is
∏
`≤j

(
bj
aj

)
, which shows

that the factor
∏
`≤j

(
aj
bj

)
≤ 1 and implies that if the number of vertices at

the j-th generation is bounded below by a function of j that tends mono-
tonically to +∞, the Agmon multiplier for Ψ is exponentially smaller than
e−ρa(x).
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Thus Theorem 1.3 is a special case of Theorem 1.2. Since Ψ is continuous
at the vertices as observed in Proposition 3.1, we know that Fave(y,E−δ)Ψ ∈
H1 and not merely in L2 with finite H1 norm. �

4. Case studies

In this section we develop several illuminating examples. We begin by
reviewing the case of the most regular tree.

4.1. The regular tree with equal lengths L and branching numbers
b. We consider a tree rooted at v0 which starts with one edge and splits
into b edges at each vertex henceforth. We are able to construct an explicit
exterior eigenfunction on such a tree.

We will work with transfer matrices. Suppose edge ej and ej+1 are adja-
cent at a vertex v. If ψ1, ψ2 is a basis of the solution space and on an edge
ej the solution is Ajψ1 + Bjψ2 and the solution on edge ej+1 is given by
Aj+1ψ1 +Bj+1ψ2. Then a transfer matrix T is a matrix such that

(Aj+1 Bj+1)t = T (Aj Bj)
t.

We will usually take (ψ1(x), ψ2(x)) = (cosh(kx), sinh(kx)) on an edge with

k =
√
E.

We take the transfer matrix at each vertex to be

T =

(
cosh kL sinh kL

1
b sinh kL 1

b cosh kL

)
(21)

Since all the transfer matrices are equal by construction, it suffices for the
purpose of characterizing the L2 eigenfunction to find the eigenvalues of
T . Since detT = 1/b and trT =

(
1 + 1

b

)
cosh kL > 2/

√
b both eigenvalues

are real. Then solving for the eigenvector will give us the initial conditions
that yield the decay corresponding to λn1 where λ1 is the smaller of the two
eigenvalues and n is the number of vertices away from the root. We want to
compare how the decay on the tree compares to the decay on the line.

The eigenvalue λ1 is given by

λ1 =

(
1

2
+

1

2b

)
cosh kL−

√((
1

2
+

1

2b

)
cosh kL

)2

− 1/b

=
1(

b
2 + 1

2

)
cosh kL+

√((
b
2 + 1

2

)
cosh kL

)2 − b
<

1

b cosh kl

(22)

where the last inequality follows from the fact that((
b

2
+

1

2

)
cosh kL

)2

− b >
((

b

2
− 1

2

)
cosh kL

)2

.

This implies that the solution we have constructed is in L2 for the tree sinceˆ
Γ
|φ|2 = C

∑
n

bnλ2n
1 .

If λ1 < α/
√
b for α < 1 then the above sum converges.
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To compare this to the case of the line, we immediately see that the factor
of 1

bn makes the pointwise decay faster than the case of the line, where the

decay is just e−kx. On the other hand, if a solution is to be in L2 for a
tree the 1/

√
b factor is required for convergence. However, we have a factor

of 1/b instead, which means that even if we consider partial integrals, the
decay on the tree will be faster than on the line.

4.2. The 2-lengths tree. In this subsection we find an exterior eigenfunc-
tion for a certain tree, which is more sophisticated than the regular tree but
still can be solved explicitly and exhibits more rapid decrease of than the
general result with the classical action. The key to this and other examples
is that if one approaches exponential decay through transfer matrices, and
parameters can be adjusted so that all the matrices in a product share a
common eigenvector, then the the growth properties of the full solution built
upon that eigenvector will be determined by the product of the associated
eigenvalues of the transfer matrices.

Definition 4.1. Let the 2-lengths tree be a rooted tree which at each vertex
splits into two edges with lengths L1 and L2.

When L1 = L2, we recover the regular tree with branching number 2.
Similar to the regular tree, the transfer matrix at a vertex v assuming that
the edge terminating at v has length Lj will be

Tj =

(
cosh kLj sinh kLj
pj sinh kLj pjcosh kLj

)
(23)

We will seek weights for the derivative fraction p1, p2 at the vertex v, so that
the eigenvector corresponding to the smaller eigenvalue of T1 is the same as
the eigenvector corresponding to the smaller eigenvalue of T2.

We introduce the following notation. Let cj = cosh kLj , sj = sinh kLj , λ
be the smaller eigenvalue of T1, µ be the smaller eigenvalue of T2, and (1, w)
be the eigenvector common to T1 and T2 associated to λ and µ respectively.
Then from the eigenvalue equations we get that

λ =
1

2

(
c1 + p1c1 −

√
(c1 + p1c1)2 − 4p1

)
µ =

1

2

(
c2 + (1− p1)c2 −

√
(c2 + (1− p1)c2)2 − 4(1− p1)

)
.

From the two eigenvector equations we get that

w =
λ− c1

s1
=
µ− c2

s2
.

Putting these together we obtain the following equation for p1:

p1c1 − c1 −
√

(c1 + p1c1)2 − 4p1

2s1
=

(1− p1)c2 − c2 −
√

(c2 + (1− p1)c2)2 − 4(1− p1)

2s2
.

(24)
We will consider the two sides of the above equation separately and look for
an intersection point in (0, 1). We notice that when p1 = 0 the left side is
−c1/s1 < −1 and the right side is

−
√
c2

2 − 1

s2
= −1,
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while symmetrically the right is −1 at p1 = 1 and −c2/s2 < −1 for p1 = 0
which implies by the intermediate-value theorem that there is an intersection
point, yielding a solution for some value of p1 ∈ (0, 1).

4.3. A regular tree in the sense of Naimark and Solomyak. Consider
next a tree with equal lengths and branching numbers at each generation
as in Definition 1.4. Let bn be the branching number at generation n. It is
clear by the uniqueness of the exterior eigenfunction that at each vertex for
j between 0 and bn, pj = 1/bn. Suppose that ψ is an exterior eigenfunction
and at some generation for some j0, pj0 6= 1/bn. Then there exists j1 such
that pj0 6= pj1 . However the tree is self-similar under permutation of the
branches, so a composition of ψ with the isometry that maps j0th branch
to the j1th branch will yield a second distinct eigenfunction, which would
be a contradiction. From this we have a complete characterization of the
eigenfunction, and thus by Theorem 1.2 and Corollary 2.2 we obtain that
for any directed path P which includes n vertices

ψ(x) ≤ Ce(1−δ)ρa(x)
n∏
k=1

1√
bk
.

4.4. The millipede. Consider a graph consisting of the half axis [0,∞)
with additional half axes attached at each even integer position. On the
main half-axis, called the “body,” we posit V (x) = 0, whereas on each
“leg” of the millipede emanating from position x = k we posit a potential
V (x) = −1 + δ2 for δ > 0. The position 0 on each leg corresponds to the
vertex. We set E = −1 so that the eigenfunction satisfies ψ′′ = ψ on the
body between integer vertices. On the legs it satisfies ψ′′ = δ2ψ. The L2

solutions are thus proportional to e−δx on the legs, and the solutions on
the body are determined by a transfer matrix which, after an elementary
calculation, has the form(

cosh 2 sinh 2
sinh 2 + δ cosh 2 cosh 2 + δ sinh 2

)
.

The smaller eigenvalue of the transfer matrix is

cosh 2 +
δ sinh 2

2
−

√(
cosh 2 +

δ sinh 2

2

)2

− 1 = e−2

(
1− δ

2

)
+ 0(δ2)

= e−2− δ
2

+0(δ2). (25)

This implies that the L2 solution along the body is of the form e(−1− δ
4

+0(δ2))x

times a periodic function.

4.5. The ladder. In closing we present an analysis of a “ladder” graph (see
Figure 1), which fits within the analysis of the generic Theorem 1.1, but not
some of the other results, being infinitely multiply connected. In particular,
partitioned uniqueness (Corollary 2.2) no longer applies. Here we construct
two possible eigensolutions.
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Figure 1. The Ladder Graph

4.5.1. Symmetric: Let us take two copies of the half-line with a decaying
solution. Then let us connect them at the integers with edges (rungs of
the ladder) on which the solution is a constant. The result is indeed an
eigensolution with the Kirchoff boundary condition at the vertices and it
decays exactly at the same rate as solutions on the half-line.

4.5.2. Antisymmetric: One can construct a different solution on the ladder
that decays faster than the above. The ladder is symmetric under reflection
across a line connecting the midpoints of the rungs (the axis of symmetry
is as marked in Figure 1). We assume that the rungs have length w and
are located at the integers. We want to construct an exterior eigenfunction
which is odd under this reflection. We assume work with V = 0 and E = −1.
This yields that if we parametrize each rung by t with t = 0 in the middle,
then the solution on the rung should be sinh t so that it is 0 at 0. Choosing
a path along the bottom of the ladder, we compute the transfer matrix to
be

T =

(
cosh 1 sinh 1

sinh 1 + cosh 1 coth w
2 cosh 1 + sinh 1 coth w

2

)
.

We find that detT = 1 and trT = 2 cosh 1 + γ where γ = coth w
2 sinh 1 ∈

(sinh 1,∞). The characteristic equation is

λ2 − trTλ+ 1 = 0.

If we let trT = t be a parameter and differentiate the characteristic
equation in t we get

2λλ′ − tλ′ − λ = 0

yielding that

λ′ =
λ

2(λ− trT/2)

which is negative for λ− since λ− < trT/2. This shows that λ− is monoton-
ically decreasing in γ. One can see that limγ→∞ λ− = 0 and γ = 0 if and
only if λ− = e−1 (the 1D value). Therefore, λ− < e−1 and thus the solution

satisfies a bound of the form ge−| lnλ−|x where g is periodic and | lnλ−| > 1.
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