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ERGODIC THEORY AND DIOPHANTINE APPROXIMATION FOR

TRANSLATION SURFACES AND LINEAR FORMS

JAYADEV ATHREYA, ANDREW PARRISH, AND JIMMY TSENG

Abstract. We derive results on the distribution of directions of saddle connections on translation
surfaces using only the Birkho↵ ergodic theorem applied to the geodesic flow on the moduli space of
translation surfaces. Our techniques, together with an approximation argument, also give an alternative
proof of a weak version of a classical theorem in multi-dimensional Diophantine approximation due to
W. Schmidt [24, 25]. The approximation argument allows us to deduce the Birkho↵ genericity of almost
all lattices in a certain submanifold of the space of unimodular lattices from the Birkho↵ genericity of
almost all lattices in the whole space and similarly for the space of a�ne unimodular lattices.

1. Introduction

In this paper, we study translation surfaces, linear and a�ne forms, toral translations, and unimodular
lattices of Rd using a few simple tools from ergodic theory. This provides a unified and simplified viewpoint
and allows us to derive new results and explain classical ones.

1.1. Translation Surfaces. A translation surface is a pair (M,!), where M is a Riemann surface and !
is a holomorphic 1-form. We refer the reader to Zorich [33] for an excellent survey on translation surfaces.
Often, we will use simply ! to refer to a translation surface. A saddle connection on a translation surface
! is a geodesic � (in the flat metric induced by !) connecting two zeros of ! (with none in its interior).
Moreover, to each saddle connection �, one can associate a holonomy vector v� =

R

� ! 2 C.
The set of holonomy vectors ⇤! := ⇤sc(!) is a discrete subset of C ⇠= R2. Saddle connections arise

naturally as special trajectories for billiards in rational-angled polygons; see, for example, [22]. As an
example, given a unimodular lattice ⇤ ⇢ C, the associated flat torus C/⇤ is a translation surface, and,
‘marking’ the point 0 as a zero of !, the set of saddle connections corresponds to the set of primitive
vectors in ⇤, that is, the set of vectors in ⇤ which are not nontrivial multiples of other vectors in ⇤.

Understanding the geometry of the set ⇤! has been one of the central themes in the study of trans-
lation surfaces. Masur [21], Veech [31] and Eskin-Masur [9] proved seminal counting results, showing,
respectively, that

N(!, R) := #(⇤! \B(0, R))

has upper and lower quadratic upper bounds, quadratic asymptotics on average, and quadratic asymp-
totics for almost every translation surface. Recently, Eskin-Mirzakhani-Mohammadi [10] showed that
weak quadratic asymptotics hold for every point.

The results of Eskin-Masur [9] also imply that the directions of saddle connection vectors equidistribute
on S

1 for almost every surface. The fine-scale distribution has been studied in terms of the gap distribution
by Athreya-Chaika [1], Athreya-Chaika-Lelievre [2], and Uyanik-Work [29]. In this paper, we study a
counting problem related to the fine-scale distribution properties of ⇤!, by counting the saddle connections
which approximate the vertical to a prescribed degree. Given a translation surface !, T > 1, and b > 0,
let

Rb,T (!) = # {(x, y) 2 ⇤! : |xy|  b and 1  y < T}
denote the function which counts the number of saddle connections in a thinning (hyperbolic) region
around the y-axis.
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J.T. acknowledges the research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 291147 and acknowledges
support by the Heilbronn Institute for Mathematical Research.
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Theorem 1.1. Let µ be an ergodic SL(2,R)-invariant measure on a stratum H of translation surfaces.
There is a constant C = C(µ) (known as the Siegel-Veech constant of µ) such that for each b > 0 and
µ-a.e. !, we have

lim
T!1

Rb,T (!)

2bC log T
= 1.

In particular, there is a natural absolutely continuous invariant measure µMV on each stratumH known
as the Masur-Veech measure (for which the action of SL(2,R) was shown to be ergodic independently by
Masur [20] and Veech [30]), and this theorem applies to µMV -a.e. ! 2 H.

1.1.1. Ergodic Theory, Counting, and Approximation. The proof of Theorem 1.1 relies on ergodic theory
on the moduli space of translation surfaces. The idea to use ergodic theory applied to counting problems
in this context comes from work of Veech [31] and Eskin-Masur [9] and was inspired by the work on the
Quantitative Oppenheim conjecture by Eskin-Margulis-Mozes [8], which used ergodic theory on homoge-
neous spaces. These results rely on sophisticated equidistribution theorems, and a large motivation for
this paper is to show how even the original (Birkho↵) ergodic theorem can yield interesting geometric
information when applied in these contexts.

Furthermore, Theorem 1.1 gives, for translation surfaces, an analog of a weak form of Schmidt’s
theorem (see Section 1.2), highlighting the well-known connections between translation surfaces and
Diophantine approximation. Our techniques, in fact, give an alternate proof of this weak form of Schmidt’s
results for a special but important case, which, along with the overall strategy of our proofs, we describe
below. Also, one can apply some of these techniques to the study of the distribution of directions of
lattice vectors that arise in Diophantine approximation as done in [3, 4].

1.2. Diophantine Approximation. Suppose  i(n) : N ! R, 1  i  k are non-negative functions and

that  (n) =
Qk

i=1

 i(n) is monotonically decreasing. In 1926, A. Khintchine showed that

Theorem ([12]). If
P1

n=1

 (n) diverges, then there are infinitely many solutions (n, p
1

, ..., pk) to the
system of inequalities

|xin� pi|   i(n),

for a.e. (x
1

, · · · , xk) =: x 2 Rk. If
P1

n=1

 (n) converges, then there are at most finitely many solutions
for a.e. x 2 Rk.

This statement was later refined by W. Schmidt, who showed in [24] (see also [25] for both linear and
a�ne forms as well as certain polynomials) that the number of solutions of the system of inequalities,

|xin� pi|   i(n),

with 1  n  h is on the order of
Ph

n=1

 (n) while also giving an estimate on the size of the error term.
To illustrate the flexibility of our techniques, we show how to give an alternative proof of a weak form

of Schmidt’s theorem, namely asymptotics for counting the number of solutions without the error term,
for the functions,

 i(n) :=
1

n

1/k
,

using only the Siegel mean value theorem, the Birkho↵ ergodic theorem, and an approximation argu-
ment. These functions occur naturally in questions of Diophantine approximation, and we note that the
divergence case of Schmidt’s theorem applies to them. Given x 2 Rk, T > 1, let N(x, T ) denote the
number of solutions (n,p) 2 Z⇥ Zk =: Zk+1 of the system of inequalities

knx� pk  1

|n|1/k
with 1  |n| < T . Here and below, let k · k denote the Euclidean norm (this is not crucial for our results,
but helps to streamline our statements). Let Bk denote the volume of the unit k-ball.

Theorem 1.2. For a.e. x 2 Rk,

lim
T!1

N(x, T )

2Bk log T
= 1.

While this statement is weaker than Schmidt’s theorem, the proof given below relies only on the ergodicity
of a certain flow on the space of unimodular lattices.
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1.2.1. Homogeneous linear forms. In fact, Schmidt stated his result in terms of linear forms, and our
results also apply in this setting. Let A 2 Mm⇥n(R) be an m⇥ n matrix, which we view as a system of
m linear forms in n variables. A classical Diophantine question is to find approximate integral solutions
to the equation Ay = x, y 2 Rn

,x 2 Rm. In this context, a classical theorem of Dirichlet implies that,
for every A, there are infinitely many solutions p 2 Zm

,q 2 Zn\{0} to the inequality

kAq� pk  kqk� n
m

where  is a constant depending only on m and n. (If we replace the Euclidean norm k · k by the sup
norm, then we may take  to be 1.) Let b > 0,

N(A, b, T ) := #
�

(p,q) 2 Zm ⇥ Zn : kAq� pk  bkqk� n
m
, 1  kqk < T

 

,

Ck denote the surface area of the unit sphere Sk�1 ⇢ Rk (e.g., C
1

= 2, C
2

= 2⇡, C
3

= 4⇡), and recall that
Bk denotes the volume of the unit k-ball. Theorem 1.2 is, in fact, a special case (m = k, n = 1, b = 1) of

Theorem 1.3. For each b > 0 and a.e. A 2 Mm⇥n(R), we have that

lim
T!1

N(A, b, T )

b

m
BmCn log T

= 1.

1.2.2. Inhomogeneous linear forms. We can also consider a system of inhomogeneous linear forms or,
alternatively, a�ne forms: given A 2 Mm⇥n(R) and w 2 Rm, we want to approximate integral solutions
(p,q) to the equation Aq = p+w. For b > 0, define

N(A,w, b, T ) := #
�

(p,q) 2 Zm ⇥ Zn : kAq� p�wk  bkqk� n
m
, 1  kqk < T

 

.

Theorem 1.4. For each b > 0 and a.e. (A,w) 2 Mm⇥n(R)⇥ Rm, we have that

lim
T!1

N(A,w, b, T )

b

m
BmCn log T

= 1.

1.3. Lattices. Dynamics on the space of unimodular lattices and Diophantine approximation are strongly
linked (see [14] for an introduction and Section 4 for an instance of this link). We have results for lattices
which are the analogs of our results for linear and a�ne forms. Let m,n � 1, d = m+ n, and ⇤ ⇢ Rd be
a unimodular lattice, that is, a discrete subgroup of covolume 1 (see Section 2). Viewing

Rd := Rm ⇥ Rn
,

we write elements as v = (x,y),x 2 Rm
,y 2 Rn. By an abuse of notation, we think of all of these as

column vectors. Given b > 0, define

Rb,T (⇤) := # {(x,y) 2 ⇤ : kxkmkykn  b, 1  kyk < T} .
Theorem 1.5. For each b > 0 and a.e. unimodular lattice ⇤ ⇢ Rd (with respect to the Haar measure on
the space of unimodular lattices), we have that

lim
T!1

Rb,T (⇤)

bBmCn log T
= 1.

We also record a statement on a�ne unimodular lattices: an a�ne unimodular lattice ⇤+ v in Rd is
a translate of a unimodular lattice ⇤ ⇢ Rd by a vector v 2 Rd

/⇤. We define Rb,T (⇤+ v) as above.

Theorem 1.6. For each b > 0 and a.e. a�ne unimodular lattice ⇤+ v ⇢ Rd (with respect to the Haar
measure on the space of a�ne unimodular lattices), we have that

lim
T!1

Rb,T (⇤+ v)

bBmCn log T
= 1.

A direct computation shows that bBmCn log T is the d-dimensional volume of the region

Rb,T :=
�

(x,y) 2 Rd : kxkmkykn  b, 1  kyk < T

 

where we are counting lattice points.
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1.4. Toral Translations. Our results for forms can also be interpreted in terms of shrinking target
properties (or logarithm laws) for toral translations. Fix m � 1, and ↵ 2 Tm := Rm

/Zm. We consider
the dynamical system generated by translation by ↵, that is, the map T↵ : Tm ! Tm, where

T↵x = ↵+ x.

Let kxkZ = min{kx� pk : p 2 Zm}. For b > 0, we define

Sb,N (↵) := #
n

1  q  N : kq↵kZ < bq

�1/m
o

= #
n

1  q  N : T q
↵(0) 2 B(0, bq�1/m)

o

.

where B(0, r) denotes a k · kZ-ball in Tm of radius r > 0. Similarly, given v 2 Tm, we define

Sb,N (↵,v) := #
n

1  q  N : kq↵� vkZ < bq

�1/m
o

= #
n

1  q  N : T q
↵(0) 2 B(v, bq�1/m)

o

.

As above, let Bm be the volume of the unit k · k-ball in Rm.

Corollary 1.7. For each b > 0 and a.e. ↵, we have that

lim
N!1

Sb,N (↵)

b

m
Bm logN

= 1

and, for each b > 0, a.e. ↵, and a.e. v 2 Tm, we have that

lim
N!1

Sb,N (↵,v)

b

m
Bm logN

= 1.

Proof. The first equality follows by setting n = 1 in Theorem 1.3 and counting over 1  q  N instead
of over 1  |q|  N (and, thus, counting exactly half as many). Likewise, the second equality follows by
setting n = 1 in Theorem 1.4 and counting over 1  q  N instead of over 1  |q|  N . ⇤

Corollary 1.7 can be regarded as a strengthening of the logarithm law for toral translations (see [27,
Eqns. (5.1) and (5.2)]). For m = 1, there is, in addition, a logarithm law for circle rotations for any
irrational ↵ [27, Corollary 1.7], which follows from a certain shrinking target property (see [27, Section 1.3]
for more details).

1.5. Badly approximable forms and bounded geodesics. Finally, we note that our results for forms,
lattices, toral translations, and translation surfaces for the stratum of the flat torus cannot be improved
from almost every to every because of the existence of badly approximable systems of a�ne forms [7,
Theorems 1.1 and 1.4] (see also [13] and [28]). For general strata, the existence of bounded geodesics [15,
Theorem 1.2] (see also [5, Theorem 1.3]) shows such improvement cannot occur.

1.6. Strategy of Proof. There is a common strategy of proof for Theorems 1.1, 1.5, and 1.6. Namely,
we express the quantities RT as Birkho↵ averages of an appropriate ergodic transformation on a moduli
space and apply the Birkho↵ ergodic theorem. The limiting integrals on moduli space can be computed
by an application of a Siegel (or Siegel-Veech) formula, allowing us to reduce the problem to a volume
computation on Euclidean space. These ideas, along with an appropriate parametrization of SL(d,R)
and an approximation argument which allows us to reduce results about unimodular lattices to number
theory, appear again in Theorems 1.3 and 1.4.

2. The space of unimodular lattices

Given a unimodular lattice ⇤ ⇢ Rd, we can write ⇤ = gZd, where g 2 SL(d,R) is well-defined up to
multiplication on the right by elements of SL(d,Z). That is, we can identify the space of unimodular
lattices with the homogeneous space Xd := SL(d,R)/ SL(d,Z). It is well-known that SL(d,Z) is a lattice
in the unimodular group SL(d,R), and, consequently, the measure, with respect to a Haar measure, of
any fundamental domain is the same positive finite value. Since a Haar measure is unique up to a scalar,
we may choose the scalar so that the resulting Haar measure of any fundamental domain is unit. We
will use the notation µ = µd for this Haar measure on SL(d,R) and for its induced measure on Xd. For
clarity, note that we have µd(Xd) = 1.

4



2.1. Mean value formulas. A key ingredient of our proof is the computation of the average number
(with respect to µd) of lattice points in a given subset of Rd. This is known as the Siegel mean value
theorem, a central result in the geometry of numbers:

Theorem 2.1 (Siegel’s formula, [26, 16]). Let f 2 L

1(Rd
,�) where � is the Lebesgue measure on Rd.

Define a function b

f on Xd by
b

f(⇤) :=
X

x2⇤\{0}
f(x).

Then

(2.1)

Z

Xd

b

f dµ =

Z

Rd

f d�.

Note that, if two functions di↵er in value on a null set, (2.1) still holds, so there is no need to distinguish
between functions that di↵er on null sets.

The space of a�ne unimodular lattices Yd can be identified with the space

SL(d,R)n Rd
�

SL(d,Z)n Zd
.

In other words, it is a fiber bundle over Xd with (compact) fiber over a unimodular lattice ⇤ given by
the torus Rd

/⇤. It has a natural probability measure ⌫ = ⌫d. As above, given f 2 L

1(Rd
,�), define a

function f̃ on Yd by

f̃(⇤+ v) :=
X

x2⇤+v

f(x).

As above, we have
Z

Yd

f̃ d⌫ =

Z

Rd

f d�,

which is Siegel’s formula for a�ne unimodular lattices; for a proof, see [19, Corollary 5.2].

2.1.1. Primitive Vectors. There is also a version of Siegel’s formula for the transform associated to sum-
ming over the set of primitive vectors (vectors which are not non-trivial multiples of other vectors in
the lattice or, equivalently, are visible from the origin), which has an extra factor 1

⇣(d) on the right hand

side (this is the proportion of primitive vectors), and we can obtain analogous results to Theorem 1.5 for
primitive vectors with a corresponding factor of 1/⇣(d).

2.2. Diagonal Flows. Given m,n � 1, let

gt :=

✓

e

n
m t

Im 0
0 e

�t
In

◆

,

where Im and In denote the m⇥m and n⇥ n identity matrices, respectively.
The one-parameter group {gt}t2R acts on the spaces Xd and Yd by left multiplication (equivalently,

by the linear action on the lattices viewed as subsets of Rd). Given b > 0, let fb be the indicator function
of the set

Rb :=
�

(x,y) 2 Rd : kxkmkykn  b, 1  kyk < 2
 

.

Note that

g� log 2

Rb =
�

(x,y) 2 Rd : kxkmkykn  b, 2  kyk < 4
 

;

again, we are thinking of these elements of Rd as column vectors. Let ⇤ be a unimodular lattice and v
be an element in Rd. The key observation in the proof of Theorem 1.5 is

(2.2) Rb,2k(⇤) =
k�1

X

i=0

b

fb(g
i
log 2

⇤)

and in Theorem 1.6 is

(2.3) Rb,2k(⇤+ v) =
k�1

X

i=0

f̃b(g
i
log 2

(⇤+ v)).
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2.3. Ergodicity. The key fact that we use follows from the Moore ergodicity theorem and its general-
ization to the space of a�ne unimodular lattices:

Theorem ([23]). The action of {gt} on Xd (and Yd) is ergodic with respect to the Haar measure. In
particular, the transformation g

log 2

is ergodic.

For a proof in the case of Yd, see [13, Lemma 4.2]. Note that, by Siegel’s formula above, bf 2 L

1(Xd, µ)
and f̃ 2 L

1(Yd, ⌫), which allow us to apply the Birkho↵ Ergodic Theorem (see, for example, Walters [32]):

Theorem (Birkho↵ ergodic theorem). Let T be an ergodic measure-preserving transformation of a prob-
ability space(X,µ), and let f 2 L

1(X,µ). Then, for almost every x 2 X, we have that

lim
N!1

1

N

N�1

X

i=0

f(T i
x) =

Z

X
fdµ.

2.4. Proof of Theorems 1.5 and 1.6. Applying the Birkho↵ ergodic theorem to the expressions (2.2)
and (2.3) and using Siegel’s formula and our volume computation from Section 1.3, we obtain, for almost
every ⇤ 2 Xd,

(2.4) lim
k!1

1

k

Rb,2k(⇤) = lim
k!1

1

k

k�1

X

i=0

b

fb(g
i
log 2

⇤) =

Z

Xd

b

fbdµ = �(Rb) = bBmCn log 2

and, for almost every (⇤+ v) 2 Yd,

(2.5) lim
k!1

1

k

Rb,2k(⇤+ v) = lim
k!1

1

k

k�1

X

i=0

f̃b(g
i
log 2

(⇤+ v)) =

Z

Yd

f̃bd⌫ = �(Rb) = bBmCn log 2.

Note that, if F : [0,1) ! [0,1) is an increasing function and F (2

k
)

k ! log 2, then

lim
T!1

F (T )

log T
= 1,(2.6)

which applied to (2.4) and (2.5) yields Theorems 1.5 and 1.6, respectively. ⇤

3. Translation Surfaces

We now apply our technique to translation surfaces, giving a proof of Theorem 1.1. While above we
appeal to the Siegel formula, in the setting of translation surfaces, we use the Siegel-Veech formula.

Theorem 3.1 (Siegel-Veech formula, [11], pg. 584). Let f be a continuous function of compact support

on R2. Define b

f , a function on the stratum H, by

b

f(!) :=
X

v2⇤!

f(v);

here ⇤! refers to the set of holonomy vectors on the translation surface !. Let µ be a SL(2,R)-invariant
measure on the stratum H. Then there exists C = C(µ) such that

(3.1)

Z

H
b

f(!) dµ(!) = C

Z

R2

f d�,

where � is the Lebesgue measure on R2.

Proof of Theorem 1.1: Let

Ri :=
�

(x, y) 2 R2 : |xy|  b and 2i�1  y < 2i
 

for i = 1, . . ., and define

gt :=

✓

e

t 0
0 e

�t

◆

.

Noting that g� log 2

Ri = Ri+1

, we have that

Rb,2k(!) =
k�1

X

i=0

#(Ri \ ⇤!) =
k�1

X

i=0

#(R
1

\ g

i
log 2

⇤!) =
k�1

X

i=0

R1(g
i
log 2

⇤!).
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By assumption, µ is an ergodic invariant measure for the action of g
log 2

on H; by the Birkho↵ ergodic
theorem, the Siegel-Veech formula, and our volume computation from Section 1.3, we have that

lim
k!1

Rb,2k(!)

k

=

Z

H
bR1 dµ = C�(R

1

) = 2bC log 2.

Here C = C(µ). Note that, to apply the Siegel-Veech formula for the indicator function R1 , we proceed
as follows. Taking an outer approximation given by a tessellation of small closed squares, using the
Urysohn lemma, and using the Siegel-Veech formula for continuous functions of compact support, derive
an upper bound. Similarly, for an inner approximation of small open squares, derive a lower bound.
Taking the limit, the desired relation (3.1) holds. Applying (2.6) to F (t) := Rb,t(!) yields the desired
result. ⇤

4. Applications

In this section, we show how to apply the arguments from Section 2 to obtain Theorems 1.3 and
1.4. (Note that Theorem 1.2 follows immediately from Theorem 1.3.) The main technique here is an
approximation argument which may have further applicability to other questions arising from the interface
of dynamics on the space of unimodular lattices and Diophantine approximation. Let

� := SL(d,Z).

4.1. Proof of Theorem 1.3. Recall that a unimodular lattice ⇤ ⇢ Rd can be written as ⇤ = gZd, where
g 2 SL(d,R) is well-defined up to multiplication on the right by elements of �. Consequently, ⇤ can be
expressed as g� when it is regarded as an element in Xd, and, moreover, there is a bijection between the
set of unimodular lattices in Rd and Xd. Given a matrix A 2 Mm⇥n(R), form the associated matrix

hA :=

✓

Im �A

0 In

◆

.

Setting ⇤A := hAZd, a direct calculation shows that we have, for eb > 0 and T > 1,

N(A,

e

b, T ) = Rebm,T (⇤A).(4.1)

We also have that, as t ! +1,

g�thAgt ! Id.

In fact, the set

N := {hA : A 2 Mm⇥n(R)}
forms the expanding horospherical subgroup for {gt}t�0

, and it has a Haar measure, which we denote by
d�.

Recall the definition of µ := µd. Define the open set

M :=

⇢✓

B A

C D

◆

2 SL(d,R) : B 2 GL(m,R), A 2 Mm⇥n(R), C 2 Mn⇥m(R), D 2 Mn⇥n(R)
�

,

and we note that the set SL(d,R)\M is µ-null. Restricting the set M to only those elements for which A

equals the m⇥ n matrix with all zero entries, a matrix which we denote by 0, we obtain

H :=

⇢✓

B 0
C D

◆

2 SL(d,R) : B 2 GL(m,R), C 2 Mn⇥m(R), D 2 GL(n,R)
�

,

which, by direct computation, is a subgroup of SL(d,R). Let dµH denote a left Haar measure on H.
We now give a parametrization of M, which is, essentially, the parametrization given by J. Marklof

in [18, Section 3] (see also (2.11) in S. G. Dani’s paper [6]).

Lemma 4.1. Any element of M can be uniquely expressed as
✓

B 0
C D

◆

hA

for some A 2 Mm⇥n(R), B 2 GL(m,R), C 2 Mn⇥m(R), and D 2 GL(n,R).
7



Proof. Let
✓

� ↵

� �

◆

2 M.

Then setting B = �, C = �, A = ���1

↵, and D = � � ��

�1

↵ yields the decomposition. Since the
determinant of

✓

B 0
C D

◆

is 1, D is invertible. This shows that every element of M can be expressed as desired.
If an element of M has two decompositions, then we have

✓

B

0 0
C

0
D

0

◆�1

✓

B 0
C D

◆

= hA0
h�A.

Multiplying out the matrices shows that A = A

0, B = B

0, C = C

0, and D = D

0. This gives the desired
uniqueness.

⇤
Using the parametrization given by Lemma 4.1, we have that a Haar measure on SL(d,R) is given by

dµH d�,

which, thus, must be a constant multiple of dµ. By normalizing dµH appropriately, we may assume that
the constant is 1.

Given a subset B ⇢ SL(d,R), define the subset of Xd:

B/� := {g� : g 2 B}.
Now consider the following submanifold of M/� ⇢ Xd:

W := {hA� : A 2 Mm⇥n(R)} .
We call a unimodular lattice ⇤ Birkho↵ generic (for the action of g

log 2

with respect to the function b

fb) if

lim
j!1

1

j

j�1

X

i=0

b

fb(g
i
log 2

⇤) =

Z

Xd

b

fbdµ.(4.2)

holds. By the ergodicity of g� log 2

and the Birkho↵ ergodic theorem, (4.2) holds for µ-almost every ⇤.
To obtain our desired result, we now use an approximation argument to show that almost every lattice

in the submanifold W is Birkho↵ generic. The key di�culty, which we overcome with the proof we now
give, is that the functions b

fb are unbounded. Recall that SL(d,R) has a right SL(d,R)-invariant metric,
using which it follows that the right action of elements of � are by isometries. Fix a Borel fundamental
domain (or strict fundamental domain) F for the action of � on SL(d,R), namely a Borel set F ⇢ SL(d,R)
for which SL(d,R) = F�, F�

1

\F�
2

= ; for all �
1

, �

2

2 � such that �
1

6= �

2

, µ(@F) = 0 where @F is the
boundary of F , and, for every compact set K ⇢ SL(d,R), the set {� 2 � : F� \K 6= ;} is finite (see [17,
Chapter 1, Section (0.40)]). Note that the canonical projection mapping restricted to F is a bijection
and µ(F) = µ(Xd) = 1. Moreover, any subset W of Xd lifts via the canonical projection mapping to a
disjoint union of isometric subsets and the measure of the intersection of this union with F is finite and
equal to the measure of one of these disjoint subsets.

Pick a lattice
e⇤ := h eA�

in W. Let UH(Id) be a small open ball in H around the identity element Id and UW(h eA) be a small open
ball in W around h eA�. Then, by Lemma 4.1,

U := U(e⇤) := UH(Id)UW(h eA)(4.3)

is a small open set in Xd containing e⇤.1

1For our proof, we can relax the conditions on UH(Id) and UW (h eA), if desired, as follows. We can replace the requirement
that these are small by the requirement that the multiplication mapping

UH(Id)⇥ UW (h eA) ! U

is injective. We can replace the requirement that UW (h eA) is an open ball by the requirement that it is a measurable set of
nonzero measure containing h eA. Finally, we can replace the requirement that UH(Id) is an open ball with the requirement

8



We now show, roughly speaking, that almost all lattices of almost all H-translates of the submanifold
W are Birkho↵ generic. Precisely, we apply the following (which is simply an application of Fubini’s
theorem) to U :

Proposition 4.2. Let b > 0 and fb be the indicator function of the set

Rb :=
�

(x,y) 2 Rd : kxkmkykn  b, 1  kyk < 2
 

.

Let U := UHUW , parametrized using Lemma 4.1, be a set of positive µ-measure in M/�. For µH-almost
every M 2 UH, there exists a subset VM ⇢ UW such that

�(VM ) = �(UW)(4.4)

and, for every hA� 2 VM , the lattice

MhA�

is Birkho↵ generic with respect to the function b

fb.

Proof. We may, without loss of generality, regard U as a subset of F . Since (4.2) holds for µ-almost
every element in Xd, there exists a set Ubg ⇢ U such that every element in Ubg� is Birkho↵ generic with

respect to the function b

fb and such that

µ(Ubg) = µ(U).(4.5)

For M 2 H, define

Ubg,M :=

(

{hA 2 UW : MhA 2 Ubg} if MhA 2 Ubg

; if MhA /2 Ubg
.

Fubini’s theorem implies that

Ubg (MhA)

is �-integrable for µH-almost every M. If, for µH-almost every M 2 UH, (4.4) holds when we set

VM := Ubg,M�,

then we have proved the proposition.
Otherwise, there exists a subset V of UH of positive µH-measure such that, for every element M 2 V ,

we have that

�(Ubg,M ) < �(UW).(4.6)

Integrating using Fubini’s theorem, we have that

µ(Ubg) =

Z

UH

Z

UW
Ubg (MhA) d�(A) dµH(M)

=

Z

UH\V

Z

UW
Ubg (MhA) d�(A) dµH(M) +

Z

V

Z

UW
Ubg (MhA) d�(A) dµH(M)

=

Z

UH\V

Z

UW
UH\V (M) Ubg,M (hA) d�(A) dµH(M)

+

Z

V

Z

UW
V (M) Ubg,M (hA) d�(A) dµH(M)

<

Z

UH

Z

UW
UH(M) UW (hA) d�(A) dµH(M) = µ(U),

where we have applied (4.6) to obtain the strict inequality. This contradicts (4.5). Consequently, the set
V cannot exist and the proof of the proposition is complete. ⇤

Let 0 < "

0
` ! 0 be a given decreasing sequence indexed by ` 2 N. Applying Proposition 4.2 to the set

U in (4.3), we have a full-measure subset of UH(Id) from which to pick a sequence of elements
⇢✓

B` 0
C` D`

◆�

`

that it is a measurable set containing Id such that every open neighborhood of Id meets the set in a subset of nonzero
measure.

9



such that

B` ���!
`!1

Im

C` ���!
`!1

0 2 Mm,n(R)(4.7)

D` ���!
`!1

In

and, for which, there exists a sequence of full-measure subsets V` ⇢ UW(h eA) such that, for every hA� 2 V`,
the lattice

✓

B` 0
C` D`

◆

hA�(4.8)

is Birkho↵ generic with respect to b

fb,
b

fb+"0` , and
b

fb�"0` . Define

L1 :=
\

`2N
V`

and note that L1 ⇢ UW(h eA) and �(L1) = �(UW(h eA)). Hence, picking any lattice hA� 2 L1 implies
that the lattices

⇤` :=

✓

B` 0
C` D`

◆

hA�

are Birkho↵ generic with respect to b

fb,
b

fb+"0` , and
b

fb�"0` for all `.
We now approximate lattices hA� 2 L1 in the full-measure subset L1 ⇢ UW(h eA) with the lattices

⇤` as follows. Recall that the unimodular lattice g� can be expressed as gZd ⇢ Rd. Thus, we have

hAZd
, ⇤` =

✓

B` 0
C` D`

◆

hAZd
.(4.9)

Counting lattice points of hAZd in a thinning region

eRb(Rd) :=
�

(x,y) 2 Rd : kxkmkykn  b, 1  kyk ,
namely finding the cardinality of

hAZd \ eRb(Rd) =: eRb(hAZd),

is the same as counting lattice points of ⇤` in the skewed thinning region

Sb,`(Rd) :=

✓

B` 0
C` D`

◆

eRb(Rd) =

⇢✓

B` 0
C` D`

◆

(x,y) 2 Rd : kxkmkykn  b, 1  kyk
�

because the lattice points in these two regions are in bijection. Here, recall, we have used the notation
(x,y) to denote a d-column vector.

Since (4.7) holds for B`, C`, and D`, we have, for every (x,y) 2 eRb(Rd), that

(1� "`)kyk � e"`  kC`x+D`yk  (1 + "`)kyk+ e"`(4.10)

(1� b"`)kxkmkykn  kB`xkmkC`x+D`ykn  (1 + b"`)kxkmkykn
where "`, e"`, b"` ! 0 as `! 1. (Note that e"` does not depend on x because kxk is uniformly bounded.)

Since we have kxkmkykn  b and kyk � 1, (4.10) implies that we may approximate the skewed
thinning region Sb,`(Rd) with inner and outer thinning regions eRb�"0`(R

d) and eRb+"0`(R
d) up to, possibly,

a small precompact set K`. The set K` that we might need to exclude arises as follows. The inner and
outer thinning regions eRb�"0`(R

d) and eRb+"0`(R
d) satisfy the constraint that kyk � 1, but, for the skewed

thinning region Sb,`(Rd), the infimum of kC`x + D`yk is close to 1 but not necessarily 1. This follows
because kC`xk  e"`, kD`yk � (1� "`)kyk. Thus, we must define K` as follows:

K` :=

(

; if inf{kC`x+D`yk : (x,y) 2 eRb(Rd)} � 1

{(x,y) 2 eRb(Rd) : kC`x+D`yk < 1} if inf{kC`x+D`yk : (x,y) 2 eRb(Rd)} < 1
.

Therefore, we have the following inclusions

eRb�"0`(R
d) ⇢

✓

B` 0
C` D`

◆

⇣

eRb(Rd)\K`

⌘

⇢ eRb+"0`(R
d)

10



and thus also

⇤` \ eRb�"0`(R
d) ⇢

✓

B` 0
C` D`

◆

⇣

hAZd \ eRb(Rd)\K`

⌘

⇢ ⇤` \ eRb+"0`(R
d).

Now let us repeat the above, namely counting lattice points, with the thinning region eRb(Rd) replaced
by its truncation

eRb,2j (Rd) :=
�

(x,y) 2 Rd : kxkmkykn  b, 1  kyk < 2j
 

.

From this, we obtain

⇤` \ eRb�"0`,2
j (Rd) ⇢

✓

B` 0
C` D`

◆

⇣

hAZd \ eRb,2j (Rd)\K`

⌘

⇢ ⇤` \ eRb+"0`,2
j+1(Rd),(4.11)

where the latter inclusion arises because we have that

sup
n

kC`x+D`yk : (x,y) 2 eRb,2j (Rd)
o

 (1 + "`)2
j + e"` < 2j+1

.

Recall the notation and discussion in Section 2.2. Now (4.11) gives

Rb�"0`,2
j (⇤`)  Rb,2j (hAZd)�K`  Rb+"0`,2

j+1(⇤`)

where

K` := #
�

hAZd \K`

�

.

Since any precompact set of Rd can only contain a finite number of lattice points, it follows that K` < 1.

Consequently, we have that

lim
j!1

1

j

Rb�"0`,2
j (⇤`)  lim

j!1
1

j

Rb,2j (hAZd)  lim
j!1

1

j + 1
Rb+"0`,2

j+1(⇤`).

Since, for every ` 2 N, the lattice ⇤` 2 Xd is Birkho↵ generic with respect to b

fb,
b

fb+"0` , and
b

fb�"0` , we
immediately have that

Z

Xd

b

fb�"0`dµ  lim
j!1

1

j

Rb,2j (hA�) 
Z

Xd

b

fb+"0`dµ.

Applying Siegel’s formula and our volume computation from Section 1.3 and letting ` ! 1 show that
every lattice in L1 is Birkho↵ generic with respect to b

fb. As the chosen lattice e⇤ and small open set U
are arbitrary, this proof is valid everywhere, showing that almost every lattice in W is Birkho↵ generic
with respect to b

fb. Using this Birkho↵ genericity in place of the Birkho↵ ergodic theorem in the proof of
(2.4) yields: for almost every lattice in hA� 2 W,

lim
j!1

1

j

Rb,2j (hA�) = bBmCn log 2.

Using (2.6) and setting b := e

b

m, we have that, for almost every lattice in hA� 2 W,

lim
T!1

Rebm,T (hA�)

e

b

m
BmCn log T

= 1.

Finally, using (4.1) proves Theorem 1.3. Theorem 1.2 is a special case of Theorem 1.3 with m = k, n =
1. ⇤

Remark 4.3. As a remark, which is not necessary for our proof, we note that Lemma 4.1 implies that

{MW}M2H

forms a smooth foliation of the open set of full measure M/� and, thus essentially, of Xd also. The leaves
are H-translates of the submanifold W.
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4.2. Proof of Theorem 1.4. This is the a�ne lattice case and will follow by using the argument in
Section 4.1 with a few minor changes. The changes are as follows. An a�ne unimodular lattice ⇤ + v
is uniquely determined by a unimodular lattice ⇤ and a vector v 2 Rd

/⇤. Using Lemma 4.1 and the
fact that H is a group, we have that any a�ne unimodular lattice ⇤+ v with ⇤ 2 M/� can be uniquely
written as

✓

B 0
C D

◆✓

hA�+

✓

v0
1

v0
2

◆◆

where
✓

v0
1

v0
2

◆

2 Rd
/(hAZd).

We note such a�ne unimodular lattices form an open set whose complement has zero Haar measure.
Also note that the parametrization for the a�ne lattice case is given by

✓

Hn
✓

0
Rn

◆◆✓

N n
✓

Rm

0

◆◆

.

Given a pair (A,w) 2 Mm⇥n(R) ⇥ Rm, form the associated a�ne unimodular lattice ⇤A + w̄ =
hAZd+ w̄, where w̄ is the vector (w,0) 2 Rd

/(hAZd). As above, a direct calculation shows that we have,

for eb > 0 and T > 1,

N(A,w,

e

b, T ) = Rebm,T (⇤A + w̄).

The analog of W from Section 4.1 is

W
a↵

:=

⇢

h eA�+

✓

ew
0

◆

: eA 2 Mm⇥n(R) and ew 2 Rm

�

.

Finally, we note that a thinning region can be approximated by inner and outer thinning regions translated
by

✓

0
v`

◆

2 Rm ⇥ Rn

where v` ! 0 as ` ! 1. (This is because the directions extending to infinity of the thinning region is
preserved by such translations.) We note that this approximation is in addition to the approximation
of Section 4.1. This shows that almost every a�ne lattice in W

a↵

is Birkho↵ generic and, thus, proves
Theorem 1.4. ⇤

Note the analog of Remark 4.3 applies here.
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