-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Explore Bristol Research

-% University of
OPEN (o) ACCESS BRISTOL

Walling, L. H. (2017). Hecke eigenvalues and relations for Siegel Eisenstein
series of arbitrary degree, level, and character. International Journal of
Number Theory, 13(2), [325]. https.//doi.org/10.1142/S179304211750021X

Peer reviewed version

Link to published version (if available):
10.1142/S179304211750021X

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via World Scientific at http://www.worldscientific.com/doi/10.1142/S179304211750021X. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published

version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms


https://core.ac.uk/display/96779334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1142/S179304211750021X
https://doi.org/10.1142/S179304211750021X
https://research-information.bris.ac.uk/en/publications/hecke-eigenvalues-and-relations-for-siegel-eisenstein-series-of-arbitrary-degree-level-and-character(402d29af-2c4b-4d2d-9ce2-3fa2e85ee510).html
https://research-information.bris.ac.uk/en/publications/hecke-eigenvalues-and-relations-for-siegel-eisenstein-series-of-arbitrary-degree-level-and-character(402d29af-2c4b-4d2d-9ce2-3fa2e85ee510).html

HECKE EIGENVALUES AND RELATIONS FOR DEGREE n
SIEGEL EISENSTEIN SERIES OF SQUARE-FREE LEVEL

LynNE H. WALLING

ABSTRACT. We describe a basis of Siegel Eisenstein series of degree n, square-free
level A and arbitrary character x; then, without using knowledge of their Fourier
coefficients, we evaluate the action of the Hecke operators T'(q), T;(¢?) (1 < j <n)
for primes g|A/. We find the space of Siegel Eisenstein series with square-free level
has a basis of simultaneous eigenforms for these operators, and we compute the
eigenvalues, thereby obtaining a multiplicity-one result. We then compute the action
of the Hecke operators T'(p), T;(p?) on a basis of Siegel Eisenstein series of level
N € Z provided 41 N and p is a prime with p { N, and from this construct a basis
of simultaneous eigenforms.

§1. Introduction

Remark that space of Eisenstein series is invariant under Hecke operators
DEFINE:

I

Refer to notation Elgn)(./\/', X)

§2. Defining Siegel Eisenstein series

For k,n,N' € Z, and x a character modulo N, we want to define a degree n,
weight k, level A Eisenstein series with character y for each element of the quotient
L'oo\SPn(Z)/To(N). Given v, € Sp,(Z), the natural object to define is

Eo(1) = > X(3) L(7) |y

where 7 € To(N) varies so that I'7y,y varies over the (distinct) elements of
Loo¥pLo(N), and

1(7)] (é g) — det(Cr + D) "
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2 LYNNE H. WALLING

C D
on compact subsets of H,) provided k > n + 2 (and hence is analytic).

[7?7 it is majorised by the level 1 Eisenstein series in the case k is even; what
about when k£ is odd??]

Hence we assume k > n + 2. However, defined as above, E, may not be well-
defined. Thus we over-sum, producing a well-defined function IE;, that is 0 whenever
the above sum for E, is not well-defined, and is a multiple of E, when E, is well-
defined.

Note that when v € I'Z, 1(7)|y = 1(7). Thus taking v} € T'(N) so that

for (A B) € Spn(Z). If well-defined, this series converges absolutely uniformly

ILT(WN) = U, 5 (disjoint),
and setting
E*(7) =) _1r)hj,
J
E* is well-defined (and converges absolutely uniformly on compact subsets, so is
analytic). With
Iy ={yeloN): TLT(N)y,y =TLT(N), },

take 0; € To(N), 6; € T’} so that

To(N) = UL} (disjoint), T'F = UD(N)dy (disjoint)
(note that T'(N) CT'f). Thus

Lo(WN) = U, sT(N)8p6; (disjoint).

1,1 Gy ) .

Set G4 = L )x = a. ) remembering I'(A) is a normal
- +

subgroup of Sp,,(Z), we have

Loy Lo (N) = Ui (DL, D(NV)858; U T vy, T (N)6;6:)
= Ui ¢ (TLD(N)7,8,8: UTET(N)77,64;)
Now set
E, = ZX(&}&)E*W@@&; T ZY(H%)E*Ivﬂp%.
0,4 il
Since ILT(N)ye = v TLT(N), we have
E*|ye = (-1)FE%;

hence B/, = 0 if x(—1) # (-1).
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Assume now that x(—1) = (=1)¥. Then, since TZT'(N)v,8, = TLT(N)y,, we
have E*|v,6;, = E*|y,, and hence

E, =2 (Z y(é})) > X(6)E"|y,6;.
¢ i

Here §j varies over a set of representatives for the group T'(NM)\I'} (and we know
x is trivial on I'(N)), so unless x is trivial on I'}, we have E/, = 0.

Note that v+ € T'(N) if and only if N” < 2. So when N < 2, we have I'.v}
varying twice over the distinct elements of I'oo \I'oo'(N), and

E* = E*|y4 = (—1)*E*.

Hence when N < 2 and & is odd, E* = 0, and thus E; = 0. When NV > 2 or k is
even,

lim E*(7) =

TH100

2 if N <2,
1 ifN > 2

and limy i B, (7)[7, 1 = 2[Co(N) : TH]limysi00 E* (7). (see §4 [Freitag, 1996]).
Also, with ~} = ~,'7%7,, we have

Foo/prO(N) = Ui,jroo')/;’yp(;i = Ui,jroo'Yp'Y;‘(si-

(The above unions over i, j are disjoint when A/ > 2.)
Thus we have proved the following.

Proposition 2.1. Assume x(1) = (—1)%.

(1) For v, € Spn(Z), E, is well-defined if and only if x is trivial on F;j. When
well-defined, E, is a nonzero multiple of E,, and E/, # 0 when N' > 2 or k is
even.

(2) Suppose N < 2 and k is odd. Then ), = 0, so either E, is not well-defined or
E, =0.

Next we give a description of a convenient choice of representatives corresponding
to the Eisenstein series.

Proposition 2.2. For any v € Sp,(Z), there exists some vy, = (]\f[ ?) €
p

Spn(Z) so that v € Loy, Lo(N). When N is square-free, take p = (No, ... ,Ny,) to

be a (degree n) multiplicative partition of N, meaning Ny ---N,, = N. Take M,

diagonal so that M, = (Id O) (q) for each prime q dividing Ny (0 < d < n); then
as p varies, vy, varies over a set of representatives for I'ag\Spn(Z)/To(N). Further,

when N is square-free and v = € Spn(Z), we have v € T'soy,To(N)

x ok
M N
if and only if rank,M = rank,M, for each prime q|N (where rank,M denotes the
rank of M modulo q).
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(When 4 1 NV, we give a more detailed description of a set of representatives for

Lo \Spn(Z)/To(N) in §7.)

Proof. Given v = ]\*4 ;\(7 € Spn(Z), note that we have v € I'oy,Io(N) if

and only if (M, I) € GL,(Z)(M N)I'¢(N). We proceed algorithmically to first
construct a pair (M’ N') € GL,(Z)(M N)T'o(N) with N’ =1 (N).

Fix a prime ¢ dividing A with ¢* || /. By Lemma ??, we can choose Ey, Gg €
SL,(Z) so that Ey,Go = I (N/q") and EgN'Gy' = (]\(;1 8 (¢*) where Ny is
d x d and invertible modulo ¢ (so d = rank,N). We can adjust Ey, Go so that

N, = (a I) (¢'), some a. Similarly, we can choose (;Z Z) € SLo(Z) so that
u v\ _ ¢ u v\_[(a O ‘
(4 )=t (4 2)= (5 9) @) mhen
u v
")/0 = In_l S FO(N)
w x

In—l

G M, M. I .
andEo(MN)( 0 tGgl)%E(<M;, Mi) (d 0)) (¢) with M, d x d.

By symmetry, M3 = 0 (¢'); since (M, N) = 1, My is invertible modulo q. Thus we
can find B}, G| € SL,,_4(Z) so that E{,G} =1 (N/¢"),

I
== (1) @)

I I Oa
Take E; = < d I ), G = ( d o ), W = In_ag-1 where @'a’ =
1

1 (¢%); then
LYNNE: CHECK THIS

en=mmaen(® g )n(® ) ()

(4 ) )

and (C D) € GL,(Z)(M N)I'y(N) with (C D)= (M N) (N/q") and D =1 (q").

Next, suppose p is another prime dividing N with p” || . Applying the above
process to the pair (C' D), we obtain a pair (C" D) € GL,(Z)(M N)I'o(N) with
(C'" D)= (M N) (N/(g'p")) and D' =TI (¢'p"). Continuing, we obtain (M’ N') €
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GL,(Z)(M N)To(N) with N' =1 (N). Thus (NM’ N’) is a coprime symmetric
/ /

pair, so there exist K’, L’ so that N|L' and ]\[2, ]I\}, € Spn(Z); note that

we must have K/ = I (N) since L' = 0 (N) and N' = [ (N). Since M’ is

necessarily symmetric modulo N, we can choose a symmetric matrix M” so that

M" =M’ (N); set
tN/ _tL/ I 0
5:(_tM/ tK’)(M” I)-

Then 6 € T(N), and (M" I) = (M’ N")§ € GL,,(Z)(M N)T'o(N).

Now suppose N is square-free and M is an integral symmetric matrix. We
show that there is some (M’ N’) € GL,(Z)(M I)I'o(N) so that N’ = I (N) and
M'" = M, (N) where M, is diagonal and, for each prime ¢ dividing N, M, =

La 0 (q) where d = rank,M. Then the argument of the preceeding paragraph
gives us (M, I) € GL,(Z)(M I)I'y(N). So it suffices now to show that for each

prime ¢|N, there are E € SL,(Z), v € To(N) so that E,v = I (N/q), and
E(M I)y=(CI) (q) where C' = <Id 0 with d = rank,M.

If rank,M = 0 then there is nothing to do. Suppose not; first consider the case
that ¢ is odd. By §92 of [O’M], we know there exists E’ € SL,,(Z,) so that E'M 'E’
is diagonal with E'M'E’" = M,y 0 (q), My = (a I) with ¢ ¥ a. Thus we
can find E € SL,(Z) so that E =1 (N/q), E = FE’ (¢). Then

E(M I (tE E_1> — (M 1)

P u v u v\ _
where M' = (E'M'E") (q). Take (w x) € SLy(Z) so that (w x) =

I (\N/g), (“ ”)z(g 5;1) (q). Set

w T

0 ]n—l

Then v =1 (N/q) and (M’ I)y = (C I) (q) where C = (Id 0

Now suppose ¢ = 2. By Lemma ?? there is some F € SL,(Z) so that E =
I (N/q) and EM'FE = (Ml O) (q), where either My = I or My = Ay, A} =

((1) (1)) L1 ((1) (1)) (dx d where d = rank,M). In the first case, we are done.
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Otherwise, take A € SL,(Z) so that A=1 (N /q) and A= (Al 7
n—d
_ ('EA 'EA-1I)
T E'A

) s

). Thus v € To(N), v = I (N/q), and E(M 1)y =

(C I) (q) where C = (Id 0). 0

Proposition 2.3. Suppose N is square-free, x is a character modulo N so that
x(=1) = (=1)*, and p = (No, ... ,Ny,,) is a multiplicative partition of N (as in
Proposition 2.2; so Ny--- N, = N). Then E, is well-defined if and only if xﬁ =1
for all primes q|N /(NoNy)-

Proof. Suppose ¢ is a prime dividing Ny where 0 < d < n. Fix a € Fy. By Lemma
/ /
77, there exist G = <u v) G = <Z}, v ) € SLy(Z) so that G,G' =1 (N /q),

w oz x’

G= (g a;a) (q), G'= (g g) ().

Let A, B,C, D, E,W be the n X n matrices

u v w
A: I 9 B: O 9 C: O 9
u v w’
x u v 9
D= I B = I we= (T .
x! w’ x’ 0

Then ' = (A B) eTy(WN), E € SL,(Z), and

C D
E I W

Further, 67,7 = v} (V). Set v = (67,7')""yp. So " € T(N), /7" € T, with
x(7'v") = x2(). Thus the condition that x2 = 1 for all primes ¢|N/(NoN,) is
necessary for E, to be well-defined.

Now suppose xz = 1 for all primes ¢|N'/(NoN,,), and suppose v = (A B) .

C D
t -1
['F. Thus there exist 0 = E M;,E
Fix a prime ¢|Ng, 0 < d < n.
When d = 0, we have ED = I (¢q),so detD =det E =1 (q) a
1. When d = n, we have EA =1 = A'D (q), so det D = detE

Xq(det D) = 1.

) e I'l,, v € T(N) so that 67,7 = 7,.

nd y,(det D) =
= 1 (¢) and
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Now suppose 0 < d < n. Write

. Al A2 - Dy Dy . FE, E5
A_(A3 A4)’D_(D3 D, ’E_ Es E,
where Ay, Dy, Fy are d x d. Then we have F3(A; As) = 0 (q); since the rows of
(A; Aj) are linearly independent modulo ¢, we must have F5 =0 (gq). Also,

E1(A; A2) = (14 0) (q), Ea(D3 Dg) = (0 In—a) (q),

so Az, D3 =0 (q), A1 = E;1 (q), Dy = E4 (q). Since A'D = I (q), we must have
D; = 'E; (q). Thus we have

det D = det E; - det E4 = (det E1)? (q)

and
Xq(det D) = x2(det Ey) = 1.

Consequently x(7) = x(det D) = 1, and hence the condition that x7 = 1 for all
primes g|N /(NoN,,) is sufficient for E, to be well-defined. [J

We now give a robust definition of E,,.

Definition. Having fixed n, k,N € Z, with k > n + 2, x a character modulo N/,
and v, € Sp,(Z), we define

2[Co(N):T7]

1 / :
i e TN =2

B N > 2,
Ep:{

Remark. Suppose that G4 M, = M,G1. Then for G € GL,(Z), v € To(N), we

have G(M, I)y = GG+ (M, I)y+y. Sowith~, = <]é ?) , we have T T'(N) 7,7y :I
p

Lo I'(N)7y,v+y (since v4 € '), but TLT(N)y,y = TLT(N)7y,7+7 if and only if

N < 2 (since v+ € T(N) if and only if N < 2). Thus,

Ey(r) = m, ) X(7) U7)ypy

where ~y varies so that I'Zv,[o(N) = U, 'L v,7 (disjoint), and

|

LYNNE: THIS NEXT DEFINED EARLIER?
We let 8,&"’) (N, x) denote the space spanned by these forms.

if N <2,

otherwise.

N|—=
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§3. Defining Hecke operators

For each prime p, we define Hecke operators T'(p), T;(p?) (1 < j < n) acting on
Siegel modular forms; then we describe explicit sets of matrices that give the action
of these operators.

Fix a prime p; set I' = T'o(N) and take f € M,ﬁ”)(/\/, X)- We define

fIT(p) = p =02 N "X (y) fl6 7y
Y

where 6 = pln , v varies over (66"t NT)\I', and for v/ = A B €
I, C D
Spn(Z),
F(M)|y = (dety")¥? det(CT 4+ D)~* f((Ar + B)(CT + D)™ 1),

We define .
T () = P> "X () £167 1
Y

X!

where §; = (Xj
J

Proposition 3.1. Let p be a prime, f € M,ﬁ”)(/\/, X). For 0 <r,ng+ns <n, let

)’ X; = (ij I, ), and v varies over (@Fé;l ND\L.

I pIno
Dy = (p ' I>’ Dno,n2 = I (an),
1]712
and let
K, = D,SL,(Z)D,;* N SL,(Z),
Kro.ns = Dng o SLH(Z)D;O{M N SL,(Z).
Then
n(k—n— n—r D'r_l G_l YtG
e = 5w () (7 N
0<r<n GY p— T

where G varies over SLy,(Z)/K, and Y wvaries over

Y, = {<YO 0) € Lggm * Yo 7 X 1, varying modulo p} .
Also,
1T;(p*)

(ke . D1 G~ Y'G
_ k—m—1 no+ns ng,N2
SARED SERTRb SY] GRS | SR

no+na2<j G)Y
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where G varies over SLy(Z) /Ky, andY varies over Y, n,, the set of all integral,
symmetric n X n matrices

Yo Yo Y3 O

th Yl/p 0
tY'3 0
0

with Yo ng X ng, varying modulo p?, Y1 (j —ng —mn2) x (j —ng —ns), varying modulo
p provided p t det Y1, Y3 ng X (j —ng — n2), varying modulo p, and Y3 ng X (n — j),
varying modulo p.

Proof. Fix A = Zx, & - - - & Zx,, (a reference lattice).

By Lemma 77, as G varies over SL,(Z)/K,, Q@ = AGD, varies over all lattices
Q, pA € Q C A with [A : Q] = p". Thus by Proposition 3.1 and (the proof of)
Theorem 6.1 in [HW], claim (1) of the proposition follows.

For 2 another lattice on QA, let mult .0y (a) be the multiplicity of the value of a
among the invariant factors {A : Q}. By Lemma 77, as G varies over SL,,(Z) /Ky n,
Q= AGD,, ,, varies over all lattices 2, pA C Q C %A, with multa.0y(1/p) = n2,
mult.03(p) = no. Thus by Proposition 3.1 and (the proofs of) Theorems 4.1 and
6.1 in [HW], claim (2) of the proposition follows. [

Remark. For N’ € Z, so that p{ N’ we can choose G, Y in the above proposition
so that G =1 (N') and Y =0 (N'). Also, if p| N, then

(k—n—1)/2 gl Y

FIT(w) = s )
Y

where Y varies over ),,, and

—1 —1 t
(2) — i(k—n—1) Z D; G YiG
f|T](p) p Gyf|< J Dj,0> < tG

where G varies over SL,(Z)/K; and Y varies over Y, o.
LYNNE: CHECK THESE ABOVE SUMS

34. Hecke operators on Siegel Eisenstein series of square-free level

Throughout this section, we assume N is square-free, y is a character modulo
N so that x(—1) = (—1)*; further, we assume either A” > 2 or k is even. Take a
multiplicative partition p = (Ny,... ,N,) of N (so Ny---N,, = N), and assume
that E, # 0 (so by Proposition 2.3, x7, = 1 for all primes ¢'|N/(NoN5,)). Take
diagonal M, as in Proposition 2.2, v, = (]\j ?)

p
* ok
M N
determine how to compute x(v) from (M N).

With g = € SL,(Z) and v € T'x(N) so that 'l 8 = '} v,7, we can

o0
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*

Suppose (]\*4 N) € Th~,Lo(N); so (M N) = E'(M, I)y for some E' €

SLn(Z) and v = (é g) € Ty(N). Fix ¢ and take d = rank,M,. Thus

rank,M, = d, so we can find E,G € SL,(Z) so that EMG = (]\gl 8) (q)

where M, is d x d and invertible modulo ¢. Write EN !G~! = (

Ny is d x d; since M ' N is symmetric, we must have N3 =0 (q). Hence

_ Ml 0 — ! Id

(3 %) =e=((* o)per) oo

E, Es

0 E4
. . (A O

and FE7, E4 are invertible modulo ¢, and then AG = A A (q) where Ay
3 Ay

is d x d; since N|C, Ay, Ay are invertible modulo q. We have A'D = I (q), so

DG~ = D D2> (¢) where Dy is d x d and D, D4 are invertible modulo g.

Given the shape of EMG, we must have EE’ = ( ) (q) where E7 is d x d

0 Dy
Further, we must have

Al tDl = Id, A4 tD4 = In—d, ElAl = Ml; E4D4 = N4 (q)
So
det My -det Ny =det Ey - det E - det Ay - det Dy = (detFl)2 -det D (q).

Note that when d = 0 D = N (q), and when d = n, ‘D = A = M (q). When
0<d<n,wehavexgzlso

Xq(det M - det Ny) = x4(det D).
Thus we can define x,(M,N) = Xq(detM1 - det Ny), and
X(M,N) =[] xq(M, N).
qlN

Then we have 1
Eo(7) =5 > X(M,N) det(Mr + N)~*
(M N)

where (M N) varies over coprime symmetric pairs so that
SLn(Z)(M, I)To(N) = U nySLn(Z)(M N) (disjoint).

Now we prove the following.
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Theorem 4.1. Fiz a prime q|N, and fix a multiplicative partition o = (N, . ..

of N/q. For 0 <d<n, let E,, denote E, where p' = (No,... ,N,),

NF{N{ ifi#d.

ch/i if i =d.
Then
I I
_ kd—d(d+1)/2 d 91d
Egd|T(q) =q XN /q <( %In—d) Mo’d? ( In—d))
n—d
) Z q—dt—t(t—l)/Zﬁ(d +t,t)sym¥ (t)Eq,,,
t=0
where

symy (t) = Z Xq(detU),
U

‘ t,t
U wvarying over Fy,,,.

Remark. In Lemma ?? we evaluate symX(t).

11

NI

7?7 WHAT IF n — ¢ = 0 and x; # 0?7 Have E; = 0 for 0 < ¢t < n. How do we

modify this argument to get Eq|T'(q) = Eo + %« E,, 77

Proof.
LYNNE: ?? n — ¢+ d??

Write E; for E,,. We know E4(7) is a sum over representatives for SL,, (Z)-
equivalence classes of coprime pairs (M N) with rank,M = d; we can assume ¢

divides the lower n — d rows of M. By Proposition 3.1,

Eq(7)|T(q) = ¢ "2 N det(Mr/q+ MY/q+ N)~*
M,N,Y

= ¢k D2 N det (M7 4+ MY +gN)
M,N,Y
where Y varies over ),,. We have

det(M7 + MY + gN)~*% = ¢7*"=d det(M'T + N')~F

where

(M’ N') = (Id )(M MY +gN).

1
EIn—d

We know the upper d rows of M are linearly independent modulo ¢, as are the

lower n — d rows of N. Thus (M’, N') =1, and rank,M’ > d. Also note that

det(M7 4+ MY + gN)™% = ¢~ =Dk det(M'T + N')7*.
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Recall that we can assume Y =0 (N/q). Also, we know E, is supported on the
To(N)-orbit of GL,(Z)(M, I). Take (M N) = (M, I)y where v = (A B) .

C D
Lo(N). Take a prime ¢'|N and let d' = rankyM,. Choose E € SL,(Z) so
that AE = (il 2 (¢") where A; is d' x d' (possible since we necessarily

have rank,A = n since ¢'|N). Then since A'D = I (¢'), we have D'E~! =

Dy Dy (¢') with Dy d’ x d’. Thus
0 Dy

and

wr(® )

where, modulo ¢/,

Al 0 % x ,
(0 OODQ)(q)

A if d' < d,
Al = 17
L (q ¢ >A1 it d > d:
I
I
, (q >D4 if d' < d,
Dy if d > d.

Therefore

Xq (M',N') = x¢(M'E, N"'E™") = Xq’(detzll ~det D)
= Xq/(qd_d/) . Xq/(detzl - det D4),
Xq’(detzl ~det Dy) = x¢ (M, N),

! ‘
d—d d M qld
’ p— /7 9 N .
Xq (q ) Xa (( %lnd> < 1n—d> )

Xq/(M/,N/) — Xq/(M/E,N/tE_l)
= xq (det A} - det DY)

(e ()

- I I -
Therefore XN/q(MvN):X/\//q<( l[n_d)Mp’<q I d))XN/q(M/,N’)_
q n-

Hence
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Reversing, take (M’ N’) a coprime symmetric pair with rank,M’ = d+t; assume
Eq.a+¢ 7 0. We need to count the equivalence classes SL,(Z)(M N) so that

(Id %_d) (M MY +gN) € SL,(Z)(M' N").

1,
For any E € SL,(Z), we have (Id ql ) E ( d 1y d) € SL,(Z) if and only
n—d gin—

q
if £ € Kg. Thus we need to count the number of E' € Kq\SL,(Z) and Y € ZJ,
(varying modulo ¢) so that

or )= (™

) B (7= A7) /o)

qIn—d

is a coprime pair. We can assume the top d+t rows of M’ are linearly independent
modulo ¢, and that ¢ divides the lower n —d —t rows of M’. To have rank,M = d,
we need to choose E so that the top d rows of EM’ are linearly independent modulo
q; using Lemma 77 there are

qd(n—d—t)ﬁ(d +t,d) = qd)(n—d—t)ﬁ(d +t,1)

choices for E. We need to choose Y so that N is integral and (M, N) = 1; equiv-
alently, for any G € SL,(Z), we need N'G~! integral and (MG, N!'G~1) = 1.
Using left multiplication by K4, we can adjust the choice of F so that the lower
n —d — t rows of EM’ are divisible by ¢, and then we can choose G € SL,(Z) so
that

My 0 O
EM'G = 0 Ms 0] (g
0 0 O
where M7 is d x d, M5 is t x t, and My, M5 are invertible modulo q. Write
Ni Nz Nj i Y2 Y3
EN''G'= Ny N5 N |,G'Y'G =Y Vi Y5
N; Ng Ny Yy Y5 Y

where Ny, Y7 are d x d and N5,Y, are t X t. By symmetry, N7, Ng = 0 (¢), and then

since (M', N') = 1, we must have rank,Ng = n—d—t. Also, as Y varies over F{;1 |

so does G™'Y *G~!. To have N integral, we need (Y7 Y5 Y3) = M1(N; Nao N3) (q).
Then by symmetry, we find Ny = M5'Ys (¢q). So to have (M, N) = 1, we need
rank, (N5 — M5Yy) = t, or equivalently,

rankq(N5 — M5§/4) tM5 =1.

As Y, varies over F%! . so does N5 — M5Y, 'Ms. We have

sym?

Xq(Ma N) = Xq(detM1 : det(N5 — Y4M5) - det Ng)
= xq(det M - det M5 det Ny) - x,(det(Ns — M5Yy) * M)
= Xq(Mlv N/) . Xq(det(N5 - M5Y2;) tM5).



14 LYNNE H. WALLING

We have no constraints on Y5 and Ys, so as we vary Y subject to the above condi-
tions, we get

D Xg(M,N) =X, (M, N') - =470 =dttt /2% 7y (det U)
Y UeFit,

_ Yq(Mla N/)q(n—d—t)(n—d—i—t—l—l)/ZSymt);(t),

as claimed. O

This theorem allows us to diagonalise the space of Eisenstein series. To aid in
our description of this, we define a partial ordering on multiplicative partitions of

N, as follows.

Definition. For p, 8 multiplicative partitions of N and Q|N, we write 5 = p (Q)
if, for every prime ¢|@, we have rank,Mg = rank,M,. Similarly, we write 5 > p (Q)
if, for every prime ¢|Q, we have rank,Mg > rank,M,.

Corollary 4.2. Let q be a prime dividing N'. For p a partition of N so thatE, # 0,
there are a, . (q) € C so that a, ,(q) =1 and

Y. pal9)Ea

a=p(N/q)
a>p(q)

is an eigenform for T(q) with eigenvalue

_ 14 I
Aolq) = "1V 2y <( ll) Mo (q d I)>
q

where d = rankyM,. Further, suppose a = p(N'/q), o > p (q), with d = rank,M,,
d +t = rank,M,; then we have a, o(q) # 0 if and only if either (1) xq =1, or (2)
XCQI =1 and t s even.

Proof. By Lemma ?? symX(t) = 0 if and only if (1) x2 # 1, or (2) x4 # 1 and ¢ is
odd. Thus by Theorem 4.1,
Span{Ea ca=p (N/qg), a>p(q), so that either (1) x, =1, or
(2) X?l = 1 and rank, M, — rank,M, is even }
is invariant under 7'(q), and the matrix for 7'(¢) on this basis is upper triangular

with nonzero upper triangular entries. Then the standard process of diagonalising
an upper triangular matrix yields the result. [J

We now prove a multiplicity-one result for the Eisenstein series of square-free
level.
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Corollary 4.3. Suppose E, # 0. For a > p (Q) and prime q|Q, set a,(q) =
apo(q) where o =p (N/q), 0 = a (q), and set

apa(Q) = H ap,a(q)-

Then with

for every prime q|N we have
Ep|T(Q) = )‘p(Q) Ep

(where \,(q) is defined in Corollary 4.2).

Proof. Fix a prime ¢|N. For a > p (N), take 8 = o (NM/q), 8 = p (¢). Then
apa(N) =a,sN/q)ap,q(q). Hence

E, = Z ap,3(N/q) Z ap,a(q) Ea-

B=p (N/a) a=p (N/q)
B=p (a) a>pB(q)

We argue that when a, g(N/q) # 0, we have a, o(q) = ag,o(q) and A,(q) = Az(q).
Fix § so that 8 > p (N/q), B = p (q), and suppose a, g(N/q) # 0. Take Q|N/q

so that 5 = p (N/Q), B> p (Q). Thus a, 3(N/q) = a, (Q). Since a, 5(Q) # 0, for
each prime ¢'|@Q we have either (1) x, = 1, or (2) Xﬁ/ = 1 and rank, Mg —ranky, M,
is even.

Suppose ¢’ is a prime dividing @ so that xo # 1. Set r = ranky M,, r +t =
rank, Mg (so t is even). Then for 0 < d <n,

(e ) ) () )

B { Xq/(qr_d) ifd<r,
 Uxg(@®™) ifd>r
= Xq’(qd_r)

(since x2,). Similarly,

() () -

and g (77" = x4/ (¢?") since t is even and Xo =1.
For each prime ¢”|N/Q, we either have f = p (¢") or x4 = 1. Thus for
0<d<n,

N (P P ) B (R P!
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Hence \g(q) = A\,(¢q). Further, with o4, aq partitions of N so that o4 = p (N/q),
rank,Mo, = d, ag = 8 (N/q), rank,M,, = d, the matrix for T(g) on *(E,,, ... , Eo, i
is equal to the matrix for T'(q) on *(Eqy, ... ,Eq, ), and hence a, »,(q) = ag,0,(q),
0<d<n. O

Now we evaluate the action of T}(¢?) on E,. Note that since the Hecke operators

commute, the multiplicity-one result of Corollary 4.3 tells us that each IEp is also an
eigenform for T} (g?). So we could simply do enough computation to find the eigen-
value )\, ;(¢?), but we take just a bit more effort and give a complete description
of E,|T;(¢?). Then in Corollary 4.5 we compute the T;(g?) eigenvalues.

Theorem 4.4. Assume N is square-free, a fix a prime q|N'. For o a multiplicative
partition of N'/qg and 0 < d < n, let E,, be the level N Eisenstein series as in
Theorem 4.1; suppose E,, # 0.
For 0 <j,d <n,
n—d

Eo'd |Tj (QQ) - Z Aj (d> t)EUd+t;
t=0

when x4 =1,

Aj(d,t) = U0 DR g(d 4 1, 1)

J Jj—d1 ds

’ Z Z Z qaj(d;dl7d5’d8)XN/Q(Dd1,TMadDj_17Ddlﬂ“’Dj)
d1=0d5=0dg=0

: ﬂ(da dl)ﬁ(ta d5)5(7’b —d— t7d1 +n— d _j - d8)
. B(t — d5,d8)sym(’;(t — d5 — dg)symff(d&dg),

wherer =j —dy —ds +d+ 8, and

aj(da d17d57d8)
= (k — d)(2dy + d5 — dg) + di (dy — ds — j — 1) — ds(d5 + ) — d5(d5 + 1)/2 + ds(ds + 1)/2]]

[LYNNE: DEFINE symX (b, c)]
(Note that symX(t — ds — dg), sym¥(ds,ds) are evaluated in Lemmas 777.)

Proof. Fix d = rank,M,; to ease some notation later, set £ =n — d.

—1 —1 t
(2) — i(k—n—1) D G Y'G
En—K’TJ (q ) q GE’Y En—ﬁ’ ( J Dg) ( QR

where D; = <qu ), G e SL,(Z)/K;, Y € Y; with Y, the set of matrices

I_;
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(t?/ ‘g) so that U € Zgyjm varies modulo ¢2, V € Z7""~J varies modulo ¢. So

En—(7)|T;(q%)
=3 N det (M (DG + DY G) (G D+ N)
G,Y M,N
= ¢S N det (MD;'G ' + MDY 'G+ N'GDy) "
G,Y M,N

(where (M N) varies over coprime symmetric pairs with rank,M = n — /).
Take a coprime symmetric pair (M N) with rank,M = n — ¢. Let d; be the
rank of the first j columns of M; using row operations, we can assume M =
My, M,
qgMs M, | where M; is dy x j (so rank,M; = dy), My is dy X (n — j) with
qM;g  qMg

N1 No
rank,My = dy = n — ¢ —d;. Correspondingly, write N = | N3 N4 | where N; is
N5 Ng

dy x j and Ny is dy x (n — j). Take r so that rank, (%% ]3,) =n—dy—1T; 80
5 Vs

using row operations, we can assume

g ooty g ) = (e 6 S M)

¢®>M; qMs N7 gNg

where Mg, Ng are ({—r) x (n—j) and rank, M, 00y n—d,—r. Note that since
Ms Ng
qla,
(M,N) =1, we must have rank,N; = r. Then with Dy, , = I :

ir
q’l’

My gMs ¢*Ni gNs
Ms My gN3z Ny

D!
j —
Ddl’r(MN)< Dj) Ms qMg qNs Ng
M, Mg N+ Ng

has g-rank n. Hence for any Y € Y,

—— Dt G Y@
(M N)_Dd1,T(MN)( J Dg>< 0 tG )

is a coprime symmetric pair with rank,M’ = n — ¢ + ¢ for some ¢t > 0. Note that
det(M'T + N')7F = "= det(MD; 'G~ 't + MD;'Y 'G+ ND; 'G)~*.
Similar to the computation in the proof of Theorem 4.1, we have

Xn/q(M, N) = xnr7q(Da, + Mo, D5, Day D)X pr/q(M', N').
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Reversing, take a coprime pair (M’ N') with rank,M’ =n — ¢ +¢. We need to
count the equivalence classes SL,,(Z)(M N) so that

D, (M N) (Da‘_l Dj) (Go_l Y;éG) € SLo(Z)(M' N').

For Ey,Ey € SL,(Z) and

R G -GY\ (D;
a3 =Dz mor 3 (0 ) (P ).
we have (My Ny) € SL,(Z)(Msz Ns) if and only if Ey € K4, »F>. Thus we need
to count the number of triples E,G,Y with E € Kq, ,\SL,(Z), G € SL,(Z)/K;,
Y € ); so that

_ G -GY D;

(M N) = Ddll,rE(M/ N/) (0 tq-1 ) ( ! Djl)
is an integral coprime pair with rank,M = n — ¢ (that M *N is symmetric is
automatic).

For E,G € SL,(Z), let (M; M) be the top di rows of EM'G with M; size
di x j; similarly, let (N N3) be the top d; rows of EN't{G~! with Ny size d; x j.
To have M integral we need g|Ms. To have N integral, we will need to solve

Ny = MU + My'V (%), No = M,V (q)

Since (M’,N') =1 and ¢g|M>, we must have rank,(M; N; Na) = dy; thus we can
only solve the above congruences if rank,M; = d;. So suppose we have chosen F, ¢
to meet this condition; write

Ml M2 N1 NQ
1~ | Ms My rt~—1_ | N3 Na
BTG = Ms Mg |’ ENTGT = N5 Ns
M7 MS N7 Ng
where My, Ny are dy X j, My, Ny are dy X (n—j), M5, N5 are (n —r —d) x j where
U Vv M, O
Y = (tv 0 ) Y;. To have rank, M = n—/, we need to have rank, 0 My | =
0 Mg

n — £; so suppose we have chosen F, G to meet this condition as well. Then, using
left multiplication from K4, , and right multiplication from K;, we can assume
rank,My = dy =n—{—d; and Mg =0 (q). Now write M; = (A, A;), N; = (B] B;)

where, for ¢ odd, A}, B; have dy columns, and for i even, A}, B} have d4 columns. By

i
adjusting further using ICg, » and K;, we can assume that rank, A} = d;, rank, A} =

dy, AL =0 (¢?) for i # 1,4, A1, A3 =0 (q), and with d; = rank,A; for i = 5,7,8,

we can assume
(6759 0 0 2 — 0 0 2

N

5
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0O 0 O 0 0
A7=10 a7 0] (¢), As=|[0 0 (q)
0O 0 O 0 asg

where «; is d; x d; (and hence invertibe modulo ¢), af is ({—r—ds5) x (j—dy —ds—dr),
and ag is ({ —r —ds) x (n — j — d4 — dg); here the first d5 and last j —d; —ds — dy
columns of A7 are 0 modulo ¢, and the top r — d7 — dg and bottom dg rows of A;
are 0 modulo q. Correspondingly, write

_ Bi B2 B3 I S e ]
B5_<54 Bs 56)736_(73 74)’

(51 62 53 €1 €2
Br=1|0d4 05 06|, Bs=| €3 e
07 0s 09 €5 €6

Then by symmetry, we have (4, 85,74, 01, 92, €2 = 0 (q), and ¢ must divide the lower
¢ —r — ds rows of Bf and the upper r — dy — dg rows of B.

With YV = ( v V> (as above), write

Vo0
(U U, (W
v=(, o) v=(4 )

where Uy is d; x dy and Vi is d; X dy4. To have N integral, we need
N, = AL(UL U) (¢%), No = AY(Vi Vo) (q), Ba = AL 'Vs (q).

With these (unique) choices of Uy, Us, V1, Va, V3, the symmetry of M’ N’ implies
that

By AL = A, By = ALV 4, (g),
so we automatically get B = A} 'V (¢q). Hence with these choices of Uy, Us, V1,
Vs, V3, the top n — £ rows of N are integral. We have already ensured the top n — /¢
rows of M are integral with g-rank n — ¢, and we know the lower ¢ rows of M are
0 modulo ¢q. So we need to choose Us, V4 so that the lower ¢ rows of N are integral

with g-rank £.
By symmetry, we have

BLTAL = As'By + Ag'By = A5 UL PAL + Ag Vo T AL (¢P),
BitAy = A5 "By = A5Vs A (q),
Bi'AL = A7'By + A "By = A7 'UL PAL + Ag 'V T AL (g).

So to have N integral, we need to choose F,G so that 55 = 0 (¢), and Us so that
Bs = A5Us (q). With such choices, the lower ¢ rows of N are congruent modulo ¢

to
0 (B5 — A5U3 — A6 tV4)/q 0 Bﬁ — A5V4
0 B; — A;Us — Ag 'V, 0 0 '
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Also, since (M’,N’) = 1, when s = 0 (q), we will necessarily have rank,y; =
¢ —r —ds (recall that B4, f5,74 = 0 (q)). Write

M1 p2 H3 vy 2
Us= ‘e pa ps |, Va=|rvs
tM3 tu5 He Vs Vg

where 1 is ds X ds, pg is d7 X d7, vo is ds X dg, and vy is d7 x dg. Note that

0 0 03
By — A7Us — Ag'Vy= | 04 —artps 05 —arps 66 —azus | (q).
07 —agtvy 0 —aglvy 09— as'vg

So to have

rank 0 (Bs— AsUs — Ag'Va)/q 0 Bg— A5V,
7\ 0 Br, — A;Us — Ag 75‘/'4 0 0 ’

we need to choose E, G so that rank,ds = r — d7 — ds. We know that 3 is (£ —r —
Cl5) X (n—j—d4—d8) and 53 is (T—d7—d8) X (j—dl—d5—d7). Thus if/BG =0 (q)
and rank,d3 = r — d7y — dg, we have

b—r—ds<n—j—dy—dg, r—dy —dg < j—di —ds—dr,

and consequently r = j — d; — ds + dg (recall that n — ¢ = dy + d4). Then we use
right multiplication from K; to modify G so that we can assume 84 = 0 (¢?).
Thus we need to choose K4, »E, GK; so that (adjusting the coset representatives
E,G), the top dy rows of EM' have ¢g-rank dy, the top dy + d4 + ds rows of EM’
have g-rank dy +dy4 +ds (where 0 < d5 < j—d;), and ¢ divides rows d; +ds+ds +1
through n — d7 — dg of EM’; Lemma ? tells us that the number of such Ky, , E is

B(d/,d —+ d5)ﬁ(n — d/, n—r—d-— d5)ﬁ(d + d5, dl)
. q(d+d5)(’r+d+d5*d/)+d1(n*d7d5)

where d = rank,M, d' = rank,M’ (note that after choosing E as in the lemma,
we can use left multiplication from Ky, , to ensure rows dy 4+ d4 + ds + 1 through
n — dr — dg are divisible by ¢). Then we can choose some Gy € SL,,(Z) so that

c 0 0 0
W _|0o ¢ 0 o
o 0 C” o

where C'is di xdy with rank,C = dy, C" is (ds+d5) % (ds+d5) with rank,C’ = ds+ds.
As GIC; varies over SL,(Z)/IC;, so does GoGK;; Lemma ? tells us that the number
of GK; that meet all the necessary criteria as described above is

B(ds + ds,dy)B(dy + dg, dg)q P+ H4s) U1 —ds) =drds,
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Having chosen such E, G, we have seen that to have N integral, Uy, Us, V1, Vs, V3

are uniquely determined, and pq, p2, 3 are determined modulo ¢q. To also have
(M,N) =1, we need to ensure rank,B = ¢ where

(Br —aspr)/q (B2 —aspa)/q (B3 —asps)/q v —asvr 2 — asio

0 * * Y3 0

B = 0 0 03 0 0
0 05 — a7 iy 06 — Q7 fis 0 0

57 — g tVQ 58 — a8 tl/4 59 — g tVﬁ 0 0

We have 03 square and invertible modulo ¢; so we need 05 — a7y (which is square)
to be invertible modulo ¢q. By symmetry, we know (d5 — arug) ‘e is symmetric;
writing pg = ply + quy where uly, p)f vary over symmetric d; X d; matrices modulo
q, (05 — arp) tar does as well. (So there are ¢%7(47+1)/2sym(d;) ways to choose ji4
so that d5 — arzpuy is invertible modulo ¢.) So to have B invertible, we need

(B1—asp1)/q 71— asvr Y2 — asvy
0 Y3 0
57 — Aag tl/g 0 0

to be invertible modulo ¢q. We previously noted that ~s is invertible modulo ¢, so

we need
(51 - a5u1)/q Y2 — Q52
(57 — Qg tVQ 0

to be invertible modulo ¢, or equivalently, we need

((ﬁl —aspn)as/q (2 — ase) ta5)

(57 — g tVQ) tOég O

to be invertible modulo ¢, and this latter matrix is symmetric modulo q.

Now we compute )y X, (M, N)x (M’ N'). First, we choose a permutation
matrix G; € GL,(Z) so that

A0 0 0

i [0 A 0 0
EM GGl = 0 0 A5 0 (Q>7

0 0 A; Ag

B, B, B, B,
B, B, B; B
B, B, Bs Bg
B, B, B: Bs

EN/ thl tGl—l —
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(recall that since G is a permutation matrix, *‘G;' = G1). Then

Al /
e I P )
0
*k * * %
t—1 | x * * *
NG = 0 0 (Bs—AsUs—Ag'Vy)/q Bs— AsVy (9)-
0 0 B; — A7Us — AgtV, 0

Then we choose permutation matrices Ef, G5 € GLy,—q, —q4,(7Z) so that

a5

[ As 0 8
EQ(Ai A8> h= Qg (q),

0

_ _ t _
E§<(B5 AsUs — A6 'Vi)/q Bg A5V4)t(G/2)1

B; — AUz — Ag'V, 0
(51 - a5u1)/q Y2 — Q52 * * %
67 — ag 'vy 0 * 0
= 0 0 ds —azug 0 0 | (¢
0 0 * 73 0
0 0 0 0 03

Set By = (Id1+d4 5 )7 Gy = (Id1+d4 o ) _Then
2 2

No(det(EsGrGa))xo(M', N') = xo(Es EM' GG G, Ex EN' H(GG1Ga) ™)
= X, (det A’ - det A} - det a5 - a7 - det ag) xq(det 3 - det d3)

On the other hand,

Xq(det(B2G1G2))xq(M, N) = xq(E2MG1Ga, E;N' (G1G2) ™)
= X,(det A7 - det A})x,(det 3 - det d3)

“Xq <det ((51 —asp1)/q Y2 — 065V2> - det (55 — Oé7u4)) 1

(57 — Qg tl/g

Thus

— _ (51 —M1t045)/q Y2 —V2t045 t .
Xq(M7 N)XQ(M/7NI) = Xq <det < 57 — ty2 tozg 0 det(55 — M4 057) )
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recall that we have already noted that

Bi—m'as)/g y2—w'a
(Grorm sy i) g ptar

are symmetric modulo ¢q. Thus

> X (det ((5551 —H)/a 55720‘ ”2> det(a7d5 — u4)> = sym)X(ds, ds),

68(57 - tVQ
K112

and
> Xq(det(@rd5 — 1a)) = sym¥(dy).
14
We have seen that s, u3 are determined modulo ¢, but unconstrained further
modulo ¢2, us,us are unconstrained modulo ¢?, and vy, vs, vy, s, Vg are uncon-
strained modulo q. Hence there are

q(j—dl)(n—dl _d4+1)_d5(j_dl+d8+1)_d7(d7+1)/28ym(d7)Sym(d5, dS)

choices for Y so that M, N are integral with (M, N) = 1. Hence, having fixed F, G
and then summing over those Y that meet the conditions determined above,

qu(Mv N)xq(M',N') = q(j_dl)(n_dl_d4+l)_d5(j_dl+d8+1)_d7(d7+1)/zsym§(d7)sym§(d5,dg).l
Y

To simplify the formula for A;(d,t), we note that r = j —dy —ds + dg, d =
di+dy=n—0,d=d+t,t =ds+d;+ds,di +ds+dy <j,ds+dg <n-—j,
and dg < ds. Using this information yields the formula for a;(¢;dy,ds,ds). Also,
we know B(m,s) = f(m,m — s), so

B(d1 +ds +ds,dy)B(d', dy + dy + ds) B(ds + ds, ds)
p(n—Ll+ds,di)p(n — L+t t —ds)pu(n — € —dy +ds, ds) p(t, ds)
a pu(dy, d)p(t — ds, t — ds)p(ds, ds) p(t, ds)
_p(n =l dy At p(t, ds)
 pldr, d)pdt, t)p(ds, ds)
p(n =L+t )pu(n — £, di)p(t, ds)
B p(t, t)u(dy, di)p(ds, ds)
= B(d+t,H)3(d, dy)B(t, ds).
This gives us the formula for A;(d,t), subject to the constraints on the d;. Taking

0<d <7,0<ds; <j—di, and 0 < dg < d5, the summand in the formula for
Aj(d,t) is 0 if the other constraints on the d; are not met. [J

As discussed after Theorem 7?7, we know we have a basis {IEP} , of simultaneous
eigenforms for the space of Eisenstein series of degree n, weight k, square-free level
N, and character x, and these are eigenforms for all Hecke operators T'(p), T;(p?)
where p is any prime. Below we compute the eigenvalues for T}(¢?) (where, as
above, ¢|\); in later work we compute the eigenvalues for T'(p), Tj(p?) for p any
prime not dividing .
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Corollary 4.5. Let p be a multiplicative partition of N, and suppose E, # 0.
Then with d = rank,M,, for a prime ¢l/N" and d = rank,M,, we have E,|T;(¢*) =
X i (¢?)E, where

J
Mpj(q®) = @4 g BRI Ry (PN (PV M) B(d, dy)B(n—d, § — dy).
d1=0

Proof. By Corollary 4.3 and Theorem 4.4, we know that IEp is an eigenform for
T;(¢?) with eigenvalue A;(d,0). In general, with r = j — d; — d5 + ds, and prime
¢'|N/q so that d’ = ranky M, we know x2, = 1 for ¢'|N'/(NoN;,) and thus

Xq (7)) if0<d <n,
Xq’(Dd17TMPD;17 Ddlﬂ"Dj) = Xi’(qdl)XQ’(q%ids) if d' = 0,
Xo (g M) xg (g% Hds) if d = n.

Since in the sum for A,(d,0) we have ds,ds = 0, the corollary follows. O
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