

Walling, L. H. (2017). Hecke eigenvalues and relations for Siegel Eisenstein series of arbitrary degree, level, and character. *International Journal of Number Theory*, *13*(2), [325]. https://doi.org/10.1142/S179304211750021X

Peer reviewed version

Link to published version (if available): 10.1142/S179304211750021X

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via World Scientific at http://www.worldscientific.com/doi/10.1142/S179304211750021X. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

HECKE EIGENVALUES AND RELATIONS FOR DEGREE *n* SIEGEL EISENSTEIN SERIES OF SQUARE-FREE LEVEL

LYNNE H. WALLING

ABSTRACT. We describe a basis of Siegel Eisenstein series of degree n, square-free level \mathcal{N} and arbitrary character χ ; then, without using knowledge of their Fourier coefficients, we evaluate the action of the Hecke operators T(q), $T_j(q^2)$ $(1 \leq j \leq n)$ for primes $q|\mathcal{N}$. We find the space of Siegel Eisenstein series with square-free level has a basis of simultaneous eigenforms for these operators, and we compute the eigenvalues, thereby obtaining a multiplicity-one result. We then compute the action of the Hecke operators T(p), $T_j(p^2)$ on a basis of Siegel Eisenstein series of level $\mathcal{N} \in \mathbb{Z}_+$ provided $4 \nmid \mathcal{N}$ and p is a prime with $p \nmid \mathcal{N}$, and from this construct a basis of simultaneous eigenforms.

$\S1.$ Introduction

Remark that space of Eisenstein series is invariant under Hecke operators DEFINE: Γ^+_{∞}

Refer to notation $\mathcal{E}_k^{(n)}(\mathcal{N},\chi)$

\S 2. Defining Siegel Eisenstein series

For $k, n, \mathcal{N} \in \mathbb{Z}_+$ and χ a character modulo \mathcal{N} , we want to define a degree n, weight k, level \mathcal{N} Eisenstein series with character χ for each element of the quotient $\Gamma_{\infty} \backslash Sp_n(\mathbb{Z})/\Gamma_0(\mathcal{N})$. Given $\gamma_{\rho} \in Sp_n(\mathbb{Z})$, the natural object to define is

$$\mathbb{E}_{\rho}(\tau) = \sum_{\gamma} \overline{\chi}(\gamma) \, \mathbf{1}(\tau) |\gamma_{\rho} \gamma$$

where $\gamma \in \Gamma_0(\mathcal{N})$ varies so that $\Gamma_{\infty}\gamma_{\rho}\gamma$ varies over the (distinct) elements of $\Gamma_{\infty}\gamma_{\rho}\Gamma_0(\mathcal{N})$, and

$$1(\tau) \begin{vmatrix} A & B \\ C & D \end{vmatrix} = \det(C\tau + D)^{-k}$$

1991 Mathematics Subject Classification. 11F41.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

1

Key words and phrases. Siegel modular forms, Eisenstein series, Hecke operators.

for $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp_n(\mathbb{Z})$. If well-defined, this series converges absolutely uniformly on compact subsets of $\mathcal{H}_{(n)}$ provided $k \ge n+2$ (and hence is analytic).

[?? it is majorised by the level 1 Eisenstein series in the case k is even; what about when k is odd??]

Hence we assume $k \ge n+2$. However, defined as above, \mathbb{E}_{ρ} may not be welldefined. Thus we over-sum, producing a well-defined function \mathbb{E}'_{ρ} that is 0 whenever the above sum for \mathbb{E}_{ρ} is not well-defined, and is a multiple of \mathbb{E}_{ρ} when \mathbb{E}_{ρ} is welldefined.

Note that when $\gamma \in \Gamma_{\infty}^+$, $1(\tau)|\gamma = 1(\tau)$. Thus taking $\gamma_j^* \in \Gamma(\mathcal{N})$ so that

$$\Gamma^+_{\infty}\Gamma(\mathcal{N}) = \cup_j \Gamma^+_{\infty} \gamma^*_j \text{ (disjoint)},$$

and setting

$$\mathbb{E}^*(\tau) = \sum_j 1(\tau) |\gamma_j^*,$$

 \mathbb{E}^* is well-defined (and converges absolutely uniformly on compact subsets, so is analytic). With

$$\Gamma_{\rho}^{+} = \{ \gamma \in \Gamma_{0}(\mathcal{N}) : \Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{\rho} \gamma = \Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{\rho} \},\$$

take $\delta_i \in \Gamma_0(\mathcal{N}), \, \delta'_\ell \in \Gamma^+_\rho$ so that

$$\Gamma_0(\mathcal{N}) = \bigcup_i \Gamma_\rho^+ \delta_i \text{ (disjoint)}, \Gamma_\rho^+ = \bigcup_\ell \Gamma(\mathcal{N}) \delta'_\ell \text{ (disjoint)}$$

(note that $\Gamma(\mathcal{N}) \subseteq \Gamma_{\rho}^{+}$). Thus

$$\Gamma_0(\mathcal{N}) = \bigcup_{i,\ell} \Gamma(\mathcal{N}) \delta'_{\ell} \delta_i \text{ (disjoint)}.$$

Set $G_{\pm} = \begin{pmatrix} I_{n-1} \\ -1 \end{pmatrix}$, $\gamma_{\pm} = \begin{pmatrix} G_{\pm} \\ G_{\pm} \end{pmatrix}$; remembering $\Gamma(\mathcal{N})$ is a normal subgroup of $Sp_n(\mathbb{Z})$, we have

$$\Gamma_{\infty}\gamma_{\rho}\Gamma_{0}(\mathcal{N}) = \cup_{i,\ell} \left(\Gamma_{\infty}^{+}\gamma_{\rho}\Gamma(\mathcal{N})\delta_{\ell}^{\prime}\delta_{i} \cup \Gamma_{\infty}^{+}\gamma_{\pm}\gamma_{\rho}\Gamma(\mathcal{N})\delta_{\ell}^{\prime}\delta_{i}\right) \\ = \cup_{i,\ell} \left(\Gamma_{\infty}^{+}\Gamma(\mathcal{N})\gamma_{\rho}\delta_{\ell}^{\prime}\delta_{i} \cup \Gamma_{\infty}^{+}\Gamma(\mathcal{N})\gamma_{\pm}\gamma_{\rho}\delta_{\ell}^{\prime}\delta_{i}\right).$$

Now set

$$\mathbb{E}'_{\rho} = \sum_{i,\ell} \overline{\chi}(\delta'_{\ell}\delta_i) \mathbb{E}^* |\gamma_{\rho}\delta'_{\ell}\delta_i + \sum_{i,\ell} \overline{\chi}(\gamma_{\pm}\delta'_{\ell}\delta_i) \mathbb{E}^* |\gamma_{\pm}\gamma_{\rho}\delta'_{\ell}\delta_i.$$

Since $\Gamma^+_{\infty}\Gamma(\mathcal{N})\gamma_{\pm} = \gamma_{\pm}\Gamma^+_{\infty}\Gamma(\mathcal{N})$, we have

$$\mathbb{E}^*|\gamma_{\pm} = (-1)^k \mathbb{E}^*;$$

hence $\mathbb{E}'_{\rho} = 0$ if $\chi(-1) \neq (-1)^k$.

Assume now that $\chi(-1) = (-1)^k$. Then, since $\Gamma^+_{\infty} \Gamma(\mathcal{N}) \gamma_{\rho} \delta'_{\ell} = \Gamma^+_{\infty} \Gamma(\mathcal{N}) \gamma_{\rho}$, we have $\mathbb{E}^* | \gamma_{\rho} \delta'_{\ell} = \mathbb{E}^* | \gamma_{\rho}$, and hence

$$\mathbb{E}'_{\rho} = 2\left(\sum_{\ell} \overline{\chi}(\delta'_{\ell})\right) \sum_{i} \overline{\chi}(\delta_{i}) \mathbb{E}^{*} |\gamma_{\rho} \delta_{i}.$$

Here δ'_{ℓ} varies over a set of representatives for the group $\Gamma(\mathcal{N}) \setminus \Gamma_{\rho}^{+}$ (and we know χ is trivial on $\Gamma(\mathcal{N})$), so unless χ is trivial on Γ_{ρ}^+ , we have $\mathbb{E}'_{\rho} = 0$. Note that $\gamma_{\pm} \in \Gamma(\mathcal{N})$ if and only if $\mathcal{N} \leq 2$. So when $\mathcal{N} \leq 2$, we have $\Gamma_{\infty} \gamma_j^*$

varying twice over the distinct elements of $\Gamma_{\infty} \setminus \Gamma_{\infty} \Gamma(\mathcal{N})$, and

$$\mathbb{E}^* = \mathbb{E}^* | \gamma_{\pm} = (-1)^k \mathbb{E}^*.$$

Hence when $\mathcal{N} \leq 2$ and k is odd, $\mathbb{E}^* = 0$, and thus $\mathbb{E}'_{\rho} = 0$. When $\mathcal{N} > 2$ or k is even,

$$\lim_{\tau \mapsto i\infty} \mathbb{E}^*(\tau) = \begin{cases} 2 & \text{if } \mathcal{N} \le 2, \\ 1 & \text{if } \mathcal{N} > 2, \end{cases}$$

and $\lim_{\tau\mapsto i\infty} \mathbb{E}'_{\rho}(\tau) |\gamma_{\rho}^{-1} = 2[\Gamma_0(\mathcal{N}):\Gamma_{\rho}^+] \lim_{\tau\mapsto i\infty} \mathbb{E}^*(\tau)$. (see §4 [Freitag, 1996]). Also, with $\gamma'_j = \gamma_{\rho}^{-1} \gamma_j^* \gamma_{\rho}$, we have

$$\Gamma_{\infty}\gamma_{\rho}\Gamma_{0}(\mathcal{N}) = \bigcup_{i,j}\Gamma_{\infty}\gamma_{i}^{*}\gamma_{\rho}\delta_{i} = \bigcup_{i,j}\Gamma_{\infty}\gamma_{\rho}\gamma_{i}^{\prime}\delta_{i}.$$

(The above unions over i, j are disjoint when $\mathcal{N} > 2$.)

Thus we have proved the following.

Proposition 2.1. Assume $\chi(1) = (-1)^k$.

- (1) For $\gamma_{\rho} \in Sp_n(\mathbb{Z})$, \mathbb{E}_{ρ} is well-defined if and only if χ is trivial on Γ_{ρ}^+ . When well-defined, \mathbb{E}_{ρ} is a nonzero multiple of \mathbb{E}'_{ρ} , and $\mathbb{E}'_{\rho} \neq 0$ when $\mathcal{N} > 2$ or k is even.
- (2) Suppose $\mathcal{N} \leq 2$ and k is odd. Then $\mathbb{E}'_{\rho} = 0$, so either \mathbb{E}_{ρ} is not well-defined or $\mathbb{E}_{\rho}=0.$

Next we give a description of a convenient choice of representatives corresponding to the Eisenstein series.

Proposition 2.2. For any $\gamma \in Sp_n(\mathbb{Z})$, there exists some $\gamma_{\rho} = \begin{pmatrix} I & 0 \\ M_{\rho} & I \end{pmatrix} \in Sp_n(\mathbb{Z})$ so that $\gamma \in \Gamma_{\infty} \gamma_{\rho} \Gamma_0(\mathcal{N})$. When \mathcal{N} is square-free, take $\rho = (\mathcal{N}_0, \ldots, \mathcal{N}_n)$ to be a (degree n) multiplicative partition of \mathcal{N} , meaning $\mathcal{N}_0 \cdots \mathcal{N}_n = \mathcal{N}$. Take M_{ρ} diagonal so that $M_{\rho} \equiv \begin{pmatrix} I_d \\ 0 \end{pmatrix}$ (q) for each prime q dividing \mathcal{N}_d ($0 \le d \le n$); then as ρ varies, γ_{ρ} varies over a set of representatives for $\Gamma_{\infty} \backslash Sp_n(\mathbb{Z}) / \Gamma_0(\mathcal{N})$. Further, when \mathcal{N} is square-free and $\gamma = \begin{pmatrix} * & * \\ M & N \end{pmatrix} \in Sp_n(\mathbb{Z})$, we have $\gamma \in \Gamma_{\infty} \gamma_{\rho} \Gamma_0(\mathcal{N})$ if and only if $rank_q M = rank_q M_{\rho}$ for each prime $q|\mathcal{N}|$ (where $rank_q M$ denotes the rank of M modulo q).

(When $4 \nmid \mathcal{N}$, we give a more detailed description of a set of representatives for $\Gamma_{\infty} \backslash Sp_n(\mathbb{Z}) / \Gamma_0(\mathcal{N})$ in §?.)

Proof. Given $\gamma = \begin{pmatrix} * & * \\ M & N \end{pmatrix} \in Sp_n(\mathbb{Z})$, note that we have $\gamma \in \Gamma_{\infty} \gamma_{\rho} \Gamma_0(\mathcal{N})$ if and only if $(M_{\rho} I) \in GL_n(\mathbb{Z})(M N) \Gamma_0(\mathcal{N})$. We proceed algorithmically to first construct a pair $(M' N') \in GL_n(\mathbb{Z})(M N) \Gamma_0(\mathcal{N})$ with $N' \equiv I(\mathcal{N})$.

Fix a prime q dividing \mathcal{N} with $q^t \parallel \mathcal{N}$. By Lemma ??, we can choose $E_0, G_0 \in SL_n(\mathbb{Z})$ so that $E_0, G_0 \equiv I \ (\mathcal{N}/q^t)$ and $E_0 N^t G_0^{-1} \equiv \begin{pmatrix} N_1 & 0 \\ 0 & 0 \end{pmatrix} \ (q^t)$ where N_1 is $d \times d$ and invertible modulo q (so $d = \operatorname{rank}_q N$). We can adjust E_0, G_0 so that $N_1 \equiv \begin{pmatrix} a \\ & I \end{pmatrix} \ (q^t)$, some a. Similarly, we can choose $\begin{pmatrix} u & v \\ w & x \end{pmatrix} \in SL_2(\mathbb{Z})$ so that $\begin{pmatrix} u & v \\ w & x \end{pmatrix} \equiv I \ (\mathcal{N}/q^t), \begin{pmatrix} u & v \\ w & x \end{pmatrix} \equiv \begin{pmatrix} a & 0 \\ 0 & \overline{a} \end{pmatrix} \ (q^t)$. Then

$$\gamma_0 = \begin{pmatrix} u & v & \\ & I_{n-1} & \\ w & & x \\ & & & I_{n-1} \end{pmatrix} \in \Gamma_0(\mathcal{N})$$

and $E_0(M \ N) \begin{pmatrix} G_0 \\ {}^tG_0^{-1} \end{pmatrix} \gamma_0 \equiv \begin{pmatrix} \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} \begin{pmatrix} I_d \\ 0 \end{pmatrix} \end{pmatrix} (q^t)$ with $M_1 \ d \times d$. By symmetry, $M_3 \equiv 0 \ (q^t)$; since (M, N) = 1, M_4 is invertible modulo q. Thus we can find $E'_1, G'_1 \in SL_{n-d}(\mathbb{Z})$ so that $E'_1, G'_1 \equiv I \ (\mathcal{N}/q^t)$,

$$M'_4 = E'_1 M_4 G'_1 \equiv \begin{pmatrix} I & \\ & a' \end{pmatrix} (q^t).$$

Take $E_1 = \begin{pmatrix} I_d \\ E'_1 \end{pmatrix}$, $G_1 = \begin{pmatrix} I_d \\ G'_1 \end{pmatrix}$, $W = \begin{pmatrix} 0_d \\ I_{n-d-1} \\ \overline{a'} \end{pmatrix}$ where $\overline{a'}a' \equiv 1$

1 (q^t) ; then

LYNNE: CHECK THIS

$$(C D) = E_1 E_0(M N) \begin{pmatrix} G_0 \\ {}^t G_0^{-1} \end{pmatrix} \gamma_0 \begin{pmatrix} G_1 \\ {}^t G_1^{-1} \end{pmatrix} \begin{pmatrix} I & W \\ 0 & I \end{pmatrix}$$
$$\equiv \left(\begin{pmatrix} M_1 & M_2' \\ M_3' & M_4' \end{pmatrix} I \right) (q^t),$$

and $(C D) \in GL_n(\mathbb{Z})(M N)\Gamma_0(\mathcal{N})$ with $(C D) \equiv (M N) (\mathcal{N}/q^t)$ and $D \equiv I(q^t)$.

Next, suppose p is another prime dividing \mathcal{N} with $p^r \parallel \mathcal{N}$. Applying the above process to the pair $(C \ D)$, we obtain a pair $(C' \ D') \in GL_n(\mathbb{Z})(M \ N)\Gamma_0(\mathcal{N})$ with $(C' \ D') \equiv (M \ N) \ (\mathcal{N}/(q^t p^r))$ and $D' \equiv I \ (q^t p^r)$. Continuing, we obtain $(M' \ N') \in$

 $GL_n(\mathbb{Z})(M \ N)\Gamma_0(\mathcal{N})$ with $N' \equiv I \ (\mathcal{N})$. Thus $(\mathcal{N}M' \ N')$ is a coprime symmetric pair, so there exist K', L' so that $\mathcal{N}|L'$ and $\begin{pmatrix} K' & L' \\ M' & N' \end{pmatrix} \in Sp_n(\mathbb{Z})$; note that we must have $K' \equiv I \ (\mathcal{N})$ since $L' \equiv 0 \ (\mathcal{N})$ and $N' \equiv I \ (\mathcal{N})$. Since M' is necessarily symmetric modulo \mathcal{N} , we can choose a symmetric matrix M'' so that $M'' \equiv M' \ (\mathcal{N})$; set

$$\delta = \begin{pmatrix} {}^{t}N' & -{}^{t}L' \\ -{}^{t}M' & {}^{t}K' \end{pmatrix} \begin{pmatrix} I & 0 \\ M'' & I \end{pmatrix}$$

Then $\delta \in \Gamma(\mathcal{N})$, and $(M'' I) = (M' N')\delta \in GL_n(\mathbb{Z})(M N)\Gamma_0(\mathcal{N}).$

Now suppose \mathcal{N} is square-free and M is an integral symmetric matrix. We show that there is some $(M' N') \in GL_n(\mathbb{Z})(M I)\Gamma_0(\mathcal{N})$ so that $N' \equiv I$ (\mathcal{N}) and $M' \equiv M_\rho$ (\mathcal{N}) where M_ρ is diagonal and, for each prime q dividing \mathcal{N} , $M_\rho \equiv \begin{pmatrix} I_d \\ 0 \end{pmatrix}$ (q) where $d = \operatorname{rank}_q M$. Then the argument of the preceeding paragraph gives us $(M_\rho I) \in GL_n(\mathbb{Z})(M I)\Gamma_0(\mathcal{N})$. So it suffices now to show that for each prime $q|\mathcal{N}$, there are $E \in SL_n(\mathbb{Z})$, $\gamma \in \Gamma_0(\mathcal{N})$ so that $E, \gamma \equiv I$ (\mathcal{N}/q), and $E(M I)\gamma \equiv (C I)$ (q) where $C = \begin{pmatrix} I_d \\ 0 \end{pmatrix}$ with $d = \operatorname{rank}_q M$.

If rank_qM = 0 then there is nothing to do. Suppose not; first consider the case that q is odd. By §92 of [O'M], we know there exists $E' \in SL_n(\mathbb{Z}_q)$ so that $E'M^tE'$ is diagonal with $E'M^tE' \equiv \begin{pmatrix} M_1 \\ 0 \end{pmatrix} (q), M_1 = \begin{pmatrix} a \\ I \end{pmatrix}$ with $q \nmid a$. Thus we can find $E \in SL_n(\mathbb{Z})$ so that $E \equiv I (\mathcal{N}/q), E \equiv E'(q)$. Then

$$E(M \ I) \begin{pmatrix} {}^{t}E \\ & E^{-1} \end{pmatrix} = (M' \ I)$$

where $M' \equiv (E'M^{t}E')$ (q). Take $\begin{pmatrix} u & v \\ w & x \end{pmatrix} \in SL_{2}(\mathbb{Z})$ so that $\begin{pmatrix} u & v \\ w & x \end{pmatrix} \equiv I(\mathcal{N}/q), \begin{pmatrix} u & v \\ w & x \end{pmatrix} \equiv \begin{pmatrix} \overline{a} & \overline{a} - 1 \\ 0 & a \end{pmatrix}$ (q). Set

$$\gamma = \begin{pmatrix} u & v \\ I_{n-1} & 0 \\ w & x \\ 0 & I_{n-1} \end{pmatrix}.$$

Then $\gamma \equiv I \ (\mathcal{N}/q)$ and $(M' \ I)\gamma \equiv (C \ I) \ (q)$ where $C = \begin{pmatrix} I_d \\ 0 \end{pmatrix}$.

Now suppose q = 2. By Lemma ?? there is some $E \in SL_n(\mathbb{Z})$ so that $E \equiv I(\mathcal{N}/q)$ and $EM^{t}E \equiv \begin{pmatrix} M_1 \\ 0 \end{pmatrix}$ (q), where either $M_1 = I_d$ or $M_1 = A_1$, $A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \perp \cdots \perp \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ($d \times d$ where $d = \operatorname{rank}_q M$). In the first case, we are done.

Otherwise, take $A \in SL_n(\mathbb{Z})$ so that $A \equiv I \ (\mathcal{N}/q)$ and $A \equiv \begin{pmatrix} A_1 \\ I_{n-d} \end{pmatrix} \ (q)$; set $\gamma = \begin{pmatrix} {}^tEA & {}^tE(A-I) \\ E^{-1}A \end{pmatrix}$. Thus $\gamma \in \Gamma_0(\mathcal{N}), \ \gamma \equiv I \ (\mathcal{N}/q)$, and $E(M \ I)\gamma \equiv (C \ I) \ (q)$ where $C = \begin{pmatrix} I_d \\ 0 \end{pmatrix}$. \Box

Proposition 2.3. Suppose \mathcal{N} is square-free, χ is a character modulo \mathcal{N} so that $\chi(-1) = (-1)^k$, and $\rho = (\mathcal{N}_0, \ldots, \mathcal{N}_n)$ is a multiplicative partition of \mathcal{N} (as in Proposition 2.2; so $\mathcal{N}_0 \cdots \mathcal{N}_n = \mathcal{N}$). Then \mathbb{E}_{ρ} is well-defined if and only if $\chi_q^2 = 1$ for all primes $q | \mathcal{N} / (\mathcal{N}_0 \mathcal{N}_n)$.

Proof. Suppose q is a prime dividing \mathcal{N}_d where 0 < d < n. Fix $\alpha \in \mathbb{F}_q^{\times}$. By Lemma ??, there exist $G = \begin{pmatrix} u & v \\ w & x \end{pmatrix}, G' = \begin{pmatrix} u' & v' \\ w' & x' \end{pmatrix} \in SL_2(\mathbb{Z})$ so that $G, G' \equiv I \ (\mathcal{N}/q),$ $G \equiv \begin{pmatrix} \overline{\alpha} & \overline{\alpha} - \alpha \\ 0 & \alpha \end{pmatrix} \ (q), \ G' \equiv \begin{pmatrix} \overline{\alpha} & 0 \\ 0 & \alpha \end{pmatrix} \ (q).$

Let A, B, C, D, E, W be the $n \times n$ matrices

$$A = \begin{pmatrix} u & & \\ & I & \\ & & u' \end{pmatrix}, B = \begin{pmatrix} v & & \\ & 0 & \\ & & v' \end{pmatrix}, C = \begin{pmatrix} w & & \\ & 0 & \\ & & w' \end{pmatrix},$$
$$D = \begin{pmatrix} x & & \\ & I & \\ & & x' \end{pmatrix}, E = \begin{pmatrix} u' & v' \\ & I & \\ & w' & x' \end{pmatrix}, W = \begin{pmatrix} x^2 - 1 & \\ & 0 \end{pmatrix}.$$

Then $\gamma' = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0(\mathcal{N}), E \in SL_n(\mathbb{Z})$, and

$$\delta = \begin{pmatrix} E & \\ & {}^t E^{-1} \end{pmatrix} \begin{pmatrix} I & W \\ & I \end{pmatrix} \in \Gamma_{\infty}^+$$

Further, $\delta \gamma_{\rho} \gamma' \equiv \gamma_{\rho}^{+}$ (\mathcal{N}). Set $\gamma'' = (\delta \gamma_{\rho} \gamma')^{-1} \gamma_{\rho}$. So $\gamma'' \in \Gamma(\mathcal{N})$, $\gamma' \gamma'' \in \Gamma_{\rho}$ with $\chi(\gamma'\gamma'') = \chi_{q}^{2}(\alpha)$. Thus the condition that $\chi_{q}^{2} = 1$ for all primes $q|\mathcal{N}/(\mathcal{N}_{0}\mathcal{N}_{n})$ is necessary for \mathbb{E}_{ρ} to be well-defined.

Now suppose $\chi_q^2 = 1$ for all primes $q|\mathcal{N}/(\mathcal{N}_0\mathcal{N}_n)$, and suppose $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_{\rho}^+$. Thus there exist $\delta = \begin{pmatrix} {}^tE^{-1} & WE \\ & E \end{pmatrix} \in \Gamma_{\infty}^+$, $\gamma' \in \Gamma(\mathcal{N})$ so that $\delta \gamma' \gamma_{\rho} \gamma = \gamma_{\rho}$. Fix a prime $q|\mathcal{N}_d$, $0 \leq d \leq n$.

When d = 0, we have $ED \equiv I(q)$, so det $D \equiv \det \overline{E} \equiv 1(q)$ and $\chi_q(\det D) = 1$. 1. When d = n, we have $EA \equiv I \equiv A^{t}D(q)$, so det $D \equiv \det E \equiv 1(q)$ and $\chi_q(\det D) = 1$. Now suppose 0 < d < n. Write

$$A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}, \ D = \begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix}, \ E = \begin{pmatrix} E_1 & E_2 \\ E_3 & E_4 \end{pmatrix}$$

where A_1, D_1, E_1 are $d \times d$. Then we have $E_3(A_1 A_2) \equiv 0$ (q); since the rows of $(A_1 A_2)$ are linearly independent modulo q, we must have $E_3 \equiv 0$ (q). Also,

$$E_1(A_1 \ A_2) \equiv (I_d \ 0) \ (q), \ E_4(D_3 \ D_4) \equiv (0 \ I_{n-d}) \ (q),$$

so $A_2, D_3 \equiv 0$ (q), $A_1 \equiv \overline{E}_1$ (q), $D_4 \equiv \overline{E}_4$ (q). Since $A^t D \equiv I$ (q), we must have $D_1 \equiv {}^tE_1$ (q). Thus we have

$$\det D \equiv \det E_1 \cdot \det \overline{E}_4 \equiv (\det E_1)^2 \ (q)$$

and

$$\chi_q(\det D) = \chi_q^2(\det E_1) = 1.$$

Consequently $\chi(\gamma) = \chi(\det D) = 1$, and hence the condition that $\chi_q^2 = 1$ for all primes $q|\mathcal{N}/(\mathcal{N}_0\mathcal{N}_n)$ is sufficient for \mathbb{E}_{ρ} to be well-defined. \Box

We now give a robust definition of \mathbb{E}_{ρ} .

Definition. Having fixed $n, k, \mathcal{N} \in \mathbb{Z}_+$ with $k \ge n+2$, χ a character modulo \mathcal{N} , and $\gamma_{\rho} \in Sp_n(\mathbb{Z})$, we define

$$\mathbb{E}_{\rho} = \begin{cases} \frac{1}{2[\Gamma_{0}(\mathcal{N}):\Gamma_{\rho}^{+}]} \mathbb{E}_{\rho}' & \text{if } \mathcal{N} > 2, \\ \frac{1}{4[\Gamma_{0}(\mathcal{N}):\Gamma_{\rho}^{+}]} \mathbb{E}_{\rho}' & \text{if } \mathcal{N} \leq 2. \end{cases}$$

Remark. Suppose that $G_{\pm}M_{\rho} = M_{\rho}G_{\pm}$. Then for $G \in GL_n(\mathbb{Z}), \gamma \in \Gamma_0(\mathcal{N})$, we have $G(M_{\rho} I)\gamma = GG_{\pm}(M_{\rho} I)\gamma_{\pm}\gamma$. So with $\gamma_{\rho} = \begin{pmatrix} I & 0 \\ M_{\rho} & I \end{pmatrix}$, we have $\Gamma_{\infty}\Gamma(\mathcal{N})\gamma_{\rho}\gamma = \Gamma_{\infty}\Gamma(\mathcal{N})\gamma_{\rho}\gamma_{\pm}\gamma$ (since $\gamma_{\pm} \in \Gamma_{\infty}$), but $\Gamma_{\infty}^{+}\Gamma(\mathcal{N})\gamma_{\rho}\gamma = \Gamma_{\infty}^{+}\Gamma(\mathcal{N})\gamma_{\rho}\gamma_{\pm}\gamma$ if and only if $\mathcal{N} \leq 2$ (since $\gamma_{\pm} \in \Gamma(\mathcal{N})$ if and only if $\mathcal{N} \leq 2$). Thus,

$$\mathbb{E}_{\rho}(\tau) = m_{\rho} \sum_{\gamma} \overline{\chi}(\gamma) \, \mathbf{1}(\tau) | \gamma_{\rho} \gamma$$

where γ varies so that $\Gamma^+_{\infty} \gamma_{\rho} \Gamma_0(\mathcal{N}) = \bigcup_{\gamma} \Gamma^+_{\infty} \gamma_{\rho} \gamma$ (disjoint), and

$$m_{\rho} = \begin{cases} 1 & \text{if } \mathcal{N} \leq 2, \\ \frac{1}{2} & \text{otherwise.} \end{cases}$$

LYNNE: THIS NEXT DEFINED EARLIER?

We let $\mathcal{E}_k^{(n)}(\mathcal{N},\chi)$ denote the space spanned by these forms.

LYNNE H. WALLING

\S **3. Defining Hecke operators**

For each prime p, we define Hecke operators T(p), $T_j(p^2)$ $(1 \le j \le n)$ acting on Siegel modular forms; then we describe explicit sets of matrices that give the action of these operators.

Fix a prime p; set $\Gamma = \Gamma_0(\mathcal{N})$ and take $f \in \mathcal{M}_k^{(n)}(\mathcal{N}, \chi)$. We define

$$f|T(p) = p^{n(k-n-1)/2} \sum_{\gamma} \overline{\chi}(\gamma) f|\delta^{-1}\gamma$$

where $\delta = \begin{pmatrix} pI_n \\ I_n \end{pmatrix}$, γ varies over $(\delta\Gamma\delta^{-1}\cap\Gamma)\backslash\Gamma$, and for $\gamma' = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp_n(\mathbb{Z})$,

$$f(\tau)|\gamma' = (\det \gamma')^{k/2} \det(C\tau + D)^{-k} f((A\tau + B)(C\tau + D)^{-1}).$$

We define

$$f|T_j(p^2) = p^{j(k-n-1)} \sum_{\gamma} \overline{\chi}(\gamma) f|\delta_j^{-1}\gamma$$

where $\delta_j = \begin{pmatrix} X_j \\ X_j^{-1} \end{pmatrix}$, $X_j = \begin{pmatrix} pI_j \\ I_{n-j} \end{pmatrix}$, and γ varies over $(\delta_j \Gamma \delta_j^{-1} \cap \Gamma) \setminus \Gamma$.

Proposition 3.1. Let p be a prime, $f \in \mathcal{M}_k^{(n)}(\mathcal{N}, \chi)$. For $0 \leq r, n_0 + n_2 \leq n$, let

$$D_r = \begin{pmatrix} pI_r \\ I \end{pmatrix}, \ D_{n_0,n_2} = \begin{pmatrix} pI_{n_0} \\ I \\ I \\ I \end{pmatrix} (n \times n),$$

and let

$$\mathcal{K}_r = D_r SL_n(\mathbb{Z}) D_r^{-1} \cap SL_n(\mathbb{Z}),$$
$$\mathcal{K}_{n_0, n_2} = D_{n_0, n_2} SL_n(\mathbb{Z}) D_{n_0, n_2}^{-1} \cap SL_n(\mathbb{Z}).$$

Then

$$f|T(p) = p^{n(k-n-1)/2} \sum_{0 \le r \le n} \chi(p^{n-r}) \sum_{G,Y} f| \begin{pmatrix} D_r^{-1} & \\ & \frac{1}{p} D_r \end{pmatrix} \begin{pmatrix} G^{-1} & Y^t G \\ & t G \end{pmatrix}$$

where G varies over $SL_n(\mathbb{Z})/\mathcal{K}_r$ and Y varies over

$$\mathcal{Y}_r = \left\{ \begin{pmatrix} Y_0 \\ & 0 \end{pmatrix} \in \mathbb{Z}^{n,n}_{\text{sym}} : Y_0 \ r \times r, \ varying \ modulo \ p \right\}.$$

Also,

$$f|T_{j}(p^{2}) = p^{j(k-n-1)} \sum_{n_{0}+n_{2} \leq j} \chi(p^{j-n_{0}+n_{2}}) \sum_{G,Y} f| \begin{pmatrix} D_{n_{0},n_{2}}^{-1} & \\ & D_{n_{0},n_{2}} \end{pmatrix} \begin{pmatrix} G^{-1} & Y^{t}G \\ & {}^{t}G \end{pmatrix}$$

where G varies over $SL_n(\mathbb{Z})/\mathcal{K}_{n_0,n_2}$ and Y varies over \mathcal{Y}_{n_0,n_2} , the set of all integral, symmetric $n \times n$ matrices

$$\begin{pmatrix} Y_0 & Y_2 & Y_3 & 0 \\ {}^tY_2 & Y_1/p & 0 & \\ {}^tY_3 & 0 & & \\ 0 & & & \end{pmatrix}$$

with $Y_0 \ n_0 \times n_0$, varying modulo p^2 , $Y_1 \ (j - n_0 - n_2) \times (j - n_0 - n_2)$, varying modulo p provided $p \nmid \det Y_1$, $Y_2 \ n_0 \times (j - n_0 - n_2)$, varying modulo p, and $Y_3 \ n_0 \times (n - j)$, varying modulo p.

Proof. Fix $\Lambda = \mathbb{Z}x_1 \oplus \cdots \oplus \mathbb{Z}x_n$ (a reference lattice).

By Lemma ??, as G varies over $SL_n(\mathbb{Z})/\mathcal{K}_r$, $\Omega = \Lambda GD_r$ varies over all lattices Ω , $p\Lambda \subseteq \Omega \subseteq \Lambda$ with $[\Lambda : \Omega] = p^r$. Thus by Proposition 3.1 and (the proof of) Theorem 6.1 in [HW], claim (1) of the proposition follows.

For Ω another lattice on $\mathbb{Q}\Lambda$, let $\operatorname{mult}_{\{\Lambda:\Omega\}}(a)$ be the multiplicity of the value of aamong the invariant factors $\{\Lambda:\Omega\}$. By Lemma ??, as G varies over $SL_n(\mathbb{Z})/\mathcal{K}_{n_0,n_2}$, $\Omega = \Lambda GD_{n_0,n_2}$ varies over all lattices Ω , $p\Lambda \subseteq \Omega \subseteq \frac{1}{p}\Lambda$, with $\operatorname{mult}_{\{\Lambda:\Omega\}}(1/p) = n_2$, $\operatorname{mult}_{\{\Lambda:\Omega\}}(p) = n_0$. Thus by Proposition 3.1 and (the proofs of) Theorems 4.1 and 6.1 in [HW], claim (2) of the proposition follows. \Box

Remark. For $\mathcal{N}' \in \mathbb{Z}_+$ so that $p \nmid \mathcal{N}'$, we can choose G, Y in the above proposition so that $G \equiv I$ (\mathcal{N}') and $Y \equiv 0$ (\mathcal{N}'). Also, if $p \mid \mathcal{N}$, then

$$f|T(p) = p^{n(k-n-1)/2} \sum_{Y} f\left| \begin{pmatrix} \frac{1}{p}I_n & \frac{1}{p}Y \\ & I_n \end{pmatrix} \right|$$

where Y varies over \mathcal{Y}_n , and

$$f|T_{j}(p^{2}) = p^{j(k-n-1)} \sum_{G,Y} f| \begin{pmatrix} D_{j,0}^{-1} & \\ & D_{j,0} \end{pmatrix} \begin{pmatrix} G^{-1} & Y^{t}G \\ & {}^{t}G \end{pmatrix}$$

where G varies over $SL_n(\mathbb{Z})/\mathcal{K}_{j,0}$ and Y varies over $\mathcal{Y}_{j,0}$. LYNNE: CHECK THESE ABOVE SUMS

$\S4$. Hecke operators on Siegel Eisenstein series of square-free level

Throughout this section, we assume \mathcal{N} is square-free, χ is a character modulo \mathcal{N} so that $\chi(-1) = (-1)^k$; further, we assume either $\mathcal{N} > 2$ or k is even. Take a multiplicative partition $\rho = (\mathcal{N}_0, \ldots, \mathcal{N}_n)$ of \mathcal{N} (so $\mathcal{N}_0 \cdots \mathcal{N}_n = \mathcal{N}$), and assume that $\mathbb{E}_{\rho} \neq 0$ (so by Proposition 2.3, $\chi^2_{q'} = 1$ for all primes $q' | \mathcal{N} / (\mathcal{N}_0 \mathcal{N}_n))$). Take diagonal M_{ρ} as in Proposition 2.2, $\gamma_{\rho} = \begin{pmatrix} I & 0 \\ M_{\rho} & I \end{pmatrix}$.

With $\beta = \begin{pmatrix} * & * \\ M & N \end{pmatrix} \in SL_n(\mathbb{Z})$ and $\gamma \in \Gamma_0(\mathcal{N})$ so that $\Gamma_{\infty}^+\beta = \Gamma_{\infty}^+\gamma_{\rho}\gamma$, we can determine how to compute $\chi(\gamma)$ from (M N).

Suppose $\begin{pmatrix} * & * \\ M & N \end{pmatrix} \in \Gamma_{\infty}^{+} \gamma_{\rho} \Gamma_{0}(\mathcal{N})$; so $(M \ N) = E'(M_{\rho} \ I)\gamma$ for some $E' \in SL_{n}(\mathbb{Z})$ and $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_{0}(\mathcal{N})$. Fix q and take $d = \operatorname{rank}_{q} M_{\rho}$. Thus $\operatorname{rank}_{q} M_{\rho} = d$, so we can find $E, G \in SL_{n}(\mathbb{Z})$ so that $EMG \equiv \begin{pmatrix} M_{1} & 0 \\ 0 & 0 \end{pmatrix}$ (q) where M_{1} is $d \times d$ and invertible modulo q. Write $EN^{t}G^{-1} = \begin{pmatrix} N_{1} & N_{2} \\ N_{3} & N_{4} \end{pmatrix}$ where N_{1} is $d \times d$; since $M^{t}N$ is symmetric, we must have $N_{3} \equiv 0$ (q). Hence

$$EMG \equiv \begin{pmatrix} M_1 & 0\\ 0 & 0 \end{pmatrix} \equiv EE' \begin{pmatrix} I_d \\ 0 \end{pmatrix} AG(q),$$
$$\begin{pmatrix} N_1 & N_2\\ 0 & N_4 \end{pmatrix} \equiv EE' \left(\begin{pmatrix} I_d \\ 0 \end{pmatrix} B + D \right) {}^tG^{-1}(q)$$

Given the shape of EMG, we must have $EE' \equiv \begin{pmatrix} E_1 & E_2 \\ 0 & E_4 \end{pmatrix}$ (q) where E_1 is $d \times d$ and E_1, E_4 are invertible modulo q, and then $AG \equiv \begin{pmatrix} A_1 & 0 \\ A_3 & A_4 \end{pmatrix}$ (q) where A_1 is $d \times d$; since $\mathcal{N}|C, A_1, A_4$ are invertible modulo q. We have $A^tD \equiv I$ (q), so $D^tG^{-1} \equiv \begin{pmatrix} D_1 & D_2 \\ 0 & D_4 \end{pmatrix}$ (q) where D_1 is $d \times d$ and D_1, D_4 are invertible modulo q. Further, we must have

$$A_1 {}^t D_1 \equiv I_d, \ A_4 {}^t D_4 \equiv I_{n-d}, \ E_1 A_1 \equiv M_1, \ E_4 D_4 \equiv N_4 \ (q).$$

 So

$$\det \overline{M}_1 \cdot \det N_4 \equiv \det \overline{E}_1 \cdot \det E_4 \cdot \det \overline{A}_1 \cdot \det D_4 \equiv (\det \overline{E}_1)^2 \cdot \det D \ (q)$$

Note that when d = 0 $D \equiv N$ (q), and when d = n, ${}^tD \equiv \overline{A} \equiv \overline{M}$ (q). When 0 < d < n, we have $\chi_q^2 = 1$ so

$$\chi_q(\det \overline{M}_1 \cdot \det N_4) = \chi_q(\det D).$$

Thus we can define $\chi_q(M, N) = \chi_q(\det \overline{M}_1 \cdot \det N_4)$, and

$$\chi(M,N) = \prod_{q|\mathcal{N}} \chi_q(M,N).$$

Then we have

$$\mathbb{E}_{\rho}(\tau) = \frac{1}{2} \sum_{(M-N)} \overline{\chi}(M,N) \det(M\tau + N)^{-k}$$

where $(M \ N)$ varies over coprime symmetric pairs so that

$$SL_n(\mathbb{Z})(M_\rho \ I)\Gamma_0(\mathcal{N}) = \bigcup_{(M \ N)} SL_n(\mathbb{Z})(M \ N)$$
 (disjoint).

Now we prove the following.

Theorem 4.1. Fix a prime $q|\mathcal{N}$, and fix a multiplicative partition $\sigma = (\mathcal{N}'_0, \ldots, \mathcal{N}'_n)$ of \mathcal{N}/q . For $0 \leq d \leq n$, let \mathbb{E}_{σ_d} denote $\mathbb{E}_{\rho'}$ where $\rho' = (\mathcal{N}_0, \ldots, \mathcal{N}_n)$,

$$\mathcal{N}_i = \begin{cases} \mathcal{N}'_i & \text{if } i \neq d, \\ q \mathcal{N}'_d & \text{if } i = d. \end{cases}$$

Then

$$\mathbb{E}_{\sigma_d} | T(q) = q^{kd - d(d+1)/2} \chi_{\mathcal{N}/q} \left(\begin{pmatrix} I_d \\ \frac{1}{q} I_{n-d} \end{pmatrix} M_{\sigma_d}, \begin{pmatrix} qI_d \\ I_{n-d} \end{pmatrix} \right)$$
$$\cdot \sum_{t=0}^{n-d} q^{-dt - t(t-1)/2} \beta(d+t,t) sym_q^{\chi}(t) \mathbb{E}_{\sigma_{d+t}}$$

where

$$sym_q^{\chi}(t) = \sum_U \chi_q(detU),$$

U varying over $\mathbb{F}^{t,t}_{sym}$.

Remark. In Lemma ?? we evaluate $\operatorname{sym}_{q}^{\chi}(t)$.

?? WHAT IF $n - \ell = 0$ and $\chi_1 \neq 0$? Have $\mathbb{E}_t = 0$ for 0 < t < n. How do we modify this argument to get $\mathbb{E}_0 | T(q) = \mathbb{E}_0 + * * \mathbb{E}_n$??

Proof.

LYNNE: ?? $n - \ell \mapsto d$??

Write \mathbb{E}_d for \mathbb{E}_{σ_d} . We know $\mathbb{E}_d(\tau)$ is a sum over representatives for $SL_n(\mathbb{Z})$ equivalence classes of coprime pairs $(M \ N)$ with $\operatorname{rank}_q M = d$; we can assume qdivides the lower n - d rows of M. By Proposition 3.1,

$$\mathbb{E}_{d}(\tau)|T(q) = q^{-n(n+1)/2} \sum_{M,N,Y} \det(M\tau/q + MY/q + N)^{-k}$$
$$= q^{kn-n(n+1)/2} \sum_{M,N,Y} \det(M\tau + MY + qN)^{-k}$$

where Y varies over \mathcal{Y}_n . We have

$$\det(M\tau + MY + qN)^{-k} = q^{-k(n-d)} \det(M'\tau + N')^{-k}$$

where

$$(M' N') = \begin{pmatrix} I_d & \\ & \frac{1}{q}I_{n-d} \end{pmatrix} (M MY + qN).$$

We know the upper d rows of M are linearly independent modulo q, as are the lower n - d rows of N. Thus (M', N') = 1, and $\operatorname{rank}_q M' \ge d$. Also note that

$$\det(M\tau + MY + qN)^{-k} = q^{-(n-d)k} \det(M'\tau + N')^{-k}.$$

Recall that we can assume $Y \equiv 0$ (\mathcal{N}/q) . Also, we know \mathbb{E}_d is supported on the $\Gamma_0(\mathcal{N})$ -orbit of $GL_n(\mathbb{Z})(M_\rho I)$. Take $(M \ N) = (M_\rho \ I)\gamma$ where $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0(\mathcal{N})$. Take a prime $q'|\mathcal{N}$ and let $d' = \operatorname{rank}_{q'}M_\rho$. Choose $E \in SL_n(\mathbb{Z})$ so that $AE \equiv \begin{pmatrix} A_1 & 0 \\ * & * \end{pmatrix}$ (q') where A_1 is $d' \times d'$ (possible since we necessarily have $\operatorname{rank}_{q'}A = n$ since $q'|\mathcal{N}$). Then since $A^tD \equiv I(q')$, we have $D^tE^{-1} \equiv \begin{pmatrix} D_1 & D_2 \\ 0 & D_4 \end{pmatrix}$ (q') with $D_1 \ d' \times d'$. Thus

$$(M \ N) \begin{pmatrix} E \\ & {}^{t}E^{-1} \end{pmatrix} \equiv \begin{pmatrix} A_{1} & 0 & * & * \\ 0 & 0 & 0 & D_{4} \end{pmatrix} \ (q'),$$

and

$$(M' \ N') \begin{pmatrix} E \\ & {}^{t}E^{-1} \end{pmatrix} \equiv \begin{pmatrix} A'_{1} & 0 & * & * \\ 0 & 0 & 0 & D'_{4} \end{pmatrix} \ (q')$$

where, modulo q',

$$A_{1}' \equiv \begin{cases} A_{1} & \text{if } d' \leq d, \\ \begin{pmatrix} \frac{1}{q}I_{d} \\ & I \end{pmatrix} A_{1} & \text{if } d' \geq d; \end{cases}$$
$$D_{4}' \equiv \begin{cases} \begin{pmatrix} qI \\ & I_{n-d} \end{pmatrix} D_{4} & \text{if } d' \leq d, \\ D_{4} & \text{if } d' \geq d. \end{cases}$$

Therefore

$$\chi_{q'}(M',N') = \chi_{q'}(M'E,N'{}^{t}E^{-1}) = \chi_{q'}(\det \overline{A}'_{1} \cdot \det D'_{4})$$
$$= \chi_{q'}(q^{d-d'}) \cdot \chi_{q'}(\det \overline{A}_{1} \cdot \det D_{4}),$$
$$\chi_{q'}(\det \overline{A}_{1} \cdot \det D_{4}) = \chi_{q'}(M,N),$$
$$\chi_{q'}(q^{d-d'}) = \chi_{q'}\left(\begin{pmatrix}I_{d}\\&\frac{1}{q}I_{n-d}\end{pmatrix}M,\begin{pmatrix}qI_{d}\\&I_{n-d}\end{pmatrix}N\right).$$

Hence

$$\chi_{q'}(M',N') = \chi_{q'}(M'E,N'{}^{t}E^{-1})$$

$$= \chi_{q'}(\det \overline{A}'_{1} \cdot \det D'_{4})$$

$$= \chi_{q'}\left(\begin{pmatrix} I \\ \frac{1}{q}I_{n-d} \end{pmatrix} M_{\rho}, \begin{pmatrix} qI \\ I_{n-d} \end{pmatrix} \right) \chi_{q'}(M,N).$$

Therefore $\overline{\chi}_{\mathcal{N}/q}(M,N) = \chi_{\mathcal{N}/q} \left(\begin{pmatrix} I & \\ & \frac{1}{q}I_{n-d} \end{pmatrix} M_{\rho}, \begin{pmatrix} qI & \\ & I_{n-d} \end{pmatrix} \right) \overline{\chi}_{\mathcal{N}/q}(M',N').$

Reversing, take (M' N') a coprime symmetric pair with rank_qM' = d+t; assume $\mathbb{E}_{\sigma,d+t} \neq 0$. We need to count the equivalence classes $SL_n(\mathbb{Z})(M N)$ so that

$$\begin{pmatrix} I_d \\ \frac{1}{q}I_{n-d} \end{pmatrix} (M \ MY + qN) \in SL_n(\mathbb{Z})(M' \ N').$$

For any $E \in SL_n(\mathbb{Z})$, we have $\begin{pmatrix} I_d \\ qI_{n-d} \end{pmatrix} E \begin{pmatrix} I_d \\ \frac{1}{q}I_{n-d} \end{pmatrix} \in SL_n(\mathbb{Z})$ if and only if $E \in \mathcal{K}_d$. Thus we need to count the number of $E \in \mathcal{K}_d \setminus SL_n(\mathbb{Z})$ and $Y \in \mathbb{Z}^{n,n}_{sym}$ (varying modulo q) so that

$$(M \ N) = \begin{pmatrix} I_d & \\ & qI_{n-d} \end{pmatrix} E(M' \ (N' - M'Y)/q)$$

is a coprime pair. We can assume the top d+t rows of M' are linearly independent modulo q, and that q divides the lower n-d-t rows of M'. To have rank_qM = d, we need to choose E so that the top d rows of EM' are linearly independent modulo q; using Lemma ?? there are

$$q^{d(n-d-t)}\beta(d+t,d) = q^{d(n-d-t)}\beta(d+t,t)$$

choices for E. We need to choose Y so that N is integral and (M, N) = 1; equivalently, for any $G \in SL_n(\mathbb{Z})$, we need $N^t G^{-1}$ integral and $(MG, N^t G^{-1}) = 1$. Using left multiplication by \mathcal{K}_d , we can adjust the choice of E so that the lower n - d - t rows of EM' are divisible by q, and then we can choose $G \in SL_n(\mathbb{Z})$ so that

$$EM'G \equiv \begin{pmatrix} M_1 & 0 & 0\\ 0 & M_5 & 0\\ 0 & 0 & 0 \end{pmatrix} (q)$$

where M_1 is $d \times d$, M_5 is $t \times t$, and M_1, M_5 are invertible modulo q. Write

$$EN'^{t}G^{-1} = \begin{pmatrix} N_{1} & N_{2} & N_{3} \\ N_{4} & N_{5} & N_{6} \\ N_{7} & N_{8} & N_{9} \end{pmatrix}, \ G^{-1}Y^{t}G^{-1} = \begin{pmatrix} Y_{1} & Y_{2} & Y_{3} \\ {}^{t}Y_{2} & Y_{4} & Y_{5} \\ {}^{t}Y_{3} & {}^{t}Y_{5} & Y_{6} \end{pmatrix}$$

where N_1, Y_1 are $d \times d$ and N_5, Y_4 are $t \times t$. By symmetry, $N_7, N_8 \equiv 0$ (q), and then since (M', N') = 1, we must have $\operatorname{rank}_q N_9 = n - d - t$. Also, as Y varies over $\mathbb{F}^{n,n}_{\operatorname{sym}}$, so does $G^{-1}Y^tG^{-1}$. To have N integral, we need $(Y_1 Y_2 Y_3) \equiv \overline{M}_1(N_1 N_2 N_3)$ (q). Then by symmetry, we find $N_4 \equiv M_5 {}^tY_2$ (q). So to have (M, N) = 1, we need $\operatorname{rank}_q(N_5 - M_5Y_4) = t$, or equivalently,

$$\operatorname{rank}_{q}(N_{5} - M_{5}Y_{4})^{t}M_{5} = t.$$

As Y_4 varies over $\mathbb{F}_{sym}^{t,t}$, so does $N_5 - M_5 Y_4 {}^t M_5$. We have

$$\chi_q(M,N) = \chi_q(\det \overline{M}_1 \cdot \det(N_5 - Y_4M_5) \cdot \det N_9)$$

= $\chi_q(\det \overline{M}_1 \cdot \det \overline{M}_5 \det N_9) \cdot \chi_q(\det(N_5 - M_5Y_4) {}^tM_5)$
= $\chi_q(M',N') \cdot \chi_q(\det(N_5 - M_5Y_4) {}^tM_5).$

We have no constraints on Y_5 and Y_6 , so as we vary Y subject to the above conditions, we get

$$\sum_{Y} \overline{\chi}_q(M, N) = \overline{\chi}_q(M', N') \cdot q^{(n-d-t)(n-d+t+1)/2} \sum_{U \in \mathbb{F}_{\text{sym}}^{t,t}} \overline{\chi}_q(\det U)$$
$$= \overline{\chi}_q(M', N') q^{(n-d-t)(n-d+t+1)/2} \operatorname{sym}_q^{\chi}(t),$$

as claimed. \Box

This theorem allows us to diagonalise the space of Eisenstein series. To aid in our description of this, we define a partial ordering on multiplicative partitions of \mathcal{N} , as follows.

Definition. For ρ, β multiplicative partitions of \mathcal{N} and $Q|\mathcal{N}$, we write $\beta = \rho$ (Q) if, for every prime q|Q, we have $\operatorname{rank}_q M_\beta = \operatorname{rank}_q M_\rho$. Similarly, we write $\beta > \rho$ (Q) if, for every prime q|Q, we have $\operatorname{rank}_q M_\beta > \operatorname{rank}_q M_\rho$.

Corollary 4.2. Let q be a prime dividing \mathcal{N} . For ρ a partition of \mathcal{N} so that $\mathbb{E}_{\rho} \neq 0$, there are $a_{\rho,\alpha}(q) \in \mathbb{C}$ so that $a_{\rho,\rho}(q) = 1$ and

$$\sum_{\substack{\alpha=\rho(\mathcal{N}/q)\\\alpha\geq\rho(q)}} a_{\rho,\alpha}(q) \mathbb{E}_{\alpha}$$

is an eigenform for T(q) with eigenvalue

$$\lambda_{\rho}(q) = q^{kd - d(d+1)/2} \chi_{\mathcal{N}/q} \left(\begin{pmatrix} I_d & \\ & \frac{1}{q}I \end{pmatrix} M_{\rho}, \begin{pmatrix} qI_d & \\ & I \end{pmatrix} \right)$$

where $d = \operatorname{rank}_q M_{\rho}$. Further, suppose $\alpha = \rho(\mathcal{N}/q), \alpha > \rho(q)$, with $d = \operatorname{rank}_q M_{\rho}$, $d + t = \operatorname{rank}_q M_{\alpha}$; then we have $a_{\rho,\alpha}(q) \neq 0$ if and only if either (1) $\chi_q = 1$, or (2) $\chi_q^2 = 1$ and t is even.

Proof. By Lemma ?? $\operatorname{sym}_q^{\chi}(t) = 0$ if and only if (1) $\chi_q^2 \neq 1$, or (2) $\chi_q \neq 1$ and t is odd. Thus by Theorem 4.1,

span
$$\left\{ \mathbb{E}_{\alpha} : \alpha = \rho \ (\mathcal{N}/q), \ \alpha \ge \rho \ (q), \text{ so that either (1) } \chi_q = 1, \text{ or} \right.$$

(2) $\chi_q^2 = 1 \text{ and } \operatorname{rank}_q M_{\alpha} - \operatorname{rank}_q M_{\rho} \text{ is even } \left. \right\}$

is invariant under T(q), and the matrix for T(q) on this basis is upper triangular with nonzero upper triangular entries. Then the standard process of diagonalising an upper triangular matrix yields the result. \Box

We now prove a multiplicity-one result for the Eisenstein series of square-free level.

Corollary 4.3. Suppose $\mathbb{E}_{\rho} \neq 0$. For $\alpha \geq \rho$ (Q) and prime q|Q, set $a_{\rho,\alpha}(q) = a_{\rho,\sigma}(q)$ where $\sigma = \rho$ (\mathcal{N}/q), $\sigma = \alpha$ (q), and set

$$a_{\rho,\alpha}(Q) = \prod_{q|Q} a_{\rho,\alpha}(q).$$

Then with

$$\widetilde{\mathbb{E}}_{\rho} = \sum_{\alpha \ge \rho(\mathcal{N})} a_{\rho,\alpha}(\mathcal{N}) \mathbb{E}_{\alpha},$$

for every prime $q|\mathcal{N}$ we have

$$\widetilde{\mathbb{E}}_{\rho}|T(q) = \lambda_{\rho}(q)\,\widetilde{\mathbb{E}}_{\rho}$$

(where $\lambda_{\rho}(q)$ is defined in Corollary 4.2).

Proof. Fix a prime $q|\mathcal{N}$. For $\alpha \geq \rho$ (\mathcal{N}), take $\beta = \alpha$ (\mathcal{N}/q), $\beta = \rho$ (q). Then $a_{\rho,\alpha}(\mathcal{N}) = a_{\rho,\beta}(\mathcal{N}/q) a_{\rho,\alpha}(q)$. Hence

$$\widetilde{\mathbb{E}}_{\rho} = \sum_{\substack{\beta \ge \rho \, (\mathcal{N}/q) \\ \beta = \rho \, (q)}} a_{\rho,\beta}(\mathcal{N}/q) \sum_{\substack{\alpha = \beta \, (\mathcal{N}/q) \\ \alpha \ge \beta \, (q)}} a_{\rho,\alpha}(q) \, \mathbb{E}_{\alpha}.$$

We argue that when $a_{\rho,\beta}(\mathcal{N}/q) \neq 0$, we have $a_{\rho,\alpha}(q) = a_{\beta,\alpha}(q)$ and $\lambda_{\rho}(q) = \lambda_{\beta}(q)$.

Fix β so that $\beta \geq \rho$ (\mathcal{N}/q) , $\beta = \rho$ (q), and suppose $a_{\rho,\beta}(\mathcal{N}/q) \neq 0$. Take $Q|\mathcal{N}/q$ so that $\beta = \rho$ (\mathcal{N}/Q) , $\beta > \rho$ (Q). Thus $a_{\rho,\beta}(\mathcal{N}/q) = a_{\rho,\beta}(Q)$. Since $a_{\rho,\beta}(Q) \neq 0$, for each prime q'|Q we have either (1) $\chi_{q'} = 1$, or (2) $\chi_{q'}^2 = 1$ and $\operatorname{rank}_{q'}M_\beta - \operatorname{rank}_{q'}M_\rho$ is even.

Suppose q' is a prime dividing Q so that $\chi_{q'} \neq 1$. Set $r = \operatorname{rank}_{q'} M_{\rho}$, $r + t = \operatorname{rank}_{q'} M_{\beta}$ (so t is even). Then for $0 \leq d \leq n$,

$$\chi_{q'}\left(\begin{pmatrix}I_d & \\ & \frac{1}{q'}I\end{pmatrix}M_{\rho}, \begin{pmatrix}qI_d & \\ & I\end{pmatrix}\right) = \chi_{q'}\left(\begin{pmatrix}I_d & \\ & \frac{1}{q'}I\end{pmatrix}\begin{pmatrix}I_r & \\ & 0\end{pmatrix}, \begin{pmatrix}qI_d & \\ & I\end{pmatrix}\right)$$
$$= \begin{cases}\chi_{q'}(q^{r-d}) & \text{if } d \le r, \\\chi_{q'}(q^{d-r}) & \text{if } d \ge r \\ = \chi_{q'}(q^{d-r})\end{cases}$$

(since $\chi^2_{q'}$). Similarly,

$$\chi_{q'}\left(\begin{pmatrix}I_d & \\ & \frac{1}{q'}I\end{pmatrix}M_{\beta}, \begin{pmatrix}qI_d & \\ & I\end{pmatrix}\right) = \chi_{q'}(q^{d-r-t})$$

and $\chi_{q'}(q^{d-r-t}) = \chi_{q'}(q^{d-r})$ since t is even and $\chi^2_{q'} = 1$.

For each prime $q''|\mathcal{N}/Q$, we either have $\beta = \rho$ (q'') or $\chi_{q''} = 1$. Thus for $0 \le d \le n$,

$$\chi_{\mathcal{N}/q}\left(\begin{pmatrix}I_d & \\ & \frac{1}{q'}I\end{pmatrix}M_{\rho}, \begin{pmatrix}qI_d & \\ & I\end{pmatrix}\right) = \chi_{\mathcal{N}/q}\left(\begin{pmatrix}I_d & \\ & \frac{1}{q'}I\end{pmatrix}M_{\beta}, \begin{pmatrix}qI_d & \\ & I\end{pmatrix}\right).$$

Hence $\lambda_{\beta}(q) = \lambda_{\rho}(q)$. Further, with σ_d , α_d partitions of \mathcal{N} so that $\sigma_d = \rho$ (\mathcal{N}/q) , rank_q $M\sigma_d = d$, $\alpha_d = \beta$ (\mathcal{N}/q) , rank_q $M_{\alpha_d} = d$, the matrix for T(q) on ${}^t(\mathbb{E}_{\sigma_0}, \ldots, \mathbb{E}_{\sigma_n})$ is equal to the matrix for T(q) on ${}^t(\mathbb{E}_{\alpha_0}, \ldots, \mathbb{E}_{\alpha_n})$, and hence $a_{\rho,\sigma_d}(q) = a_{\beta,\alpha_d}(q)$, $0 \le d \le n$. \Box

Now we evaluate the action of $T_j(q^2)$ on \mathbb{E}_{ρ} . Note that since the Hecke operators commute, the multiplicity-one result of Corollary 4.3 tells us that each $\widetilde{\mathbb{E}}_{\rho}$ is also an eigenform for $T_j(q^2)$. So we could simply do enough computation to find the eigenvalue $\lambda_{\rho,j}(q^2)$, but we take just a bit more effort and give a complete description of $\mathbb{E}_{\rho}|T_j(q^2)$. Then in Corollary 4.5 we compute the $T_j(q^2)$ eigenvalues.

Theorem 4.4. Assume \mathcal{N} is square-free, a fix a prime $q|\mathcal{N}$. For σ a multiplicative partition of \mathcal{N}/q and $0 \leq d \leq n$, let \mathbb{E}_{σ_d} be the level \mathcal{N} Eisenstein series as in Theorem 4.1; suppose $\mathbb{E}_{\sigma_d} \neq 0$.

For $0 \leq j, d \leq n$,

$$\mathbb{E}_{\sigma_d}|T_j(q^2) = \sum_{t=0}^{n-d} A_j(d,t) \mathbb{E}_{\sigma_{d+t}};$$

when $\chi_q = 1$,

$$\begin{aligned} A_{j}(d,t) &= q^{(j-t)d-t(t+1)/2}\beta(d+t,t) \\ &\cdot \sum_{d_{1}=0}^{j} \sum_{d_{5}=0}^{j-d_{1}} \sum_{d_{8}=0}^{d_{5}} q^{a_{j}(d;d_{1},d_{5},d_{8})} \chi_{\mathcal{N}/q}(D_{d_{1},r}M_{\sigma_{d}}D_{j}^{-1},D_{d_{1},r},D_{j}) \\ &\cdot \beta(d,d_{1})\beta(t,d_{5})\beta(n-d-t,d_{1}+n-d-j-d_{8}) \\ &\cdot \beta(t-d_{5},d_{8})sym_{a}^{\chi}(t-d_{5}-d_{8})sym_{a}^{\chi}(d_{5},d_{8}), \end{aligned}$$

where $r = j - d_1 - d_5 + d + 8$, and

$$a_j(d; d_1, d_5, d_8) = (k-d)(2d_1 + d_5 - d_8) + d_1(d_1 - d_8 - j - 1) - d_8(d_5 + t) - d_5(d_5 + 1)/2 + d_8(d_8 + 1)/2.$$

[LYNNE: DEFINE $sym_a^{\chi}(b,c)$]

(Note that $sym_q^{\chi}(t-d_5-d_8), sym_q^{\chi}(d_5,d_8)$ are evaluated in Lemmas ???.)

Proof. Fix $d = \operatorname{rank}_q M_{\rho}$; to ease some notation later, set $\ell = n - d$.

$$\mathbb{E}_{n-\ell}|T_j(q^2) = q^{j(k-n-1)} \sum_{G,Y} \mathbb{E}_{n-\ell} \left| \begin{pmatrix} D_j^{-1} & \\ & D_j \end{pmatrix} \begin{pmatrix} G^{-1} & Y^t G \\ & t G \end{pmatrix} \right|$$

where $D_j = \begin{pmatrix} qI_j \\ I_{n-j} \end{pmatrix}$, $G \in SL_n(\mathbb{Z})/\mathcal{K}_j$, $Y \in \mathcal{Y}_j$ with \mathcal{Y}_j the set of matrices

$$\begin{pmatrix} U & V \\ {}^{t}V & 0 \end{pmatrix}$$
so that $U \in \mathbb{Z}^{j,j}_{\text{sym}}$ varies modulo $q^2, V \in \mathbb{Z}^{j,n-j}$ varies modulo q . So

$$\mathbb{E}_{n-\ell}(\tau)|T_j(q^2)$$

$$= q^{j(-n-1)} \sum_{G,Y} \sum_{M,N} \det \left(M \left(D_j^{-1}G^{-1}\tau + D_j^{-1}Y^{t}G \right) {}^{t}G^{-1}D_j^{-1} + N \right)^{-k}$$

$$= q^{j(k-n-1)} \sum_{G,Y} \sum_{M,N} \det \left(M D_j^{-1}G^{-1}\tau + M D_j^{-1}Y^{t}G + N {}^{t}G D_j \right)^{-k}$$

(where $(M \ N)$ varies over coprime symmetric pairs with $\operatorname{rank}_q M = n - \ell$).

Take a coprime symmetric pair $(M \ N)$ with $\operatorname{rank}_q M = n - \ell$. Let d_1 be the rank of the first j columns of M; using row operations, we can assume $M = \begin{pmatrix} M_1 & M_2 \end{pmatrix}$

 $\begin{pmatrix} M_1 & M_2 \\ qM_3 & M_4 \\ qM'_5 & qM'_6 \end{pmatrix}$ where M_1 is $d_1 \times j$ (so rank_q $M_1 = d_1$), M_4 is $d_4 \times (n-j)$ with

rank_q $M_4 = d_4 = n - \ell - d_1$. Correspondingly, write $N = \begin{pmatrix} N_1 & N_2 \\ N_3 & N_4 \\ N'_5 & N'_6 \end{pmatrix}$ where N_1 is $d_1 \times j$ and N_4 is $d_4 \times (n - j)$. Take r so that rank_q $\begin{pmatrix} M_1 & 0 \\ M'_5 & N'_5 \end{pmatrix} = n - d_4 - r$; so using row operations, we can assume

$$(qM'_5 qM'_6 N'_5 N'_6) = \begin{pmatrix} qM_5 & qM_6 & N_5 & N_6 \\ q^2M_7 & qM_8 & N_7 & qN_8 \end{pmatrix}$$

where M_6, N_6 are $(\ell - r) \times (n - j)$ and $\operatorname{rank}_q \begin{pmatrix} M_1 & 0 \\ M_5 & N_6 \end{pmatrix} = n - d_4 - r$. Note that since

(M, N) = 1, we must have $\operatorname{rank}_q N_7 = r$. Then with $D_{d_1, r} = \begin{pmatrix} qI_{d_1} & & \\ & I & \\ & & \frac{1}{q}I_r \end{pmatrix}$,

$$D_{d_1,r}(M \ N) \begin{pmatrix} D_j^{-1} \\ D_j \end{pmatrix} = \begin{pmatrix} M_1 & qM_2 & q^2N_1 & qN_2 \\ M_3 & M_4 & qN_3 & N_4 \\ M_5 & qM_6 & qN_5 & N_6 \\ M_7 & M_8 & N_7 & N_8 \end{pmatrix}$$

has q-rank n. Hence for any $Y \in \mathcal{Y}_j$,

$$(M' N') = D_{d_1,r}(M N) \begin{pmatrix} D_j^{-1} & \\ & D_j \end{pmatrix} \begin{pmatrix} G^{-1} & Y^t G \\ 0 & {}^t G \end{pmatrix}$$

is a coprime symmetric pair with $\operatorname{rank}_{q}M' = n - \ell + t$ for some $t \ge 0$. Note that $\det(M'\tau + N')^{-k} = q^{k(d_1-r)} \det(MD_j^{-1}G^{-1}\tau + MD_j^{-1}Y^{t}G + ND_j^{-t}G)^{-k}$.

Similar to the computation in the proof of Theorem 4.1, we have

$$\chi_{\mathcal{N}/q}(M,N) = \chi_{\mathcal{N}/q}(D_{d_1,r}M_{\sigma_d}D_j^{-1}, D_{d_1,r}D_j)\chi_{\mathcal{N}/q}(M',N')$$

Reversing, take a coprime pair (M' N') with $\operatorname{rank}_q M' = n - \ell + t$. We need to count the equivalence classes $SL_n(\mathbb{Z})(M N)$ so that

$$D_{d_1,r}(M \ N) \begin{pmatrix} D_j^{-1} \\ D_j \end{pmatrix} \begin{pmatrix} G^{-1} & Y^{t}G \\ 0 & {}^{t}G \end{pmatrix} \in SL_n(\mathbb{Z})(M' \ N').$$

For $E_1, E_2 \in SL_n(\mathbb{Z})$ and

$$(M_i \ N_i) = D_{d_1,r}^{-1} E_i(M' \ N') \begin{pmatrix} G & -GY \\ 0 & {}^tG^{-1} \end{pmatrix} \begin{pmatrix} D_j \\ & D_j^{-1} \end{pmatrix},$$

we have $(M_1 \ N_1) \in SL_n(\mathbb{Z})(M_2 \ N_2)$ if and only if $E_1 \in \mathcal{K}_{d_1,r}E_2$. Thus we need to count the number of triples E, G, Y with $E \in \mathcal{K}_{d_1,r} \setminus SL_n(\mathbb{Z}), G \in SL_n(\mathbb{Z})/\mathcal{K}_j,$ $Y \in \mathcal{Y}_j$ so that

$$(M \ N) = D_{d_1,r}^{-1} E(M' \ N') \begin{pmatrix} G & -GY \\ 0 & {}^tG^{-1} \end{pmatrix} \begin{pmatrix} D_j \\ & D_j^{-1} \end{pmatrix}$$

is an integral coprime pair with $\operatorname{rank}_q M = n - \ell$ (that $M^t N$ is symmetric is automatic).

For $E, G \in SL_n(\mathbb{Z})$, let $(M_1 \ M_2)$ be the top d_1 rows of EM'G with M_1 size $d_1 \times j$; similarly, let $(N_1 \ N_2)$ be the top d_1 rows of $EN' {}^tG^{-1}$ with N_1 size $d_1 \times j$. To have M integral we need $q|M_2$. To have N integral, we will need to solve

$$N_1 \equiv M_1 U + M_2 {}^t V (q^2), \ N_2 \equiv M_1 V (q)$$

Since (M', N') = 1 and $q|M_2$, we must have $\operatorname{rank}_q(M_1 \ N_1 \ N_2) = d_1$; thus we can only solve the above congruences if $\operatorname{rank}_q M_1 = d_1$. So suppose we have chosen E, Gto meet this condition; write

$$EM'G = \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \\ M_5 & M_6 \\ M_7 & M_8 \end{pmatrix}, \ EN'{}^tG^{-1} = \begin{pmatrix} N_1 & N_2 \\ N_3 & N_4 \\ N_5 & N_6 \\ N_7 & N_8 \end{pmatrix}$$

where M_1, N_1 are $d_1 \times j, M_4, N_4$ are $d_4 \times (n-j), M_5, N_5$ are $(n-r-d) \times j$ where $Y = \begin{pmatrix} U & V \\ {}^tV & 0 \end{pmatrix} \mathcal{Y}_j$. To have $\operatorname{rank}_q M = n-\ell$, we need to have $\operatorname{rank}_q \begin{pmatrix} M_1 & 0 \\ 0 & M_4 \\ 0 & M_6 \end{pmatrix} = 0$

 $n-\ell$; so suppose we have chosen E, G to meet this condition as well. Then, using left multiplication from $\mathcal{K}_{d_1,r}$ and right multiplication from \mathcal{K}_j , we can assume rank $_qM_4 = d_4 = n-\ell-d_1$ and $M_6 \equiv 0$ (q). Now write $M_i = (A'_i A_i), N_i = (B'_i B_i)$ where, for i odd, A'_i, B'_i have d_1 columns, and for i even, A'_i, B'_i have d_4 columns. By adjusting further using $\mathcal{K}_{d_1,r}$ and \mathcal{K}_j , we can assume that rank $_qA'_1 = d_1$, rank $_qA'_4 = d_4, A'_i \equiv 0$ (q²) for $i \neq 1, 4, A_1, A_3 \equiv 0$ (q), and with $d_i = \operatorname{rank}_qA_i$ for i = 5, 7, 8, we can assume

$$A_5 \equiv \begin{pmatrix} \alpha_5 & 0 & 0\\ 0 & 0 & q\alpha'_5 \end{pmatrix} (q^2), \ A_6 \equiv \begin{pmatrix} 0 & 0\\ q\alpha'_6 & 0 \end{pmatrix} (q^2),$$

DEGREE n SIEGEL EISENSTEIN SERIES

$$A_{7} \equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha_{7} & 0 \\ 0 & 0 & 0 \end{pmatrix} (q), \ A_{8} \equiv \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & \alpha_{8} \end{pmatrix} (q)$$

where α_i is $d_i \times d_i$ (and hence invertibe modulo q), α'_5 is $(\ell - r - d_5) \times (j - d_1 - d_5 - d_7)$, and α'_6 is $(\ell - r - d_5) \times (n - j - d_4 - d_8)$; here the first d_5 and last $j - d_1 - d_5 - d_7$ columns of A_7 are 0 modulo q, and the top $r - d_7 - d_8$ and bottom d_8 rows of A_7 are 0 modulo q. Correspondingly, write

$$B_{5} = \begin{pmatrix} \beta_{1} & \beta_{2} & \beta_{3} \\ \beta_{4} & \beta_{5} & \beta_{6} \end{pmatrix}, B_{6} = \begin{pmatrix} \gamma_{1} & \gamma_{2} \\ \gamma_{3} & \gamma_{4} \end{pmatrix},$$
$$B_{7} = \begin{pmatrix} \delta_{1} & \delta_{2} & \delta_{3} \\ \delta_{4} & \delta_{5} & \delta_{6} \\ \delta_{7} & \delta_{8} & \delta_{9} \end{pmatrix}, B_{8} = \begin{pmatrix} \epsilon_{1} & \epsilon_{2} \\ \epsilon_{3} & \epsilon_{4} \\ \epsilon_{5} & \epsilon_{6} \end{pmatrix}.$$

Then by symmetry, we have $\beta_4, \beta_5, \gamma_4, \delta_1, \delta_2, \epsilon_2 \equiv 0$ (q), and q must divide the lower $\ell - r - d_5$ rows of B'_5 and the upper $r - d_7 - d_8$ rows of B'_7 .

With $Y = \begin{pmatrix} U & V \\ {}^{t}V & 0 \end{pmatrix}$ (as above), write

$$U = \begin{pmatrix} U_1 & U_2 \\ {}^tU_2 & U_3 \end{pmatrix}, \ V = \begin{pmatrix} V_1 & V_2 \\ V_3 & V_4 \end{pmatrix}$$

where U_1 is $d_1 \times d_1$ and V_1 is $d_1 \times d_4$. To have N integral, we need

$$N_1 \equiv A'_1(U_1 \ U_2) \ (q^2), \ N_2 \equiv A'_1(V_1 \ V_2) \ (q), \ B_2 \equiv A'_4 \ {}^tV_3 \ (q).$$

With these (unique) choices of U_1, U_2, V_1, V_2, V_3 , the symmetry of $M'^t N'$ implies that

$$B_3' {}^t A_1' \equiv A_4' {}^t B_2' \equiv A_4' {}^t V_2 {}^t A_1' (q),$$

so we automatically get $B'_3 \equiv A'_4 {}^t V_2(q)$. Hence with these choices of U_1, U_2, V_1, V_2, V_3 , the top $n - \ell$ rows of N are integral. We have already ensured the top $n - \ell$ rows of M are integral with q-rank $n - \ell$, and we know the lower ℓ rows of M are 0 modulo q. So we need to choose U_3, V_4 so that the lower ℓ rows of N are integral with q-rank ℓ .

By symmetry, we have

$$B_{5}^{\prime t}A_{1}^{\prime} \equiv A_{5}^{t}B_{1} + A_{6}^{t}B_{2} \equiv A_{5}^{t}U_{2}^{t}A_{1}^{\prime} + A_{6}^{t}V_{2}^{t}A_{1}^{\prime} (q^{2}),$$
$$B_{6}^{\prime t}A_{4}^{\prime} \equiv A_{5}^{t}B_{3} \equiv A_{5}V_{3}^{t}A_{4}^{\prime} (q),$$
$$B_{7}^{\prime t}A_{1}^{\prime} \equiv A_{7}^{t}B_{1} + A_{8}^{t}B_{2} \equiv A_{7}^{t}U_{2}^{t}A_{1}^{\prime} + A_{8}^{t}V_{2}^{t}A_{1}^{\prime} (q).$$

So to have N integral, we need to choose E, G so that $\beta_6 \equiv 0$ (q), and U_3 so that $B_5 \equiv A_5 U_3$ (q). With such choices, the lower ℓ rows of N are congruent modulo q to

$$\begin{pmatrix} 0 & (B_5 - A_5 U_3 - A_6 {}^t V_4)/q & 0 & B_6 - A_5 V_4 \\ 0 & B_7 - A_7 U_3 - A_8 {}^t V_4 & 0 & 0 \end{pmatrix}.$$

Also, since (M', N') = 1, when $\beta_6 \equiv 0$ (q), we will necessarily have rank_q $\gamma_3 = \ell - r - d_5$ (recall that $\beta_4, \beta_5, \gamma_4 \equiv 0$ (q)). Write

$$U_3 = \begin{pmatrix} \mu_1 & \mu_2 & \mu_3 \\ {}^t\mu_2 & \mu_4 & \mu_5 \\ {}^t\mu_3 & {}^t\mu_5 & \mu_6 \end{pmatrix}, \ V_4 = \begin{pmatrix} \nu_1 & \nu_2 \\ \nu_3 & \nu_4 \\ \nu_5 & \nu_6 \end{pmatrix}$$

where μ_1 is $d_5 \times d_5$, μ_4 is $d_7 \times d_7$, ν_2 is $d_5 \times d_8$, and ν_4 is $d_7 \times d_8$. Note that

$$B_{7} - A_{7}U_{3} - A_{8}{}^{t}V_{4} \equiv \begin{pmatrix} 0 & 0 & \delta_{3} \\ \delta_{4} - \alpha_{7}{}^{t}\mu_{2} & \delta_{5} - \alpha_{7}\mu_{4} & \delta_{6} - \alpha_{7}\mu_{5} \\ \delta_{7} - \alpha_{8}{}^{t}\nu_{2} & \delta_{8} - \alpha_{8}{}^{t}\nu_{4} & \delta_{9} - \alpha_{8}{}^{t}\nu_{6} \end{pmatrix} (q).$$

So to have

$$\operatorname{rank}_{q} \begin{pmatrix} 0 & (B_{5} - A_{5}U_{3} - A_{6}{}^{t}V_{4})/q & 0 & B_{6} - A_{5}V_{4} \\ 0 & B_{7} - A_{7}U_{3} - A_{8}{}^{t}V_{4} & 0 & 0 \end{pmatrix},$$

we need to choose E, G so that $\operatorname{rank}_q \delta_3 = r - d_7 - d_8$. We know that γ_3 is $(\ell - r - d_5) \times (n - j - d_4 - d_8)$ and δ_3 is $(r - d_7 - d_8) \times (j - d_1 - d_5 - d_7)$. Thus if $\beta_6 \equiv 0$ (q) and $\operatorname{rank}_q \delta_3 = r - d_7 - d_8$, we have

$$\ell - r - d_5 \le n - j - d_4 - d_8, \ r - d_7 - d_8 \le j - d_1 - d_5 - d_7,$$

and consequently $r = j - d_1 - d_5 + d_8$ (recall that $n - \ell = d_1 + d_4$). Then we use right multiplication from \mathcal{K}_j to modify G so that we can assume $\beta_4 \equiv 0$ (q^2).

Thus we need to choose $\mathcal{K}_{d_1,r}E$, $G\mathcal{K}_j$ so that (adjusting the coset representatives E, G), the top d_1 rows of EM' have q-rank d_1 , the top $d_1 + d_4 + d_5$ rows of EM' have q-rank $d_1 + d_4 + d_5$ (where $0 \le d_5 \le j - d_1$), and q divides rows $d_1 + d_4 + d_5 + 1$ through $n - d_7 - d_8$ of EM'; Lemma ? tells us that the number of such $\mathcal{K}_{d_1,r}E$ is

$$eta(d', d+d_5)eta(n-d', n-r-d-d_5)eta(d+d_5, d_1) \ \cdot q^{(d+d_5)(r+d+d_5-d')+d_1(n-d-d_5)}$$

where $d = \operatorname{rank}_q M$, $d' = \operatorname{rank}_q M'$ (note that after choosing E as in the lemma, we can use left multiplication from $\mathcal{K}_{d_1,r}$ to ensure rows $d_1 + d_4 + d_5 + 1$ through $n - d_7 - d_8$ are divisible by q). Then we can choose some $G_0 \in SL_n(\mathbb{Z})$ so that

$$EM'G_0 \equiv \begin{pmatrix} C & 0 & 0 & 0\\ 0 & C' & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & C'' & 0 \end{pmatrix} (q)$$

where C is $d_1 \times d_1$ with rank_q $C = d_1$, C' is $(d_4+d_5) \times (d_4+d_5)$ with rank_q $C' = d_4+d_5$. As $G\mathcal{K}_j$ varies over $SL_n(\mathbb{Z})/\mathcal{K}_j$, so does $G_0G\mathcal{K}_j$; Lemma ? tells us that the number of $G\mathcal{K}_j$ that meet all the necessary criteria as described above is

$$\beta(d_4 + d_5, d_4)\beta(d_7 + d_8, d_8)q^{(d_4 + d_8)(j - d_1 - d_5) - d_7d_8}$$

Having chosen such E, G, we have seen that to have N integral, U_1, U_2, V_1, V_2, V_3 are uniquely determined, and μ_1, μ_2, μ_3 are determined modulo q. To also have (M, N) = 1, we need to ensure rank_q $B = \ell$ where

$$B = \begin{pmatrix} (\beta_1 - \alpha_5 \mu_1)/q & (\beta_2 - \alpha_5 \mu_2)/q & (\beta_3 - \alpha_5 \mu_3)/q & \gamma_1 - \alpha_5 \nu_1 & \gamma_2 - \alpha_5 \nu_2 \\ 0 & * & * & \gamma_3 & 0 \\ 0 & 0 & \delta_3 & 0 & 0 \\ 0 & \delta_5 - \alpha_7 \mu_4 & \delta_6 - \alpha_7 \mu_5 & 0 & 0 \\ \delta_7 - \alpha_8 {}^t \nu_2 & \delta_8 - \alpha_8 {}^t \nu_4 & \delta_9 - \alpha_8 {}^t \nu_6 & 0 & 0 \end{pmatrix}$$

We have δ_3 square and invertible modulo q; so we need $\delta_5 - \alpha_7 \mu_4$ (which is square) to be invertible modulo q. By symmetry, we know $(\delta_5 - \alpha_7 \mu_4)^t \alpha_7$ is symmetric; writing $\mu_4 = \mu'_4 + q\mu''_4$ where μ'_4, μ''_4 vary over symmetric $d_7 \times d_7$ matrices modulo q, $(\delta_5 - \alpha_7 \mu'_4)^t \alpha_7$ does as well. (So there are $q^{d_7(d_7+1)/2} \text{sym}(d_7)$ ways to choose μ_4 so that $\delta_5 - \alpha_7 \mu_4$ is invertible modulo q.) So to have B invertible, we need

$$\begin{pmatrix} (\beta_1 - \alpha_5 \mu_1)/q & \gamma_1 - \alpha_5 \nu_1 & \gamma_2 - \alpha_5 \nu_2 \\ 0 & \gamma_3 & 0 \\ \delta_7 - \alpha_8 {}^t \nu_2 & 0 & 0 \end{pmatrix}$$

to be invertible modulo q. We previously noted that γ_3 is invertible modulo q, so we need

$$egin{pmatrix} (eta_1-lpha_5\mu_1)/q & \gamma_2-lpha_5
u_2 \ \delta_7-lpha_8\,{}^t
u_2 & 0 \end{pmatrix}$$

to be invertible modulo q, or equivalently, we need

$$\begin{pmatrix} \left(\beta_1 - \alpha_5 \mu_1\right){}^t \alpha_5 / q & \left(\gamma_2 - \alpha_5 \nu_2\right){}^t \alpha_5 \\ \left(\delta_7 - \alpha_8{}^t \nu_2\right){}^t \alpha_8 & 0 \end{pmatrix}$$

to be invertible modulo q, and this latter matrix is symmetric modulo q.

Now we compute $\sum_{Y} \overline{\chi}_q(M, N) \chi_q(M', N')$. First, we choose a permutation matrix $G_1 \in GL_n(\mathbb{Z})$ so that

$$EM'GG_{1} \equiv \begin{pmatrix} A'_{1} & 0 & 0 & 0\\ 0 & A'_{4} & 0 & 0\\ 0 & 0 & A_{5} & 0\\ 0 & 0 & A_{7} & A_{8} \end{pmatrix} (q),$$
$$EN'^{t}G^{-1} tG_{1}^{-1} = \begin{pmatrix} B'_{1} & B'_{2} & B_{1} & B_{2}\\ B'_{3} & B'_{4} & B_{3} & B_{4}\\ B'_{5} & B'_{6} & B_{5} & B_{6}\\ B'_{7} & B'_{8} & B_{7} & B_{8} \end{pmatrix}$$

(recall that since G_1 is a permutation matrix, ${}^tG_1^{-1} = G_1$). Then

$$MG_{1} \equiv \begin{pmatrix} A_{1}' & & \\ & A_{4}' & \\ & & 0 \\ & & & 0 \end{pmatrix} (q),$$
$$N^{t}G_{1}^{-1} \equiv \begin{pmatrix} * & * & & * & \\ * & * & & * & & * \\ 0 & 0 & (B_{5} - A_{5}U_{3} - A_{6} {}^{t}V_{4})/q & B_{6} - A_{5}V_{4} \\ 0 & 0 & B_{7} - A_{7}U_{3} - A_{8} {}^{t}V_{4} & 0 \end{pmatrix} (q).$$

Then we choose permutation matrices $E'_2, G'_2 \in GL_{n-d_1-d_4}(\mathbb{Z})$ so that

$$E_{2}'\begin{pmatrix} A_{5} & 0\\ A_{7} & A_{8} \end{pmatrix} G_{2}' \equiv \begin{pmatrix} \alpha_{5} & & & \\ & \alpha_{8} & & \\ & & \alpha_{7} & \\ & & & 0 \\ & & & & 0 \end{pmatrix} (q),$$

$$E_{2}' \begin{pmatrix} (B_{5} - A_{5}U_{3} - A_{6} {}^{t}V_{4})/q & B_{6} - A_{5}V_{4} \\ B_{7} - A_{7}U_{3} - A_{8} {}^{t}V_{4} & 0 \end{pmatrix} {}^{t} (G_{2}')^{-1} \\ \equiv \begin{pmatrix} (\beta_{1} - \alpha_{5}\mu_{1})/q & \gamma_{2} - \alpha_{5}\nu_{2} & * & * & * \\ \delta_{7} - \alpha_{8} {}^{t}\nu_{2} & 0 & * & 0 & * \\ 0 & 0 & \delta_{5} - \alpha_{7}\mu_{4} & 0 & 0 \\ 0 & 0 & * & \gamma_{3} & 0 \\ 0 & 0 & 0 & 0 & \delta_{3} \end{pmatrix} (q).$$

Set $E_2 = \begin{pmatrix} I_{d_1+d_4} & \\ & E'_2 \end{pmatrix}$, $G_2 = \begin{pmatrix} I_{d_1+d_4} & \\ & G'_2 \end{pmatrix}$. Then

$$\chi_q(\det(E_2G_1G_2))\chi_q(M',N') = \chi_q(E_2EM'GG_1G_2,E_2EN'{}^t(GG_1G_2)^{-1})$$
$$= \overline{\chi}_q(\det A'_1 \cdot \det A'_4 \cdot \det \alpha_5 \cdot \alpha_7 \cdot \det \alpha_8)\chi_q(\det \gamma_3 \cdot \det \delta_3).$$

On the other hand,

$$\chi_q(\det(E_2G_1G_2))\chi_q(M,N) = \chi_q(E_2MG_1G_2, E_2N^t(G_1G_2)^{-1})$$

= $\overline{\chi}_q(\det A'_1 \cdot \det A'_4)\chi_q(\det \gamma_3 \cdot \det \delta_3)$
 $\cdot \chi_q\left(\det\left(\frac{(\beta_1 - \alpha_5\mu_1)/q}{\delta_7 - \alpha_8}\frac{\gamma_2 - \alpha_5\nu_2}{\nu_2}\right) \cdot \det(\delta_5 - \alpha_7\mu_4)\right).$

Thus

$$\overline{\chi}_{q}(M,N)\chi_{q}(M',N') = \chi_{q} \left(\det \left(\begin{array}{cc} (\beta_{1} - \mu_{1} {}^{t} \alpha_{5})/q & \gamma_{2} - \nu_{2} {}^{t} \alpha_{5} \\ \delta_{7} - {}^{t} \nu_{2} {}^{t} \alpha_{8} & 0 \end{array} \right) \det(\delta_{5} - \mu_{4} {}^{t} \alpha_{7}) \right);$$

recall that we have already noted that

$$\begin{pmatrix} (\beta_1 - \mu_1 {}^t \alpha_5)/q & \gamma_2 - \nu_2 {}^t \alpha_5 \\ \delta_7 - {}^t \nu_2 {}^t \alpha_8 & 0 \end{pmatrix}, \ \delta_5 - \mu_4 {}^t \alpha_7$$

are symmetric modulo q. Thus

$$\sum_{\mu_1,\mu_2} \chi_q \left(\det \left(\frac{(\overline{\alpha}_5 \beta_1 - \mu_1)/q}{\overline{\alpha}_8 \delta_7 - {}^t \nu_2} \right) \det(\overline{\alpha}_7 \delta_5 - \mu_4) \right) = \operatorname{sym}_q^{\chi}(d_5, d_8),$$

and

$$\sum_{\mu_4} \chi_q(\det(\overline{\alpha}_7\delta_5 - \mu_4)) = \operatorname{sym}_q^{\chi}(d_7).$$

We have seen that μ_2, μ_3 are determined modulo q, but unconstrained further modulo q^2 , μ_5, μ_6 are unconstrained modulo q^2 , and $\nu_1, \nu_3, \nu_4, \nu_5, \nu_6$ are unconstrained modulo q. Hence there are

$$q^{(j-d_1)(n-d_1-d_4+1)-d_5(j-d_1+d_8+1)-d_7(d_7+1)/2}$$
sym (d_7) sym (d_5, d_8)

choices for Y so that M, N are integral with (M, N) = 1. Hence, having fixed E, G and then summing over those Y that meet the conditions determined above,

$$\sum_{Y} \overline{\chi}_{q}(M, N) \chi_{q}(M', N') = q^{(j-d_{1})(n-d_{1}-d_{4}+1)-d_{5}(j-d_{1}+d_{8}+1)-d_{7}(d_{7}+1)/2} \operatorname{sym}_{q}^{\chi}(d_{7}) \operatorname{sym}_{q}^{\chi}(d_{5}, d_{8}).$$

To simplify the formula for $A_j(d,t)$, we note that $r = j - d_1 - d_5 + d_8$, $d = d_1 + d_4 = n - \ell$, d' = d + t, $t = d_5 + d_7 + d_8$, $d_1 + d_5 + d_7 \leq j$, $d_4 + d_8 \leq n - j$, and $d_8 \leq d_5$. Using this information yields the formula for $a_j(\ell; d_1, d_5, d_8)$. Also, we know $\beta(m, s) = \beta(m, m - s)$, so

$$\begin{split} \beta(d_1 + d_4 + d_5, d_1)\beta(d', d_1 + d_4 + d_5)\beta(d_4 + d_5, d_4) \\ &= \frac{\mu(n - \ell + d_5, d_1)\mu(n - \ell + t, t - d_5)\mu(n - \ell - d_1 + d_5, d_5)}{\mu(d_1, d_1)\mu(t - d_5, t - d_5)\mu(d_5, d_5)} \frac{\mu(t, d_5)}{\mu(t, d_5)} \\ &= \frac{\mu(n - \ell + , d_1 + t)\mu(t, d_5)}{\mu(d_1, d_1)\mu(t, t)\mu(d_5, d_5)} \\ &= \frac{\mu(n - \ell + t, t)\mu(n - \ell, d_1)\mu(t, d_5)}{\mu(t, t)\mu(d_1, d_1)\mu(d_5, d_5)} \\ &= \beta(d + t, t)\beta(d, d_1)\beta(t, d_5). \end{split}$$

This gives us the formula for $A_j(d,t)$, subject to the constraints on the d_i . Taking $0 \le d_1 \le j$, $0 \le d_5 \le j - d_1$, and $0 \le d_8 \le d_5$, the summand in the formula for $A_j(d,t)$ is 0 if the other constraints on the d_i are not met. \Box

As discussed after Theorem ??, we know we have a basis $\{\tilde{\mathbb{E}}_{\rho}\}_{\rho}$ of simultaneous eigenforms for the space of Eisenstein series of degree n, weight k, square-free level \mathcal{N} , and character χ , and these are eigenforms for all Hecke operators T(p), $T_j(p^2)$ where p is any prime. Below we compute the eigenvalues for $T_j(q^2)$ (where, as above, $q|\mathcal{N}$); in later work we compute the eigenvalues for T(p), $T_j(p^2)$ for p any prime not dividing \mathcal{N} . **Corollary 4.5.** Let ρ be a multiplicative partition of \mathcal{N} , and suppose $\mathbb{E}_{\rho} \neq 0$. Then with $d = \operatorname{rank}_{q} M_{\rho}$, for a prime $q | \mathcal{N}$ and $d = \operatorname{rank}_{q} M_{\rho}$, we have $\widetilde{\mathbb{E}}_{\rho} | T_{j}(q^{2}) = \lambda_{\rho,j}(q^{2}) \widetilde{\mathbb{E}}_{\rho}$ where

$$\lambda_{\rho,j}(q^2) = q^{jd} \sum_{d_1=0}^{j} q^{d_1(2k-2d-j+d_1-1)} \chi_{\mathcal{N}_0}(q^{2d_1}) \chi_{\mathcal{N}_n}(q^{2(j-d_1)}) \beta(d,d_1) \beta(n-d,j-d_1).$$

Proof. By Corollary 4.3 and Theorem 4.4, we know that $\widetilde{\mathbb{E}}_{\rho}$ is an eigenform for $T_j(q^2)$ with eigenvalue $A_j(d, 0)$. In general, with $r = j - d_1 - d_5 + d_8$, and prime $q'|\mathcal{N}/q$ so that $d' = \operatorname{rank}_{q'} M_{\rho}$, we know $\chi^2_{q'} = 1$ for $q'|\mathcal{N}/(\mathcal{N}_0\mathcal{N}_n)$ and thus

$$\chi_{q'}(D_{d_1,r}M_{\rho}D_j^{-1}, D_{d_1,r}D_j) = \begin{cases} \chi_{q'}(q^{d_5-d_8}) & \text{if } 0 < d' < n, \\ \chi_{q'}^2(q^{d_1})\chi_{q'}(q^{d_5-d_8}) & \text{if } d' = 0, \\ \chi_{q'}^2(q^{j-d_1})\chi_{q'}(q^{-d_5+d_8}) & \text{if } d' = n. \end{cases}$$

Since in the sum for $A_j(d,0)$ we have $d_5, d_8 = 0$, the corollary follows. \Box

L.H. Walling, Department of Mathematics, University Walk, University of Bristol, Bristol BS8 1TW England