
                          Walling, L. H. (2017). Hecke eigenvalues and relations for Siegel Eisenstein
series of arbitrary degree, level, and character. International Journal of
Number Theory, 13(2), [325]. https://doi.org/10.1142/S179304211750021X

Peer reviewed version

Link to published version (if available):
10.1142/S179304211750021X

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via World Scientific at http://www.worldscientific.com/doi/10.1142/S179304211750021X. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/96779334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1142/S179304211750021X
https://doi.org/10.1142/S179304211750021X
https://research-information.bris.ac.uk/en/publications/hecke-eigenvalues-and-relations-for-siegel-eisenstein-series-of-arbitrary-degree-level-and-character(402d29af-2c4b-4d2d-9ce2-3fa2e85ee510).html
https://research-information.bris.ac.uk/en/publications/hecke-eigenvalues-and-relations-for-siegel-eisenstein-series-of-arbitrary-degree-level-and-character(402d29af-2c4b-4d2d-9ce2-3fa2e85ee510).html


HECKE EIGENVALUES AND RELATIONS FOR DEGREE n

SIEGEL EISENSTEIN SERIES OF SQUARE-FREE LEVEL

Lynne H. Walling

Abstract. We describe a basis of Siegel Eisenstein series of degree n, square-free

level N and arbitrary character χ; then, without using knowledge of their Fourier
coefficients, we evaluate the action of the Hecke operators T (q), Tj(q2) (1 ≤ j ≤ n)

for primes q|N . We find the space of Siegel Eisenstein series with square-free level

has a basis of simultaneous eigenforms for these operators, and we compute the
eigenvalues, thereby obtaining a multiplicity-one result. We then compute the action

of the Hecke operators T (p), Tj(p2) on a basis of Siegel Eisenstein series of level

N ∈ Z+ provided 4 - N and p is a prime with p - N , and from this construct a basis
of simultaneous eigenforms.

§1. Introduction

Remark that space of Eisenstein series is invariant under Hecke operators
DEFINE:
Γ+
∞

Refer to notation E(n)
k (N , χ)

§2. Defining Siegel Eisenstein series

For k, n,N ∈ Z+ and χ a character modulo N , we want to define a degree n,
weight k, level N Eisenstein series with character χ for each element of the quotient
Γ∞\Spn(Z)/Γ0(N ). Given γρ ∈ Spn(Z), the natural object to define is

Eρ(τ) =
∑
γ

χ(γ) 1(τ)|γργ

where γ ∈ Γ0(N ) varies so that Γ∞γργ varies over the (distinct) elements of
Γ∞γρΓ0(N ), and

1(τ)|
(
A B
C D

)
= det(Cτ +D)−k
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2 LYNNE H. WALLING

for

(
A B
C D

)
∈ Spn(Z). If well-defined, this series converges absolutely uniformly

on compact subsets of H(n) provided k ≥ n+ 2 (and hence is analytic).
[?? it is majorised by the level 1 Eisenstein series in the case k is even; what

about when k is odd??]
Hence we assume k ≥ n + 2. However, defined as above, Eρ may not be well-

defined. Thus we over-sum, producing a well-defined function E′ρ that is 0 whenever
the above sum for Eρ is not well-defined, and is a multiple of Eρ when Eρ is well-
defined.

Note that when γ ∈ Γ+
∞, 1(τ)|γ = 1(τ). Thus taking γ∗j ∈ Γ(N ) so that

Γ+
∞Γ(N ) = ∪jΓ+

∞γ
∗
j (disjoint),

and setting

E∗(τ) =
∑
j

1(τ)|γ∗j ,

E∗ is well-defined (and converges absolutely uniformly on compact subsets, so is
analytic). With

Γ+
ρ = {γ ∈ Γ0(N ) : Γ+

∞Γ(N )γργ = Γ+
∞Γ(N )γρ },

take δi ∈ Γ0(N ), δ′` ∈ Γ+
ρ so that

Γ0(N ) = ∪iΓ+
ρ δi (disjoint), Γ+

ρ = ∪`Γ(N )δ′` (disjoint)

(note that Γ(N ) ⊆ Γ+
ρ ). Thus

Γ0(N ) = ∪i,`Γ(N )δ′`δi (disjoint).

Set G± =

(
In−1

−1

)
, γ± =

(
G±

G±

)
; remembering Γ(N ) is a normal

subgroup of Spn(Z), we have

Γ∞γρΓ0(N ) = ∪i,`
(
Γ+
∞γρΓ(N )δ′`δi ∪ Γ+

∞γ±γρΓ(N )δ′`δi
)

= ∪i,`
(
Γ+
∞Γ(N )γρδ

′
`δi ∪ Γ+

∞Γ(N )γ±γρδ
′
`δi
)
.

Now set
E′ρ =

∑
i,`

χ(δ′`δi)E∗|γρδ′`δi +
∑
i,`

χ(γ±δ
′
`δi)E∗|γ±γρδ′`δi.

Since Γ+
∞Γ(N )γ± = γ±Γ+

∞Γ(N ), we have

E∗|γ± = (−1)kE∗;

hence E′ρ = 0 if χ(−1) 6= (−1)k.
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Assume now that χ(−1) = (−1)k. Then, since Γ+
∞Γ(N )γρδ

′
` = Γ+

∞Γ(N )γρ, we
have E∗|γρδ′` = E∗|γρ, and hence

E′ρ = 2

(∑
`

χ(δ′`)

)∑
i

χ(δi)E∗|γρδi.

Here δ′` varies over a set of representatives for the group Γ(N )\Γ+
ρ (and we know

χ is trivial on Γ(N )), so unless χ is trivial on Γ+
ρ , we have E′ρ = 0.

Note that γ± ∈ Γ(N ) if and only if N ≤ 2. So when N ≤ 2, we have Γ∞γ
∗
j

varying twice over the distinct elements of Γ∞\Γ∞Γ(N ), and

E∗ = E∗|γ± = (−1)kE∗.

Hence when N ≤ 2 and k is odd, E∗ = 0, and thus E′ρ = 0. When N > 2 or k is
even,

lim
τ 7→i∞

E∗(τ) =

{
2 if N ≤ 2,

1 if N > 2,

and limτ 7→i∞ E′ρ(τ)|γ−1
ρ = 2[Γ0(N ) : Γ+

ρ ] limτ 7→i∞ E∗(τ). (see §4 [Freitag, 1996]).

Also, with γ′j = γ−1
ρ γ∗j γρ, we have

Γ∞γρΓ0(N ) = ∪i,jΓ∞γ∗j γρδi = ∪i,jΓ∞γργ′jδi.

(The above unions over i, j are disjoint when N > 2.)
Thus we have proved the following.

Proposition 2.1. Assume χ(1) = (−1)k.
(1) For γρ ∈ Spn(Z), Eρ is well-defined if and only if χ is trivial on Γ+

ρ . When
well-defined, Eρ is a nonzero multiple of E′ρ, and E′ρ 6= 0 when N > 2 or k is
even.

(2) Suppose N ≤ 2 and k is odd. Then E′ρ = 0, so either Eρ is not well-defined or
Eρ = 0.

Next we give a description of a convenient choice of representatives corresponding
to the Eisenstein series.

Proposition 2.2. For any γ ∈ Spn(Z), there exists some γρ =

(
I 0
Mρ I

)
∈

Spn(Z) so that γ ∈ Γ∞γρΓ0(N ). When N is square-free, take ρ = (N0, . . . ,Nn) to
be a (degree n) multiplicative partition of N , meaning N0 · · · Nn = N . Take Mρ

diagonal so that Mρ ≡
(
Id

0

)
(q) for each prime q dividing Nd (0 ≤ d ≤ n); then

as ρ varies, γρ varies over a set of representatives for Γ∞\Spn(Z)/Γ0(N ). Further,

when N is square-free and γ =

(
∗ ∗
M N

)
∈ Spn(Z), we have γ ∈ Γ∞γρΓ0(N )

if and only if rankqM = rankqMρ for each prime q|N (where rankqM denotes the
rank of M modulo q).
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(When 4 - N , we give a more detailed description of a set of representatives for
Γ∞\Spn(Z)/Γ0(N ) in §?.)

Proof. Given γ =

(
∗ ∗
M N

)
∈ Spn(Z), note that we have γ ∈ Γ∞γρΓ0(N ) if

and only if (Mρ I) ∈ GLn(Z)(M N)Γ0(N ). We proceed algorithmically to first
construct a pair (M ′ N ′) ∈ GLn(Z)(M N)Γ0(N ) with N ′ ≡ I (N ).

Fix a prime q dividing N with qt ‖ N . By Lemma ??, we can choose E0, G0 ∈

SLn(Z) so that E0, G0 ≡ I (N/qt) and E0N
tG−1

0 ≡
(
N1 0
0 0

)
(qt) where N1 is

d × d and invertible modulo q (so d = rankqN). We can adjust E0, G0 so that

N1 ≡
(
a

I

)
(qt), some a. Similarly, we can choose

(
u v
w x

)
∈ SL2(Z) so that(

u v
w x

)
≡ I (N/qt),

(
u v
w x

)
≡
(
a 0
0 a

)
(qt). Then

γ0 =


u v

In−1

w x
In−1

 ∈ Γ0(N )

and E0(M N)

(
G0

tG−1
0

)
γ0 ≡

((
M1 M2

M3 M4

) (
Id

0

))
(qt) with M1 d× d.

By symmetry, M3 ≡ 0 (qt); since (M,N) = 1, M4 is invertible modulo q. Thus we
can find E′1, G

′
1 ∈ SLn−d(Z) so that E′1, G

′
1 ≡ I (N/qt),

M ′4 = E′1M4G
′
1 ≡

(
I

a′

)
(qt).

Take E1 =

(
Id

E′1

)
, G1 =

(
Id

G′1

)
, W =

 0d
In−d−1

a′

 where a′a′ ≡

1 (qt); then
LYNNE: CHECK THIS

(C D) = E1E0(M N)

(
G0

tG−1
0

)
γ0

(
G1

tG−1
1

)(
I W
0 I

)
≡
((

M1 M ′2
M ′3 M ′4

)
I

)
(qt),

and (C D) ∈ GLn(Z)(M N)Γ0(N ) with (C D) ≡ (M N) (N/qt) and D ≡ I (qt).
Next, suppose p is another prime dividing N with pr ‖ N . Applying the above

process to the pair (C D), we obtain a pair (C ′ D′) ∈ GLn(Z)(M N)Γ0(N ) with
(C ′ D′) ≡ (M N) (N/(qtpr)) and D′ ≡ I (qtpr). Continuing, we obtain (M ′ N ′) ∈
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GLn(Z)(M N)Γ0(N ) with N ′ ≡ I (N ). Thus (NM ′ N ′) is a coprime symmetric

pair, so there exist K ′, L′ so that N|L′ and

(
K ′ L′

M ′ N ′

)
∈ Spn(Z); note that

we must have K ′ ≡ I (N ) since L′ ≡ 0 (N ) and N ′ ≡ I (N ). Since M ′ is
necessarily symmetric modulo N , we can choose a symmetric matrix M ′′ so that
M ′′ ≡M ′ (N ); set

δ =

(
tN ′ −tL′
−tM ′ tK ′

)(
I 0
M ′′ I

)
.

Then δ ∈ Γ(N ), and (M ′′ I) = (M ′ N ′)δ ∈ GLn(Z)(M N)Γ0(N ).
Now suppose N is square-free and M is an integral symmetric matrix. We

show that there is some (M ′ N ′) ∈ GLn(Z)(M I)Γ0(N ) so that N ′ ≡ I (N ) and
M ′ ≡ Mρ (N ) where Mρ is diagonal and, for each prime q dividing N , Mρ ≡(
Id

0

)
(q) where d = rankqM . Then the argument of the preceeding paragraph

gives us (Mρ I) ∈ GLn(Z)(M I)Γ0(N ). So it suffices now to show that for each
prime q|N , there are E ∈ SLn(Z), γ ∈ Γ0(N ) so that E, γ ≡ I (N/q), and

E(M I)γ ≡ (C I) (q) where C =

(
Id

0

)
with d = rankqM .

If rankqM = 0 then there is nothing to do. Suppose not; first consider the case
that q is odd. By §92 of [O’M], we know there exists E′ ∈ SLn(Zq) so that E′M tE′

is diagonal with E′M tE′ ≡
(
M1

0

)
(q), M1 =

(
a

I

)
with q - a. Thus we

can find E ∈ SLn(Z) so that E ≡ I (N/q), E ≡ E′ (q). Then

E(M I)

(
tE

E−1

)
= (M ′ I)

where M ′ ≡ (E′M tE′ ) (q). Take

(
u v
w x

)
∈ SL2(Z) so that

(
u v
w x

)
≡

I (N/q),
(
u v
w x

)
≡
(
a a− 1
0 a

)
(q). Set

γ =


u v

In−1 0
w x

0 In−1

 .

Then γ ≡ I (N/q) and (M ′ I)γ ≡ (C I) (q) where C =

(
Id

0

)
.

Now suppose q = 2. By Lemma ?? there is some E ∈ SLn(Z) so that E ≡

I (N/q) and EM tE ≡
(
M1

0

)
(q), where either M1 = Id or M1 = A1, A1 =(

0 1
1 0

)
⊥ · · · ⊥

(
0 1
1 0

)
(d×d where d = rankqM). In the first case, we are done.
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Otherwise, take A ∈ SLn(Z) so that A ≡ I (N/q) and A ≡
(
A1

In−d

)
(q); set

γ =

(
tEA tE(A− I)

E−1A

)
. Thus γ ∈ Γ0(N ), γ ≡ I (N/q), and E(M I)γ ≡

(C I) (q) where C =

(
Id

0

)
. �

Proposition 2.3. Suppose N is square-free, χ is a character modulo N so that
χ(−1) = (−1)k, and ρ = (N0, . . . ,Nn) is a multiplicative partition of N (as in
Proposition 2.2; so N0 · · · Nn = N ). Then Eρ is well-defined if and only if χ2

q = 1
for all primes q|N/(N0Nn).

Proof. Suppose q is a prime dividing Nd where 0 < d < n. Fix α ∈ F×q . By Lemma

??, there exist G =

(
u v
w x

)
, G′ =

(
u′ v′

w′ x′

)
∈ SL2(Z) so that G,G′ ≡ I (N/q),

G ≡
(
α α− α
0 α

)
(q), G′ ≡

(
α 0
0 α

)
(q).

Let A,B,C,D,E,W be the n× n matrices

A =

u
I

u′

 , B =

 v
0

v′

 , C =

w
0

w′

 ,

D =

x
I

x′

 , E =

 u′ v′

I
w′ x′

 , W =

(
x2 − 1

0

)
.

Then γ′ =

(
A B
C D

)
∈ Γ0(N ), E ∈ SLn(Z), and

δ =

(
E

tE−1

)(
I W

I

)
∈ Γ+
∞.

Further, δγργ
′ ≡ γ+

ρ (N ). Set γ′′ = (δγργ
′)−1γρ. So γ′′ ∈ Γ(N ), γ′γ′′ ∈ Γρ with

χ(γ′γ′′) = χ2
q(α). Thus the condition that χ2

q = 1 for all primes q|N/(N0Nn) is
necessary for Eρ to be well-defined.

Now suppose χ2
q = 1 for all primes q|N/(N0Nn), and suppose γ =

(
A B
C D

)
∈

Γ+
ρ . Thus there exist δ =

(
tE−1 WE

E

)
∈ Γ+

∞, γ′ ∈ Γ(N ) so that δγ′γργ = γρ.

Fix a prime q|Nd, 0 ≤ d ≤ n.
When d = 0, we have ED ≡ I (q), so detD ≡ detE ≡ 1 (q) and χq(detD) =

1. When d = n, we have EA ≡ I ≡ A tD (q), so detD ≡ detE ≡ 1 (q) and
χq(detD) = 1.
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Now suppose 0 < d < n. Write

A =

(
A1 A2

A3 A4

)
, D =

(
D1 D2

D3 D4

)
, E =

(
E1 E2

E3 E4

)
where A1, D1, E1 are d × d. Then we have E3(A1 A2) ≡ 0 (q); since the rows of
(A1 A2) are linearly independent modulo q, we must have E3 ≡ 0 (q). Also,

E1(A1 A2) ≡ (Id 0) (q), E4(D3 D4) ≡ (0 In−d) (q),

so A2, D3 ≡ 0 (q), A1 ≡ E1 (q), D4 ≡ E4 (q). Since A tD ≡ I (q), we must have
D1 ≡ tE1 (q). Thus we have

detD ≡ detE1 · detE4 ≡ (detE1)2 (q)

and
χq(detD) = χ2

q(detE1) = 1.

Consequently χ(γ) = χ(detD) = 1, and hence the condition that χ2
q = 1 for all

primes q|N/(N0Nn) is sufficient for Eρ to be well-defined. �

We now give a robust definition of Eρ.
Definition. Having fixed n, k,N ∈ Z+ with k ≥ n + 2, χ a character modulo N ,
and γρ ∈ Spn(Z), we define

Eρ =

{ 1
2[Γ0(N ):Γ+

ρ ]
E′ρ if N > 2,

1
4[Γ0(N ):Γ+

ρ ]
E′ρ if N ≤ 2.

Remark. Suppose that G±Mρ = MρG±. Then for G ∈ GLn(Z), γ ∈ Γ0(N ), we

haveG(Mρ I)γ = GG±(Mρ I)γ±γ. So with γρ =

(
I 0
Mρ I

)
, we have Γ∞Γ(N )γργ =

Γ∞Γ(N )γργ±γ (since γ± ∈ Γ∞), but Γ+
∞Γ(N )γργ = Γ+

∞Γ(N )γργ±γ if and only if
N ≤ 2 (since γ± ∈ Γ(N ) if and only if N ≤ 2). Thus,

Eρ(τ) = mρ

∑
γ

χ(γ) 1(τ)|γργ

where γ varies so that Γ+
∞γρΓ0(N ) = ∪γΓ+

∞γργ (disjoint), and

mρ =

{
1 if N ≤ 2,
1
2 otherwise.

LYNNE: THIS NEXT DEFINED EARLIER?
We let E(n)

k (N , χ) denote the space spanned by these forms.
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§3. Defining Hecke operators

For each prime p, we define Hecke operators T (p), Tj(p
2) (1 ≤ j ≤ n) acting on

Siegel modular forms; then we describe explicit sets of matrices that give the action
of these operators.

Fix a prime p; set Γ = Γ0(N ) and take f ∈M(n)
k (N , χ). We define

f |T (p) = pn(k−n−1)/2
∑
γ

χ(γ) f |δ−1γ

where δ =

(
pIn

In

)
, γ varies over (δΓδ−1 ∩ Γ)\Γ, and for γ′ =

(
A B
C D

)
∈

Spn(Z),

f(τ)|γ′ = (det γ′)k/2 det(Cτ +D)−k f((Aτ +B)(Cτ +D)−1).

We define
f |Tj(p2) = pj(k−n−1)

∑
γ

χ(γ) f |δ−1
j γ

where δj =

(
Xj

X−1
j

)
, Xj =

(
pIj

In−j

)
, and γ varies over (δjΓδ

−1
j ∩ Γ)\Γ.

Proposition 3.1. Let p be a prime, f ∈M(n)
k (N , χ). For 0 ≤ r, n0 + n2 ≤ n, let

Dr =

(
pIr

I

)
, Dn0,n2 =

 pIn0

I
1
pIn2

 (n× n),

and let

Kr = DrSLn(Z)D−1
r ∩ SLn(Z),

Kn0,n2 = Dn0,n2SLn(Z)D−1
n0,n2

∩ SLn(Z).

Then

f |T (p) = pn(k−n−1)/2
∑

0≤r≤n

χ(pn−r)
∑
G,Y

f |
(
D−1
r

1
pDr

)(
G−1 Y tG

tG

)
where G varies over SLn(Z)/Kr and Y varies over

Yr =

{(
Y0

0

)
∈ Zn,nsym : Y0 r × r, varying modulo p

}
.

Also,

f |Tj(p2)

= pj(k−n−1)
∑

n0+n2≤j

χ(pj−n0+n2)
∑
G,Y

f |
(
D−1
n0,n2

Dn0,n2

)(
G−1 Y tG

tG

)
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where G varies over SLn(Z)/Kn0,n2 and Y varies over Yn0,n2 , the set of all integral,
symmetric n× n matrices 

Y0 Y2 Y3 0
tY2 Y1/p 0
tY3 0
0


with Y0 n0×n0, varying modulo p2, Y1 (j−n0−n2)×(j−n0−n2), varying modulo
p provided p - detY1, Y2 n0× (j−n0−n2), varying modulo p, and Y3 n0× (n− j),
varying modulo p.

Proof. Fix Λ = Zx1 ⊕ · · · ⊕ Zxn (a reference lattice).
By Lemma ??, as G varies over SLn(Z)/Kr, Ω = ΛGDr varies over all lattices

Ω, pΛ ⊆ Ω ⊆ Λ with [Λ : Ω] = pr. Thus by Proposition 3.1 and (the proof of)
Theorem 6.1 in [HW], claim (1) of the proposition follows.

For Ω another lattice on QΛ, let mult{Λ:Ω}(a) be the multiplicity of the value of a
among the invariant factors {Λ : Ω}. By Lemma ??, asG varies over SLn(Z)/Kn0,n2

,
Ω = ΛGDn0,n2 varies over all lattices Ω, pΛ ⊆ Ω ⊆ 1

pΛ, with mult{Λ:Ω}(1/p) = n2,

mult{Λ:Ω}(p) = n0. Thus by Proposition 3.1 and (the proofs of) Theorems 4.1 and
6.1 in [HW], claim (2) of the proposition follows. �

Remark. For N ′ ∈ Z+ so that p - N ′, we can choose G, Y in the above proposition
so that G ≡ I (N ′) and Y ≡ 0 (N ′). Also, if p|N , then

f |T (p) = pn(k−n−1)/2
∑
Y

f |
(

1
pIn

1
pY

In

)
where Y varies over Yn, and

f |Tj(p2) = pj(k−n−1)
∑
G,Y

f |
(
D−1
j,0

Dj,0

)(
G−1 Y tG

tG

)
where G varies over SLn(Z)/Kj,0 and Y varies over Yj,0.

LYNNE: CHECK THESE ABOVE SUMS

§4. Hecke operators on Siegel Eisenstein series of square-free level

Throughout this section, we assume N is square-free, χ is a character modulo
N so that χ(−1) = (−1)k; further, we assume either N > 2 or k is even. Take a
multiplicative partition ρ = (N0, . . . ,Nn) of N (so N0 · · · Nn = N ), and assume
that Eρ 6= 0 (so by Proposition 2.3, χ2

q′ = 1 for all primes q′|N/(N0Nn)). Take

diagonal Mρ as in Proposition 2.2, γρ =

(
I 0
Mρ I

)
.

With β =

(
∗ ∗
M N

)
∈ SLn(Z) and γ ∈ Γ0(N ) so that Γ+

∞β = Γ+
∞γργ, we can

determine how to compute χ(γ) from (M N).
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Suppose

(
∗ ∗
M N

)
∈ Γ+

∞γρΓ0(N ); so (M N) = E′(Mρ I)γ for some E′ ∈

SLn(Z) and γ =

(
A B
C D

)
∈ Γ0(N ). Fix q and take d = rankqMρ. Thus

rankqMρ = d, so we can find E,G ∈ SLn(Z) so that EMG ≡
(
M1 0
0 0

)
(q)

where M1 is d× d and invertible modulo q. Write EN tG−1 =

(
N1 N2

N3 N4

)
where

N1 is d× d; since M tN is symmetric, we must have N3 ≡ 0 (q). Hence

EMG ≡
(
M1 0
0 0

)
≡ EE′

(
Id

0

)
AG (q),(

N1 N2

0 N4

)
≡ EE′

((
Id

0

)
B +D

)
tG−1 (q).

Given the shape of EMG, we must have EE′ ≡
(
E1 E2

0 E4

)
(q) where E1 is d× d

and E1, E4 are invertible modulo q, and then AG ≡
(
A1 0
A3 A4

)
(q) where A1

is d × d; since N|C, A1, A4 are invertible modulo q. We have A tD ≡ I (q), so

D tG−1 ≡
(
D1 D2

0 D4

)
(q) where D1 is d× d and D1, D4 are invertible modulo q.

Further, we must have

A1
tD1 ≡ Id, A4

tD4 ≡ In−d, E1A1 ≡M1, E4D4 ≡ N4 (q).

So

detM1 · detN4 ≡ detE1 · detE4 · detA1 · detD4 ≡ (detE1)2 · detD (q).

Note that when d = 0 D ≡ N (q), and when d = n, tD ≡ A ≡ M (q). When
0 < d < n, we have χ2

q = 1 so

χq(detM1 · detN4) = χq(detD).

Thus we can define χq(M,N) = χq(detM1 · detN4), and

χ(M,N) =
∏
q|N

χq(M,N).

Then we have

Eρ(τ) =
1

2

∑
(M N)

χ(M,N) det(Mτ +N)−k

where (M N) varies over coprime symmetric pairs so that

SLn(Z)(Mρ I)Γ0(N ) = ∪(M N)SLn(Z)(M N) (disjoint).

Now we prove the following.
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Theorem 4.1. Fix a prime q|N , and fix a multiplicative partition σ = (N ′0, . . . ,N ′n)
of N/q. For 0 ≤ d ≤ n, let Eσd denote Eρ′ where ρ′ = (N0, . . . ,Nn),

Ni =

{ N ′i if i 6= d,

qN ′d if i = d.

Then

Eσd |T (q) = qkd−d(d+1)/2χN/q

((
Id

1
q In−d

)
Mσd ,

(
qId

In−d

))
·
n−d∑
t=0

q−dt−t(t−1)/2β(d+ t, t)symχ
q (t)Eσd+t

where
symχ

q (t) =
∑
U

χq(detU),

U varying over Ft,tsym.

Remark. In Lemma ?? we evaluate symχ
q (t).

?? WHAT IF n − ` = 0 and χ1 6= 0? Have Et = 0 for 0 < t < n. How do we
modify this argument to get E0|T (q) = E0 + ∗ ∗ En??

Proof.
LYNNE: ?? n− ` 7→ d??
Write Ed for Eσd . We know Ed(τ) is a sum over representatives for SLn(Z)-

equivalence classes of coprime pairs (M N) with rankqM = d; we can assume q
divides the lower n− d rows of M . By Proposition 3.1,

Ed(τ)|T (q) = q−n(n+1)/2
∑

M,N,Y

det(Mτ/q +MY/q +N)−k

= qkn−n(n+1)/2
∑

M,N,Y

det(Mτ +MY + qN)−k

where Y varies over Yn. We have

det(Mτ +MY + qN)−k = q−k(n−d) det(M ′τ +N ′)−k

where

(M ′ N ′) =

(
Id

1
q In−d

)
(M MY + qN).

We know the upper d rows of M are linearly independent modulo q, as are the
lower n− d rows of N . Thus (M ′, N ′) = 1, and rankqM

′ ≥ d. Also note that

det(Mτ +MY + qN)−k = q−(n−d)k det(M ′τ +N ′)−k.
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Recall that we can assume Y ≡ 0 (N/q). Also, we know Ed is supported on the

Γ0(N )-orbit of GLn(Z)(Mρ I). Take (M N) = (Mρ I)γ where γ =

(
A B
C D

)
∈

Γ0(N ). Take a prime q′|N and let d′ = rankq′Mρ. Choose E ∈ SLn(Z) so

that AE ≡
(
A1 0
∗ ∗

)
(q′) where A1 is d′ × d′ (possible since we necessarily

have rankq′A = n since q′|N ). Then since A tD ≡ I (q′), we have D tE−1 ≡(
D1 D2

0 D4

)
(q′) with D1 d

′ × d′. Thus

(M N)

(
E

tE−1

)
≡
(
A1 0 ∗ ∗
0 0 0 D4

)
(q′),

and

(M ′ N ′)

(
E

tE−1

)
≡
(
A′1 0 ∗ ∗
0 0 0 D′4

)
(q′)

where, modulo q′,

A′1 ≡


A1 if d′ ≤ d,( 1
q Id

I

)
A1 if d′ ≥ d;

D′4 ≡


(
qI

In−d

)
D4 if d′ ≤ d,

D4 if d′ ≥ d.

Therefore

χq′(M
′, N ′) = χq′(M

′E,N ′ tE−1) = χq′(detA
′
1 · detD′4)

= χq′(q
d−d′) · χq′(detA1 · detD4),

χq′(detA1 · detD4) = χq′(M,N),

χq′(q
d−d′) = χq′

((
Id

1
q In−d

)
M,

(
qId

In−d

)
N

)
.

Hence

χq′(M
′, N ′) = χq′(M

′E,N ′ tE−1)

= χq′(detA
′
1 · detD′4)

= χq′

((
I

1
q In−d

)
Mρ,

(
qI

In−d

))
χq′(M,N).

Therefore χN/q(M,N) = χN/q

((
I

1
q In−d

)
Mρ,

(
qI

In−d

))
χN/q(M

′, N ′).
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Reversing, take (M ′ N ′) a coprime symmetric pair with rankqM
′ = d+t; assume

Eσ,d+t 6= 0. We need to count the equivalence classes SLn(Z)(M N) so that(
Id

1
q In−d

)
(M MY + qN) ∈ SLn(Z)(M ′ N ′).

For any E ∈ SLn(Z), we have

(
Id

qIn−d

)
E

(
Id

1
q In−d

)
∈ SLn(Z) if and only

if E ∈ Kd. Thus we need to count the number of E ∈ Kd\SLn(Z) and Y ∈ Zn,nsym

(varying modulo q) so that

(M N) =

(
Id

qIn−d

)
E(M ′ (N ′ −M ′Y )/q)

is a coprime pair. We can assume the top d+ t rows of M ′ are linearly independent
modulo q, and that q divides the lower n− d− t rows of M ′. To have rankqM = d,
we need to choose E so that the top d rows of EM ′ are linearly independent modulo
q; using Lemma ?? there are

qd(n−d−t)β(d+ t, d) = qd)(n−d−t)β(d+ t, t)

choices for E. We need to choose Y so that N is integral and (M,N) = 1; equiv-
alently, for any G ∈ SLn(Z), we need N tG−1 integral and (MG,N tG−1) = 1.
Using left multiplication by Kd, we can adjust the choice of E so that the lower
n − d − t rows of EM ′ are divisible by q, and then we can choose G ∈ SLn(Z) so
that

EM ′G ≡

M1 0 0
0 M5 0
0 0 0

 (q)

where M1 is d× d, M5 is t× t, and M1,M5 are invertible modulo q. Write

EN ′ tG−1 =

N1 N2 N3

N4 N5 N6

N7 N8 N9

 , G−1Y tG−1 =

 Y1 Y2 Y3
tY2 Y4 Y5
tY3

tY5 Y6


where N1, Y1 are d×d and N5, Y4 are t× t. By symmetry, N7, N8 ≡ 0 (q), and then
since (M ′, N ′) = 1, we must have rankqN9 = n−d− t. Also, as Y varies over Fn,nsym,

so does G−1Y tG−1. To have N integral, we need (Y1 Y2 Y3) ≡M1(N1 N2 N3) (q).
Then by symmetry, we find N4 ≡ M5

tY2 (q). So to have (M,N) = 1, we need
rankq(N5 −M5Y4) = t, or equivalently,

rankq(N5 −M5Y4) tM5 = t.

As Y4 varies over Ft,tsym, so does N5 −M5Y4
tM5. We have

χq(M,N) = χq(detM1 · det(N5 − Y4M5) · detN9)

= χq(detM1 · detM5 detN9) · χq(det(N5 −M5Y4) tM5)

= χq(M
′, N ′) · χq(det(N5 −M5Y4) tM5).
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We have no constraints on Y5 and Y6, so as we vary Y subject to the above condi-
tions, we get∑

Y

χq(M,N) = χq(M
′, N ′) · q(n−d−t)(n−d+t+1)/2

∑
U∈Ft,tsym

χq(detU)

= χq(M
′, N ′)q(n−d−t)(n−d+t+1)/2symχ

q (t),

as claimed. �

This theorem allows us to diagonalise the space of Eisenstein series. To aid in
our description of this, we define a partial ordering on multiplicative partitions of
N , as follows.

Definition. For ρ, β multiplicative partitions of N and Q|N , we write β = ρ (Q)
if, for every prime q|Q, we have rankqMβ = rankqMρ. Similarly, we write β > ρ (Q)
if, for every prime q|Q, we have rankqMβ > rankqMρ.

Corollary 4.2. Let q be a prime dividing N . For ρ a partition of N so that Eρ 6= 0,
there are aρ,α(q) ∈ C so that aρ,ρ(q) = 1 and∑

α=ρ (N/q)
α≥ρ (q)

aρ,α(q)Eα

is an eigenform for T (q) with eigenvalue

λρ(q) = qkd−d(d+1)/2χN/q

((
Id

1
q I

)
Mρ,

(
qId

I

))
where d = rankqMρ. Further, suppose α = ρ(N/q), α > ρ (q), with d = rankqMρ,
d+ t = rankqMα; then we have aρ,α(q) 6= 0 if and only if either (1) χq = 1, or (2)
χ2
q = 1 and t is even.

Proof. By Lemma ?? symχ
q (t) = 0 if and only if (1) χ2

q 6= 1, or (2) χq 6= 1 and t is
odd. Thus by Theorem 4.1,

span
{
Eα : α = ρ (N/q), α ≥ ρ (q), so that either (1) χq = 1, or

(2) χ2
q = 1 and rankqMα − rankqMρ is even

}
is invariant under T (q), and the matrix for T (q) on this basis is upper triangular
with nonzero upper triangular entries. Then the standard process of diagonalising
an upper triangular matrix yields the result. �

We now prove a multiplicity-one result for the Eisenstein series of square-free
level.
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Corollary 4.3. Suppose Eρ 6= 0. For α ≥ ρ (Q) and prime q|Q, set aρ,α(q) =
aρ,σ(q) where σ = ρ (N/q), σ = α (q), and set

aρ,α(Q) =
∏
q|Q

aρ,α(q).

Then with
Ẽρ =

∑
α≥ρ (N )

aρ,α(N )Eα,

for every prime q|N we have

Ẽρ|T (q) = λρ(q) Ẽρ

(where λρ(q) is defined in Corollary 4.2).

Proof. Fix a prime q|N . For α ≥ ρ (N ), take β = α (N/q), β = ρ (q). Then
aρ,α(N ) = aρ,β(N/q) aρ,α(q). Hence

Ẽρ =
∑

β≥ρ (N/q)
β=ρ (q)

aρ,β(N/q)
∑

α=β (N/q)
α≥β (q)

aρ,α(q)Eα.

We argue that when aρ,β(N/q) 6= 0, we have aρ,α(q) = aβ,α(q) and λρ(q) = λβ(q).
Fix β so that β ≥ ρ (N/q), β = ρ (q), and suppose aρ,β(N/q) 6= 0. Take Q|N/q

so that β = ρ (N/Q), β > ρ (Q). Thus aρ,β(N/q) = aρ,β(Q). Since aρ,β(Q) 6= 0, for
each prime q′|Q we have either (1) χq′ = 1, or (2) χ2

q′ = 1 and rankq′Mβ−rankq′Mρ

is even.
Suppose q′ is a prime dividing Q so that χq′ 6= 1. Set r = rankq′Mρ, r + t =

rankq′Mβ (so t is even). Then for 0 ≤ d ≤ n,

χq′

((
Id

1
q′ I

)
Mρ,

(
qId

I

))
= χq′

((
Id

1
q′ I

)(
Ir

0

)
,

(
qId

I

))
=

{
χq′(q

r−d) if d ≤ r,
χq′(q

d−r) if d ≥ r
= χq′(q

d−r)

(since χ2
q′). Similarly,

χq′

((
Id

1
q′ I

)
Mβ ,

(
qId

I

))
= χq′(q

d−r−t)

and χq′(q
d−r−t) = χq′(q

d−r) since t is even and χ2
q′ = 1.

For each prime q′′|N/Q, we either have β = ρ (q′′) or χq′′ = 1. Thus for
0 ≤ d ≤ n,

χN/q

((
Id

1
q′ I

)
Mρ,

(
qId

I

))
= χN/q

((
Id

1
q′ I

)
Mβ ,

(
qId

I

))
.
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Hence λβ(q) = λρ(q). Further, with σd, αd partitions of N so that σd = ρ (N/q),
rankqMσd = d, αd = β (N/q), rankqMαd = d, the matrix for T (q) on t(Eσ0

, . . . ,Eσn)
is equal to the matrix for T (q) on t(Eα0

, . . . ,Eαn), and hence aρ,σd(q) = aβ,αd(q),
0 ≤ d ≤ n. �

Now we evaluate the action of Tj(q
2) on Eρ. Note that since the Hecke operators

commute, the multiplicity-one result of Corollary 4.3 tells us that each Ẽρ is also an
eigenform for Tj(q

2). So we could simply do enough computation to find the eigen-
value λρ,j(q

2), but we take just a bit more effort and give a complete description
of Eρ|Tj(q2). Then in Corollary 4.5 we compute the Tj(q

2) eigenvalues.

Theorem 4.4. Assume N is square-free, a fix a prime q|N . For σ a multiplicative
partition of N/q and 0 ≤ d ≤ n, let Eσd be the level N Eisenstein series as in
Theorem 4.1; suppose Eσd 6= 0.

For 0 ≤ j, d ≤ n,

Eσd |Tj(q2) =

n−d∑
t=0

Aj(d, t)Eσd+t ;

when χq = 1,

Aj(d, t) = q(j−t)d−t(t+1)/2β(d+ t, t)

·
j∑

d1=0

j−d1∑
d5=0

d5∑
d8=0

qaj(d;d1,d5,d8)χN/q(Dd1,rMσdD
−1
j , Dd1,r, Dj)

· β(d, d1)β(t, d5)β(n− d− t, d1 + n− d− j − d8)

· β(t− d5, d8)symχ
q (t− d5 − d8)symχ

q (d5, d8),

where r = j − d1 − d5 + d+ 8, and

aj(d; d1, d5, d8)

= (k − d)(2d1 + d5 − d8) + d1(d1 − d8 − j − 1)− d8(d5 + t)− d5(d5 + 1)/2 + d8(d8 + 1)/2.

[LYNNE: DEFINE symχ
q (b, c)]

(Note that symχ
q (t− d5 − d8), symχ

q (d5, d8) are evaluated in Lemmas ???.)

Proof. Fix d = rankqMρ; to ease some notation later, set ` = n− d.

En−`|Tj(q2) = qj(k−n−1)
∑
G,Y

En−`|
(
D−1
j

Dj

)(
G−1 Y tG

tG

)

where Dj =

(
qIj

In−j

)
, G ∈ SLn(Z)/Kj , Y ∈ Yj with Yj the set of matrices
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U V
tV 0

)
so that U ∈ Zj,jsym varies modulo q2, V ∈ Zj,n−j varies modulo q. So

En−`(τ)|Tj(q2)

= qj(−n−1)
∑
G,Y

∑
M,N

det
(
M
(
D−1
j G−1τ +D−1

j Y tG
)
tG−1D−1

j +N
)−k

= qj(k−n−1)
∑
G,Y

∑
M,N

det
(
MD−1

j G−1τ +MD−1
j Y tG+N tGDj

)−k
(where (M N) varies over coprime symmetric pairs with rankqM = n− `).

Take a coprime symmetric pair (M N) with rankqM = n − `. Let d1 be the
rank of the first j columns of M ; using row operations, we can assume M = M1 M2

qM3 M4

qM ′5 qM ′6

 where M1 is d1 × j (so rankqM1 = d1), M4 is d4 × (n − j) with

rankqM4 = d4 = n− `− d1. Correspondingly, write N =

N1 N2

N3 N4

N ′5 N ′6

 where N1 is

d1 × j and N4 is d4 × (n − j). Take r so that rankq

(
M1 0
M ′5 N ′5

)
= n − d4 − r; so

using row operations, we can assume

(qM ′5 qM
′
6 N

′
5 N

′
6) =

(
qM5 qM6 N5 N6

q2M7 qM8 N7 qN8

)

where M6, N6 are (`−r)×(n−j) and rankq

(
M1 0
M5 N6

)
= n−d4−r. Note that since

(M,N) = 1, we must have rankqN7 = r. Then with Dd1,r =

 qId1
I

1
q Ir

,

Dd1,r(M N)

(
D−1
j

Dj

)
=


M1 qM2 q2N1 qN2

M3 M4 qN3 N4

M5 qM6 qN5 N6

M7 M8 N7 N8


has q-rank n. Hence for any Y ∈ Yj ,

(M ′ N ′) = Dd1,r(M N)

(
D−1
j

Dj

)(
G−1 Y tG

0 tG

)
is a coprime symmetric pair with rankqM

′ = n − ` + t for some t ≥ 0. Note that

det(M ′τ +N ′)−k = qk(d1−r) det(MD−1
j G−1τ +MD−1

j Y tG+NDj
tG)−k.

Similar to the computation in the proof of Theorem 4.1, we have

χN/q(M,N) = χN/q(Dd1,rMσdD
−1
j , Dd1,rDj)χN/q(M

′, N ′).
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Reversing, take a coprime pair (M ′ N ′) with rankqM
′ = n− `+ t. We need to

count the equivalence classes SLn(Z)(M N) so that

Dd1,r(M N)

(
D−1
j

Dj

)(
G−1 Y tG

0 tG

)
∈ SLn(Z)(M ′ N ′).

For E1, E2 ∈ SLn(Z) and

(Mi Ni) = D−1
d1,r

Ei(M
′ N ′)

(
G −GY
0 tG−1

)(
Dj

D−1
j

)
,

we have (M1 N1) ∈ SLn(Z)(M2 N2) if and only if E1 ∈ Kd1,rE2. Thus we need
to count the number of triples E,G, Y with E ∈ Kd1,r\SLn(Z), G ∈ SLn(Z)/Kj ,
Y ∈ Yj so that

(M N) = D−1
d1,r

E(M ′ N ′)

(
G −GY
0 tG−1

)(
Dj

D−1
j

)
is an integral coprime pair with rankqM = n − ` (that M tN is symmetric is
automatic).

For E,G ∈ SLn(Z), let (M1 M2) be the top d1 rows of EM ′G with M1 size
d1 × j; similarly, let (N1 N2) be the top d1 rows of EN ′ tG−1 with N1 size d1 × j.
To have M integral we need q|M2. To have N integral, we will need to solve

N1 ≡M1U +M2
tV (q2), N2 ≡M1V (q)

Since (M ′, N ′) = 1 and q|M2, we must have rankq(M1 N1 N2) = d1; thus we can
only solve the above congruences if rankqM1 = d1. So suppose we have chosen E,G
to meet this condition; write

EM ′G =


M1 M2

M3 M4

M5 M6

M7 M8

 , EN ′ tG−1 =


N1 N2

N3 N4

N5 N6

N7 N8


where M1, N1 are d1× j, M4, N4 are d4× (n− j), M5, N5 are (n− r− d)× j where

Y =

(
U V
tV 0

)
Yj . To have rankqM = n−`, we need to have rankq

M1 0
0 M4

0 M6

 =

n− `; so suppose we have chosen E,G to meet this condition as well. Then, using
left multiplication from Kd1,r and right multiplication from Kj , we can assume
rankqM4 = d4 = n−`−d1 and M6 ≡ 0 (q). Now write Mi = (A′i Ai), Ni = (B′i Bi)
where, for i odd, A′i, B

′
i have d1 columns, and for i even, A′i, B

′
i have d4 columns. By

adjusting further using Kd1,r and Kj , we can assume that rankqA
′
1 = d1, rankqA

′
4 =

d4, A′i ≡ 0 (q2) for i 6= 1, 4, A1, A3 ≡ 0 (q), and with di = rankqAi for i = 5, 7, 8,
we can assume

A5 ≡
(
α5 0 0
0 0 qα′5

)
(q2), A6 ≡

(
0 0
qα′6 0

)
(q2),
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A7 ≡

 0 0 0
0 α7 0
0 0 0

 (q), A8 ≡

 0 0
0 0
0 α8

 (q)

where αi is di×di (and hence invertibe modulo q), α′5 is (`−r−d5)×(j−d1−d5−d7),
and α′6 is (`− r− d5)× (n− j − d4 − d8); here the first d5 and last j − d1 − d5 − d7

columns of A7 are 0 modulo q, and the top r − d7 − d8 and bottom d8 rows of A7

are 0 modulo q. Correspondingly, write

B5 =

(
β1 β2 β3

β4 β5 β6

)
, B6 =

(
γ1 γ2

γ3 γ4

)
,

B7 =

 δ1 δ2 δ3
δ4 δ5 δ6
δ7 δ8 δ9

 , B8 =

 ε1 ε2
ε3 ε4
ε5 ε6

 .

Then by symmetry, we have β4, β5, γ4, δ1, δ2, ε2 ≡ 0 (q), and q must divide the lower
`− r − d5 rows of B′5 and the upper r − d7 − d8 rows of B′7.

With Y =

(
U V
tV 0

)
(as above), write

U =

(
U1 U2
tU2 U3

)
, V =

(
V1 V2

V3 V4

)
where U1 is d1 × d1 and V1 is d1 × d4. To have N integral, we need

N1 ≡ A′1(U1 U2) (q2), N2 ≡ A′1(V1 V2) (q), B2 ≡ A′4 tV3 (q).

With these (unique) choices of U1, U2, V1, V2, V3, the symmetry of M ′ tN ′ implies
that

B′3
tA′1 ≡ A′4 tB′2 ≡ A′4 tV2

tA′1 (q),

so we automatically get B′3 ≡ A′4
tV2 (q). Hence with these choices of U1, U2, V1,

V2, V3, the top n− ` rows of N are integral. We have already ensured the top n− `
rows of M are integral with q-rank n− `, and we know the lower ` rows of M are
0 modulo q. So we need to choose U3, V4 so that the lower ` rows of N are integral
with q-rank `.

By symmetry, we have

B′5
tA′1 ≡ A5

tB1 +A6
tB2 ≡ A5

tU2
tA′1 +A6

tV2
tA′1 (q2),

B′6
tA′4 ≡ A5

tB3 ≡ A5V3
tA′4 (q),

B′7
tA′1 ≡ A7

tB1 +A8
tB2 ≡ A7

tU2
tA′1 +A8

tV2
tA′1 (q).

So to have N integral, we need to choose E,G so that β6 ≡ 0 (q), and U3 so that
B5 ≡ A5U3 (q). With such choices, the lower ` rows of N are congruent modulo q
to (

0 (B5 −A5U3 −A6
tV4)/q 0 B6 −A5V4

0 B7 −A7U3 −A8
tV4 0 0

)
.



20 LYNNE H. WALLING

Also, since (M ′, N ′) = 1, when β6 ≡ 0 (q), we will necessarily have rankqγ3 =
`− r − d5 (recall that β4, β5, γ4 ≡ 0 (q)). Write

U3 =

 µ1 µ2 µ3
tµ2 µ4 µ5
tµ3

tµ5 µ6

 , V4 =

 ν1 ν2

ν3 ν4

ν5 ν6


where µ1 is d5 × d5, µ4 is d7 × d7, ν2 is d5 × d8, and ν4 is d7 × d8. Note that

B7 −A7U3 −A8
tV4 ≡

 0 0 δ3
δ4 − α7

tµ2 δ5 − α7µ4 δ6 − α7µ5

δ7 − α8
tν2 δ8 − α8

tν4 δ9 − α8
tν6

 (q).

So to have

rankq

(
0 (B5 −A5U3 −A6

tV4)/q 0 B6 −A5V4

0 B7 −A7U3 −A8
tV4 0 0

)
,

we need to choose E,G so that rankqδ3 = r− d7 − d8. We know that γ3 is (`− r−
d5)× (n− j−d4−d8) and δ3 is (r−d7−d8)× (j−d1−d5−d7). Thus if β6 ≡ 0 (q)
and rankqδ3 = r − d7 − d8, we have

`− r − d5 ≤ n− j − d4 − d8, r − d7 − d8 ≤ j − d1 − d5 − d7,

and consequently r = j − d1 − d5 + d8 (recall that n − ` = d1 + d4). Then we use
right multiplication from Kj to modify G so that we can assume β4 ≡ 0 (q2).

Thus we need to choose Kd1,rE, GKj so that (adjusting the coset representatives
E,G), the top d1 rows of EM ′ have q-rank d1, the top d1 + d4 + d5 rows of EM ′

have q-rank d1 +d4 +d5 (where 0 ≤ d5 ≤ j−d1), and q divides rows d1 +d4 +d5 +1
through n− d7 − d8 of EM ′; Lemma ? tells us that the number of such Kd1,rE is

β(d′, d+ d5)β(n− d′, n− r − d− d5)β(d+ d5, d1)

· q(d+d5)(r+d+d5−d′)+d1(n−d−d5)

where d = rankqM , d′ = rankqM
′ (note that after choosing E as in the lemma,

we can use left multiplication from Kd1,r to ensure rows d1 + d4 + d5 + 1 through
n− d7 − d8 are divisible by q). Then we can choose some G0 ∈ SLn(Z) so that

EM ′G0 ≡


C 0 0 0
0 C ′ 0 0
0 0 0 0
0 0 C ′′ 0

 (q)

where C is d1×d1 with rankqC = d1, C ′ is (d4+d5)×(d4+d5) with rankqC
′ = d4+d5.

As GKj varies over SLn(Z)/Kj , so does G0GKj ; Lemma ? tells us that the number
of GKj that meet all the necessary criteria as described above is

β(d4 + d5, d4)β(d7 + d8, d8)q(d4+d8)(j−d1−d5)−d7d8 .
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Having chosen such E,G, we have seen that to have N integral, U1, U2, V1, V2, V3

are uniquely determined, and µ1, µ2, µ3 are determined modulo q. To also have
(M,N) = 1, we need to ensure rankqB = ` where

B =


(β1 − α5µ1)/q (β2 − α5µ2)/q (β3 − α5µ3)/q γ1 − α5ν1 γ2 − α5ν2

0 ∗ ∗ γ3 0
0 0 δ3 0 0
0 δ5 − α7µ4 δ6 − α7µ5 0 0

δ7 − α8
tν2 δ8 − α8

tν4 δ9 − α8
tν6 0 0

 .

We have δ3 square and invertible modulo q; so we need δ5−α7µ4 (which is square)
to be invertible modulo q. By symmetry, we know (δ5 − α7µ4) tα7 is symmetric;
writing µ4 = µ′4 + qµ′′4 where µ′4, µ

′′
4 vary over symmetric d7 × d7 matrices modulo

q, (δ5 −α7µ
′
4) tα7 does as well. (So there are qd7(d7+1)/2sym(d7) ways to choose µ4

so that δ5 − α7µ4 is invertible modulo q.) So to have B invertible, we need

 (β1 − α5µ1)/q γ1 − α5ν1 γ2 − α5ν2

0 γ3 0
δ7 − α8

tν2 0 0


to be invertible modulo q. We previously noted that γ3 is invertible modulo q, so
we need (

(β1 − α5µ1)/q γ2 − α5ν2

δ7 − α8
tν2 0

)
to be invertible modulo q, or equivalently, we need

(
(β1 − α5µ1) tα5/q (γ2 − α5ν2) tα5

(δ7 − α8
tν2) tα8 0

)

to be invertible modulo q, and this latter matrix is symmetric modulo q.

Now we compute
∑
Y χq(M,N)χq(M

′, N ′). First, we choose a permutation
matrix G1 ∈ GLn(Z) so that

EM ′GG1 ≡


A′1 0 0 0
0 A′4 0 0
0 0 A5 0
0 0 A7 A8

 (q),

EN ′ tG−1 tG−1
1 =


B′1 B′2 B1 B2

B′3 B′4 B3 B4

B′5 B′6 B5 B6

B′7 B′8 B7 B8


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(recall that since G1 is a permutation matrix, tG−1
1 = G1). Then

MG1 ≡


A′1

A′4
0

0

 (q),

N tG−1
1 ≡


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 (B5 −A5U3 −A6

tV4)/q B6 −A5V4

0 0 B7 −A7U3 −A8
tV4 0

 (q).

Then we choose permutation matrices E′2, G
′
2 ∈ GLn−d1−d4(Z) so that

E′2

(
A5 0
A7 A8

)
G′2 ≡


α5

α8

α7

0
0

 (q),

E′2

(
(B5 −A5U3 −A6

tV4)/q B6 −A5V4

B7 −A7U3 −A8
tV4 0

)
t(G′2)−1

≡


(β1 − α5µ1)/q γ2 − α5ν2 ∗ ∗ ∗
δ7 − α8

tν2 0 ∗ 0 ∗
0 0 δ5 − α7µ4 0 0
0 0 ∗ γ3 0
0 0 0 0 δ3

 (q).

Set E2 =

(
Id1+d4

E′2

)
, G2 =

(
Id1+d4

G′2

)
. Then

χq(det(E2G1G2))χq(M
′, N ′) = χq(E2EM

′GG1G2, E2EN
′ t(GG1G2)−1)

= χq(detA′1 · detA′4 · detα5 · α7 · detα8)χq(det γ3 · det δ3).

On the other hand,

χq(det(E2G1G2))χq(M,N) = χq(E2MG1G2, E2N
t(G1G2)−1)

= χq(detA′1 · detA′4)χq(det γ3 · det δ3)

· χq
(

det

(
(β1 − α5µ1)/q γ2 − α5ν2

δ7 − α8
tν2

)
· det(δ5 − α7µ4)

)
.

Thus

χq(M,N)χq(M
′, N ′) = χq

(
det

(
(β1 − µ1

tα5)/q γ2 − ν2
tα5

δ7 − tν2
tα8 0

)
det(δ5 − µ4

tα7)

)
;
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recall that we have already noted that(
(β1 − µ1

tα5)/q γ2 − ν2
tα5

δ7 − tν2
tα8 0

)
, δ5 − µ4

tα7

are symmetric modulo q. Thus∑
µ1,µ2

χq

(
det

(
(α5β1 − µ1)/q α5γ2 − ν2

α8δ7 − tν2 0

)
det(α7δ5 − µ4)

)
= symχ

q (d5, d8),

and ∑
µ4

χq(det(α7δ5 − µ4)) = symχ
q (d7).

We have seen that µ2, µ3 are determined modulo q, but unconstrained further
modulo q2, µ5, µ6 are unconstrained modulo q2, and ν1, ν3, ν4, ν5, ν6 are uncon-
strained modulo q. Hence there are

q(j−d1)(n−d1−d4+1)−d5(j−d1+d8+1)−d7(d7+1)/2sym(d7)sym(d5, d8)

choices for Y so that M,N are integral with (M,N) = 1. Hence, having fixed E,G
and then summing over those Y that meet the conditions determined above,∑
Y

χq(M,N)χq(M
′, N ′) = q(j−d1)(n−d1−d4+1)−d5(j−d1+d8+1)−d7(d7+1)/2symχ

q (d7)symχ
q (d5, d8).

To simplify the formula for Aj(d, t), we note that r = j − d1 − d5 + d8, d =
d1 + d4 = n − `, d′ = d + t, t = d5 + d7 + d8, d1 + d5 + d7 ≤ j, d4 + d8 ≤ n − j,
and d8 ≤ d5. Using this information yields the formula for aj(`; d1, d5, d8). Also,
we know β(m, s) = β(m,m− s), so

β(d1 + d4 + d5, d1)β(d′, d1 + d4 + d5)β(d4 + d5, d4)

=
µ(n− `+ d5, d1)µ(n− `+ t, t− d5)µ(n− `− d1 + d5, d5)

µ(d1, d1)µ(t− d5, t− d5)µ(d5, d5)

µ(t, d5)

µ(t, d5)

=
µ(n− `+, d1 + t)µ(t, d5)

µ(d1, d1)µ(t, t)µ(d5, d5)

=
µ(n− `+ t, t)µ(n− `, d1)µ(t, d5)

µ(t, t)µ(d1, d1)µ(d5, d5)

= β(d+ t, t)β(d, d1)β(t, d5).

This gives us the formula for Aj(d, t), subject to the constraints on the di. Taking
0 ≤ d1 ≤ j, 0 ≤ d5 ≤ j − d1, and 0 ≤ d8 ≤ d5, the summand in the formula for
Aj(d, t) is 0 if the other constraints on the di are not met. �

As discussed after Theorem ??, we know we have a basis {Ẽρ}ρ of simultaneous
eigenforms for the space of Eisenstein series of degree n, weight k, square-free level
N , and character χ, and these are eigenforms for all Hecke operators T (p), Tj(p

2)
where p is any prime. Below we compute the eigenvalues for Tj(q

2) (where, as
above, q|N ); in later work we compute the eigenvalues for T (p), Tj(p

2) for p any
prime not dividing N .
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Corollary 4.5. Let ρ be a multiplicative partition of N , and suppose Eρ 6= 0.

Then with d = rankqMρ, for a prime q|N and d = rankqMρ, we have Ẽρ|Tj(q2) =

λρ,j(q
2)Ẽρ where

λρ,j(q
2) = qjd

j∑
d1=0

qd1(2k−2d−j+d1−1)χN0
(q2d1)χNn (q2(j−d1))β(d, d1)β(n−d, j−d1).

Proof. By Corollary 4.3 and Theorem 4.4, we know that Ẽρ is an eigenform for
Tj(q

2) with eigenvalue Aj(d, 0). In general, with r = j − d1 − d5 + d8, and prime
q′|N/q so that d′ = rankq′Mρ, we know χ2

q′ = 1 for q′|N/(N0Nn) and thus

χq′(Dd1,rMρD
−1
j , Dd1,rDj) =


χq′(q

d5−d8) if 0 < d′ < n,

χ2
q′(q

d1)χq′(q
d5−d8) if d′ = 0,

χ2
q′(q

j−d1)χq′(q
−d5+d8) if d′ = n.

Since in the sum for Aj(d, 0) we have d5, d8 = 0, the corollary follows. �
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