Walling, L. H. (2017). Hecke eigenvalues and relations for Siegel Eisenstein series of arbitrary degree, level, and character. International Journal of
Number Theory, 13(2), [325]. https://doi.org/10.1142/S179304211750021X

Peer reviewed version

Link to published version (if available):
10.1142/S179304211750021X

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via World Scientific at http://www.worldscientific.com/doi/10.1142/S179304211750021X. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

HECKE EIGENVALUES AND RELATIONS FOR DEGREE n SIEGEL EISENSTEIN SERIES OF SQUARE-FREE LEVEL

Lynne H. Walling

Abstract

We describe a basis of Siegel Eisenstein series of degree n, square-free level \mathcal{N} and arbitrary character χ; then, without using knowledge of their Fourier coefficients, we evaluate the action of the Hecke operators $T(q), T_{j}\left(q^{2}\right)(1 \leq j \leq n)$ for primes $q \mid \mathcal{N}$. We find the space of Siegel Eisenstein series with square-free level has a basis of simultaneous eigenforms for these operators, and we compute the eigenvalues, thereby obtaining a multiplicity-one result. We then compute the action of the Hecke operators $T(p), T_{j}\left(p^{2}\right)$ on a basis of Siegel Eisenstein series of level $\mathcal{N} \in \mathbb{Z}_{+}$provided $4 \nmid \mathcal{N}$ and p is a prime with $p \nmid \mathcal{N}$, and from this construct a basis of simultaneous eigenforms.

§1. Introduction

Remark that space of Eisenstein series is invariant under Hecke operators
DEFINE:
Γ_{∞}^{+}
Refer to notation $\mathcal{E}_{k}^{(n)}(\mathcal{N}, \chi)$

\S 2. Defining Siegel Eisenstein series

For $k, n, \mathcal{N} \in \mathbb{Z}_{+}$and χ a character modulo \mathcal{N}, we want to define a degree n, weight k, level \mathcal{N} Eisenstein series with character χ for each element of the quotient $\Gamma_{\infty} \backslash S p_{n}(\mathbb{Z}) / \Gamma_{0}(\mathcal{N})$. Given $\gamma_{\rho} \in S p_{n}(\mathbb{Z})$, the natural object to define is

$$
\mathbb{E}_{\rho}(\tau)=\sum_{\gamma} \bar{\chi}(\gamma) 1(\tau) \mid \gamma_{\rho} \gamma
$$

where $\gamma \in \Gamma_{0}(\mathcal{N})$ varies so that $\Gamma_{\infty} \gamma_{\rho} \gamma$ varies over the (distinct) elements of $\Gamma_{\infty} \gamma_{\rho} \Gamma_{0}(\mathcal{N})$, and

$$
1(\tau) \left\lvert\,\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}(C \tau+D)^{-k}\right.
$$

[^0]for $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p_{n}(\mathbb{Z})$. If well-defined, this series converges absolutely uniformly on compact subsets of $\mathcal{H}_{(n)}$ provided $k \geq n+2$ (and hence is analytic).
[?? it is majorised by the level 1 Eisenstein series in the case k is even; what about when k is odd??]

Hence we assume $k \geq n+2$. However, defined as above, \mathbb{E}_{ρ} may not be welldefined. Thus we over-sum, producing a well-defined function $\mathbb{E}_{\rho}^{\prime}$ that is 0 whenever the above sum for \mathbb{E}_{ρ} is not well-defined, and is a multiple of \mathbb{E}_{ρ} when \mathbb{E}_{ρ} is welldefined.

Note that when $\gamma \in \Gamma_{\infty}^{+}, 1(\tau) \mid \gamma=1(\tau)$. Thus taking $\gamma_{j}^{*} \in \Gamma(\mathcal{N})$ so that

$$
\Gamma_{\infty}^{+} \Gamma(\mathcal{N})=\cup_{j} \Gamma_{\infty}^{+} \gamma_{j}^{*} \text { (disjoint) }
$$

and setting

$$
\mathbb{E}^{*}(\tau)=\sum_{j} 1(\tau) \mid \gamma_{j}^{*}
$$

\mathbb{E}^{*} is well-defined (and converges absolutely uniformly on compact subsets, so is analytic). With

$$
\Gamma_{\rho}^{+}=\left\{\gamma \in \Gamma_{0}(\mathcal{N}): \Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{\rho} \gamma=\Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{\rho}\right\}
$$

take $\delta_{i} \in \Gamma_{0}(\mathcal{N}), \delta_{\ell}^{\prime} \in \Gamma_{\rho}^{+}$so that

$$
\Gamma_{0}(\mathcal{N})=\cup_{i} \Gamma_{\rho}^{+} \delta_{i}(\text { disjoint }), \Gamma_{\rho}^{+}=\cup_{\ell} \Gamma(\mathcal{N}) \delta_{\ell}^{\prime} \text { (disjoint) }
$$

(note that $\Gamma(\mathcal{N}) \subseteq \Gamma_{\rho}^{+}$). Thus

$$
\Gamma_{0}(\mathcal{N})=\cup_{i, \ell} \Gamma(\mathcal{N}) \delta_{\ell}^{\prime} \delta_{i} \text { (disjoint) }
$$

Set $G_{ \pm}=\left(\begin{array}{cc}I_{n-1} & \\ & -1\end{array}\right), \gamma_{ \pm}=\left(\begin{array}{ll}G_{ \pm} & \\ & G_{ \pm}\end{array}\right)$; remembering $\Gamma(\mathcal{N})$ is a normal subgroup of $S p_{n}(\mathbb{Z})$, we have

$$
\begin{aligned}
\Gamma_{\infty} \gamma_{\rho} \Gamma_{0}(\mathcal{N}) & =\cup_{i, \ell}\left(\Gamma_{\infty}^{+} \gamma_{\rho} \Gamma(\mathcal{N}) \delta_{\ell}^{\prime} \delta_{i} \cup \Gamma_{\infty}^{+} \gamma_{ \pm} \gamma_{\rho} \Gamma(\mathcal{N}) \delta_{\ell}^{\prime} \delta_{i}\right) \\
& =\cup_{i, \ell}\left(\Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{\rho} \delta_{\ell}^{\prime} \delta_{i} \cup \Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{ \pm} \gamma_{\rho} \delta_{\ell}^{\prime} \delta_{i}\right)
\end{aligned}
$$

Now set

$$
\mathbb{E}_{\rho}^{\prime}=\sum_{i, \ell} \bar{\chi}\left(\delta_{\ell}^{\prime} \delta_{i}\right) \mathbb{E}^{*}\left|\gamma_{\rho} \delta_{\ell}^{\prime} \delta_{i}+\sum_{i, \ell} \bar{\chi}\left(\gamma_{ \pm} \delta_{\ell}^{\prime} \delta_{i}\right) \mathbb{E}^{*}\right| \gamma_{ \pm} \gamma_{\rho} \delta_{\ell}^{\prime} \delta_{i}
$$

Since $\Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{ \pm}=\gamma_{ \pm} \Gamma_{\infty}^{+} \Gamma(\mathcal{N})$, we have

$$
\mathbb{E}^{*} \mid \gamma_{ \pm}=(-1)^{k} \mathbb{E}^{*}
$$

hence $\mathbb{E}_{\rho}^{\prime}=0$ if $\chi(-1) \neq(-1)^{k}$.

Assume now that $\chi(-1)=(-1)^{k}$. Then, since $\Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{\rho} \delta_{\ell}^{\prime}=\Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{\rho}$, we have $\mathbb{E}^{*}\left|\gamma_{\rho} \delta_{\ell}^{\prime}=\mathbb{E}^{*}\right| \gamma_{\rho}$, and hence

$$
\mathbb{E}_{\rho}^{\prime}=2\left(\sum_{\ell} \bar{\chi}\left(\delta_{\ell}^{\prime}\right)\right) \sum_{i} \bar{\chi}\left(\delta_{i}\right) \mathbb{E}^{*} \mid \gamma_{\rho} \delta_{i}
$$

Here δ_{ℓ}^{\prime} varies over a set of representatives for the group $\Gamma(\mathcal{N}) \backslash \Gamma_{\rho}^{+}$(and we know χ is trivial on $\Gamma(\mathcal{N})$), so unless χ is trivial on Γ_{ρ}^{+}, we have $\mathbb{E}_{\rho}^{\prime}=0$.

Note that $\gamma_{ \pm} \in \Gamma(\mathcal{N})$ if and only if $\mathcal{N} \leq 2$. So when $\mathcal{N} \leq 2$, we have $\Gamma_{\infty} \gamma_{j}^{*}$ varying twice over the distinct elements of $\Gamma_{\infty} \backslash \Gamma_{\infty} \Gamma(\mathcal{N})$, and

$$
\mathbb{E}^{*}=\mathbb{E}^{*} \mid \gamma_{ \pm}=(-1)^{k} \mathbb{E}^{*}
$$

Hence when $\mathcal{N} \leq 2$ and k is odd, $\mathbb{E}^{*}=0$, and thus $\mathbb{E}_{\rho}^{\prime}=0$. When $\mathcal{N}>2$ or k is even,

$$
\lim _{\tau \rightarrow i \infty} \mathbb{E}^{*}(\tau)= \begin{cases}2 & \text { if } \mathcal{N} \leq 2 \\ 1 & \text { if } \mathcal{N}>2\end{cases}
$$

and $\lim _{\tau \mapsto i \infty} \mathbb{E}_{\rho}^{\prime}(\tau) \mid \gamma_{\rho}^{-1}=2\left[\Gamma_{0}(\mathcal{N}): \Gamma_{\rho}^{+}\right] \lim _{\tau \mapsto i \infty} \mathbb{E}^{*}(\tau)$. (see $\S 4$ [Freitag, 1996]).
Also, with $\gamma_{j}^{\prime}=\gamma_{\rho}^{-1} \gamma_{j}^{*} \gamma_{\rho}$, we have

$$
\Gamma_{\infty} \gamma_{\rho} \Gamma_{0}(\mathcal{N})=\cup_{i, j} \Gamma_{\infty} \gamma_{j}^{*} \gamma_{\rho} \delta_{i}=\cup_{i, j} \Gamma_{\infty} \gamma_{\rho} \gamma_{j}^{\prime} \delta_{i}
$$

(The above unions over i, j are disjoint when $\mathcal{N}>2$.)
Thus we have proved the following.
Proposition 2.1. Assume $\chi(1)=(-1)^{k}$.
(1) For $\gamma_{\rho} \in S p_{n}(\mathbb{Z}), \mathbb{E}_{\rho}$ is well-defined if and only if χ is trivial on Γ_{ρ}^{+}. When well-defined, \mathbb{E}_{ρ} is a nonzero multiple of $\mathbb{E}_{\rho}^{\prime}$, and $\mathbb{E}_{\rho}^{\prime} \neq 0$ when $\mathcal{N}>2$ or k is even.
(2) Suppose $\mathcal{N} \leq 2$ and k is odd. Then $\mathbb{E}_{\rho}^{\prime}=0$, so either \mathbb{E}_{ρ} is not well-defined or $\mathbb{E}_{\rho}=0$.

Next we give a description of a convenient choice of representatives corresponding to the Eisenstein series.
Proposition 2.2. For any $\gamma \in S p_{n}(\mathbb{Z})$, there exists some $\gamma_{\rho}=\left(\begin{array}{cc}I & 0 \\ M_{\rho} & I\end{array}\right) \in$ $S p_{n}(\mathbb{Z})$ so that $\gamma \in \Gamma_{\infty} \gamma_{\rho} \Gamma_{0}(\mathcal{N})$. When \mathcal{N} is square-free, take $\rho=\left(\mathcal{N}_{0}, \ldots, \mathcal{N}_{n}\right)$ to be a (degree n) multiplicative partition of \mathcal{N}, meaning $\mathcal{N}_{0} \cdots \mathcal{N}_{n}=\mathcal{N}$. Take M_{ρ} diagonal so that $M_{\rho} \equiv\left(\begin{array}{cc}I_{d} & \\ & 0\end{array}\right)(q)$ for each prime q dividing $\mathcal{N}_{d}(0 \leq d \leq n)$; then as ρ varies, γ_{ρ} varies over a set of representatives for $\Gamma_{\infty} \backslash S p_{n}(\mathbb{Z}) / \Gamma_{0}(\mathcal{N})$. Further, when \mathcal{N} is square-free and $\gamma=\left(\begin{array}{cc}* & * \\ M & N\end{array}\right) \in \operatorname{Sp}(\mathbb{Z})$, we have $\gamma \in \Gamma_{\infty} \gamma_{\rho} \Gamma_{0}(\mathcal{N})$ if and only if $\operatorname{rank}_{q} M=\operatorname{rank}_{q} M_{\rho}$ for each prime $q \mid \mathcal{N}$ (where rank ${ }_{q} M$ denotes the rank of M modulo q).
(When $4 \nmid \mathcal{N}$, we give a more detailed description of a set of representatives for $\Gamma_{\infty} \backslash S p_{n}(\mathbb{Z}) / \Gamma_{0}(\mathcal{N})$ in $\left.\S ?.\right)$
Proof. Given $\gamma=\left(\begin{array}{cc}* & * \\ M & N\end{array}\right) \in S p_{n}(\mathbb{Z})$, note that we have $\gamma \in \Gamma_{\infty} \gamma_{\rho} \Gamma_{0}(\mathcal{N})$ if and only if $\left(M_{\rho} I\right) \in G L_{n}(\mathbb{Z})(M N) \Gamma_{0}(\mathcal{N})$. We proceed algorithmically to first construct a pair $\left(M^{\prime} N^{\prime}\right) \in G L_{n}(\mathbb{Z})(M N) \Gamma_{0}(\mathcal{N})$ with $N^{\prime} \equiv I(\mathcal{N})$.

Fix a prime q dividing \mathcal{N} with $q^{t} \| \mathcal{N}$. By Lemma ??, we can choose $E_{0}, G_{0} \in$ $S L_{n}(\mathbb{Z})$ so that $E_{0}, G_{0} \equiv I\left(\mathcal{N} / q^{t}\right)$ and $E_{0} N^{t} G_{0}^{-1} \equiv\left(\begin{array}{cc}N_{1} & 0 \\ 0 & 0\end{array}\right)\left(q^{t}\right)$ where N_{1} is $d \times d$ and invertible modulo q (so $d=\operatorname{rank}_{q} N$). We can adjust E_{0}, G_{0} so that $N_{1} \equiv\left(\begin{array}{cc}a & \\ & I\end{array}\right)\left(q^{t}\right)$, some a. Similarly, we can choose $\left(\begin{array}{cc}u & v \\ w & x\end{array}\right) \in S L_{2}(\mathbb{Z})$ so that $\left(\begin{array}{cc}u & v \\ w & x\end{array}\right) \equiv I\left(\mathcal{N} / q^{t}\right),\left(\begin{array}{cc}u & v \\ w & x\end{array}\right) \equiv\left(\begin{array}{cc}a & 0 \\ 0 & \bar{a}\end{array}\right) \quad\left(q^{t}\right)$. Then

$$
\gamma_{0}=\left(\begin{array}{cccc}
u & & v & \\
& I_{n-1} & & \\
w & & x & \\
& & & I_{n-1}
\end{array}\right) \in \Gamma_{0}(\mathcal{N})
$$

and $E_{0}(M N)\left(\begin{array}{cc}G_{0} & \\ & { }^{t} \\ G_{0}^{-1}\end{array}\right) \gamma_{0} \equiv\left(\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right)\left(\begin{array}{ll}I_{d} & \\ & 0\end{array}\right)\right)\left(q^{t}\right)$ with $M_{1} d \times d$. By symmetry, $M_{3} \equiv 0\left(q^{t}\right)$; since $(M, N)=1, M_{4}$ is invertible modulo q. Thus we can find $E_{1}^{\prime}, G_{1}^{\prime} \in S L_{n-d}(\mathbb{Z})$ so that $E_{1}^{\prime}, G_{1}^{\prime} \equiv I\left(\mathcal{N} / q^{t}\right)$,

$$
M_{4}^{\prime}=E_{1}^{\prime} M_{4} G_{1}^{\prime} \equiv\left(\begin{array}{ll}
I & \\
& a^{\prime}
\end{array}\right)\left(q^{t}\right) .
$$

Take $E_{1}=\left(\begin{array}{cc}I_{d} & \\ & E_{1}^{\prime}\end{array}\right), G_{1}=\left(\begin{array}{cc}I_{d} & \\ & G_{1}^{\prime}\end{array}\right), W=\left(\begin{array}{ccc}0_{d} & & \\ & I_{n-d-1} & \\ & & \bar{a}^{\prime}\end{array}\right)$ where $\bar{a}^{\prime} a^{\prime} \equiv$ $1\left(q^{t}\right)$; then

LYNNE: CHECK THIS

$$
\left.\begin{array}{rl}
(C D
\end{array}\right)=E_{1} E_{0}\left(M \begin{array}{ll}
M & N
\end{array}\left(\begin{array}{ll}
G_{0} & \\
& { }^{t} G_{0}^{-1}
\end{array}\right) \gamma_{0}\left(\begin{array}{ll}
G_{1} & \\
& { }^{t} G_{1}^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & W \\
0 & I
\end{array}\right) .\right.
$$

and $(C D) \in G L_{n}(\mathbb{Z})(M N) \Gamma_{0}(\mathcal{N})$ with $(C D) \equiv(M N)\left(\mathcal{N} / q^{t}\right)$ and $D \equiv I\left(q^{t}\right)$.
Next, suppose p is another prime dividing \mathcal{N} with $p^{r} \| \mathcal{N}$. Applying the above process to the pair $(C D)$, we obtain a pair $\left(C^{\prime} D^{\prime}\right) \in G L_{n}(\mathbb{Z})(M N) \Gamma_{0}(\mathcal{N})$ with $\left(C^{\prime} D^{\prime}\right) \equiv(M N)\left(\mathcal{N} /\left(q^{t} p^{r}\right)\right)$ and $D^{\prime} \equiv I\left(q^{t} p^{r}\right)$. Continuing, we obtain $\left(M^{\prime} N^{\prime}\right) \in$
$G L_{n}(\mathbb{Z})(M N) \Gamma_{0}(\mathcal{N})$ with $N^{\prime} \equiv I(\mathcal{N})$. Thus $\left(\mathcal{N} M^{\prime} N^{\prime}\right)$ is a coprime symmetric pair, so there exist K^{\prime}, L^{\prime} so that $\mathcal{N} \mid L^{\prime}$ and $\left(\begin{array}{ll}K^{\prime} & L^{\prime} \\ M^{\prime} & N^{\prime}\end{array}\right) \in S p_{n}(\mathbb{Z})$; note that we must have $K^{\prime} \equiv I(\mathcal{N})$ since $L^{\prime} \equiv 0(\mathcal{N})$ and $N^{\prime} \equiv I(\mathcal{N})$. Since M^{\prime} is necessarily symmetric modulo \mathcal{N}, we can choose a symmetric matrix $M^{\prime \prime}$ so that $M^{\prime \prime} \equiv M^{\prime}(\mathcal{N}) ;$ set

$$
\delta=\left(\begin{array}{cc}
{ }^{t} N^{\prime} & -{ }^{t} L^{\prime} \\
-{ }^{t} M^{\prime} & { }^{t} K^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
M^{\prime \prime} & I
\end{array}\right)
$$

Then $\delta \in \Gamma(\mathcal{N})$, and $\left(M^{\prime \prime} I\right)=\left(M^{\prime} N^{\prime}\right) \delta \in G L_{n}(\mathbb{Z})(M N) \Gamma_{0}(\mathcal{N})$.
Now suppose \mathcal{N} is square-free and M is an integral symmetric matrix. We show that there is some $\left(M^{\prime} N^{\prime}\right) \in G L_{n}(\mathbb{Z})(M I) \Gamma_{0}(\mathcal{N})$ so that $N^{\prime} \equiv I(\mathcal{N})$ and $M^{\prime} \equiv M_{\rho}(\mathcal{N})$ where M_{ρ} is diagonal and, for each prime q dividing $\mathcal{N}, M_{\rho} \equiv$ $\left(\begin{array}{ll}I_{d} & \\ & 0\end{array}\right)(q)$ where $d=\operatorname{rank}_{q} M$. Then the argument of the preceeding paragraph gives us $\left(M_{\rho} I\right) \in G L_{n}(\mathbb{Z})(M I) \Gamma_{0}(\mathcal{N})$. So it suffices now to show that for each prime $q \mid \mathcal{N}$, there are $E \in S L_{n}(\mathbb{Z}), \gamma \in \Gamma_{0}(\mathcal{N})$ so that $E, \gamma \equiv I(\mathcal{N} / q)$, and $E(M I) \gamma \equiv(C I)(q)$ where $C=\left(\begin{array}{ll}I_{d} & \\ & 0\end{array}\right)$ with $d=\operatorname{rank}_{q} M$.

If $\operatorname{rank}_{q} M=0$ then there is nothing to do. Suppose not; first consider the case that q is odd. By $\S 92$ of $\left[\mathrm{O}^{\prime} \mathrm{M}\right]$, we know there exists $E^{\prime} \in S L_{n}\left(\mathbb{Z}_{q}\right)$ so that $E^{\prime} M^{t} E^{\prime}$ is diagonal with $E^{\prime} M^{t} E^{\prime} \equiv\left(\begin{array}{ll}M_{1} & \\ & 0\end{array}\right) \quad(q), M_{1}=\left(\begin{array}{cc}a & \\ & I\end{array}\right)$ with $q \nmid a$. Thus we can find $E \in S L_{n}(\mathbb{Z})$ so that $E \equiv I(\mathcal{N} / q), E \equiv E^{\prime}(q)$. Then

$$
E(M I)\left(\begin{array}{ll}
{ }^{t} E & \\
& E^{-1}
\end{array}\right)=\left(\begin{array}{ll}
M^{\prime} I
\end{array}\right)
$$

where $M^{\prime} \equiv\left(E^{\prime} M^{t} E^{\prime}\right)(q)$. Take $\left(\begin{array}{cc}u & v \\ w & x\end{array}\right) \in S L_{2}(\mathbb{Z})$ so that $\left(\begin{array}{cc}u & v \\ w & x\end{array}\right) \equiv$ $I(\mathcal{N} / q),\left(\begin{array}{cc}u & v \\ w & x\end{array}\right) \equiv\left(\begin{array}{cc}\bar{a} & \bar{a}-1 \\ 0 & a\end{array}\right)(q)$. Set

$$
\gamma=\left(\begin{array}{cccc}
u & & v & \\
& I_{n-1} & & 0 \\
w & & x & \\
& 0 & & I_{n-1}
\end{array}\right)
$$

Then $\gamma \equiv I(\mathcal{N} / q)$ and $\left(M^{\prime} I\right) \gamma \equiv(C I)(q)$ where $C=\left(\begin{array}{ll}I_{d} & \\ & 0\end{array}\right)$.
Now suppose $q=2$. By Lemma ?? there is some $E \in S L_{n}(\mathbb{Z})$ so that $E \equiv$ $I(\mathcal{N} / q)$ and $E M^{t} E \equiv\left(\begin{array}{ll}M_{1} & \\ & 0\end{array}\right)(q)$, where either $M_{1}=I_{d}$ or $M_{1}=A_{1}, A_{1}=$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \perp \cdots \perp\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(d \times d\right.$ where $\left.d=\operatorname{rank}_{q} M\right)$. In the first case, we are done.

Otherwise, take $A \in S L_{n}(\mathbb{Z})$ so that $A \equiv I(\mathcal{N} / q)$ and $A \equiv\left(\begin{array}{cc}A_{1} & \\ & I_{n-d}\end{array}\right)$ (q); set $\gamma=\left(\begin{array}{cc}{ }^{t} E A & { }^{t} E(A-I) \\ & E^{-1} A\end{array}\right)$. Thus $\gamma \in \Gamma_{0}(\mathcal{N}), \gamma \equiv I(\mathcal{N} / q)$, and $E(M I) \gamma \equiv$ $(C I)(q)$ where $C=\left(\begin{array}{ll}I_{d} & \\ & 0\end{array}\right)$.
Proposition 2.3. Suppose \mathcal{N} is square-free, χ is a character modulo \mathcal{N} so that $\chi(-1)=(-1)^{k}$, and $\rho=\left(\mathcal{N}_{0}, \ldots, \mathcal{N}_{n}\right)$ is a multiplicative partition of \mathcal{N} (as in Proposition 2.2; so $\mathcal{N}_{0} \cdots \mathcal{N}_{n}=\mathcal{N}$). Then \mathbb{E}_{ρ} is well-defined if and only if $\chi_{q}^{2}=1$ for all primes $q \mid \mathcal{N} /\left(\mathcal{N}_{0} \mathcal{N}_{n}\right)$.
Proof. Suppose q is a prime dividing \mathcal{N}_{d} where $0<d<n$. Fix $\alpha \in \mathbb{F}_{q}^{\times}$. By Lemma ??, there exist $G=\left(\begin{array}{cc}u & v \\ w & x\end{array}\right), G^{\prime}=\left(\begin{array}{cc}u^{\prime} & v^{\prime} \\ w^{\prime} & x^{\prime}\end{array}\right) \in S L_{2}(\mathbb{Z})$ so that $G, G^{\prime} \equiv I(\mathcal{N} / q)$,

$$
G \equiv\left(\begin{array}{cc}
\bar{\alpha} & \bar{\alpha}-\alpha \\
0 & \alpha
\end{array}\right) \quad(q), G^{\prime} \equiv\left(\begin{array}{cc}
\bar{\alpha} & 0 \\
0 & \alpha
\end{array}\right) \quad(q)
$$

Let A, B, C, D, E, W be the $n \times n$ matrices

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
u & & \\
& I & \\
& & u^{\prime}
\end{array}\right), B=\left(\begin{array}{ccc}
v & & \\
& 0 & \\
& & v^{\prime}
\end{array}\right), C=\left(\begin{array}{ccc}
w & & \\
& 0 & \\
& & w^{\prime}
\end{array}\right), \\
D=\left(\begin{array}{lll}
x & & \\
& I & \\
& & x^{\prime}
\end{array}\right), E=\left(\begin{array}{ccc}
u^{\prime} & & v^{\prime} \\
& I & \\
w^{\prime} & & x^{\prime}
\end{array}\right), W=\left(\begin{array}{cc}
x^{2}-1 & \\
&
\end{array}\right) .
\end{gathered}
$$

Then $\gamma^{\prime}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{0}(\mathcal{N}), E \in S L_{n}(\mathbb{Z})$, and

$$
\delta=\left(\begin{array}{cc}
E & \\
& { }^{t} E^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & W \\
& I
\end{array}\right) \in \Gamma_{\infty}^{+}
$$

Further, $\delta \gamma_{\rho} \gamma^{\prime} \equiv \gamma_{\rho}^{+}(\mathcal{N})$. Set $\gamma^{\prime \prime}=\left(\delta \gamma_{\rho} \gamma^{\prime}\right)^{-1} \gamma_{\rho}$. So $\gamma^{\prime \prime} \in \Gamma(\mathcal{N}), \gamma^{\prime} \gamma^{\prime \prime} \in \Gamma_{\rho}$ with $\chi\left(\gamma^{\prime} \gamma^{\prime \prime}\right)=\chi_{q}^{2}(\alpha)$. Thus the condition that $\chi_{q}^{2}=1$ for all primes $q \mid \mathcal{N} /\left(\mathcal{N}_{0} \mathcal{N}_{n}\right)$ is necessary for \mathbb{E}_{ρ} to be well-defined.

Now suppose $\chi_{q}^{2}=1$ for all primes $q \mid \mathcal{N} /\left(\mathcal{N}_{0} \mathcal{N}_{n}\right)$, and suppose $\gamma=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in$ Γ_{ρ}^{+}. Thus there exist $\delta=\left(\begin{array}{cc}{ }^{t} E^{-1} & W E \\ E\end{array}\right) \in \Gamma_{\infty}^{+}, \gamma^{\prime} \in \Gamma(\mathcal{N})$ so that $\delta \gamma^{\prime} \gamma_{\rho} \gamma=\gamma_{\rho}$. Fix a prime $q \mid \mathcal{N}_{d}, 0 \leq d \leq n$.

When $d=0$, we have $E D \equiv I(q)$, so $\operatorname{det} D \equiv \operatorname{det} \bar{E} \equiv 1(q)$ and $\chi_{q}(\operatorname{det} D)=$ 1. When $d=n$, we have $E A \equiv I \equiv A^{t} D(q)$, so $\operatorname{det} D \equiv \operatorname{det} E \equiv 1(q)$ and $\chi_{q}(\operatorname{det} D)=1$.

Now suppose $0<d<n$. Write

$$
A=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right), D=\left(\begin{array}{ll}
D_{1} & D_{2} \\
D_{3} & D_{4}
\end{array}\right), E=\left(\begin{array}{ll}
E_{1} & E_{2} \\
E_{3} & E_{4}
\end{array}\right)
$$

where A_{1}, D_{1}, E_{1} are $d \times d$. Then we have $E_{3}\left(A_{1} A_{2}\right) \equiv 0(q)$; since the rows of $\left(A_{1} A_{2}\right)$ are linearly independent modulo q, we must have $E_{3} \equiv 0(q)$. Also,

$$
E_{1}\left(A_{1} A_{2}\right) \equiv\left(I_{d} 0\right)(q), E_{4}\left(D_{3} D_{4}\right) \equiv\left(0 I_{n-d}\right)(q),
$$

so $A_{2}, D_{3} \equiv 0(q), A_{1} \equiv \bar{E}_{1}(q), D_{4} \equiv \bar{E}_{4}(q)$. Since $A^{t} D \equiv I(q)$, we must have $D_{1} \equiv{ }^{t} E_{1}(q)$. Thus we have

$$
\operatorname{det} D \equiv \operatorname{det} E_{1} \cdot \operatorname{det} \bar{E}_{4} \equiv\left(\operatorname{det} E_{1}\right)^{2}(q)
$$

and

$$
\chi_{q}(\operatorname{det} D)=\chi_{q}^{2}\left(\operatorname{det} E_{1}\right)=1
$$

Consequently $\chi(\gamma)=\chi(\operatorname{det} D)=1$, and hence the condition that $\chi_{q}^{2}=1$ for all primes $q \mid \mathcal{N} /\left(\mathcal{N}_{0} \mathcal{N}_{n}\right)$ is sufficient for \mathbb{E}_{ρ} to be well-defined.

We now give a robust definition of \mathbb{E}_{ρ}.
Definition. Having fixed $n, k, \mathcal{N} \in \mathbb{Z}_{+}$with $k \geq n+2$, χ a character modulo \mathcal{N}, and $\gamma_{\rho} \in S p_{n}(\mathbb{Z})$, we define

$$
\mathbb{E}_{\rho}= \begin{cases}\frac{1}{2\left[\Gamma_{0}(\mathcal{N}): \Gamma_{\rho}^{+}\right]} \mathbb{E}_{\rho}^{\prime} & \text { if } \mathcal{N}>2 \\ \frac{1}{4\left[\Gamma_{0}(\mathcal{N}): \Gamma_{\rho}^{+}\right]} \mathbb{E}_{\rho}^{\prime} & \text { if } \mathcal{N} \leq 2\end{cases}
$$

Remark. Suppose that $G_{ \pm} M_{\rho}=M_{\rho} G_{ \pm}$. Then for $G \in G L_{n}(\mathbb{Z}), \gamma \in \Gamma_{0}(\mathcal{N})$, we have $G\left(M_{\rho} I\right) \gamma=G G_{ \pm}\left(M_{\rho} I\right) \gamma_{ \pm} \gamma$. So with $\gamma_{\rho}=\left(\begin{array}{cc}I & 0 \\ M_{\rho} & I\end{array}\right)$, we have $\Gamma_{\infty} \Gamma(\mathcal{N}) \gamma_{\rho} \gamma=$ $\Gamma_{\infty} \Gamma(\mathcal{N}) \gamma_{\rho} \gamma_{ \pm} \gamma\left(\right.$ since $\left.\gamma_{ \pm} \in \Gamma_{\infty}\right)$, but $\Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{\rho} \gamma=\Gamma_{\infty}^{+} \Gamma(\mathcal{N}) \gamma_{\rho} \gamma_{ \pm} \gamma$ if and only if $\mathcal{N} \leq 2$ (since $\gamma_{ \pm} \in \Gamma(\mathcal{N})$ if and only if $\left.\mathcal{N} \leq 2\right)$. Thus,

$$
\mathbb{E}_{\rho}(\tau)=m_{\rho} \sum_{\gamma} \bar{\chi}(\gamma) 1(\tau) \mid \gamma_{\rho} \gamma
$$

where γ varies so that $\Gamma_{\infty}^{+} \gamma_{\rho} \Gamma_{0}(\mathcal{N})=\cup_{\gamma} \Gamma_{\infty}^{+} \gamma_{\rho} \gamma$ (disjoint), and

$$
m_{\rho}= \begin{cases}1 & \text { if } \mathcal{N} \leq 2 \\ \frac{1}{2} & \text { otherwise }\end{cases}
$$

LYNNE: THIS NEXT DEFINED EARLIER?
We let $\mathcal{E}_{k}^{(n)}(\mathcal{N}, \chi)$ denote the space spanned by these forms.

§3. Defining Hecke operators

For each prime p, we define Hecke operators $T(p), T_{j}\left(p^{2}\right)(1 \leq j \leq n)$ acting on Siegel modular forms; then we describe explicit sets of matrices that give the action of these operators.

Fix a prime p; set $\Gamma=\Gamma_{0}(\mathcal{N})$ and take $f \in \mathcal{M}_{k}^{(n)}(\mathcal{N}, \chi)$. We define

$$
f\left|T(p)=p^{n(k-n-1) / 2} \sum_{\gamma} \bar{\chi}(\gamma) f\right| \delta^{-1} \gamma
$$

where $\delta=\left(\begin{array}{cc}p I_{n} & \\ & I_{n}\end{array}\right), \gamma$ varies over $\left(\delta \Gamma \delta^{-1} \cap \Gamma\right) \backslash \Gamma$, and for $\gamma^{\prime}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in$ $S p_{n}(\mathbb{Z})$,

$$
f(\tau) \mid \gamma^{\prime}=\left(\operatorname{det} \gamma^{\prime}\right)^{k / 2} \operatorname{det}(C \tau+D)^{-k} f\left((A \tau+B)(C \tau+D)^{-1}\right)
$$

We define

$$
f\left|T_{j}\left(p^{2}\right)=p^{j(k-n-1)} \sum_{\gamma} \bar{\chi}(\gamma) f\right| \delta_{j}^{-1} \gamma
$$

where $\delta_{j}=\left(\begin{array}{cc}X_{j} & \\ & X_{j}^{-1}\end{array}\right), X_{j}=\left(\begin{array}{cc}p I_{j} & \\ & I_{n-j}\end{array}\right)$, and γ varies over $\left(\delta_{j} \Gamma \delta_{j}^{-1} \cap \Gamma\right) \backslash \Gamma$.
Proposition 3.1. Let p be a prime, $f \in \mathcal{M}_{k}^{(n)}(\mathcal{N}, \chi)$. For $0 \leq r, n_{0}+n_{2} \leq n$, let

$$
D_{r}=\left(\begin{array}{cc}
p I_{r} & \\
& I
\end{array}\right), D_{n_{0}, n_{2}}=\left(\begin{array}{ccc}
p I_{n_{0}} & & \\
& I & \\
& & \frac{1}{p} I_{n_{2}}
\end{array}\right)(n \times n)
$$

and let

$$
\begin{aligned}
\mathcal{K}_{r} & =D_{r} S L_{n}(\mathbb{Z}) D_{r}^{-1} \cap S L_{n}(\mathbb{Z}) \\
\mathcal{K}_{n_{0}, n_{2}} & =D_{n_{0}, n_{2}} S L_{n}(\mathbb{Z}) D_{n_{0}, n_{2}}^{-1} \cap S L_{n}(\mathbb{Z})
\end{aligned}
$$

Then

$$
f\left|T(p)=p^{n(k-n-1) / 2} \sum_{0 \leq r \leq n} \chi\left(p^{n-r}\right) \sum_{G, Y} f\right|\left(\begin{array}{cc}
D_{r}^{-1} & \\
& \frac{1}{p} D_{r}
\end{array}\right)\left(\begin{array}{cc}
G^{-1} & Y^{t} G \\
& { }^{t} G
\end{array}\right)
$$

where G varies over $S L_{n}(\mathbb{Z}) / \mathcal{K}_{r}$ and Y varies over

$$
\mathcal{Y}_{r}=\left\{\left(\begin{array}{cc}
Y_{0} & \\
& 0
\end{array}\right) \in \mathbb{Z}_{\mathrm{sym}}^{n, n}: Y_{0} r \times r, \text { varying modulo } p\right\}
$$

Also,

$$
\begin{aligned}
& f \mid T_{j}\left(p^{2}\right) \\
& \quad=p^{j(k-n-1)} \sum_{n_{0}+n_{2} \leq j} \chi\left(p^{j-n_{0}+n_{2}}\right) \sum_{G, Y} f \left\lvert\,\left(\begin{array}{cc}
D_{n_{0}, n_{2}}^{-1} & \\
& D_{n_{0}, n_{2}}
\end{array}\right)\left(\begin{array}{cc}
G^{-1} & Y^{t} G \\
& { }^{t} G
\end{array}\right)\right.
\end{aligned}
$$

where G varies over $S L_{n}(\mathbb{Z}) / \mathcal{K}_{n_{0}, n_{2}}$ and Y varies over $\mathcal{Y}_{n_{0}, n_{2}}$, the set of all integral, symmetric $n \times n$ matrices

$$
\left(\begin{array}{cccc}
Y_{0} & Y_{2} & Y_{3} & 0 \\
{ }^{t} Y_{2} & Y_{1} / p & 0 & \\
{ }^{t} Y_{3} & 0 & & \\
0 & & &
\end{array}\right)
$$

with $Y_{0} n_{0} \times n_{0}$, varying modulo $p^{2}, Y_{1}\left(j-n_{0}-n_{2}\right) \times\left(j-n_{0}-n_{2}\right)$, varying modulo p provided $p \nmid \operatorname{det} Y_{1}, Y_{2} n_{0} \times\left(j-n_{0}-n_{2}\right)$, varying modulo p, and $Y_{3} n_{0} \times(n-j)$, varying modulo p.
Proof. Fix $\Lambda=\mathbb{Z} x_{1} \oplus \cdots \oplus \mathbb{Z} x_{n}$ (a reference lattice).
By Lemma ??, as G varies over $S L_{n}(\mathbb{Z}) / \mathcal{K}_{r}, \Omega=\Lambda G D_{r}$ varies over all lattices $\Omega, p \Lambda \subseteq \Omega \subseteq \Lambda$ with $[\Lambda: \Omega]=p^{r}$. Thus by Proposition 3.1 and (the proof of) Theorem 6.1 in [HW], claim (1) of the proposition follows.

For Ω another lattice on $\mathbb{Q} \Lambda$, let mult ${ }_{\{\Lambda: \Omega\}}(a)$ be the multiplicity of the value of a among the invariant factors $\{\Lambda: \Omega\}$. By Lemma ??, as G varies over $S L_{n}(\mathbb{Z}) / \mathcal{K}_{n_{0}, n_{2}}$, $\Omega=\Lambda G D_{n_{0}, n_{2}}$ varies over all lattices $\Omega, p \Lambda \subseteq \Omega \subseteq \frac{1}{p} \Lambda$, with $\operatorname{mult}_{\{\Lambda: \Omega\}}(1 / p)=n_{2}$, $\operatorname{mult}_{\{\Lambda: \Omega\}}(p)=n_{0}$. Thus by Proposition 3.1 and (the proofs of) Theorems 4.1 and 6.1 in [HW], claim (2) of the proposition follows.

Remark. For $\mathcal{N}^{\prime} \in \mathbb{Z}_{+}$so that $p \nmid \mathcal{N}^{\prime}$, we can choose G, Y in the above proposition so that $G \equiv I\left(\mathcal{N}^{\prime}\right)$ and $Y \equiv 0\left(\mathcal{N}^{\prime}\right)$. Also, if $p \mid \mathcal{N}$, then

$$
f\left|T(p)=p^{n(k-n-1) / 2} \sum_{Y} f\right|\left(\begin{array}{cc}
\frac{1}{p} I_{n} & \frac{1}{p} Y \\
& I_{n}
\end{array}\right)
$$

where Y varies over \mathcal{Y}_{n}, and

$$
f\left|T_{j}\left(p^{2}\right)=p^{j(k-n-1)} \sum_{G, Y} f\right|\left(\begin{array}{cc}
D_{j, 0}^{-1} & \\
& D_{j, 0}
\end{array}\right)\left(\begin{array}{cc}
G^{-1} & Y^{t} G \\
& { }^{t} G
\end{array}\right)
$$

where G varies over $S L_{n}(\mathbb{Z}) / \mathcal{K}_{j, 0}$ and Y varies over $\mathcal{Y}_{j, 0}$.
LYNNE: CHECK THESE ABOVE SUMS

§4. Hecke operators on Siegel Eisenstein series of square-free level

Throughout this section, we assume \mathcal{N} is square-free, χ is a character modulo \mathcal{N} so that $\chi(-1)=(-1)^{k}$; further, we assume either $\mathcal{N}>2$ or k is even. Take a multiplicative partition $\rho=\left(\mathcal{N}_{0}, \ldots, \mathcal{N}_{n}\right)$ of $\mathcal{N}\left(\right.$ so $\left.\mathcal{N}_{0} \cdots \mathcal{N}_{n}=\mathcal{N}\right)$, and assume that $\mathbb{E}_{\rho} \neq 0$ (so by Proposition 2.3, $\chi_{q^{\prime}}^{2}=1$ for all primes $q^{\prime} \mid \mathcal{N} /\left(\mathcal{N}_{0} \mathcal{N}_{n}\right)$). Take diagonal M_{ρ} as in Proposition 2.2, $\gamma_{\rho}=\left(\begin{array}{cc}I & 0 \\ M_{\rho} & I\end{array}\right)$.

With $\beta=\left(\begin{array}{cc}* & * \\ M & N\end{array}\right) \in S L_{n}(\mathbb{Z})$ and $\gamma \in \Gamma_{0}(\mathcal{N})$ so that $\Gamma_{\infty}^{+} \beta=\Gamma_{\infty}^{+} \gamma_{\rho} \gamma$, we can determine how to compute $\chi(\gamma)$ from $(M N)$.

Suppose $\left(\begin{array}{cc}* & * \\ M & N\end{array}\right) \in \Gamma_{\infty}^{+} \gamma_{\rho} \Gamma_{0}(\mathcal{N})$; so $(M N)=E^{\prime}\left(M_{\rho} I\right) \gamma$ for some $E^{\prime} \in$ $S L_{n}(\mathbb{Z})$ and $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{0}(\mathcal{N})$. Fix q and take $d=\operatorname{rank}_{q} M_{\rho}$. Thus $\operatorname{rank}_{q} M_{\rho}=d$, so we can find $E, G \in S L_{n}(\mathbb{Z})$ so that $E M G \equiv\left(\begin{array}{cc}M_{1} & 0 \\ 0 & 0\end{array}\right) \quad(q)$ where M_{1} is $d \times d$ and invertible modulo q. Write $E N^{t} G^{-1}=\left(\begin{array}{ll}N_{1} & N_{2} \\ N_{3} & N_{4}\end{array}\right)$ where N_{1} is $d \times d$; since $M^{t} N$ is symmetric, we must have $N_{3} \equiv 0(q)$. Hence

$$
\begin{gathered}
E M G \equiv\left(\begin{array}{cc}
M_{1} & 0 \\
0 & 0
\end{array}\right) \equiv E E^{\prime}\left(\begin{array}{ll}
I_{d} & \\
& 0
\end{array}\right) A G(q) \\
\left(\begin{array}{cc}
N_{1} & N_{2} \\
0 & N_{4}
\end{array}\right) \equiv E E^{\prime}\left(\left(\begin{array}{cc}
I_{d} & \\
& 0
\end{array}\right) B+D\right)^{t} G^{-1}(q)
\end{gathered}
$$

Given the shape of $E M G$, we must have $E E^{\prime} \equiv\left(\begin{array}{cc}E_{1} & E_{2} \\ 0 & E_{4}\end{array}\right)(q)$ where E_{1} is $d \times d$ and E_{1}, E_{4} are invertible modulo q, and then $A G \equiv\left(\begin{array}{cc}A_{1} & 0 \\ A_{3} & A_{4}\end{array}\right) \quad(q)$ where A_{1} is $d \times d$; since $\mathcal{N} \mid C, A_{1}, A_{4}$ are invertible modulo q. We have $A^{t} D \equiv I(q)$, so $D^{t} G^{-1} \equiv\left(\begin{array}{cc}D_{1} & D_{2} \\ 0 & D_{4}\end{array}\right)(q)$ where D_{1} is $d \times d$ and D_{1}, D_{4} are invertible modulo q. Further, we must have

$$
A_{1}^{t} D_{1} \equiv I_{d}, A_{4}^{t} D_{4} \equiv I_{n-d}, E_{1} A_{1} \equiv M_{1}, E_{4} D_{4} \equiv N_{4}(q)
$$

So

$$
\operatorname{det} \bar{M}_{1} \cdot \operatorname{det} N_{4} \equiv \operatorname{det} \bar{E}_{1} \cdot \operatorname{det} E_{4} \cdot \operatorname{det} \bar{A}_{1} \cdot \operatorname{det} D_{4} \equiv\left(\operatorname{det} \bar{E}_{1}\right)^{2} \cdot \operatorname{det} D(q)
$$

Note that when $d=0 D \equiv N(q)$, and when $d=n,{ }^{t} D \equiv \bar{A} \equiv \bar{M}(q)$. When $0<d<n$, we have $\chi_{q}^{2}=1$ so

$$
\chi_{q}\left(\operatorname{det} \bar{M}_{1} \cdot \operatorname{det} N_{4}\right)=\chi_{q}(\operatorname{det} D) .
$$

Thus we can define $\chi_{q}(M, N)=\chi_{q}\left(\operatorname{det} \bar{M}_{1} \cdot \operatorname{det} N_{4}\right)$, and

$$
\chi(M, N)=\prod_{q \mid \mathcal{N}} \chi_{q}(M, N)
$$

Then we have

$$
\mathbb{E}_{\rho}(\tau)=\frac{1}{2} \sum_{(M N)} \bar{\chi}(M, N) \operatorname{det}(M \tau+N)^{-k}
$$

where $(M N)$ varies over coprime symmetric pairs so that

$$
\left.S L_{n}(\mathbb{Z})\left(M_{\rho} I\right) \Gamma_{0}(\mathcal{N})=\cup_{(M N)} S L_{n}(\mathbb{Z})(M N) \text { disjoint }\right)
$$

Now we prove the following.

Theorem 4.1. Fix a prime $q \mid \mathcal{N}$, and fix a multiplicative partition $\sigma=\left(\mathcal{N}_{0}^{\prime}, \ldots, \mathcal{N}_{n}^{\prime}\right.$ of \mathcal{N} / q. For $0 \leq d \leq n$, let $\mathbb{E}_{\sigma_{d}}$ denote $\mathbb{E}_{\rho^{\prime}}$ where $\rho^{\prime}=\left(\mathcal{N}_{0}, \ldots, \mathcal{N}_{n}\right)$,

$$
\mathcal{N}_{i}= \begin{cases}\mathcal{N}_{i}^{\prime} & \text { if } i \neq d, \\ q \mathcal{N}_{d}^{\prime} & \text { if } i=d\end{cases}
$$

Then

$$
\begin{aligned}
\mathbb{E}_{\sigma_{d}} \mid T(q)= & q^{k d-d(d+1) / 2} \chi_{\mathcal{N} / q}\left(\left(\begin{array}{ll}
I_{d} & \\
& \frac{1}{q} I_{n-d}
\end{array}\right) M_{\sigma_{d}},\left(\begin{array}{ll}
q I_{d} & \\
& I_{n-d}
\end{array}\right)\right) \\
& \cdot \sum_{t=0}^{n-d} q^{-d t-t(t-1) / 2} \beta(d+t, t) \operatorname{sym}_{q}^{\chi}(t) \mathbb{E}_{\sigma_{d+t}}
\end{aligned}
$$

where

$$
\operatorname{sym}_{q}^{\chi}(t)=\sum_{U} \chi_{q}(\operatorname{det} U)
$$

U varying over $\mathbb{F}_{\text {sym }}^{t, t}$.
Remark. In Lemma ?? we evaluate $\operatorname{sym}_{q}^{\chi}(t)$.
?? WHAT IF $n-\ell=0$ and $\chi_{1} \neq 0$? Have $\mathbb{E}_{t}=0$ for $0<t<n$. How do we modify this argument to get $\mathbb{E}_{0} \mid T(q)=\mathbb{E}_{0}+* * \mathbb{E}_{n}$??

Proof.
LYNNE: ?? $n-\ell \mapsto d$??
Write \mathbb{E}_{d} for $\mathbb{E}_{\sigma_{d}}$. We know $\mathbb{E}_{d}(\tau)$ is a sum over representatives for $S L_{n}(\mathbb{Z})$ equivalence classes of coprime pairs ($M N$) with $\operatorname{rank}_{q} M=d$; we can assume q divides the lower $n-d$ rows of M. By Proposition 3.1,

$$
\begin{aligned}
\mathbb{E}_{d}(\tau) \mid T(q) & =q^{-n(n+1) / 2} \sum_{M, N, Y} \operatorname{det}(M \tau / q+M Y / q+N)^{-k} \\
& =q^{k n-n(n+1) / 2} \sum_{M, N, Y} \operatorname{det}(M \tau+M Y+q N)^{-k}
\end{aligned}
$$

where Y varies over \mathcal{Y}_{n}. We have

$$
\operatorname{det}(M \tau+M Y+q N)^{-k}=q^{-k(n-d)} \operatorname{det}\left(M^{\prime} \tau+N^{\prime}\right)^{-k}
$$

where

$$
\left(M^{\prime} N^{\prime}\right)=\left(\begin{array}{ll}
I_{d} & \\
& \frac{1}{q} I_{n-d}
\end{array}\right)(M M Y+q N)
$$

We know the upper d rows of M are linearly independent modulo q, as are the lower $n-d$ rows of N. Thus $\left(M^{\prime}, N^{\prime}\right)=1$, and $\operatorname{rank}_{q} M^{\prime} \geq d$. Also note that

$$
\operatorname{det}(M \tau+M Y+q N)^{-k}=q^{-(n-d) k} \operatorname{det}\left(M^{\prime} \tau+N^{\prime}\right)^{-k}
$$

Recall that we can assume $Y \equiv 0(\mathcal{N} / q)$. Also, we know \mathbb{E}_{d} is supported on the $\Gamma_{0}(\mathcal{N})$-orbit of $G L_{n}(\mathbb{Z})\left(M_{\rho} I\right)$. Take $(M N)=\left(M_{\rho} I\right) \gamma$ where $\gamma=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in$ $\Gamma_{0}(\mathcal{N})$. Take a prime $q^{\prime} \mid \mathcal{N}$ and let $d^{\prime}=\operatorname{rank}_{q^{\prime}} M_{\rho}$. Choose $E \in S L_{n}(\mathbb{Z})$ so that $A E \equiv\left(\begin{array}{cc}A_{1} & 0 \\ * & *\end{array}\right)\left(q^{\prime}\right)$ where A_{1} is $d^{\prime} \times d^{\prime}$ (possible since we necessarily have $\operatorname{rank}_{q^{\prime}} A=n$ since $\left.q^{\prime} \mid \mathcal{N}\right)$. Then since $A^{t} D \equiv I\left(q^{\prime}\right)$, we have $D^{t} E^{-1} \equiv$ $\left(\begin{array}{cc}D_{1} & D_{2} \\ 0 & D_{4}\end{array}\right)\left(q^{\prime}\right)$ with $D_{1} d^{\prime} \times d^{\prime}$. Thus

$$
\left(\begin{array}{ll}
M & N
\end{array}\right)\left(\begin{array}{cc}
E & \\
& { }^{t} E^{-1}
\end{array}\right) \equiv\left(\begin{array}{cccc}
A_{1} & 0 & * & * \\
0 & 0 & 0 & D_{4}
\end{array}\right)\left(q^{\prime}\right),
$$

and

$$
\left(\begin{array}{ll}
M^{\prime} & N^{\prime}
\end{array}\right)\left(\begin{array}{cc}
E & \\
& { }^{t} E^{-1}
\end{array}\right) \equiv\left(\begin{array}{cccc}
A_{1}^{\prime} & 0 & * & * \\
0 & 0 & 0 & D_{4}^{\prime}
\end{array}\right) \quad\left(q^{\prime}\right)
$$

where, modulo q^{\prime},

$$
\begin{aligned}
A_{1}^{\prime} & \equiv \begin{cases}A_{1} & \text { if } d^{\prime} \leq d \\
\left(\begin{array}{ll}
\frac{1}{q} I_{d} & \\
& I
\end{array}\right) A_{1} & \text { if } d^{\prime} \geq d\end{cases} \\
D_{4}^{\prime} & \equiv \begin{cases}\left(\begin{array}{ll}
q I & \\
& I_{n-d}
\end{array}\right) D_{4} & \text { if } d^{\prime} \leq d \\
D_{4} & \text { if } d^{\prime} \geq d\end{cases}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\chi_{q^{\prime}}\left(M^{\prime}, N^{\prime}\right) & =\chi_{q^{\prime}}\left(M^{\prime} E, N^{\prime t} E^{-1}\right)=\chi_{q^{\prime}}\left(\operatorname{det} \bar{A}_{1}^{\prime} \cdot \operatorname{det} D_{4}^{\prime}\right) \\
& =\chi_{q^{\prime}}\left(q^{d-d^{\prime}}\right) \cdot \chi_{q^{\prime}}\left(\operatorname{det} \bar{A}_{1} \cdot \operatorname{det} D_{4}\right), \\
\chi_{q^{\prime}}\left(\operatorname{det} \bar{A}_{1} \cdot \operatorname{det} D_{4}\right) & =\chi_{q^{\prime}}(M, N), \\
\chi_{q^{\prime}}\left(q^{d-d^{\prime}}\right) & =\chi_{q^{\prime}}\left(\left(\begin{array}{ll}
I_{d} & \\
& \frac{1}{q} I_{n-d}
\end{array}\right) M,\left(\begin{array}{ll}
q I_{d} & \\
& I_{n-d}
\end{array}\right) N\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\chi_{q^{\prime}}\left(M^{\prime}, N^{\prime}\right) & =\chi_{q^{\prime}}\left(M^{\prime} E, N^{\prime t} E^{-1}\right) \\
& =\chi_{q^{\prime}}\left(\operatorname{det} \bar{A}_{1}^{\prime} \cdot \operatorname{det} D_{4}^{\prime}\right) \\
& =\chi_{q^{\prime}}\left(\left(\begin{array}{ll}
I & \\
& \frac{1}{q} I_{n-d}
\end{array}\right) M_{\rho},\left(\begin{array}{ll}
q I & \\
& I_{n-d}
\end{array}\right)\right) \chi_{q^{\prime}}(M, N) .
\end{aligned}
$$

Therefore $\bar{\chi}_{\mathcal{N} / q}(M, N)=\chi_{\mathcal{N} / q}\left(\left(\begin{array}{ll}I & \\ & \frac{1}{q} I_{n-d}\end{array}\right) M_{\rho},\left(\begin{array}{ll}q I & \\ & I_{n-d}\end{array}\right)\right) \bar{\chi}_{\mathcal{N} / q}\left(M^{\prime}, N^{\prime}\right)$.

Reversing, take $\left(M^{\prime} N^{\prime}\right)$ a coprime symmetric pair with $\operatorname{rank}_{q} M^{\prime}=d+t$; assume $\mathbb{E}_{\sigma, d+t} \neq 0$. We need to count the equivalence classes $S L_{n}(\mathbb{Z})(M N)$ so that

$$
\left(\begin{array}{ll}
I_{d} & \\
& \frac{1}{q} I_{n-d}
\end{array}\right)(M M Y+q N) \in S L_{n}(\mathbb{Z})\left(M^{\prime} N^{\prime}\right)
$$

For any $E \in S L_{n}(\mathbb{Z})$, we have $\left(\begin{array}{cc}I_{d} & \\ & q I_{n-d}\end{array}\right) E\left(\begin{array}{cc}I_{d} & \\ & \frac{1}{q} I_{n-d}\end{array}\right) \in S L_{n}(\mathbb{Z})$ if and only if $E \in \mathcal{K}_{d}$. Thus we need to count the number of $E \in \mathcal{K}_{d} \backslash S L_{n}(\mathbb{Z})$ and $Y \in \mathbb{Z}_{\mathrm{sym}}^{n, n}$ (varying modulo q) so that

$$
(M N)=\left(\begin{array}{ll}
I_{d} & \\
& q I_{n-d}
\end{array}\right) E\left(M^{\prime}\left(N^{\prime}-M^{\prime} Y\right) / q\right)
$$

is a coprime pair. We can assume the top $d+t$ rows of M^{\prime} are linearly independent modulo q, and that q divides the lower $n-d-t$ rows of M^{\prime}. To have $\operatorname{rank}_{q} M=d$, we need to choose E so that the top d rows of $E M^{\prime}$ are linearly independent modulo q; using Lemma ?? there are

$$
q^{d(n-d-t)} \beta(d+t, d)=q^{d)(n-d-t)} \beta(d+t, t)
$$

choices for E. We need to choose Y so that N is integral and $(M, N)=1$; equivalently, for any $G \in S L_{n}(\mathbb{Z})$, we need $N^{t} G^{-1}$ integral and $\left(M G, N^{t} G^{-1}\right)=1$. Using left multiplication by \mathcal{K}_{d}, we can adjust the choice of E so that the lower $n-d-t$ rows of $E M^{\prime}$ are divisible by q, and then we can choose $G \in S L_{n}(\mathbb{Z})$ so that

$$
E M^{\prime} G \equiv\left(\begin{array}{ccc}
M_{1} & 0 & 0 \\
0 & M_{5} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where M_{1} is $d \times d, M_{5}$ is $t \times t$, and M_{1}, M_{5} are invertible modulo q. Write

$$
E N^{\prime t} G^{-1}=\left(\begin{array}{ccc}
N_{1} & N_{2} & N_{3} \\
N_{4} & N_{5} & N_{6} \\
N_{7} & N_{8} & N_{9}
\end{array}\right), G^{-1} Y^{t} G^{-1}=\left(\begin{array}{ccc}
Y_{1} & Y_{2} & Y_{3} \\
{ }^{t} Y_{2} & Y_{4} & Y_{5} \\
{ }^{t} Y_{3} & { }^{t} Y_{5} & Y_{6}
\end{array}\right)
$$

where N_{1}, Y_{1} are $d \times d$ and N_{5}, Y_{4} are $t \times t$. By symmetry, $N_{7}, N_{8} \equiv 0(q)$, and then since $\left(M^{\prime}, N^{\prime}\right)=1$, we must have $\operatorname{rank}_{q} N_{9}=n-d-t$. Also, as Y varies over $\mathbb{F}_{\text {sym }}^{n, n}$, so does $G^{-1} Y^{t} G^{-1}$. To have N integral, we need $\left(Y_{1} Y_{2} Y_{3}\right) \equiv \bar{M}_{1}\left(N_{1} N_{2} N_{3}\right)(q)$. Then by symmetry, we find $N_{4} \equiv M_{5}{ }^{t} Y_{2}(q)$. So to have $(M, N)=1$, we need $\operatorname{rank}_{q}\left(N_{5}-M_{5} Y_{4}\right)=t$, or equivalently,

$$
\operatorname{rank}_{q}\left(N_{5}-M_{5} Y_{4}\right)^{t} M_{5}=t
$$

As Y_{4} varies over $\mathbb{F}_{\text {sym }}^{t, t}$, so does $N_{5}-M_{5} Y_{4}{ }^{t} M_{5}$. We have

$$
\begin{aligned}
\chi_{q}(M, N) & =\chi_{q}\left(\operatorname{det} \bar{M}_{1} \cdot \operatorname{det}\left(N_{5}-Y_{4} M_{5}\right) \cdot \operatorname{det} N_{9}\right) \\
& =\chi_{q}\left(\operatorname{det} \bar{M}_{1} \cdot \operatorname{det} \bar{M}_{5} \operatorname{det} N_{9}\right) \cdot \chi_{q}\left(\operatorname{det}\left(N_{5}-M_{5} Y_{4}\right)^{t} M_{5}\right) \\
& =\chi_{q}\left(M^{\prime}, N^{\prime}\right) \cdot \chi_{q}\left(\operatorname{det}\left(N_{5}-M_{5} Y_{4}\right)^{t} M_{5}\right)
\end{aligned}
$$

We have no constraints on Y_{5} and Y_{6}, so as we vary Y subject to the above conditions, we get

$$
\begin{aligned}
\sum_{Y} \bar{\chi}_{q}(M, N) & =\bar{\chi}_{q}\left(M^{\prime}, N^{\prime}\right) \cdot q^{(n-d-t)(n-d+t+1) / 2} \sum_{U \in \mathbb{F}_{\mathrm{sym}}^{t, t}} \bar{\chi}_{q}(\operatorname{det} U) \\
& =\bar{\chi}_{q}\left(M^{\prime}, N^{\prime}\right) q^{(n-d-t)(n-d+t+1) / 2} \operatorname{sym}_{q}^{\chi}(t)
\end{aligned}
$$

as claimed.
This theorem allows us to diagonalise the space of Eisenstein series. To aid in our description of this, we define a partial ordering on multiplicative partitions of \mathcal{N}, as follows.
Definition. For ρ, β multiplicative partitions of \mathcal{N} and $Q \mid \mathcal{N}$, we write $\beta=\rho(Q)$ if, for every prime $q \mid Q$, we have $\operatorname{rank}_{q} M_{\beta}=\operatorname{rank}_{q} M_{\rho}$. Similarly, we write $\beta>\rho(Q)$ if, for every prime $q \mid Q$, we have $\operatorname{rank}_{q} M_{\beta}>\operatorname{rank}_{q} M_{\rho}$.

Corollary 4.2. Let q be a prime dividing \mathcal{N}. For ρ a partition of \mathcal{N} so that $\mathbb{E}_{\rho} \neq 0$, there are $a_{\rho, \alpha}(q) \in \mathbb{C}$ so that $a_{\rho, \rho}(q)=1$ and

$$
\sum_{\substack{\alpha=\rho(\mathcal{N} / q) \\ \alpha \geq \rho(q)}} a_{\rho, \alpha}(q) \mathbb{E}_{\alpha}
$$

is an eigenform for $T(q)$ with eigenvalue

$$
\lambda_{\rho}(q)=q^{k d-d(d+1) / 2} \chi_{\mathcal{N} / q}\left(\left(\begin{array}{cc}
I_{d} & \\
& \frac{1}{q} I
\end{array}\right) M_{\rho},\left(\begin{array}{ll}
q I_{d} & \\
& I
\end{array}\right)\right)
$$

where $d=\operatorname{rank}_{q} M_{\rho}$. Further, suppose $\alpha=\rho(\mathcal{N} / q), \alpha>\rho(q)$, with $d=\operatorname{rank}_{q} M_{\rho}$, $d+t=\operatorname{rank}_{q} M_{\alpha}$; then we have $a_{\rho, \alpha}(q) \neq 0$ if and only if either (1) $\chi_{q}=1$, or (2) $\chi_{q}^{2}=1$ and t is even.
Proof. By Lemma ?? $\operatorname{sym}_{q}^{\chi}(t)=0$ if and only if (1) $\chi_{q}^{2} \neq 1$, or (2) $\chi_{q} \neq 1$ and t is odd. Thus by Theorem 4.1,

$$
\operatorname{span}\left\{\mathbb{E}_{\alpha}: \alpha=\rho(\mathcal{N} / q), \alpha \geq \rho(q), \text { so that either }(1) \chi_{q}=1,\right. \text { or }
$$

(2) $\chi_{q}^{2}=1$ and $\operatorname{rank}_{q} M_{\alpha}-\operatorname{rank}_{q} M_{\rho}$ is even $\}$
is invariant under $T(q)$, and the matrix for $T(q)$ on this basis is upper triangular with nonzero upper triangular entries. Then the standard process of diagonalising an upper triangular matrix yields the result.

We now prove a multiplicity-one result for the Eisenstein series of square-free level.

Corollary 4.3. Suppose $\mathbb{E}_{\rho} \neq 0$. For $\alpha \geq \rho(Q)$ and prime $q \mid Q$, set $a_{\rho, \alpha}(q)=$ $a_{\rho, \sigma}(q)$ where $\sigma=\rho(\mathcal{N} / q), \sigma=\alpha(q)$, and set

$$
a_{\rho, \alpha}(Q)=\prod_{q \mid Q} a_{\rho, \alpha}(q)
$$

Then with

$$
\widetilde{\mathbb{E}}_{\rho}=\sum_{\alpha \geq \rho(\mathcal{N})} a_{\rho, \alpha}(\mathcal{N}) \mathbb{E}_{\alpha}
$$

for every prime $q \mid \mathcal{N}$ we have

$$
\widetilde{\mathbb{E}}_{\rho} \mid T(q)=\lambda_{\rho}(q) \widetilde{\mathbb{E}}_{\rho}
$$

(where $\lambda_{\rho}(q)$ is defined in Corollary 4.2).
Proof. Fix a prime $q \mid \mathcal{N}$. For $\alpha \geq \rho(\mathcal{N})$, take $\beta=\alpha(\mathcal{N} / q), \beta=\rho(q)$. Then $a_{\rho, \alpha}(\mathcal{N})=a_{\rho, \beta}(\mathcal{N} / q) a_{\rho, \alpha}(q)$. Hence

$$
\widetilde{\mathbb{E}}_{\rho}=\sum_{\substack{\beta \geq \rho(\mathcal{N} / q) \\ \beta=\rho(q)}} a_{\rho, \beta}(\mathcal{N} / q) \sum_{\substack{\alpha=\beta(\mathcal{N} / q) \\ \alpha \geq \beta(q)}} a_{\rho, \alpha}(q) \mathbb{E}_{\alpha} .
$$

We argue that when $a_{\rho, \beta}(\mathcal{N} / q) \neq 0$, we have $a_{\rho, \alpha}(q)=a_{\beta, \alpha}(q)$ and $\lambda_{\rho}(q)=\lambda_{\beta}(q)$.
Fix β so that $\beta \geq \rho(\mathcal{N} / q), \beta=\rho(q)$, and suppose $a_{\rho, \beta}(\mathcal{N} / q) \neq 0$. Take $Q \mid \mathcal{N} / q$ so that $\beta=\rho(\mathcal{N} / Q), \beta>\rho(Q)$. Thus $a_{\rho, \beta}(\mathcal{N} / q)=a_{\rho, \beta}(Q)$. Since $a_{\rho, \beta}(Q) \neq 0$, for each prime $q^{\prime} \mid Q$ we have either (1) $\chi_{q^{\prime}}=1$, or (2) $\chi_{q^{\prime}}^{2}=1$ and $\operatorname{rank}_{q^{\prime}} M_{\beta}-\operatorname{rank}_{q^{\prime}} M_{\rho}$ is even.

Suppose q^{\prime} is a prime dividing Q so that $\chi_{q^{\prime}} \neq 1$. Set $r=\operatorname{rank}_{q^{\prime}} M_{\rho}, r+t=$ $\operatorname{rank}_{q^{\prime}} M_{\beta}$ (so t is even). Then for $0 \leq d \leq n$,

$$
\begin{aligned}
\chi_{q^{\prime}}\left(\left(\begin{array}{cc}
I_{d} & \\
& \frac{1}{q^{\prime}} I
\end{array}\right) M_{\rho},\left(\begin{array}{ll}
q I_{d} & \\
& I
\end{array}\right)\right) & =\chi_{q^{\prime}}\left(\left(\begin{array}{ll}
I_{d} & \\
& \frac{1}{q^{\prime}} I
\end{array}\right)\left(\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right),\left(\begin{array}{ll}
q I_{d} & \\
& I
\end{array}\right)\right) \\
& = \begin{cases}\chi_{q^{\prime}}\left(q^{r-d}\right) & \text { if } d \leq r, \\
\chi_{q^{\prime}}\left(q^{d-r}\right) & \text { if } d \geq r\end{cases} \\
& =\chi_{q^{\prime}}\left(q^{d-r}\right)
\end{aligned}
$$

(since $\chi_{q^{\prime}}^{2}$). Similarly,

$$
\chi_{q^{\prime}}\left(\left(\begin{array}{cc}
I_{d} & \\
& \frac{1}{q^{\prime}} I
\end{array}\right) M_{\beta},\left(\begin{array}{ll}
q I_{d} & \\
& I
\end{array}\right)\right)=\chi_{q^{\prime}}\left(q^{d-r-t}\right)
$$

and $\chi_{q^{\prime}}\left(q^{d-r-t}\right)=\chi_{q^{\prime}}\left(q^{d-r}\right)$ since t is even and $\chi_{q^{\prime}}^{2}=1$.
For each prime $q^{\prime \prime} \mid \mathcal{N} / Q$, we either have $\beta=\rho\left(q^{\prime \prime}\right)$ or $\chi_{q^{\prime \prime}}=1$. Thus for $0 \leq d \leq n$,

$$
\chi_{\mathcal{N} / q}\left(\left(\begin{array}{ll}
I_{d} & \\
& \frac{1}{q^{\prime}} I
\end{array}\right) M_{\rho},\left(\begin{array}{ll}
q I_{d} & \\
& I
\end{array}\right)\right)=\chi_{\mathcal{N} / q}\left(\left(\begin{array}{ll}
I_{d} & \\
& \frac{1}{q^{\prime}} I
\end{array}\right) M_{\beta},\left(\begin{array}{ll}
q I_{d} & \\
& I
\end{array}\right)\right) .
$$

Hence $\lambda_{\beta}(q)=\lambda_{\rho}(q)$. Further, with σ_{d}, α_{d} partitions of \mathcal{N} so that $\sigma_{d}=\rho(\mathcal{N} / q)$, $\operatorname{rank}_{q} M \sigma_{d}=d, \alpha_{d}=\beta(\mathcal{N} / q), \operatorname{rank}_{q} M_{\alpha_{d}}=d$, the matrix for $T(q)$ on ${ }^{t}\left(\mathbb{E}_{\sigma_{0}}, \ldots, \mathbb{E}_{\sigma_{n}}\right)$ is equal to the matrix for $T(q)$ on ${ }^{t}\left(\mathbb{E}_{\alpha_{0}}, \ldots, \mathbb{E}_{\alpha_{n}}\right)$, and hence $a_{\rho, \sigma_{d}}(q)=a_{\beta, \alpha_{d}}(q)$, $0 \leq d \leq n$.

Now we evaluate the action of $T_{j}\left(q^{2}\right)$ on \mathbb{E}_{ρ}. Note that since the Hecke operators commute, the multiplicity-one result of Corollary 4.3 tells us that each $\widetilde{\mathbb{E}}_{\rho}$ is also an eigenform for $T_{j}\left(q^{2}\right)$. So we could simply do enough computation to find the eigenvalue $\lambda_{\rho, j}\left(q^{2}\right)$, but we take just a bit more effort and give a complete description of $\mathbb{E}_{\rho} \mid T_{j}\left(q^{2}\right)$. Then in Corollary 4.5 we compute the $T_{j}\left(q^{2}\right)$ eigenvalues.

Theorem 4.4. Assume \mathcal{N} is square-free, a fix a prime $q \mid \mathcal{N}$. For σ a multiplicative partition of \mathcal{N} / q and $0 \leq d \leq n$, let $\mathbb{E}_{\sigma_{d}}$ be the level \mathcal{N} Eisenstein series as in Theorem 4.1; suppose $\mathbb{E}_{\sigma_{d}} \neq 0$.

For $0 \leq j, d \leq n$,

$$
\mathbb{E}_{\sigma_{d}} \mid T_{j}\left(q^{2}\right)=\sum_{t=0}^{n-d} A_{j}(d, t) \mathbb{E}_{\sigma_{d+t}}
$$

when $\chi_{q}=1$,

$$
\begin{aligned}
A_{j}(d, t)= & q^{(j-t) d-t(t+1) / 2} \beta(d+t, t) \\
& \cdot \sum_{d_{1}=0}^{j} \sum_{d_{5}=0}^{j-d_{1}} \sum_{d_{8}=0}^{d_{5}} q^{a_{j}\left(d ; d_{1}, d_{5}, d_{8}\right)} \chi_{\mathcal{N} / q}\left(D_{d_{1}, r} M_{\sigma_{d}} D_{j}^{-1}, D_{d_{1}, r}, D_{j}\right) \\
& \cdot \beta\left(d, d_{1}\right) \beta\left(t, d_{5}\right) \beta\left(n-d-t, d_{1}+n-d-j-d_{8}\right) \\
& \cdot \beta\left(t-d_{5}, d_{8}\right) \operatorname{sym}_{q}^{\chi}\left(t-d_{5}-d_{8}\right) \operatorname{sym}_{q}^{\chi}\left(d_{5}, d_{8}\right)
\end{aligned}
$$

where $r=j-d_{1}-d_{5}+d+8$, and

$$
\begin{aligned}
& a_{j}\left(d ; d_{1}, d_{5}, d_{8}\right) \\
& \quad=(k-d)\left(2 d_{1}+d_{5}-d_{8}\right)+d_{1}\left(d_{1}-d_{8}-j-1\right)-d_{8}\left(d_{5}+t\right)-d_{5}\left(d_{5}+1\right) / 2+d_{8}\left(d_{8}+1\right) / 2
\end{aligned}
$$

[LYNNE: DEFINE $\operatorname{sym}_{q}^{\chi}(b, c)$]
(Note that $\operatorname{sym}_{q}^{\chi}\left(t-d_{5}-d_{8}\right), \operatorname{sym}_{q}^{\chi}\left(d_{5}, d_{8}\right)$ are evaluated in Lemmas ???.)
Proof. Fix $d=\operatorname{rank}_{q} M_{\rho}$; to ease some notation later, set $\ell=n-d$.

$$
\mathbb{E}_{n-\ell}\left|T_{j}\left(q^{2}\right)=q^{j(k-n-1)} \sum_{G, Y} \mathbb{E}_{n-\ell}\right|\left(\begin{array}{cc}
D_{j}^{-1} & \\
& D_{j}
\end{array}\right)\left(\begin{array}{cc}
G^{-1} & Y^{t} G \\
& { }^{t} G
\end{array}\right)
$$

where $D_{j}=\left(\begin{array}{cc}q I_{j} & \\ & I_{n-j}\end{array}\right), G \in S L_{n}(\mathbb{Z}) / \mathcal{K}_{j}, Y \in \mathcal{Y}_{j}$ with \mathcal{Y}_{j} the set of matrices
$\left(\begin{array}{cc}U & V \\ { }^{t} V & 0\end{array}\right)$ so that $U \in \mathbb{Z}_{\mathrm{sym}}^{j, j}$ varies modulo $q^{2}, V \in \mathbb{Z}^{j, n-j}$ varies modulo q. So

$$
\begin{aligned}
& \mathbb{E}_{n-\ell}(\tau) \mid T_{j}\left(q^{2}\right) \\
& \quad=q^{j(-n-1)} \sum_{G, Y} \sum_{M, N} \operatorname{det}\left(M\left(D_{j}^{-1} G^{-1} \tau+D_{j}^{-1} Y^{t} G\right)^{t} G^{-1} D_{j}^{-1}+N\right)^{-k} \\
& \quad=q^{j(k-n-1)} \sum_{G, Y} \sum_{M, N} \operatorname{det}\left(M D_{j}^{-1} G^{-1} \tau+M D_{j}^{-1} Y^{t} G+N^{t} G D_{j}\right)^{-k}
\end{aligned}
$$

(where $(M N)$ varies over coprime symmetric pairs with $\operatorname{rank}_{q} M=n-\ell$).
Take a coprime symmetric pair $(M N)$ with $\operatorname{rank}_{q} M=n-\ell$. Let d_{1} be the rank of the first j columns of M; using row operations, we can assume $M=$ $\left(\begin{array}{cc}M_{1} & M_{2} \\ q M_{3} & M_{4} \\ q M_{5}^{\prime} & q M_{6}^{\prime}\end{array}\right)$ where M_{1} is $d_{1} \times j\left(\right.$ so $\left.^{\operatorname{rank}_{q}} M_{1}=d_{1}\right), M_{4}$ is $d_{4} \times(n-j)$ with $\operatorname{rank}_{q} M_{4}=d_{4}=n-\ell-d_{1}$. Correspondingly, write $N=\left(\begin{array}{cc}N_{1} & N_{2} \\ N_{3} & N_{4} \\ N_{5}^{\prime} & N_{6}^{\prime}\end{array}\right)$ where N_{1} is $d_{1} \times j$ and N_{4} is $d_{4} \times(n-j)$. Take r so that $\operatorname{rank}_{q}\left(\begin{array}{cc}M_{1} & 0 \\ M_{5}^{\prime} & N_{5}^{\prime}\end{array}\right)=n-d_{4}-r$; so using row operations, we can assume

$$
\left(q M_{5}^{\prime} q M_{6}^{\prime} N_{5}^{\prime} N_{6}^{\prime}\right)=\left(\begin{array}{cccc}
q M_{5} & q M_{6} & N_{5} & N_{6} \\
q^{2} M_{7} & q M_{8} & N_{7} & q N_{8}
\end{array}\right)
$$

where M_{6}, N_{6} are $(\ell-r) \times(n-j)$ and $\operatorname{rank}_{q}\left(\begin{array}{cc}M_{1} & 0 \\ M_{5} & N_{6}\end{array}\right)=n-d_{4}-r$. Note that since $(M, N)=1$, we must have $\operatorname{rank}_{q} N_{7}=r$. Then with $D_{d_{1}, r}=\left(\begin{array}{ccc}q I_{d_{1}} & & \\ & I & \\ & & \frac{1}{q} I_{r}\end{array}\right)$,

$$
D_{d_{1}, r}\left(\begin{array}{ll}
M & N
\end{array}\right)\left(\begin{array}{ll}
D_{j}^{-1} & \\
& D_{j}
\end{array}\right)=\left(\begin{array}{cccc}
M_{1} & q M_{2} & q^{2} N_{1} & q N_{2} \\
M_{3} & M_{4} & q N_{3} & N_{4} \\
M_{5} & q M_{6} & q N_{5} & N_{6} \\
M_{7} & M_{8} & N_{7} & N_{8}
\end{array}\right)
$$

has q-rank n. Hence for any $Y \in \mathcal{Y}_{j}$,

$$
\left(M^{\prime} N^{\prime}\right)=D_{d_{1}, r}(M N)\left(\begin{array}{cc}
D_{j}^{-1} & \\
& D_{j}
\end{array}\right)\left(\begin{array}{cc}
G^{-1} & Y^{t} G \\
0 & { }^{t} G
\end{array}\right)
$$

is a coprime symmetric pair with $\operatorname{rank}_{q} M^{\prime}=n-\ell+t$ for some $t \geq 0$. Note that $\operatorname{det}\left(M^{\prime} \tau+N^{\prime}\right)^{-k}=q^{k\left(d_{1}-r\right)} \operatorname{det}\left(M D_{j}^{-1} G^{-1} \tau+M D_{j}^{-1} Y^{t} G+N D_{j}^{t} G\right)^{-k}$.

Similar to the computation in the proof of Theorem 4.1, we have

$$
\chi_{\mathcal{N} / q}(M, N)=\chi_{\mathcal{N} / q}\left(D_{d_{1}, r} M_{\sigma_{d}} D_{j}^{-1}, D_{d_{1}, r} D_{j}\right) \chi_{\mathcal{N} / q}\left(M^{\prime}, N^{\prime}\right)
$$

Reversing, take a coprime pair $\left(M^{\prime} N^{\prime}\right)$ with $\operatorname{rank}_{q} M^{\prime}=n-\ell+t$. We need to count the equivalence classes $S L_{n}(\mathbb{Z})(M N)$ so that

$$
D_{d_{1}, r}(M N)\left(\begin{array}{cc}
D_{j}^{-1} & \\
& D_{j}
\end{array}\right)\left(\begin{array}{cc}
G^{-1} & Y^{t} G \\
0 & { }^{t} G
\end{array}\right) \in S L_{n}(\mathbb{Z})\left(M^{\prime} N^{\prime}\right)
$$

For $E_{1}, E_{2} \in S L_{n}(\mathbb{Z})$ and

$$
\left(M_{i} N_{i}\right)=D_{d_{1}, r}^{-1} E_{i}\left(M^{\prime} N^{\prime}\right)\left(\begin{array}{cc}
G & -G Y \\
0 & { }^{t} G^{-1}
\end{array}\right)\left(\begin{array}{ll}
D_{j} & \\
& D_{j}^{-1}
\end{array}\right)
$$

we have $\left(M_{1} N_{1}\right) \in S L_{n}(\mathbb{Z})\left(M_{2} N_{2}\right)$ if and only if $E_{1} \in \mathcal{K}_{d_{1}, r} E_{2}$. Thus we need to count the number of triples E, G, Y with $E \in \mathcal{K}_{d_{1}, r} \backslash S L_{n}(\mathbb{Z}), G \in S L_{n}(\mathbb{Z}) / \mathcal{K}_{j}$, $Y \in \mathcal{Y}_{j}$ so that

$$
\left(\begin{array}{ll}
M N
\end{array}\right)=D_{d_{1}, r}^{-1} E\left(\begin{array}{ll}
M^{\prime} & N^{\prime}
\end{array}\right)\left(\begin{array}{cc}
G & -G Y \\
0 & { }^{t} G^{-1}
\end{array}\right)\left(\begin{array}{cc}
D_{j} & \\
& D_{j}^{-1}
\end{array}\right)
$$

is an integral coprime pair with $\operatorname{rank}_{q} M=n-\ell$ (that $M^{t} N$ is symmetric is automatic).

For $E, G \in S L_{n}(\mathbb{Z})$, let $\left(M_{1} M_{2}\right)$ be the top d_{1} rows of $E M^{\prime} G$ with M_{1} size $d_{1} \times j$; similarly, let $\left(N_{1} N_{2}\right)$ be the top d_{1} rows of $E N^{\prime t} G^{-1}$ with N_{1} size $d_{1} \times j$. To have M integral we need $q \mid M_{2}$. To have N integral, we will need to solve

$$
N_{1} \equiv M_{1} U+M_{2}{ }^{t} V\left(q^{2}\right), \quad N_{2} \equiv M_{1} V(q)
$$

Since $\left(M^{\prime}, N^{\prime}\right)=1$ and $q \mid M_{2}$, we must have $\operatorname{rank}_{q}\left(M_{1} N_{1} N_{2}\right)=d_{1}$; thus we can only solve the above congruences if $\operatorname{rank}_{q} M_{1}=d_{1}$. So suppose we have chosen E, G to meet this condition; write

$$
E M^{\prime} G=\left(\begin{array}{cc}
M_{1} & M_{2} \\
M_{3} & M_{4} \\
M_{5} & M_{6} \\
M_{7} & M_{8}
\end{array}\right), E N^{\prime t} G^{-1}=\left(\begin{array}{cc}
N_{1} & N_{2} \\
N_{3} & N_{4} \\
N_{5} & N_{6} \\
N_{7} & N_{8}
\end{array}\right)
$$

where M_{1}, N_{1} are $d_{1} \times j, M_{4}, N_{4}$ are $d_{4} \times(n-j), M_{5}, N_{5}$ are $(n-r-d) \times j$ where $Y=\left(\begin{array}{cc}U & V \\ t\end{array}\right) \mathcal{Y}_{j}$. To have $\operatorname{rank}_{q} M=n-\ell$, we need to have $\operatorname{rank}_{q}\left(\begin{array}{cc}M_{1} & 0 \\ 0 & M_{4} \\ 0 & M_{6}\end{array}\right)=$ $n-\ell$; so suppose we have chosen E, G to meet this condition as well. Then, using left multiplication from $\mathcal{K}_{d_{1}, r}$ and right multiplication from \mathcal{K}_{j}, we can assume $\operatorname{rank}_{q} M_{4}=d_{4}=n-\ell-d_{1}$ and $M_{6} \equiv 0(q)$. Now write $M_{i}=\left(A_{i}^{\prime} A_{i}\right), N_{i}=\left(B_{i}^{\prime} B_{i}\right)$ where, for i odd, $A_{i}^{\prime}, B_{i}^{\prime}$ have d_{1} columns, and for i even, $A_{i}^{\prime}, B_{i}^{\prime}$ have d_{4} columns. By adjusting further using $\mathcal{K}_{d_{1}, r}$ and \mathcal{K}_{j}, we can assume that $\operatorname{rank}_{q} A_{1}^{\prime}=d_{1}, \operatorname{rank}_{q} A_{4}^{\prime}=$ $d_{4}, A_{i}^{\prime} \equiv 0\left(q^{2}\right)$ for $i \neq 1,4, A_{1}, A_{3} \equiv 0(q)$, and with $d_{i}=\operatorname{rank}_{q} A_{i}$ for $i=5,7,8$, we can assume

$$
A_{5} \equiv\left(\begin{array}{ccc}
\alpha_{5} & 0 & 0 \\
0 & 0 & q \alpha_{5}^{\prime}
\end{array}\right) \quad\left(q^{2}\right), \quad A_{6} \equiv\left(\begin{array}{cc}
0 & 0 \\
q \alpha_{6}^{\prime} & 0
\end{array}\right) \quad\left(q^{2}\right)
$$

$$
A_{7} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \alpha_{7} & 0 \\
0 & 0 & 0
\end{array}\right) \quad(q), A_{8} \equiv\left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & \alpha_{8}
\end{array}\right) \quad(q)
$$

where α_{i} is $d_{i} \times d_{i}$ (and hence invertibe modulo q), α_{5}^{\prime} is $\left(\ell-r-d_{5}\right) \times\left(j-d_{1}-d_{5}-d_{7}\right)$, and α_{6}^{\prime} is $\left(\ell-r-d_{5}\right) \times\left(n-j-d_{4}-d_{8}\right)$; here the first d_{5} and last $j-d_{1}-d_{5}-d_{7}$ columns of A_{7} are 0 modulo q, and the top $r-d_{7}-d_{8}$ and bottom d_{8} rows of A_{7} are 0 modulo q. Correspondingly, write

$$
\begin{aligned}
B_{5} & =\left(\begin{array}{lll}
\beta_{1} & \beta_{2} & \beta_{3} \\
\beta_{4} & \beta_{5} & \beta_{6}
\end{array}\right), B_{6}=\left(\begin{array}{ll}
\gamma_{1} & \gamma_{2} \\
\gamma_{3} & \gamma_{4}
\end{array}\right) \\
B_{7} & =\left(\begin{array}{lll}
\delta_{1} & \delta_{2} & \delta_{3} \\
\delta_{4} & \delta_{5} & \delta_{6} \\
\delta_{7} & \delta_{8} & \delta_{9}
\end{array}\right), B_{8}=\left(\begin{array}{ll}
\epsilon_{1} & \epsilon_{2} \\
\epsilon_{3} & \epsilon_{4} \\
\epsilon_{5} & \epsilon_{6}
\end{array}\right) .
\end{aligned}
$$

Then by symmetry, we have $\beta_{4}, \beta_{5}, \gamma_{4}, \delta_{1}, \delta_{2}, \epsilon_{2} \equiv 0(q)$, and q must divide the lower $\ell-r-d_{5}$ rows of B_{5}^{\prime} and the upper $r-d_{7}-d_{8}$ rows of B_{7}^{\prime}.

With $Y=\left(\begin{array}{cc}U & V \\ { }^{t} V & 0\end{array}\right)$ (as above), write

$$
U=\left(\begin{array}{cc}
U_{1} & U_{2} \\
{ }^{t} U_{2} & U_{3}
\end{array}\right), V=\left(\begin{array}{ll}
V_{1} & V_{2} \\
V_{3} & V_{4}
\end{array}\right)
$$

where U_{1} is $d_{1} \times d_{1}$ and V_{1} is $d_{1} \times d_{4}$. To have N integral, we need

$$
N_{1} \equiv A_{1}^{\prime}\left(U_{1} U_{2}\right)\left(q^{2}\right), N_{2} \equiv A_{1}^{\prime}\left(V_{1} V_{2}\right)(q), B_{2} \equiv A_{4}^{\prime}{ }^{t} V_{3}(q)
$$

With these (unique) choices of $U_{1}, U_{2}, V_{1}, V_{2}, V_{3}$, the symmetry of $M^{\prime t} N^{\prime}$ implies that

$$
B_{3}^{\prime t} A_{1}^{\prime} \equiv A_{4}^{\prime}{ }^{t} B_{2}^{\prime} \equiv A_{4}^{\prime}{ }^{t} V_{2}{ }^{t} A_{1}^{\prime}(q),
$$

so we automatically get $B_{3}^{\prime} \equiv A_{4}^{\prime}{ }^{t} V_{2}(q)$. Hence with these choices of U_{1}, U_{2}, V_{1}, V_{2}, V_{3}, the top $n-\ell$ rows of N are integral. We have already ensured the top $n-\ell$ rows of M are integral with q-rank $n-\ell$, and we know the lower ℓ rows of M are 0 modulo q. So we need to choose U_{3}, V_{4} so that the lower ℓ rows of N are integral with q-rank ℓ.

By symmetry, we have

$$
\begin{gathered}
B_{5}^{\prime t} A_{1}^{\prime} \equiv A_{5}{ }^{t} B_{1}+A_{6}{ }^{t} B_{2} \equiv A_{5}{ }^{t} U_{2}{ }^{t} A_{1}^{\prime}+A_{6}{ }^{t} V_{2}{ }^{t} A_{1}^{\prime}\left(q^{2}\right), \\
B_{6}^{\prime t} A_{4}^{\prime} \equiv A_{5}{ }^{t} B_{3} \equiv A_{5} V_{3}{ }^{t} A_{4}^{\prime}(q), \\
B_{7}^{\prime}{ }^{t} A_{1}^{\prime} \equiv A_{7}{ }^{t} B_{1}+A_{8}{ }^{t} B_{2} \equiv A_{7}{ }^{t} U_{2}{ }^{t} A_{1}^{\prime}+A_{8}{ }^{t} V_{2}{ }^{t} A_{1}^{\prime}(q) .
\end{gathered}
$$

So to have N integral, we need to choose E, G so that $\beta_{6} \equiv 0(q)$, and U_{3} so that $B_{5} \equiv A_{5} U_{3}(q)$. With such choices, the lower ℓ rows of N are congruent modulo q to

$$
\left(\begin{array}{cccc}
0 & \left(B_{5}-A_{5} U_{3}-A_{6}{ }^{t} V_{4}\right) / q & 0 & B_{6}-A_{5} V_{4} \\
0 & B_{7}-A_{7} U_{3}-A_{8}{ }^{t} V_{4} & 0 & 0
\end{array}\right) .
$$

Also, since $\left(M^{\prime}, N^{\prime}\right)=1$, when $\beta_{6} \equiv 0(q)$, we will necessarily have $\operatorname{rank}_{q} \gamma_{3}=$ $\ell-r-d_{5}$ (recall that $\left.\beta_{4}, \beta_{5}, \gamma_{4} \equiv 0(q)\right)$. Write

$$
U_{3}=\left(\begin{array}{ccc}
\mu_{1} & \mu_{2} & \mu_{3} \\
{ }^{t} \mu_{2} & \mu_{4} & \mu_{5} \\
{ }^{t} \mu_{3} & { }^{t} \mu_{5} & \mu_{6}
\end{array}\right), V_{4}=\left(\begin{array}{ll}
\nu_{1} & \nu_{2} \\
\nu_{3} & \nu_{4} \\
\nu_{5} & \nu_{6}
\end{array}\right)
$$

where μ_{1} is $d_{5} \times d_{5}, \mu_{4}$ is $d_{7} \times d_{7}, \nu_{2}$ is $d_{5} \times d_{8}$, and ν_{4} is $d_{7} \times d_{8}$. Note that

$$
B_{7}-A_{7} U_{3}-A_{8}{ }^{t} V_{4} \equiv\left(\begin{array}{ccc}
0 & 0 & \delta_{3} \\
\delta_{4}-\alpha_{7}{ }^{t} \mu_{2} & \delta_{5}-\alpha_{7} \mu_{4} & \delta_{6}-\alpha_{7} \mu_{5} \\
\delta_{7}-\alpha_{8}{ }^{t} \nu_{2} & \delta_{8}-\alpha_{8}{ }^{t} \nu_{4} & \delta_{9}-\alpha_{8}{ }^{t} \nu_{6}
\end{array}\right)(q)
$$

So to have

$$
\operatorname{rank}_{q}\left(\begin{array}{cccc}
0 & \left(B_{5}-A_{5} U_{3}-A_{6}{ }^{t} V_{4}\right) / q & 0 & B_{6}-A_{5} V_{4} \\
0 & B_{7}-A_{7} U_{3}-A_{8}{ }^{t} V_{4} & 0 & 0
\end{array}\right)
$$

we need to choose E, G so that $\operatorname{rank}_{q} \delta_{3}=r-d_{7}-d_{8}$. We know that γ_{3} is $(\ell-r-$ $\left.d_{5}\right) \times\left(n-j-d_{4}-d_{8}\right)$ and δ_{3} is $\left(r-d_{7}-d_{8}\right) \times\left(j-d_{1}-d_{5}-d_{7}\right)$. Thus if $\beta_{6} \equiv 0(q)$ and $\operatorname{rank}_{q} \delta_{3}=r-d_{7}-d_{8}$, we have

$$
\ell-r-d_{5} \leq n-j-d_{4}-d_{8}, r-d_{7}-d_{8} \leq j-d_{1}-d_{5}-d_{7}
$$

and consequently $r=j-d_{1}-d_{5}+d_{8}$ (recall that $n-\ell=d_{1}+d_{4}$). Then we use right multiplication from \mathcal{K}_{j} to modify G so that we can assume $\beta_{4} \equiv 0\left(q^{2}\right)$.

Thus we need to choose $\mathcal{K}_{d_{1}, r} E, G \mathcal{K}_{j}$ so that (adjusting the coset representatives $E, G)$, the top d_{1} rows of $E M^{\prime}$ have q-rank d_{1}, the top $d_{1}+d_{4}+d_{5}$ rows of $E M^{\prime}$ have q-rank $d_{1}+d_{4}+d_{5}$ (where $0 \leq d_{5} \leq j-d_{1}$), and q divides rows $d_{1}+d_{4}+d_{5}+1$ through $n-d_{7}-d_{8}$ of $E M^{\prime}$; Lemma? tells us that the number of such $\mathcal{K}_{d_{1}, r} E$ is

$$
\begin{aligned}
& \beta\left(d^{\prime}, d+d_{5}\right) \beta\left(n-d^{\prime}, n-r-d-d_{5}\right) \beta\left(d+d_{5}, d_{1}\right) \\
& \quad \cdot q^{\left(d+d_{5}\right)\left(r+d+d_{5}-d^{\prime}\right)+d_{1}\left(n-d-d_{5}\right)}
\end{aligned}
$$

where $d=\operatorname{rank}_{q} M, d^{\prime}=\operatorname{rank}_{q} M^{\prime}$ (note that after choosing E as in the lemma, we can use left multiplication from $\mathcal{K}_{d_{1}, r}$ to ensure rows $d_{1}+d_{4}+d_{5}+1$ through $n-d_{7}-d_{8}$ are divisible by q). Then we can choose some $G_{0} \in S L_{n}(\mathbb{Z})$ so that

$$
E M^{\prime} G_{0} \equiv\left(\begin{array}{cccc}
C & 0 & 0 & 0 \\
0 & C^{\prime} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & C^{\prime \prime} & 0
\end{array}\right)(q)
$$

where C is $d_{1} \times d_{1}$ with $\operatorname{rank}_{q} C=d_{1}, C^{\prime}$ is $\left(d_{4}+d_{5}\right) \times\left(d_{4}+d_{5}\right)$ with $\operatorname{rank}_{q} C^{\prime}=d_{4}+d_{5}$. As $G \mathcal{K}_{j}$ varies over $S L_{n}(\mathbb{Z}) / \mathcal{K}_{j}$, so does $G_{0} G \mathcal{K}_{j} ;$ Lemma? tells us that the number of $G \mathcal{K}_{j}$ that meet all the necessary criteria as described above is

$$
\beta\left(d_{4}+d_{5}, d_{4}\right) \beta\left(d_{7}+d_{8}, d_{8}\right) q^{\left(d_{4}+d_{8}\right)\left(j-d_{1}-d_{5}\right)-d_{7} d_{8}}
$$

Having chosen such E, G, we have seen that to have N integral, $U_{1}, U_{2}, V_{1}, V_{2}, V_{3}$ are uniquely determined, and $\mu_{1}, \mu_{2}, \mu_{3}$ are determined modulo q. To also have $(M, N)=1$, we need to ensure $\operatorname{rank}_{q} B=\ell$ where

$$
B=\left(\begin{array}{ccccc}
\left(\beta_{1}-\alpha_{5} \mu_{1}\right) / q & \left(\beta_{2}-\alpha_{5} \mu_{2}\right) / q & \left(\beta_{3}-\alpha_{5} \mu_{3}\right) / q & \gamma_{1}-\alpha_{5} \nu_{1} & \gamma_{2}-\alpha_{5} \nu_{2} \\
0 & * & * & \gamma_{3} & 0 \\
0 & 0 & \delta_{3} & 0 & 0 \\
0 & \delta_{5}-\alpha_{7} \mu_{4} & \delta_{6}-\alpha_{7} \mu_{5} & 0 & 0 \\
\delta_{7}-\alpha_{8}{ }^{t} \nu_{2} & \delta_{8}-\alpha_{8}{ }^{t} \nu_{4} & \delta_{9}-\alpha_{8}{ }^{t} \nu_{6} & 0 & 0
\end{array}\right) .
$$

We have δ_{3} square and invertible modulo q; so we need $\delta_{5}-\alpha_{7} \mu_{4}$ (which is square) to be invertible modulo q. By symmetry, we know $\left(\delta_{5}-\alpha_{7} \mu_{4}\right)^{t} \alpha_{7}$ is symmetric; writing $\mu_{4}=\mu_{4}^{\prime}+q \mu_{4}^{\prime \prime}$ where $\mu_{4}^{\prime}, \mu_{4}^{\prime \prime}$ vary over symmetric $d_{7} \times d_{7}$ matrices modulo $q,\left(\delta_{5}-\alpha_{7} \mu_{4}^{\prime}\right)^{t} \alpha_{7}$ does as well. (So there are $q^{d_{7}\left(d_{7}+1\right) / 2} \operatorname{sym}\left(d_{7}\right)$ ways to choose μ_{4} so that $\delta_{5}-\alpha_{7} \mu_{4}$ is invertible modulo q.) So to have B invertible, we need

$$
\left(\begin{array}{ccc}
\left(\beta_{1}-\alpha_{5} \mu_{1}\right) / q & \gamma_{1}-\alpha_{5} \nu_{1} & \gamma_{2}-\alpha_{5} \nu_{2} \\
0 & \gamma_{3} & 0 \\
\delta_{7}-\alpha_{8}{ }^{t} \nu_{2} & 0 & 0
\end{array}\right)
$$

to be invertible modulo q. We previously noted that γ_{3} is invertible modulo q, so we need

$$
\left(\begin{array}{cc}
\left(\beta_{1}-\alpha_{5} \mu_{1}\right) / q & \gamma_{2}-\alpha_{5} \nu_{2} \\
\delta_{7}-\alpha_{8}{ }^{t} \nu_{2} & 0
\end{array}\right)
$$

to be invertible modulo q, or equivalently, we need

$$
\left(\begin{array}{cc}
\left(\beta_{1}-\alpha_{5} \mu_{1}\right)^{t} \alpha_{5} / q & \left(\gamma_{2}-\alpha_{5} \nu_{2}\right)^{t} \alpha_{5} \\
\left(\delta_{7}-\alpha_{8}{ }^{t} \nu_{2}\right)^{t} \alpha_{8} & 0
\end{array}\right)
$$

to be invertible modulo q, and this latter matrix is symmetric modulo q.
Now we compute $\sum_{Y} \bar{\chi}_{q}(M, N) \chi_{q}\left(M^{\prime}, N^{\prime}\right)$. First, we choose a permutation matrix $G_{1} \in G L_{n}(\mathbb{Z})$ so that

$$
\begin{gathered}
E M^{\prime} G G_{1} \equiv\left(\begin{array}{cccc}
A_{1}^{\prime} & 0 & 0 & 0 \\
0 & A_{4}^{\prime} & 0 & 0 \\
0 & 0 & A_{5} & 0 \\
0 & 0 & A_{7} & A_{8}
\end{array}\right) \quad(q), \\
E N^{\prime t} G^{-1 t} G_{1}^{-1}=\left(\begin{array}{cccc}
B_{1}^{\prime} & B_{2}^{\prime} & B_{1} & B_{2} \\
B_{3}^{\prime} & B_{4}^{\prime} & B_{3} & B_{4} \\
B_{5}^{\prime} & B_{6}^{\prime} & B_{5} & B_{6} \\
B_{7}^{\prime} & B_{8}^{\prime} & B_{7} & B_{8}
\end{array}\right)
\end{gathered}
$$

(recall that since G_{1} is a permutation matrix, ${ }^{t} G_{1}^{-1}=G_{1}$). Then

$$
\begin{aligned}
M G_{1} & \equiv\left(\begin{array}{cccc}
A_{1}^{\prime} & & & \\
& A_{4}^{\prime} & & \\
& & & 0
\end{array}\right)(q), \\
& \\
N^{t} G_{1}^{-1} & \equiv\left(\begin{array}{ccccc}
* & * & 0 & * & * \\
* & * & * & * \\
0 & 0 & \left(B_{5}-A_{5} U_{3}-A_{6}{ }^{t} V_{4}\right) / q & B_{6}-A_{5} V_{4} \\
0 & 0 & B_{7}-A_{7} U_{3}-A_{8}{ }^{t} V_{4} & 0
\end{array}\right)
\end{aligned}
$$

Then we choose permutation matrices $E_{2}^{\prime}, G_{2}^{\prime} \in G L_{n-d_{1}-d_{4}}(\mathbb{Z})$ so that

$$
\begin{aligned}
& E_{2}^{\prime}\left(\begin{array}{cc}
A_{5} & 0 \\
A_{7} & A_{8}
\end{array}\right) G_{2}^{\prime} \equiv\left(\begin{array}{ccccc}
\alpha_{5} & & & & \\
& \alpha_{8} & & & \\
& & \alpha_{7} & & \\
& & & 0 & \\
& & & & 0
\end{array}\right) \quad(q), \\
& E_{2}^{\prime}\left(\begin{array}{cc}
\left(B_{5}-A_{5} U_{3}-A_{6}{ }^{t} V_{4}\right) / q & B_{6}-A_{5} V_{4} \\
B_{7}-A_{7} U_{3}-A_{8}{ }^{t} V_{4} & 0
\end{array}\right)^{t}\left(G_{2}^{\prime}\right)^{-1} \\
& \equiv\left(\begin{array}{ccccc}
\left(\beta_{1}-\alpha_{5} \mu_{1}\right) / q & \gamma_{2}-\alpha_{5} \nu_{2} & * & * & * \\
\delta_{7}-\alpha_{8}{ }^{t} \nu_{2} & 0 & * & 0 & * \\
0 & 0 & \delta_{5}-\alpha_{7} \mu_{4} & 0 & 0 \\
0 & 0 & * & \gamma_{3} & 0 \\
0 & 0 & 0 & 0 & \delta_{3}
\end{array}\right) \quad(q) .
\end{aligned}
$$

Set $E_{2}=\left(\begin{array}{ll}I_{d_{1}+d_{4}} & \\ & E_{2}^{\prime}\end{array}\right), G_{2}=\left(\begin{array}{ll}I_{d_{1}+d_{4}} & \\ & G_{2}^{\prime}\end{array}\right)$. Then

$$
\begin{aligned}
\chi_{q}\left(\operatorname{det}\left(E_{2} G_{1} G_{2}\right)\right) \chi_{q}\left(M^{\prime}, N^{\prime}\right) & =\chi_{q}\left(E_{2} E M^{\prime} G G_{1} G_{2}, E_{2} E N^{\prime t}\left(G G_{1} G_{2}\right)^{-1}\right) \\
& =\bar{\chi}_{q}\left(\operatorname{det} A_{1}^{\prime} \cdot \operatorname{det} A_{4}^{\prime} \cdot \operatorname{det} \alpha_{5} \cdot \alpha_{7} \cdot \operatorname{det} \alpha_{8}\right) \chi_{q}\left(\operatorname{det} \gamma_{3} \cdot \operatorname{det} \delta_{3}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\chi_{q}\left(\operatorname{det}\left(E_{2} G_{1} G_{2}\right)\right) \chi_{q}(M, N)= & \chi_{q}\left(E_{2} M G_{1} G_{2}, E_{2} N^{t}\left(G_{1} G_{2}\right)^{-1}\right) \\
= & \bar{\chi}_{q}\left(\operatorname{det} A_{1}^{\prime} \cdot \operatorname{det} A_{4}^{\prime}\right) \chi_{q}\left(\operatorname{det} \gamma_{3} \cdot \operatorname{det} \delta_{3}\right) \\
& \cdot \chi_{q}\left(\operatorname{det}\left(\begin{array}{cc}
\left(\beta_{1}-\alpha_{5} \mu_{1}\right) / q & \gamma_{2}-\alpha_{5} \nu_{2} \\
\delta_{7}-\alpha_{8}{ }^{t} \nu_{2}
\end{array}\right) \cdot \operatorname{det}\left(\delta_{5}-\alpha_{7} \mu_{4}\right)\right) .
\end{aligned}
$$

Thus
$\bar{\chi}_{q}(M, N) \chi_{q}\left(M^{\prime}, N^{\prime}\right)=\chi_{q}\left(\operatorname{det}\left(\begin{array}{cc}\left(\beta_{1}-\mu_{1}{ }^{t} \alpha_{5}\right) / q & \gamma_{2}-\nu_{2}{ }^{t} \alpha_{5} \\ \delta_{7}-{ }^{t} \nu_{2}{ }^{t} \alpha_{8} & 0\end{array}\right) \operatorname{det}\left(\delta_{5}-\mu_{4}{ }^{t} \alpha_{7}\right)\right) ;$
recall that we have already noted that

$$
\left(\begin{array}{cc}
\left(\beta_{1}-\mu_{1}{ }^{t} \alpha_{5}\right) / q & \gamma_{2}-\nu_{2}{ }^{t} \alpha_{5} \\
\delta_{7}-{ }^{t} \nu_{2}{ }^{t} \alpha_{8} & 0
\end{array}\right), \delta_{5}-\mu_{4}{ }^{t} \alpha_{7}
$$

are symmetric modulo q. Thus

$$
\sum_{\mu_{1}, \mu_{2}} \chi_{q}\left(\operatorname{det}\left(\begin{array}{cc}
\left(\bar{\alpha}_{5} \beta_{1}-\mu_{1}\right) / q & \bar{\alpha}_{5} \gamma_{2}-\nu_{2} \\
\bar{\alpha}_{8} \delta_{7}-{ }^{t} \nu_{2} & 0
\end{array}\right) \operatorname{det}\left(\bar{\alpha}_{7} \delta_{5}-\mu_{4}\right)\right)=\operatorname{sym}_{q}^{\chi}\left(d_{5}, d_{8}\right)
$$

and

$$
\sum_{\mu_{4}} \chi_{q}\left(\operatorname{det}\left(\bar{\alpha}_{7} \delta_{5}-\mu_{4}\right)\right)=\operatorname{sym}_{q}^{\chi}\left(d_{7}\right) .
$$

We have seen that μ_{2}, μ_{3} are determined modulo q, but unconstrained further modulo q^{2}, μ_{5}, μ_{6} are unconstrained modulo q^{2}, and $\nu_{1}, \nu_{3}, \nu_{4}, \nu_{5}, \nu_{6}$ are unconstrained modulo q. Hence there are

$$
q^{\left(j-d_{1}\right)\left(n-d_{1}-d_{4}+1\right)-d_{5}\left(j-d_{1}+d_{8}+1\right)-d_{7}\left(d_{7}+1\right) / 2} \operatorname{sym}\left(d_{7}\right) \operatorname{sym}\left(d_{5}, d_{8}\right)
$$

choices for Y so that M, N are integral with $(M, N)=1$. Hence, having fixed E, G and then summing over those Y that meet the conditions determined above,
$\sum_{Y} \bar{\chi}_{q}(M, N) \chi_{q}\left(M^{\prime}, N^{\prime}\right)=q^{\left(j-d_{1}\right)\left(n-d_{1}-d_{4}+1\right)-d_{5}\left(j-d_{1}+d_{8}+1\right)-d_{7}\left(d_{7}+1\right) / 2} \operatorname{sym}_{q}^{\chi}\left(d_{7}\right) \operatorname{sym}_{q}^{\chi}\left(d_{5}, d_{8}\right)$.
To simplify the formula for $A_{j}(d, t)$, we note that $r=j-d_{1}-d_{5}+d_{8}, d=$ $d_{1}+d_{4}=n-\ell, d^{\prime}=d+t, t=d_{5}+d_{7}+d_{8}, d_{1}+d_{5}+d_{7} \leq j, d_{4}+d_{8} \leq n-j$, and $d_{8} \leq d_{5}$. Using this information yields the formula for $a_{j}\left(\ell ; d_{1}, d_{5}, d_{8}\right)$. Also, we know $\beta(m, s)=\beta(m, m-s)$, so

$$
\begin{aligned}
& \beta\left(d_{1}+d_{4}+d_{5}, d_{1}\right) \beta\left(d^{\prime}, d_{1}+d_{4}+d_{5}\right) \beta\left(d_{4}+d_{5}, d_{4}\right) \\
& \quad=\frac{\mu\left(n-\ell+d_{5}, d_{1}\right) \mu\left(n-\ell+t, t-d_{5}\right) \mu\left(n-\ell-d_{1}+d_{5}, d_{5}\right)}{\mu\left(d_{1}, d_{1}\right) \mu\left(t-d_{5}, t-d_{5}\right) \mu\left(d_{5}, d_{5}\right)} \frac{\mu\left(t, d_{5}\right)}{\mu\left(t, d_{5}\right)} \\
& \quad=\frac{\mu\left(n-\ell+, d_{1}+t\right) \mu\left(t, d_{5}\right)}{\mu\left(d_{1}, d_{1}\right) \mu(t, t) \mu\left(d_{5}, d_{5}\right)} \\
& =\frac{\mu(n-\ell+t, t) \mu\left(n-\ell, d_{1}\right) \mu\left(t, d_{5}\right)}{\mu(t, t) \mu\left(d_{1}, d_{1}\right) \mu\left(d_{5}, d_{5}\right)} \\
& =\beta(d+t, t) \beta\left(d, d_{1}\right) \beta\left(t, d_{5}\right) .
\end{aligned}
$$

This gives us the formula for $A_{j}(d, t)$, subject to the constraints on the d_{i}. Taking $0 \leq d_{1} \leq j, 0 \leq d_{5} \leq j-d_{1}$, and $0 \leq d_{8} \leq d_{5}$, the summand in the formula for $A_{j}(d, t)$ is 0 if the other constraints on the d_{i} are not met.

As discussed after Theorem ??, we know we have a basis $\left\{\widetilde{\mathbb{E}}_{\rho}\right\}_{\rho}$ of simultaneous eigenforms for the space of Eisenstein series of degree n, weight k, square-free level \mathcal{N}, and character χ, and these are eigenforms for all Hecke operators $T(p), T_{j}\left(p^{2}\right)$ where p is any prime. Below we compute the eigenvalues for $T_{j}\left(q^{2}\right)$ (where, as above, $q \mid \mathcal{N})$; in later work we compute the eigenvalues for $T(p), T_{j}\left(p^{2}\right)$ for p any prime not dividing \mathcal{N}.

Corollary 4.5. Let ρ be a multiplicative partition of \mathcal{N}, and suppose $\mathbb{E}_{\rho} \neq 0$. Then with $d=\operatorname{rank}_{q} M_{\rho}$, for a prime $q \mid \mathcal{N}$ and $d=\operatorname{rank}_{q} M_{\rho}$, we have $\widetilde{\mathbb{E}}_{\rho} \mid T_{j}\left(q^{2}\right)=$ $\lambda_{\rho, j}\left(q^{2}\right) \widetilde{\mathbb{E}}_{\rho}$ where
$\lambda_{\rho, j}\left(q^{2}\right)=q^{j d} \sum_{d_{1}=0}^{j} q^{d_{1}\left(2 k-2 d-j+d_{1}-1\right)} \chi_{\mathcal{N}_{0}}\left(q^{2 d_{1}}\right) \chi_{\mathcal{N}_{n}}\left(q^{2\left(j-d_{1}\right)}\right) \beta\left(d, d_{1}\right) \beta\left(n-d, j-d_{1}\right)$.

Proof. By Corollary 4.3 and Theorem 4.4, we know that $\widetilde{\mathbb{E}}_{\rho}$ is an eigenform for $T_{j}\left(q^{2}\right)$ with eigenvalue $A_{j}(d, 0)$. In general, with $r=j-d_{1}-d_{5}+d_{8}$, and prime $q^{\prime} \mid \mathcal{N} / q$ so that $d^{\prime}=\operatorname{rank}_{q^{\prime}} M_{\rho}$, we know $\chi_{q^{\prime}}^{2}=1$ for $q^{\prime} \mid \mathcal{N} /\left(\mathcal{N}_{0} \mathcal{N}_{n}\right)$ and thus

$$
\chi_{q^{\prime}}\left(D_{d_{1}, r} M_{\rho} D_{j}^{-1}, D_{d_{1}, r} D_{j}\right)= \begin{cases}\chi_{q^{\prime}}\left(q^{d_{5}-d_{8}}\right) & \text { if } 0<d^{\prime}<n \\ \chi_{q^{\prime}}^{2}\left(q^{d_{1}}\right) \chi_{q^{\prime}}\left(q^{d_{5}-d_{8}}\right) & \text { if } d^{\prime}=0 \\ \chi_{q^{\prime}}^{2}\left(q^{j-d_{1}}\right) \chi_{q^{\prime}}\left(q^{-d_{5}+d_{8}}\right) & \text { if } d^{\prime}=n\end{cases}
$$

Since in the sum for $A_{j}(d, 0)$ we have $d_{5}, d_{8}=0$, the corollary follows.
L.H. Walling, Department of Mathematics, University Walk, University of Bristol, Bristol BS8 1TW England

[^0]: 1991 Mathematics Subject Classification. 11F41.
 Key words and phrases. Siegel modular forms, Eisenstein series, Hecke operators.

