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Abstract

In geostatistics, and also in other applications in science and engi-

neering, it is now common to perform updates on Gaussian process

models with many thousands or even millions of components. These

large-scale inferences involve modelling, representational, and compu-

tational challenges. We describe a visualisation tool for large-scale

Gaussian updates, the ‘medal plot’. The medal plot shows the up-

dated uncertainty at each observation location, and also summarises

the sharing of information across observations, as a proxy for the shar-

ing of information across the state vector (or latent process). As such,

it reflects characteristics of both the observations and the statistical

model. We illustrate with an application to assess mass trends in the

Antarctic Ice Sheet, for which there are strong constraints from the

observations and the physics.

Keywords: Variance update, variance bound, medal plot,

spatial statistics

1 Introduction

Statisticians are now attempting inferences of a scale and complexity that

were unthinkable even a few years ago. This is for a number of reasons:

1. Computers are more powerful, and have larger memories,

2. New statistical techniques are available to represent judgements on

large collections of random quantities, and to compute on those judge-

ments,

2



3. Large new datasets, including from remote sensing, are becoming avail-

able, and

4. There is a political need, and research funding, to address inference for

complex systems, notably environmental systems.

Similar assessments have been given by Kalnay (2002, ch. 1, concerning me-

teorology) and Smith (2010, ch. 1, concerning decision support). In our

application, outlined below, the state vector has about 105 components, and

there are 3.5× 105 observations. Statistical inferences of this scale are most

easily handled using a Gaussian process prior, and the linearisation of the

observation operator; or else the use of an optimisation approach that comes

to very much the same thing (e.g., as in data assimilation for meteorology,

see Apte et al., 2008).

There are two major challenges in this type of inference. The first is

modelling: constructing a statistical model over observables and predictands

which embodies, in its structure and its values, the beliefs of the domain

experts (e.g., glaciologists, in our application in Section 4). At the root of

this challenge is the partial and somewhat qualitative nature of expert belief,

in large and complex systems. It often falls to statisticians to implement the

model in all of its details, the output of which is then discussed with the

experts. At this point an expert may assert that something looks wrong.

Together, the statisticians and the experts trace this ‘wrongness’ back to a

modelling choice made by the statisticians or, surprisingly often, unrealistic

values supplied as data or beliefs (measurement error covariances, for exam-

ple). In this process, which can be iterated several times, it is very helpful
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to have simple visualisations of model behaviour, which both experts and

statisticians can interpret.

The second challenge is computational. There is a ‘book-keeping’ prob-

lem, of representing the joint distribution of observables and predictands

which may have very different spatial and/or temporal scales, and encom-

pass multiple interacting processes. This representation has to be compliant

with efficient computation which means, in effect, that the representing and

computing cannot be separated, but must be treated together. This is a fer-

tile ground for coding errors, and it is very helpful to have a simple necessary

condition for correctness that is easily implemented and checked.

We propose a tool, the ‘medal plot’, that addresses both of these needs.

It is almost obvious that the updated variance of any measured linear com-

bination of the state vector has to be no larger than the smaller of its initial

variance and the observation error variance. We prove this result for a collec-

tion of observations (Theorem 1). There is additional information available

in the source of the bound (initial variance or observation error variance),

and in the relation of the updated variance to its bound. This leads naturally

to a visualisation tool in updates of random fields, for which the linear com-

binations are often localised in the domain. As no reference is made to the

value of the observations, this diagnostic can be used before the observations

are made available, for example in experimental design (e.g., Krause et al.,

2008).

Section 2 presents some theoretical results concerning Gaussian or, more

generally, second-order updates. Section 3 describes our ‘medal plot’ for

visualisation, whose structure and interpretation follows directly from our
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theoretical results. Section 4 illustrates the utility of the medal plot in a

large and complicated inference for mass trends in the Antarctic Ice Sheet.

2 Theoretical results

Let X be the collection of Gaussian random quantities, and Y := AX be

the known linear combinations which are measured, where A is sometimes

termed the ‘incidence matrix’. Let Z := Y +E be the observations, including

observation error E. Denote the variance matrix of Y as Σ, and take the

observation error to be independent of X, with variance matrix T . If V and

W are two variance matrices, write V ≤ W exactly when W − V is non-

negative definite. Then we have the following result, which applies not just

in the Gaussian case, but also for more general second-order updating, such

as the Bayes linear approach described in Goldstein and Wooff (2007).

Theorem 1. Let Σ∗ := Var(Y |Z) be the updated variance matrix of Y . If

Σ + T is non-singular, then Σ∗ ≤ Σ and Σ∗ ≤ T .

Proof. As Cov(Y ,Z) = Σ and Var(Z) = Σ + T , the updated variance of Y

satisfies

Σ∗ = Σ− Σ(Σ + T )−1Σ (1)

(see, e.g., Mardia et al., 1979, chapter 3). Hence Σ∗ ≤ Σ because the second

term on the righthand side of (1) is non-negative definite. If we can show

that

Σ− Σ(Σ + T )−1Σ = T − T (Σ + T )−1T, (2)

then (1) and the same reasoning implies that Σ∗ ≤ T , completing the proof.
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Start with the identities

0 =

 Σ− Σ(Σ + T )−1(Σ + T ),

T − T (Σ + T )−1(Σ + T ).
(3)

Equating the two terms on the righthand side gives

Σ− Σ(Σ + T )−1Σ− Σ(Σ + T )−1T = T − T (Σ + T )−1T − T (Σ + T )−1Σ.

The final terms on each side of this expression are equal, because they are

symmetric, and (2) is proved.

It is important that this result holds for singular Σ, provided that Σ + T

is non-singular. This is because there may be replications in the observa-

tions; e.g., the same component of X observed several times. This would

be represented as duplicate rows in A. Alongside replications, there may

be more observations than components of the state vector; e.g., for multiple

instruments with overlapping footprints. This would be represented by an A

with more rows than columns. In both of these cases

Σ = AVar(X)AT

would be singular (non-negative definite but not positive definite). No matter

what the form of A, a non-singular T is sufficient for Σ+T to be non-singular

(positive definite). Thus Theorem 1 always holds if there is measurement

error.

A further useful result concerns the relationship between the joint update

6



Var(Yi |Z) and the local update Var(Yi | Zi):

Var(Yi |Z) ≤ Var(Yi | Zi) ≤ Tii for each i. (4)

This ordering of global, local, and observation error variances is used in our

visualisation tool, presented in Section 3. The first inequality is a standard

result for second-order updates (see, e.g., Goldstein and Wooff, 2007, sec-

tion 5.2), while the second inequality follows from Theorem 1. The second

inequality in (4) can be verified by direct calculation:

Var(Yi | Zi) = Σii −
Σii · Σii

Σii + Tii
=

Σii · Tii
Σii + Tii

≤ Tii. (5)

This expression shows that there is a limit to how much relative effect a local

update can have. Taking Tii ≤ Σii, for concreteness, and writing κ := Tii/Σii,

inf
Tii≤Σii

Var(Yi | Zi)
Tii

= inf
κ≤1

1

1 + κ
=

1

1 + 1
=

1

2
. (6)

In other words, information from Zi alone can push the updated variance of

Yi down to half of its upper bound, and this occurs when Σii = Tii. Eq. (5)

also shows that if Tii � Σii then Var(Yi | Zi) ≈ Tii. In other words, the

variance of the local update tends to the observation error variance as the

observation error variance becomes small relative to the initial variance.

The case where one of Σ or T is much larger than the other occurs fre-

quently in practice, and it is interesting to consider the limiting case where,

for concreteness, T becomes vanishingly small relative to Σ. However, there

is a difficulty with this case: if Σ is singular, then a ‘vanishingly small’ T will
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ultimately conflict with the requirement that Σ + T be non-singular. But, as

explained above, it is common for Σ to be singular. Therefore the following

result has an additional condition relative to Theorem 1, but it is powerful

when this condition holds.

Theorem 2. Let Σ and T both be non-singular, and define κ := ‖TΣ−1‖,

where ‖·‖ is any induced p-norm. If κ < 1 then

‖Σ∗ − T‖ ≤ ‖Σ
−1‖ ‖T‖2

1− κ
. (7)

Proof. Start from (1) and the top branch of (3) to show that

Σ∗ = Σ(Σ + T )−1T.

Now under the conditions of the Theorem both Σ and T are non-singular,

and this expression can be rearranged to show that

Σ∗ = (Σ−1 + T−1)−1

(see also Rue and Held, 2005, section 2.3.3). Then (7) follows from a standard

result about inverses and perturbations (see, e.g., Golub and Van Loan, 1996,

Theorem 2.3.4).

In other words, if both Σ and T are non-singular then as T becomes

small relative to Σ, so the updated variance converges to T . However, it

is important to appreciate that T non-singular is not, on its own, sufficient

for this convergence. This is seen in the following counter-example with a
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singular Σ:

Var(X) = 106

1.0 0.4

0.4 1.0

 , A =


1.0 1.0

1.0 0.0

0.0 1.0

 , T =


1.0 0.0 0.0

0.0 0.1 0.0

0.0 0.0 0.1

 ,

for which, informally, T � Σ = AVar(X)AT . But

Σ∗ =


0.17 0.08 0.08

0.08 0.09 −0.01

0.08 −0.01 0.09

 .

It can be checked that Σ∗ ≤ T , as required by Theorem 1, but clearly Σ∗ 6≈ T .

This combination of a singular Σ with both ‘large footprint’ imprecise obser-

vations and ‘small footprint’ precise observations occurs in our illustration

in Section 4.

Finally, Theorems 1 and 2 provide a multivariate second-order generali-

sation of L.J. Savage’s principle of stable inference (see, e.g., Savage et al.,

1962; Edwards et al., 1963). We state it here for completeness, although it

does not feature in what follows. The updated variance in this statement is

a general second-order update, but applies in particular when Y and E are

both Gaussian.
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Theorem 3 (Principle of stable inference, multivariate). Let Y be a vector of

random quantities and Z be a vector of noisy observations on the components

of Y . Define the measurement error as E := Z − Y . Let E ⊥⊥ Y and

Var(E) be non-singular. Then Var(Y |Z) ≤ Var(E). Furthermore, if Var(Y )

is also non-singular and Var(E)� Var(Y ) then Var(Y |Z) ≈ Var(E).

This principle underlies the common ‘plug-in’ approximation

Y | zobs D

≈ zobs + E,

where ‘
D

≈’ denotes ‘is approximately distributed as’. If the observation errors

are uncorrelated, then the updated variance matrix is approximately diago-

nal. Our results indicate that the critical modelling judgement under which

this approximation provides a conservative or approximate assessment of un-

certainty about the true values Y is that the (additive) measurement error

E is uncorrelated with Y . The other conditions seem much less demanding

in practice.

3 Visualisation: the ‘medal plot’

We would like to visualise various features of the variance update, particularly

for those components of Y which correspond to locations. These features

include, for a specified Yi: what the upper bound is, and where it comes from;

what the updated variance is; and what contribution is made by observations

other than Zi.
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3.1 Construction of the ‘medal plot’

We assume that each Yi corresponds to a location in a domain which can

be visualised: typically this would be the time domain (see Section 3.2) or

the 2D spatial domain (see Section 4). Each Yi is represented by a medal of

three concentric disks of decreasing radius:

1. A red/blue disk representing the upper bound on the updated variance

of Yi, either red where the prior provides the upper bound, or blue

where the observation error provides the upper bound.

2. A white disk representing the updated variance using Zi alone (local

update).

3. A gold disk representing the updated variance using all observations

(joint update).

In all cases, the radius of the disk is proportional to the standard deviation.

The medals can be scaled so that when displayed they do not overlap

by more than is necessary to preserve the systematic patterns. When there

is an overlap, it is more effective to plot all of the red/blue disks first, and

then to overplot with the white disks, and then with the gold disks. In

some applications, including our illustration below, it is more effective to use

semi-transparent colours, so that underlying map features are preserved.

For a given medal at location i, we might be particularly interested in

the thickness of the white annulus. This thickness shows us how much of the

update of Yi is coming from observations other than Zi, with a thick annulus

showing that other observations are making a large contribution (i.e., driving
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the updated variance well below what is achieved by Zi alone). When we

compare the medals across the domain of the observations we can see at a

glance how the localisation of the update varies, by comparing the widths of

the white annuli. This is illustrated in the next subsection.

3.2 Toy example

Here is a 1D example in which it is possible to visualise the individual un-

certainties along with the medals. Figure 1 shows a stationary process which

is updated by irregularly-spaced observations with varying error standard

deviations. The prior process has a correlation length of 30, defined to be

the distance at which the correlation drops to 0.05.

[Figure 1 about here]

Take the observation in the centre first (at location 55). The rim of its

medal is blue, because the upper bound on the updated variance comes from

the observation error. This location is not close enough to the other observa-

tions for the local update to be different from the global update. Therefore

the white annulus between the inner and outer rings has no discernable thick-

ness.

Now consider the observations on the lefthand side, and ignore, initially,

the single observation with a small variance. As with the centre observation,

the upper bound on the updated variances comes from the observation errors,

and so the rims of the medals are blue. All of the rims are the same thickness,

because the ratio of the prior variance to the observation error variance is

constant. But the white annulus thickens towards the centre of the group,

where there are more observations within the correlation length. These extra
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observations drive down the variance relative to what can be achieved using

only the observation itself.

The single observation with the small variance (at location 26) demon-

strates another aspect of the variance update. This observation is in the

centre of the group, and, by the logic above, it ought to have a thick white

annulus. But its observation error variance is much smaller than its prior

variance, and then Theorem 2 indicates that the updated variance (gold cir-

cle) will be close to the upper bound (thin blue rim), as shown. Effectively,

the difference between a local and a global update has been squeezed out.

On the righthand side, the upper bound on the updated variances comes

from the prior for the process, and so the rims are red. The thickness of

the annulus follows the same pattern as for the lefthand side. The difference

is that the prior variance and the observation error variance are almost the

same size. In this case the rim attains nearly maximum relative thickness, as

shown in (6). The maximum rim width is 1−1/
√

2 ≈ 0.3 of the total radius.

Qualitatively, all of these properties can be read off Figure 1, once it is

also known that the correlation length is 30. In other words, the medals in

the 1D case provide a quick visual summary of other information which can

also be found in the plot. The value of the medals becomes apparent in 2D

spatial applications, where it is not possible to display, on one figure, the

prior variances, the observation error variances, the updated variances, and

the correlation lengths (which might vary spatially). But useful summaries

of these features can be inferred, at least approximately, from the full set of

medal plots. We illustrate this in Section 4, with a 2D spatial application for

Antarctica.
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4 Illustration

Our illustration is part of a mass-balance estimate for the Antarctic Ice

Sheet (AIS), which is the world’s largest freshwater reservoir. Here we pro-

vide a brief outline of our inference, which we describe in detail elsewhere;

see Zammit-Mangion et al. (2014, 2015b) for the statistical modelling, and

Zammit-Mangion et al. (2015a) for a non-technical summary. The illus-

tration shows the iteration between visualisation, statistical modelling, and

observations which is a necessary part of building confidence in the resulting

inference.

In order to determine the AIS contribution to sea-level change, the change

in height of the AIS over a fixed time period must be decomposed into the

sum of four main processes: change in the height of the underlying rock,

effect of ice dynamics, firn compaction (densification of past years’ snow),

and the net effect of surface processes (precipitation, run-off, melt, and re-

freeze). Quantifying the contribution to sea-level change requires summing

the changes in height of ice, firn, and surface processes inside the ground-

ing line (see the caption to Figure 2) over the AIS, and then mapping those

changes to mass changes using specified densities.

We have observations from three types of instrument. First, a small num-

ber of GPS receivers on rocky outcrops, which give accurate observations for

change in height of the underlying rock (at those outcrops). Second, satellite

altimetry, which gives observations of height change (i.e., summing the four

processes) along specified transects. Third, satellite gravimetry (Gravity

Recovery and Climate Experiment, or GRACE), which provides measures
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of mass change, and therefore sees a linear combination of change in the

height of the underlying rock, the ice dynamics and surface processes (firn

compaction changes height but not mass). These three instruments have

very different spatial footprints, with GPS being a point observation, altime-

try having a footprint of about 1 km2 (treated as a point observation), and

gravimetry having a footprint of about 1600 km2.

This is an inherently statistical problem because: (i) we have three in-

struments for four fields; (ii) there are substantial observation errors; (iii) the

footprints of the instruments are of such different sizes; (iv) the observations

do not cover the whole of the AIS; and (v) uncertainty assessment is a cru-

cial output for impact studies related to sea-level rise. The problem becomes

soluble once we incorporate prior information about the processes, notably

their variabilities and their characteristic length scales, both of which can

vary spatially. As well as the four fields, our unknowns include statistical

parameters for the processes and in the observation equation.

For this illustration we used finite element basis functions to model each

of the four processes (see, e.g., Lindgren et al., 2011), with variable resolution

to account for greater heterogeneity near the coastline. We used a blocked

Gibbs sampler to update the processes conditional on the statistical param-

eters, and to update the statistical parameters conditional on the processes.

Then we plugged in the maximum a posteriori estimate of the statistical

parameters (which were well-constrained), and redid the update of the fields,

to draw the medal plots. We illustrate with a medal plot for the gravimetry

observation footprints for 2006, shown in Figure 2. Recollect that the medals

show the update from all observations—the gravimetry linear combinations

15



are updated not just by the gravimetry observations, but also by GPS and

altimetry.

[Figure 2 about here]

We provide our rationalisation of the features of the ‘final’ medal plot,

shown in Figure 2. Our rationalisation is expressed in terms of our under-

standing of the processes, the observations, and our modelling choices.

First, almost all of the medals have blue rims, showing that the up-

per bound on the updated variance comes from the observation error vari-

ance, not the initial variance. There is one exception, which is at about

(+800 km,+250 km), which we checked. At this location our model for mass

trends implies a small initial expectation and variance, because the ice ve-

locity and expected accumulation is so small. The rims are all very thin,

indicating (in the case of the blue rims) that the initial variance is much

larger than the observation error variance. (In fact, in our plotting we ex-

pand the rims slightly, where they would otherwise be hardly visible.) This

is consistent with our choice of a relatively large prior variance for each of

the four fields.

Second, there are clear spatial patterns in the observation error uncertain-

ties. These uncertainties are provided along with the GRACE observations,

although we chose to aggregate to larger spatial footprints in order to decor-

relate the measurement uncertainties. These patterns in the uncertainties

are related to physical features that induce variations in the GRACE obser-

vations for successive overpasses of the satellites. For example, uncertainty

outside the grounding line tends to be small, because the (floating) ice is in

hydrostatic equilibrium. Around the grounding line the uncertainty tends to
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be relatively large because of variations in precipitation and ice velocity. The

large medal at the South Pole reflects a GRACE observation with a larger

spatial footprint.

Third, the globally updated uncertainties are much smaller than the lo-

cally updated uncertainties, as indicated by a thick light-blue annulus (which

would be white in the colour-scheme of Section 3). Therefore much of the

reduction in uncertainty at each location is coming from other observations.

Some of this will be from other GRACE observations, because GRACE de-

tects height changes in the underlying rock, which has a very long correlation

length (i.e., is spatially very stiff). But some of it might also come from the

altimetry observations. The correlation length of surface processes varies

spatially, but is it relatively large around the South Pole. This is interesting

because the altimetry satellite cannot over-fly the South Pole, and so there

is no local altimetry contribution to the South Pole GRACE medal. Never-

theless, even here the contribution from other observations is substantial.

Figure 2 and the description above represents the end-point of a long

modelling process, during which time we produced several alarming-looking

medal plots, some of which indicated implementation issues, and some of

which indicated modelling issues. Our progress towards a plausible visuali-

sation was important in building the team’s confidence in the results: glaciol-

ogists and statisticians together. Medal plots can be computed at little cost,

and we believe they will be helpful across the environmental sciences, where

it is now common to assimilate observations within a hierarchical spatial-

temporal framework (e.g., Cressie and Wikle, 2011).
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Figure 1: Toy problem showing medals for various configurations of the prior
variance and observation error variance, and the proximity of other observa-
tions. The prior process is stationary with standard deviation 2 and correla-
tion length 30. See Section 3.2 for details.
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Figure 2: Medal plot for GRACE footprints over Antarctica, with distances
in kilometres. The solid line is the grounding line (where the ice begins to
float), and the dashed line is the coastline (which includes the floating ice).
See Section 4 for details of the application and observations. We have used
a semi-transparent blue instead of white for the annulus.
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