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Abstract: Low carbon manufacturing has become a strategic objective for many developed 

and developing economies. This study examines the role of co-opetition in achieving this 

objective. We investigate the pricing and emissions reduction policies for two rival 

manufacturers with different emission reduction efficiencies under the cap-and-trade policy. 

We assume that the product demand is price and emission sensitive. Based on 

non-cooperative and cooperative games, the optimal solutions for the two manufacturers are 

derived in the purely competitive and co-opetitive market environments respectively. Through 

the discussion and numerical analysis, we uncovered that in both pure competition and 

co-opetition models, the two manufacturers’ optimal prices depend on the unit price of carbon 

emission trading. In addition, higher emission reduction efficiency leads to lower optimal unit 

carbon emissions and higher profit in both the pure competition and co-petition models. 

Interestingly, compared to pure competition, co-opetition will lead to more profit and less 

total carbon emissions. However, the improvement in economic and environmental 

performance is based on higher product prices and unit carbon emissions. 

Keywords: Low carbon manufacturing, co-opetition, carbon emission reduction, green 

technology investment, game theory. 
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1 Introduction 

Decades of research has demonstrated that  the fossil fuel leads to a higher carbon dioxide 

and greenhouse gases in the atmosphere which poses threats and challenges to human lives 

(Tang and Zhou, 2012; Chen and Hao, 2015). The recent economic recovery of many 

industrialized countries and the continuing industrialization of emerging economies have 

contributed to further global carbon emissions. Across different industry sectors, the 

manufacturing industry is often the single largest contributor to carbon emissions in many 

developed and developing economies (Fysikopoulos et al., 2014). Carbon footprint, 

historically defined as the total set of greenhouse gas emissions caused by an organization, 

event, product or person, has become a key evaluation factor when companies choose 

suppliers or customers make a purchase decision. For example, Walmart, Tesco, Hewlett 

Packard, and Patagonia require their suppliers to complete the carbon footprint certification 

and to guide customers to consider carbon footprint index rather than just the price and 

quality (Sundarakani et al., 2010). Faced with novel realities, new generation of 

manufacturing process technologies has emerged (Chryssolouris et al., 2008; Fysikopoulos et 

al., 2014). Low carbon manufacturing defined as the manufacturing process that produces low 

carbon emission intensity through the effective and efficient use of energy and resources 

during the process (Tridech and Cheng, 2011; Chryssolouris, 2013).  It has therefore become 

an important area of public policy and scholarly enquiry set against the background of 

increasing political and societal concerns about carbon emissions. 

One response from regulatory and policy makers is to introduce various carbon 

emissions reduction policies such as mandatory carbon emission capacity and carbon 

emission taxes. In addition, many governments have also supplemented traditional “command 

and control” with emission trade schemes through which creating financial incentives for 

companies to invest in green innovations (Adit and Dutta, 2004; Stavins, 2008; Chaabane et 

al., 2012; Lukas and Welling, 2014). Among these schemes, cap-and-trade is one of the most 

influential regulatory policies, which provides the manufacturing sector a flexible market 

mechanism and a viable carbon emission reduction method. Manufacturers are motivated to 

reduce their carbon emissions level by improving energy efficiency of production process 

through green technology investment. While this policy may play a key role in achieving low 
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carbon manufacturing, it will certainly affect firms’ decisions at both strategic and operational 

levels. 

In similar vein, the general public has also become increasingly sensitive to 

environmental issues. Buying low carbon products has become an irreversible trend. More 

importantly, this trend is no longer simply the choice of a few eco-conscious consumers, but 

has now shifted into the mainstream market (Tsen et al., 2006; Fraj and Martinez, 2007; 

Kanchanapibul et al., 2014). For example, Echeverría et al. (2014) indicated that consumers 

are willing to pay a premium price to products with carbon footprint. Consequently, carbon 

emission attribute of products has become an important factor influencing purchasing 

decisions and product demands. The growing number of environmental consciousness 

consumers gives manufacturing firms an economic incentive to invest in green technologies 

and to achieve low carbon manufacturing. At least, the emission sensitive demand should be 

considered when making the product pricing and emission reduction decisions. 

From manufacturers’ perspective, there is increasing realisation of the importance of 

carbon emissions reduction. One important strategic response from the manufacturing sector 

is cooperation between autonomous firms such as supply chain collaboration, strategic 

alliances, and eco-industrial parks, focusing on inter-organizational interactions to reduce 

carbon emissions and other negative environmental effects (Kolk and Pinkse, 2004; Tudor et 

al., 2007; Theißen and Spinler, 2014). The cooperation between competing firms for low 

carbon manufacturing is closely associated to the notion of co-opetition introduced by 

Brandenburger and Nalebuff (1996), which refers to the interdependence that entails 

competing and collaborating elements, with rivalry as well as collaborative mechanisms to 

maximize individual profits. Although the benefits of environmental collaboration have been 

widely discussed in the literature, to the best of our knowledge, no research has examined the 

role of co-opetition in low carbon manufacturing. Our research aims to fill this gap in the 

literature by examining the following key questions:  

(1) Under the cap-and-trade policy, what effect does the manufacturers’ carbon emission 

reduction efficiency have on their optimal prices, optimal green technology 

investments, and maximum profits? 

(2) How to develop a pricing policy and green technology investment strategy to help 



4 

manufacturers to maximize their economic benefit while minimizing the negative 

environmental impact? 

(3) What effect does the purely competitive and co-opetitive relationships have on low 

carbon manufacturing? 

To answer these questions, we consider two competing manufacturers with different 

emission reduction efficiencies under the cap-and-trade policy. They produce a same product 

and sell to end-users with a deterministic demand which is influenced by their own and 

competing manufacturer’s prices and unit carbon emissions. Using the non-cooperative and 

cooperative games, our analysis attempts to derive the optimal pricing policies and green 

technology investment decisions for the two manufacturers in purely competitive and 

co-opetitive environments respectively. We also examine the effect of emission reduction 

efficiency and unit price of carbon emission trading on the manufacturers’ optimal policies 

and maximum profits. Through a comparison of the optimal solutions between the purely 

competitive scenario and the co-opetitive scenario, this research intends to understand the role 

that co-opetition has in low carbon manufacturing. 

The rest of this paper is organized as follows. A survey of related literature is presented 

in Section 2. Section 3 provides the model formulation and assumptions. In Section 4 and 5, 

we investigate the pricing and emission reduction policies for two competing manufacturers 

in a purely competitive scenario and a co-opetitive scenario respectively. In Section 6, we 

focus on the effect of emission reduction efficiency on the two competing manufacturers’ 

optimal decisions. The numerical examples presented in Section 7 analyse the effect of 

co-opetition on the optimal policies, total carbon emissions and maximum profits. Finally, we 

conclude our research findings and highlight possible future work in Section 8. 

 

2 Literature review 

The literature reviewed here primarily relates to three streams of research: (i) effect of 

cap-and-trade policy on firms’ decisions, (ii) models with price and emission sensitive 

demand, and (iii) the impact of cooperation on environmental and organizational 

performances. 

The first relevant stream of literature looks into impact of cap-and-trade policy on green 
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operations and supply chain management. Among the earlier works, Dobos (2005) studied the 

effect of cap-and-trade policy on firms’ decision and then obtained the optimal production 

quantity. Letmathe and Balakrishnan (2005) constructed two models with mandatory carbon 

emissions capacity, carbon emissions tax and cap-and-trade policies. They obtained the 

optimal product structure and production quantity, and then analysed the effects of cap, tax 

and trade price on optimal structure and optimal product quantity. Rong and Lahdelma (2007) 

developed a production model of a thermal power plant under cap-and-trade policy, and the 

optimal production quantity was obtained using stochastic optimization methods. More 

recently, Hua et al. (2011) studied a firm’s optimal order quantity under deterministic demand 

with cap-and-trade. They analysed the effects of carbon cap-and-trade policy on optimal order 

quantity, total carbon emissions and total cost. Bouchery et al. (2012) expanded the traditional 

EOQ model to multi-objective decision model and obtained optimal order quantity under 

carbon emissions constraint. In addition, they discussed the effect of carbon emissions 

policies on optimal order quantity. Song and Leng (2012) investigated the single-period 

newsvendor problem with carbon emissions policies and analysed the effect of different 

emissions policies on firm’s order quantity. Their findings indicate that the optimal condition 

increase profits and reduce carbon emissions. Zhang and Xu (2013) studied a multi-item 

production firm which faced a stochastic demand and obtained the optimal product quantity. 

Their research also discussed the impact of carbon cap and trade price on optimal policy and 

profits. Similarly, Rosic and Jammernegg (2013) studied a single retailer with dual sourcing 

model and obtained the optimal order quantity and optimal order sourcing under 

cap-and-trade and carbon tax. Benjaafar et al. (2013) illustrated the impact of operation 

decisions on carbon emissions through a series of models. Their findings demonstrate that 

adjustments to the ordering policy can significantly reduce emissions without considerably 

increasing cost whereas the choice of pollution control mechanisms e.g. cap-and-trade can 

achieve the same emission reduction but incurring substantial differing costs. Toptal et al. 

(2014) studied a single manufacturer’s joint decisions on inventory replenishment and 

emission reduction investment under condition of carbon cap, tax and cap-and-trade policies. 

Although the literature on firms’ optimal decisions under cap-and-trade policy is rich as 

illustrated above, most of them do not take price and emission sensitive demand into 
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consideration.  

Among the few studies that consider price and emission sensitive demand, Arora and 

Gangopadhyay (1995), Bansal and Gangopadhyay (2003) found that when a product has 

low-carbon attribute, consumers are willing to pay additional prices for the product.as a result, 

the manufacturer is willing to win customers by reducing carbon emissions. Other studies 

such as Geffen and Rothenberg (2000), Laroche et al. (2001), Innes and Robert (2006), Zhu 

and Sarkis (2007), Liu et al. (2012) and Zhang (2015) also demonstrated that carbon emission 

reduction strategy is influenced by customer environmental consciousness. Yalabik and 

Fairchild (2011) and Choudhary et al. (2015) discussed a manufacturer who faces the pressure 

of regulatory penalties and reduced demand as a result of emissions and obtained the optimal 

price and optimal emissions level. Sengupta (2012) studied the pricing behaviour of a firm 

with environmentally conscious consumers. The research findings pointed out that when firms 

realize that consumers are environmentally sensitive, they would directly disclose their 

environmental performance to obtain better market response. Nouira et al. (2014) examined 

the effect of emission sensitive customers on manufactures’ profits with conditions of price 

sensitive demand and price and emission sensitive demand. Du et al. (2015) studied a 

two-stage supply chain consisting of one single emission dependent manufacturer and one 

single emission permit supplier under cap-and-trade policy but not mention price sensitive 

demand. Although there are a few studies taking price and emission sensitive demand into 

account, often only one manufacturer is considered in these models without mentioning the 

market competition between rival manufacturers. 

Another relevant stream of literature looks into the impact of environmental 

collaboration on environmental and organizational performance. For instance, Geffen and 

Rothenberg (2000) examined the role of strategic partnership between manufacturers and their 

suppliers in accomplishing the environmental performance targets through three case studies 

of US assembly plants. They concluded that the strongest coordination between the supply 

chain partners achieves the greatest success. Through the research on a sample of Canadian 

manufacturing plants, Klassen and Vachon (2003) revealed that supply chain collaboration 

significantly affect both the level and form of investment in environmental technologies. 

Vachon and Klassen (2008) examined the relationship between supply chain environmental 
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collaboration and manufacturing performance. Their findings indicate that environmental 

collaboration can have a significant positive impact on both environmental and manufacturing 

performances. Through the investigation on environmental-oriented supply chain cooperation 

in China, Zhu et al. (2010) emphasized the importance of intensive cooperation with supply 

chain partners for a circular economy initiative to succeed. The findings from Green et al. 

(2012) also supported the view that environmental collaboration and monitoring among supply 

chain partners can lead to improved environmental performance and organizational 

performance. Nevertheless, the above mentioned literatures on environmental collaboration 

mainly focus on the supply chain vertical cooperation between manufacturers and their 

suppliers or between manufacturers and their customers. In addition, very few studies have 

attempted to examine the effort of the horizontal environmental collaboration between the 

competing manufacturers, i.e., co-opetition on the environmental and organisational 

performance. Many studies (Gnyawali and He, 2006; Gurnani et al., 2007; Gnvawali and Park, 

2011; Li et al., 2011; Zhang and Frazier, 2011) have examined the impact of co-opetition on 

firms’ strategic and operational decisions and their organizational performance. However, the 

co-opetition may also play an important role in achieving carbon efficient economy. This 

research seeks to address this gap. 

 

3 Model descriptions and assumption 

We consider two competing manufacturers who have different emission reduction efficiencies. 

We denote our parameters and variables for model development as the notations shown in 

Table 1. The green technology investment is assumed as a disposable (one-off) investment to 

improve the production process which turns raw material into product. Unit product consumes 

unit practical raw material. Through that, we aim to make initial unit carbon emissions 𝑒0 

decrease to 𝑒𝑖 (𝑖 = 1, 2) per product to achieve greener product. For example, the carbon 

footprint for the production of a hamburger adds 2.5 kg (5.5lbs) CO2e (Berners-Lee, 2011). 

The investment is 𝐼𝑖 = 𝑡𝑖(𝑒0 − 𝑒𝑖)
2 (Yalabik and Fairchild, 2011; Choudhary et al., 2015). It 

is easy to see that the investment is convexity on 𝑒𝑖, which is attributed to diminishing returns 

from expenditures (Tsay and Agrawal, 2000; Chen, 2001; Bhaskaran and Krishnan, 2009; 

Ghosh and Shah, 2011). Without loss of generality, we assume that the emission reduction 
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efficiency of manufacturer 1 is higher than that of manufacturer 2, namely 0 < 𝑡1 < 𝑡2. The 

demand faced by the manufacturer 𝑖 is price and emissions sensitive, that is, 𝑞𝑖 = 𝑎 −

𝑏1𝑝𝑖 + 𝑏2𝑝𝑗 − 𝑘1𝑒𝑖 + 𝑘2𝑒𝑗  ( 𝑖 = 1, 2, 𝑗 = 3 − 𝑖 ), where 𝑏1 > 𝑏2 > 0  and 𝑘1 > 𝑘2 > 0 . 

𝑏1 > 𝑏2 > 0 means the influence of the self-price sensitivity is higher than cross-price 

sensitivity, and 𝑘1 > 𝑘2 > 0  means that self-carbon emission sensitivity is higher than 

cross-carbon emission sensitivity. The manufacturers’ revenues include sale revenues and 

carbon emission trading revenues (if 𝐸𝑖 < 0), and the costs include manufacturing costs, 

green technology investments and carbon emission trading costs (if 𝐸𝑖 > 0). To avoid trivial, 

we assume that the parameters satisfy the conditions: 𝑋𝑖 > 0,  𝑌𝑖 > 0 and 𝑀1𝑀2 − 𝑁1𝑁2 >

0 (𝑖 = 1,2). These assumptions are simply mathematical conditions to ensure non-negativity 

of the decision variables.  

Table 1. Parameters and variables 

Notation Descriptions 

𝑞1 ,  𝑞2 Production quantity or customer demand of manufacturer 1 and 2 respectively 

𝑝1 , 𝑝2 Unit retail price of manufacturer 1 and 2 respectively 

𝑒0 Initial unit carbon emissions of manufacturer 1 and 2, 𝑒0 > 0 

𝑒1 , 𝑒2 

Unit carbon emissions after green technology investment of manufacturer 1 and 2 

respectively, 0 < 𝑒1 < 𝑒0 and 0 < 𝑒2 < 𝑒0 (Zhang and Xu, 2013; Yalabik and Fairchild, 

2011; Choudhary et al., 2015; Du et al., 2015) 

𝑐 Unit production cost, 0 < 𝑐 < 𝑝1 and 0 < 𝑐 < 𝑝2 

𝑎 The primary market size, 𝑎 > 0 

𝑏1 ,  𝑏2 Self-price sensitivity and cross-price sensitivity, 𝑏1 > 𝑏2 > 0 

𝑘1 ,  𝑘2 Self-carbon emission sensitivity and cross-carbon emission sensitivity, 𝑘1 > 𝑘2 > 0 

𝑡1 , 𝑡2 
An investment parameter and a function of emission reduction efficiency of manufacturer 

1 and 2 respectively, 0 < 𝑡1 < 𝑡2 

𝐼1 , 𝐼2 The green technology investment of manufacturer 1 and 2 respectively 

𝐾1 ,  𝐾2 Total carbon emissions of manufacturer 1 and 2 respectively 

𝐾 Initial carbon emission allowances of government, 𝐾 > 0 

𝜆 Unit price of carbon emission trading, 𝜆 > 0 

𝐸1 , 𝐸2 
Total carbon emissions trading, 𝐸𝑖 > 0 means buying carbon emission quotas and 𝐸𝑖 < 0 

means selling carbon emission quotas 

𝑀𝑖 4𝑏1𝑡𝑖 − (𝑘1 + 𝜆𝑏1)2 

𝑁𝑖 2𝑏2𝑡𝑖 − (𝑘1 + 𝜆𝑏1)(𝑘2 + 𝜆𝑏2) 

𝐴𝑖 
[𝑎 − (𝑏1 − 𝑏2)(𝑐 + 𝜆𝑒0) − (𝑘1 − 𝑘2)𝑒0](𝑀𝑗 + 𝑁𝑗)

𝑀1𝑀2 − 𝑁1𝑁2
, 𝑖 = 1,2，𝑗 = 3 − 𝑖 

𝑋𝑖 𝑀𝑖 − (𝑘2 + 𝑏2)2 

𝑌𝑖 2𝑁𝑖 
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𝐵𝑖 
[𝑎 − (𝑏1 − 𝑏2)(𝑐 + 𝑒0) − (𝑘1 − 𝑘2)𝑒0](𝑋𝑗 + 𝑌𝑗)

𝑋1𝑋2 − 𝑌1𝑌2
, 𝑖 = 1,2，𝑗 = 3 − 𝑖 

𝐶 
2[𝑎 − (𝑏1 − 𝑏2)(𝑐 + 𝑒0) − (𝑘1 − 𝑘2)𝑒0](𝑡2 − 𝑡1)(𝑘2 + 𝑏2)(𝑘1 + 𝑏1 + 𝑘2 + 𝑏2)

𝑋1𝑋2 − 𝑌1𝑌2
 

 

Base on the above assumptions, the manufacturer 1’s profit, denoted 𝜋1(𝑝1, 𝑒1), is 

𝜋1(𝑝1, 𝑒1) = (𝑝1 − 𝑐)(𝑎 − 𝑏1𝑝1 + 𝑏2𝑝2 − 𝑘1𝑒1 + 𝑘2𝑒2) − 𝑡1(𝑒0 − 𝑒1)2 − 𝜆𝐸1 (1) 

The first term is the profit from product sale. The second term means the green technology 

investment. And the last term represents the cost or revenue from buying or selling carbon 

emission quotas from or to the carbon market. Similarly, the manufacturer 2’s profit, denoted 

𝜋2(𝑝2, 𝑒2), is 

𝜋2(𝑝2, 𝑒2) = (𝑝2 − 𝑐)(𝑎 − 𝑏1𝑝2 + 𝑏2𝑝1 − 𝑘1𝑒2 + 𝑘2𝑒1) − 𝑡2(𝑒0 − 𝑒2)2 − 𝜆𝐸2 (2) 

Then, the total profit of manufacturer 1 and 2, denoted 𝜋𝑐(𝑝1, 𝑒1, 𝑝2, 𝑒2), is 

𝜋𝑐(𝑝1, 𝑒1, 𝑝2, 𝑒2) = 𝜋1(𝑝1, 𝑒1) + 𝜋2(𝑝2, 𝑒2)         (3) 

 

4 Pure competition model 

In a purely competitive market environment, manufacturer 1 and manufacturer 2 make their 

decisions separately to maximize their own profits. The decision problem faced by 

manufacturer 1 is 

𝑚𝑎𝑥 𝜋1(𝑝1, 𝑒1) 

𝑠. 𝑡.  𝑒1𝑞1 − 𝐸1 = 𝐾 

And the decision problem faced by manufacturer 2 is 

𝑚𝑎𝑥 𝜋2(𝑝2, 𝑒2) 

𝑠. 𝑡.  𝑒2𝑞2 − 𝐸2 = 𝐾 

As to the manufacturers’ optimal prices (𝑝𝑖
𝑛) and unit carbon emissions (𝑒𝑖

𝑛) with 

cap-and-trade policy in the pure competition model, the following proposition is obtained. 

Proposition 1 In the pure competition model, with cap-and-trade policy, 𝒑𝟏
𝒏 = 𝒄 +

𝒆𝟎 + [𝟐𝒕𝟏 − (𝒌𝟏 + 𝝀𝒃𝟏)]𝑨𝟏, 𝒑𝟐
𝒏 = 𝒄 + 𝒆𝟎 + [𝟐𝒕𝟐 − (𝒌𝟏 + 𝝀𝒃𝟏)]𝑨𝟐, 𝒆𝟏

𝒏 = 𝒆𝟎 − (𝒌𝟏 +

𝝀𝒃𝟏)𝑨𝟏 and 𝒆𝟐
𝒏 = 𝒆𝟎 − (𝒌𝟏 + 𝝀𝒃𝟏)𝑨𝟐. 

From proposition 1, we obtain manufacturer 1’s optimal production quantity (𝑞1
𝑛) and 

manufacturer 2’s optimal production quantity (𝑞2
𝑛) in the pure competition model as following: 
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𝑞1
𝑛 = 2𝑏1𝑡1𝐴1        (4)    

𝑞2
𝑛 = 2𝑏1𝑡2𝐴2        (5)    

From proposition 1, we obtain the optimal green technology investments of manufacturer 

1 (𝐼1
𝑛) and manufacturer 2 (𝐼2

𝑛) in the pure competition model respectively as following: 

𝐼1
𝑛 = 𝑡1(𝑘1 + 𝜆𝑏1)2𝐴1

2       (6)    

𝐼2
𝑛 = 𝑡2(𝑘1 + 𝜆𝑏1)2𝐴2

2       (7)    

Then, we get the following corollary. 

Corollary 1 In the pure competition model, 𝒑𝟏
𝒏, 𝒑𝟐

𝒏, 𝒒𝟏
𝒏, 𝒒𝟐

𝒏, 𝑰𝟏
𝒏, 𝑰𝟐

𝒏, 𝝅𝟏(𝒑𝟏
𝒏, 𝒆𝟏

𝒏) and 

𝝅𝟐(𝒑𝟐
𝒏, 𝒆𝟐

𝒏)  all increase in 𝒂 , both 𝒆𝟏
𝒏  and 𝒆𝟐

𝒏  decrease in 𝒂 . 𝒒𝟏
𝒏 , 𝒒𝟐

𝒏 , 𝑰𝟏
𝒏 , 𝑰𝟐

𝒏 , 

𝝅𝟏(𝒑𝟏
𝒏, 𝒆𝟏

𝒏) and 𝝅𝟐(𝒑𝟐
𝒏, 𝒆𝟐

𝒏) all decrease in 𝒄, both 𝒆𝟏
𝒏 and 𝒆𝟐

𝒏 all increase in 𝒄. 

Corollary 1 explores manufacturers’ optimal decisions and the corresponding economic and 

environmental performances when facing the changing external environment e.g. primary 

market size (a) in purely competitive scenario. From the economics standpoint, it is not 

difficult to understand that an increase in the primary market size of goods will result in 

higher price and production quantity, which is an effective mechanism to balance the supply 

and demand. From manufacturers’ perspective, as the primary market size increases, the two 

manufacturers may adopt low-price strategy to gain market share in the short term. However, 

it is not a sustainable solution in the long term. A manufacturer who wants to maintain 

competitive advantage and capture more orders would like to invest more on green 

technology to decrease unit carbon emission. Because of an increased investment, 

manufacturers will pass on the additional costs to the end consumers, which contribute to 

higher prices. Therefore, facing an increasing primary market size, the manufacturers can gain 

more profit by raising price and increasing green technology investment. Use 

carbon-intensive sectors like steel industry in China as an example, most steel manufacturers 

use low pricing strategy to compete in order to gain market share. In contrast to other big steel 

manufacturers, Baosteel employs a completely different strategy. They invest heavily on 

technologies including green technologies to improve production processes and product 

quality while keep the premium price of their products. Although most steel manufacturers 

grew their sales and profits during the economic boom time, Baosteel is one of very few 

Chinese steel manufacturers that still performs well and remains competitive while others are 
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struggling in the current economic slowdown in China. 

 

5 Co-opetition model 

In a co-opetitive market environment, manufacturer 1 and manufacturer 2 jointly make their 

decision and aim to maximize their total profits. The decision problem faced by manufacturer 

1 and 2 is  

𝑚𝑎𝑥 𝜋𝑐(𝑝1, 𝑒1, 𝑝2, 𝑒2) 

𝑠. 𝑡.  𝑒1𝑞1 − 𝐸1 = 𝐾 

        𝑒2𝑞2 − 𝐸2 = 𝐾 

As to the manufacturers’ optimal prices (𝑝𝑖
𝑐) and unit carbon emissions (𝑒𝑖

𝑐) with 

cap-and-trade policy in the co-opetition model, the following proposition is obtained. 

Proposition 2 In the co-opetition model, with cap-and-trade policy, 𝒑𝟏
𝒄 = 𝒄 + 𝝀𝒆𝟎 +

[𝟐𝒕𝟏 − (𝒌𝟏 − 𝒌𝟐 + 𝝀𝒃𝟏 − 𝝀𝒃𝟐)𝝀]𝑩𝟏 − 𝑪 , 𝒑𝟐
𝒄 = 𝒄 + 𝝀𝒆𝟎 + [𝟐𝒕𝟐 − (𝒌𝟏 − 𝒌𝟐 + 𝝀𝒃𝟏 −

𝝀𝒃𝟐)𝝀]𝑩𝟐 + 𝑪 , 𝒆𝟏
𝒄 = 𝒆𝟎 − [(𝒌𝟏 − 𝒌𝟐) + (𝒃𝟏 − 𝒃𝟐)𝝀]𝑩𝟏  and 𝒆𝟐

𝒄 = 𝒆𝟎 − [(𝒌𝟏 − 𝒌𝟐) +

(𝒃𝟏 − 𝒃𝟐)𝝀]𝑩𝟐. 

From proposition 2, we obtain manufacturer 1’s optimal production quantity (𝑞1
𝑐) and 

manufacturer 2’s optimal production quantity (𝑞2
𝑐) in the co-opetition model as following: 

𝑞1
𝑐 = 2𝑏1𝑡1𝐵1 − 2𝑏2𝑡2𝐵2 − (𝑏1 + 𝑏2)𝐶     (8)    

𝑞2
𝑐 = 2𝑏1𝑡2𝐵2 − 2𝑏2𝑡1𝐵1 + (𝑏1 + 𝑏2)𝐶     (9)    

From proposition 2, we obtain the optimal green technology investments of manufacturer 

1 (𝐼1
𝑐) and manufacturer 2 (𝐼2

𝑐) in the co-opetition model respectively is 

𝐼1
𝑐 = 𝑡1[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]2𝐵1

2      (10)    

𝐼2
𝑐 = 𝑡2[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]2𝐵2

2      (11)    

Then, we get the following corollary. 

Corollary 2 In the co-opetition model, 𝒑𝟏
𝒄 , 𝒑𝟐

𝒄 , 𝒒𝟏
𝒄 , 𝒒𝟐

𝒄 , 𝑰𝟏
𝒄  and 𝑰𝟐

𝒄  all increase in 𝒂, 

𝒆𝟏
𝒄  and 𝒆𝟐

𝒄  decrease in 𝒂. 𝒒𝟏
𝒄 , 𝒒𝟐

𝒄 , 𝑰𝟏
𝒄  and 𝑰𝟐

𝒄  all decrease in 𝒄, 𝒆𝟏
𝒄  and 𝒆𝟐

𝒄  all increase 

in 𝒄. 

Similar to Corollary 1, Corollary 2 also explore effect of primary market size and unit 

production cost on the two manufacturers’ optimal solutions as well as economic performance 

in the co-opetitve scenario. From this corollary, we know that with cap-and-trade policy, when 
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the primary market size is big, the manufacturers will set higher prices, produce more 

products with lower unit carbon emissions, and increase green technology investments in a 

co-opetitive market environment. When the unit production cost is high, the manufacturers 

will decrease the production quantities and green technology investments. As a result, the unit 

carbon emissions are higher. Therefore, it is critical for manufacturers in the co-opetitive 

environment to reduce unit production cost, which will lead to lower unit carbon emissions 

and increased production quantity. Ultimately, it will enable manufacturers to gain more 

market share. From the above analysis, we can see the way how the primary market size (𝑎) 

and the unit product cost (𝑐) affect the two manufacturers’ decisions and associated economic 

performance shows some common attributes in both the purely competitive and co-opetitive 

relationships. Nevertheless, in order to examine the role of co-opetition in low carbon 

manufacturing, we will explore the key differences how the competitive and co-opetitive 

relationships between the two manufacturers affect their operational and strategic decisions as 

well as the associated economic and environmental performances in the following sections.   

 

6 Discussions 

In this section, we discuss the effects of emission reduction efficiency on the two competing 

manufacturers’ optimal prices, optimal unit carbon emissions, optimal production quantities 

and optimal green technology investments in the purely competitive and co-opetitive 

scenarios. The following two propositions can be obtained. 

Proposition 3 With cap-and-trade policy, (1) in the pure competition model, if 

𝝀 ≤
𝒌𝟏+𝒌𝟐

𝒃𝟏
, then 𝒑𝟏

𝒏 ≥ 𝒑𝟐
𝒏; if 𝝀 >

𝒌𝟏+𝒌𝟐

𝒃𝟏
, then 𝒑𝟏

𝒏 < 𝒑𝟐
𝒏; 𝒆𝟏

𝒏 < 𝒆𝟐
𝒏. (2) In the co-opetition 

model, if  ≤
𝒌𝟏+𝒌𝟐

𝒃𝟏+𝒃𝟐
, then 𝒑𝟏

𝒄 ≥ 𝒑𝟐
𝒄 ; if  >

𝒌𝟏+𝒌𝟐

𝒃𝟏+𝒃𝟐
, then 𝒑𝟏

𝒄 < 𝒑𝟐
𝒄 ; 𝒆𝟏

𝒄 < 𝒆𝟐
𝒄 . 

It is easy to see that with cap-and-trade policy, the optimal unit carbon emission of 

manufacturer with high emission reduction efficiency (manufacturer 1) is lower than that of 

manufacturer with low emission reduction efficiency (manufacturer 2) in both pure 

competition and co-opetition models. That is, in a sort of sense, how green a product is 

depends on the emission reduction efficiency of green technology. Therefore, emission 

reduction efficiency is an important factor that should be considered in firms’ decision on 
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green technology adoption. On the other hand, the pricing decision is influenced not only by 

the emission reduction efficiency (𝑡𝑖) but also the unit price of carbon emission trading (𝜆). In 

both purely competitive and co-opetitive scenarios, if unit price of carbon emission trading (𝜆) 

is lower than certain ratios, then the optimal price of the manufacturer with high emission 

reduction efficiency (manufacturer 1) is higher than that of the manufacturer with low 

emission reduction efficiency (manufacturer 2). Otherwise, as unit price of carbon emission 

trading (𝜆) is higher than these ratios, the relationship between the two optimal prices will 

change in an opposite direction. This ratio in the purely competition model is decided by 

carbon emission sensitivities of both manufacturers and self-price sensitivity of manufacturer 

1. In contrast, this ratio in the co-opetition model is decided by carbon emission sensitivities 

and price sensitivities of both manufacturers.  

Proposition 4 With cap-and-trade policy, (1) 𝒒𝟏
𝒏 > 𝒒𝟐

𝒏  and 𝑰𝟏
𝒏 > 𝑰𝟐

𝒏  in the pure 

competition model. (2) 𝒒𝟏
𝒄 > 𝒒𝟐

𝒄  and 𝑰𝟏
𝒄 > 𝑰𝟐

𝒄  in the co-opetition model. 

This proposition means that with cap-and-trade polity, the optimal production quantity 

and optimal investment in green technology of manufacturer with high emission reduction 

efficiency are both higher than that of manufacturer with low emission reduction efficiency in 

both the purely competition and co-opetition models. 

 

7 Numerical examples 

In this section, we develop two numerical analyses: effect of emission reduction efficiency (𝑡1) 

and unit price of carbon emission trading (). Through a comparison of the optimal solutions 

between the purely competitive scenario and the co-opetitive scenario, we aim to analyse the 

effect of co-opetition on manufacturers’ optimal solutions, total carbon emissions (𝐾𝑖 = 𝑒𝑖𝑞𝑖, 

𝑖 = 1, 2) and maximum profits. 

According to the model description and assumption in Section 3, the values must satisfy 

𝑎 > 0, 𝑏1 > 𝑏2 > 0, 𝑘1 > 𝑘2 > 0, 𝑞𝑖 > 0, 𝑒0 > 0, 𝑐 > 0,  > 0, 𝐾 > 0 and 0 < 𝑡1 < 𝑡2. 

In addition, the above ranges must satisfy 𝑎 − (𝑏1 − 𝑏2)(𝑐 + 𝜆𝑒0) − (𝑘1 − 𝑘2)𝑒0 > 0 , 

𝑋𝑖 > 0,  𝑌𝑖 > 0 and 𝑀1𝑀2 − 𝑁1𝑁2 > 0 (𝑖 = 1, 2), so that to ensure non-negativity of the 

decision variables. Therefore, we specify that 𝑎 = 800，𝑏1 = 50，𝑏2 = 30，𝑘1 = 60，𝑘2 = 30，

𝑒0 = 5，𝑐 = 5  = 4 and 𝐾 = 100. Due to the symmetry of manufacturer 1 and 2, we hold 
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𝑡2 = 1500 to explore the effect of emission reduction efficiency (𝑡1); and then, we specify 

another numerical example which includes 𝑎 = 800，𝑏1 = 30，𝑏2 = 20，𝑘1 = 30，𝑘2 = 10，

𝑒0 = 5，𝑐 = 5, 𝐾 = 100, 𝑡1 = 1500 and 𝑡2 = 2000, to explore the effect of unit price of 

carbon emission trading (). Through these two numerical examples, we attempt to explore 

the effect of co-opetition on low carbon manufacturing. The results are given in Figure 1-12. 

 

Figure 1. Effect of 𝑡1 on optimal price   Figure 2. Effect of  on optimal price 

 

Figure 3. Effect of 𝑡1 on optimal     Figure 4. Effect of  on optimal 

unit carbon emissions        unit carbon emissions 

 

700 800 900 1000 1100 1200 1300
25.5

26

26.5

27

27.5

28

28.5

29

t
1

O
p

ti
m

a
l 

p
ri

c
e

 

 

p
1
n

p
2
n

p
1
c

p
2
c

3 4 5 6 7 8 9
30

35

40

45

50

55

60

λ

O
p

ti
m

a
l 

p
ri

c
e

 

 

p
1
n

p
2
n

p
1
c

p
2
c

700 800 900 1000 1100 1200 1300
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

t
1

O
p

ti
m

a
l 

u
n

it
 c

a
rb

o
n

 e
m

is
s

io
n

 

 

e
1
n

e
2
n

e
1
c

e
2
c

3 4 5 6 7 8 9
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

λ

O
p

ti
m

a
l 

u
n

it
 c

a
rb

o
n

 e
m

is
s

io
n

 

 

e
1
n

e
2
n

e
1
c

e
2
c



15 

 

Figure 5. Effect of 𝑡1 on optimal     Figure 6. Effect of  on optimal 

production quantity        production quantity 

 

 

Figure 7. Effect of 𝑡1 on optimal investment  Figure 8. Effect of  on optimal investment 

For the effect of emission reduction efficiency (𝑡1), Figure 1-8 indicate that in both 

purely competition and co-opetition models, manufacturers can apply green technology with 

high emission reduction efficiency by increasing investments, which will bring manufacturers 

more competitive advantages. For the effect of unit price of carbon emission trading (), the 

increase of unit price of carbon emission trading will result in higher prices in both purely 

competition and co-opetition models. Because of the high unit price of carbon emission 

trading, the manufacturers tend to increase the green technology investments and reduce the 

carbon emissions to lower the carbon emission trading fees. And the investments and the 

carbon emission trading fees (if 𝐸𝑖 > 0) will pass on to customers, which lead to  higher 

prices. Figure 4 and 8 reveal that when the unit price of carbon emission trading increase from 

low to moderate, the manufacturers are willing to invest more to reduce unit carbon emissions. 
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But, when the unit price of carbon emission trading increase to a certain high level, the 

manufacturers tend to decrease green technology investments because the cost exceeds the 

marginal profit brought by green technology investments.  

From Figure 1, 2, 5 and 6, it is clear that the manufacturers’ optimal prices in the 

co-opetition model (𝑝1
𝑐,𝑝2

𝑐) are higher than those in the purely competition model (𝑝1
𝑛,𝑝2

𝑛), and 

the manufacturers’ optimal production quantities in the co-opetition model (𝑞1
𝑐 ,𝑞2

𝑐 ) are 

accordingly less than those in the purely competition model (𝑞1
𝑛,𝑞2

𝑛). From Figure 3, 4, 7 and 

8, we get that the manufacturers’ optimal unit carbon emissions in the co-opetition model 

(𝑒1
𝑐,𝑒2

𝑐) are higher than those in the purely competition model (𝑒1
𝑛,𝑒2

𝑛), and the manufacturers’ 

optimal green technology investments in the co-opetition model (𝐼1
𝑐,𝐼2

𝑐) are accordingly less 

than those in the purely competition model (𝐼1
𝑛,𝐼2

𝑛). 

 

Figure 9. Effect of 𝑡1 on total carbon emissions Figure 10. Effect of  on total carbon emissions 

 

Figure 11. Effect of 𝑡1 on maximum profit  Figure 12. Effect of  on maximum profit 
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total carbon emissions of the manufacturer with high emission reduction efficiency 

(manufacturer 1) is higher than that of the manufacturer with low emission reduction 

efficiency (manufacturer 2). Namely, high emission reduction does not mean low total carbon 

emissions, because low price and low unit carbon emissions will increase demand. To meet 

the product demand, the manufacturers have to increase outputs. So the carbon emissions of 

additional production quantity may exceed the amount of emission reduction from the 

decreased unit carbon emission which in turn increases the total emissions. One way to 

decrease total carbon emissions is the pricing mechanism of carbon emission trading as 

shown in Figure 10. A high unit price of carbon emission trading, which is determined by 

carbon market, will force manufacturers to cut total carbon emissions. From Figure 11, we get 

that the profit of the manufacturer with high carbon emission reduction efficiency (𝜋1
𝑛,𝜋1

𝑐) is 

higher than those with low carbon emission reduction efficiency (𝜋2
𝑛,𝜋2

𝑐) in both the pure 

completion and the co-operation models. As shown in Figure 12, manufacturers will also gain 

more profit in the situation of low unit price of carbon emission trading. That is, higher 

carbon emissions reduction efficiency and low carbon emission trading fees will benefit the 

manufacturer.  

From Figure 9-12, it is clear that in the co-opetition model, the manufacturers’ total 

carbon emissions (𝐾1
𝑐, 𝐾2

𝑐) are lower and maximum profits (𝜋1
𝑐, 𝜋2

𝑐) are higher than those in 

the pure competition model (𝐾1
𝑛, 𝐾2

𝑛; 𝜋1
𝑛, 𝜋2

𝑛).  

Intuitively, it seems that co-opetition can improve both environmental and economic 

performances for manufacturers with less green technology investments compared with that 

of pure competition. However, these improvements are at the expense of higher product prices 

and unit carbon emissions, and lower production quantities. The above findings have some 

interesting implications and may vary between different product categories. For instance, 

co-opetition can be useful to achieve sustainability objectives for the luxury goods. In a 

co-opetitive market environment, although the manufacturers will decrease green technology 

investments leading to higher unit carbon emissions, the overall environmental performance is 

improved because of suppressed demand whereas the total profits are increased as higher 

products prices are set. While the co-opetition may be suitable for the luxury goods 

manufacturers to achieve its sustainability objectives, it may not work for other product 
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categories especially considering long-term sustainability. Since the co-opetition between 

manufacturers will decrease their green technology investments and increase unit carbon 

emissions as illustrated in Figure 3, 4, 7 and 8, which is against the fundamental principle of 

low carbon manufacturing (Tridech and Cheng, 2011). Such a strategy will weaken their 

environmental competitiveness and therefore attract manufacturers with higher carbon 

emission reduction efficiency to entry the market. In contrast, a competitive market 

environment is more appropriate in succeeding low carbon manufacturing in a long run. From 

the environmental perspective, more green technology investments enable manufacturers to 

improve their carbon emission reduction efficiencies which lead to lower unit carbon 

emissions. From the economic perspective, although manufacturers’ profits may be decreased 

in a short term, they can still gain financial benefits in future from the stimulated demand by 

lower retail prices and reduced unit carbon emissions. From the social perspective, consumers 

can enjoy more environmental friendly products at affordable prices.  

 

8 Conclusions and suggestions for further research 

In this paper, we examined two competing manufacturers’ optimal pricing and emission 

reduction policies with different emission reduction efficiencies under cap-and-trade policy. 

Using the non-cooperative and cooperative games, we developed competition and 

co-opetition models with price and emission sensitive demand, and then derived the 

manufacturers’ optimal prices and optimal unit carbon emissions in the purely competitive 

and co-opetitive market environments respectively. The main results are as follows: 

(1) The relationship between the two manufacturers’ optimal prices is not only 

influenced by their emission reduction efficiencies but also unit price of carbon emission 

trading in both pure competition and co-opetition models. When unit carbon emission trading 

price is higher than certain ratio, the optimal price of the manufacturer with low emission 

reduction efficiency is higher than that with high emission reduction efficiency. That is, the 

manufacturer with low emission reduction efficiency may sell products at a higher price. 

(2) In both the pure competition and co-petition models, higher emission reduction 

efficiency will result in lower optimal unit carbon emissions and higher profit. This means 

higher emission reduction efficiency will benefit both the manufacturers and the environment. 
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Consequently, lower unit carbon emissions will lead to more market demand and larger 

market share. The market mechanism induces the manufacturers to improve emission 

reduction efficiency. 

(3) Compared to pure competition, co-opetition will lead to more profit and less total 

carbon emissions for the manufacturers. However, this may just be a temporary solution given 

that such an improvement in economic and environmental performances is not built on green 

technological innovation driven low carbon manufacturing but based on inflated retail prices 

and suppressed consumer demand. Surprisingly, the co-opetition between two manufacturers 

will decrease their green technology investments and increase their unit carbon emissions. 

Although both manufacturers can gain economic benefits through the co-opetition in the short 

term, such environmental collaboration will weaken their market competitiveness in the long 

run.  

This research makes the following key contributions. Theoretically, first, our research 

extends the existing carbon efficient manufacturing literature by looking at the effects of 

horizontal co-opetition has on manufacturers’ strategic and operational decisions and their 

environmental and economic performances. It is different to most studies in the existing 

literature that mainly focus on the vertical supply chain cooperation on carbon emissions 

reduction (Geffen and Rothenberg, 2000; Klassen and Vachon, 2003; Vachon and Klassen, 

2008; Green et al., 2012). Second, our research incorporates the product unit carbon 

emissions into a price and emission sensitive demand as a decision variable in a competitive 

market environment. This complements to the existing literature that often use the carbon 

emissions attribute as a constraint or only consider the demand of single manufacturer. 

Methodologically, through applying non-cooperative and cooperative games to study the 

purely competitive and co-opetitive relationships respectively, our research extends the 

existing literature on co-opetition by demonstrating how such a game-theoretical approach 

can be used to explore the impact of co-opetition on firms’ operational decisions and their 

performance in relation to different market environments.  

Furthermore, our research findings have many important managerial and policy 

implications. We derive the optimal solutions for the manufacturers’ pricing and emissions 

reduction policies in the competitive and co-opetitive market environments, which will be 
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beneficial for the manufacturing firms to make strategic and operational decisions on low 

carbon manufacturing. For instance, to overcome the challenge of squeezed demand, 

excessive capacity, and more restrict carbon emission regulations facing by the steel industry 

globally, it is more critical than ever for steel manufacturers to invest on green technologies to 

transform the industry to low carbon manufacturing. This has also been demonstrated by other 

sectors as a viable way to move towards low carbon economy. In addition, we discuss the 

implications of the pure competition and co-opetition from the perspectives of manufacturers, 

consumers, and the environment. Co-opetition may be suitable for the luxury goods industry 

to achieve sustainability objective. It is more applicable to many other sectors to have a 

competitive market environment to achieve a long term economic, environmental and social 

sustainability. It is valuable for policy makers to create a more sustainable market 

environment that can promote low carbon manufacturing for different industrial sectors.  

The findings can be extended in several directions. First, two competing manufacturers 

are discussed in this research, and multiple manufacturers can be taken into consideration in 

the future. Similarly, the research can be extended from manufacturers to supply chains. 

Another extension of our work is to examine the role of co-operation in low carbon 

manufacturing under other carbon emissions policies such as mandatory carbon emissions 

capacity and carbon tax, and discuss the effect of different carbon emissions reduction 

policies on manufacturers’ decisions and their performances. In addition, the demand is 

assumed to be deterministic in the paper and using deterministic models does not consider the 

cost associated with supply and demand uncertainty. One future extension is to investigate the 

research problem using stochastic models. Finally, our research does not consider the intensity 

of coopetition such as low competition and low cooperation, high competition and low 

cooperation, high competition and high cooperation, and low competition and high 

cooperation in models. Another future extension is to incorporate the intensity of coopetition 

in the model and examine its impacts on firms’ decisions and performances. 
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Appendix 

Proof of Proposition 1 

From (1), we get 
𝜕𝜋1(𝑝1,𝑒1)

𝜕𝑝1
= (𝑎 − 𝑏1𝑝1 + 𝑏2𝑝2 − 𝑘1𝑒1 + 𝑘2𝑒2) − 𝑏1(𝑝1 − 𝑐) + 𝜆𝑒1𝑏1  and 

𝜕𝜋1(𝑝1,𝑒1)

𝜕𝑒1
= −𝑘1(𝑝1 − 𝑐) + 2𝑡1(𝑒0 − 𝑒1) − 𝜆(𝑎 − 𝑏1𝑝1 + 𝑏2𝑝2 − 𝑘1𝑒1 + 𝑘2𝑒2) + 𝜆𝑒1 . Then，  we 

obtain 
𝜕𝜋1

2(𝑝1,𝑒1)

𝜕𝑝1
2 = −2𝑏1 , 

𝜕𝜋1
2(𝑝1,𝑒1)

𝜕𝑒1
2 = −2(𝑡1 − 𝜆𝑘1) and 

𝜕𝜋1
2(𝑝1,𝑒1)

𝜕𝑝1𝜕𝑒1
=

𝜕𝜋1
2(𝑝1,𝑒1)

𝜕𝑒1𝜕𝑝1
= −𝑘1 + 𝜆𝑏1 , then 

|
−2𝑏1 −𝑘1 + 𝜆𝑏1

−𝑘1 + 𝜆𝑏1 −2(𝑡1 − 𝜆𝑘1)
| = 4𝑏1(𝑡1 − 𝜆𝑘1) − (−𝑘1 + 𝜆𝑏1)2 = 𝑀1 > 0. Therefore, 𝜋1(𝑝1, 𝑒1) is 

a concave function of 𝑝1 and 𝑒1.  
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Let 
𝜕𝜋1(𝑝1,𝑒1)

𝜕𝑝1
= 0 and 

𝜕𝜋1(𝑝1,𝑒1)

𝜕𝑒1
= 0, we get 

(𝑎 − 𝑏1𝑝1 + 𝑏2𝑝2 − 𝑘1𝑒1 + 𝑘2𝑒2) − 𝑏1(𝑝1 − 𝑐) + 𝜆𝑒1𝑏1 = 0 (1-1) 

−𝑘1(𝑝1 − 𝑐) + 2𝑡1(𝑒0 − 𝑒1) − 𝜆(𝑎 − 𝑏1𝑝1 + 𝑏2𝑝2 − 𝑘1𝑒1 + 𝑘2𝑒2) + 𝜆𝑒1 = 0 (1-2) 

From (2), we can obtain 
𝜕𝜋2(𝑝2,𝑒2)

𝜕𝑝2
= (𝑎 − 𝑏1𝑝2 + 𝑏2𝑝1 − 𝑘1𝑒2 + 𝑘2𝑒1) − 𝑏1(𝑝2 − 𝑐) + 𝜆𝑒2𝑏1 

and 
𝜕𝜋2(𝑝2,𝑒2)

𝜕𝑒2
= −𝑘1(𝑝2 − 𝑐) + 2𝑡2(𝑒0 − 𝑒2) − 𝜆(𝑎 − 𝑏1𝑝2 + 𝑏2𝑝1 − 𝑘1𝑒2 + 𝑘2𝑒1) + 𝜆𝑒2𝑘1 . Then, 

𝜕𝜋2
2(𝑝2,𝑒2)

𝜕𝑝2
2 = −2𝑏1 , 

𝜕𝜋2
2(𝑝2,𝑒2)

𝜕𝑒2
2 = −2(𝑡2 − 𝜆𝑘1)  and 

𝜕𝜋2
2(𝑝2,𝑒2)

𝜕𝑝2𝜕𝑒2
=

𝜕𝜋2
2(𝑝2,𝑒2)

𝜕𝑒2𝜕𝑝2
= −𝑘1 + 𝜆𝑏1 . So, 

|
−2𝑏1 −𝑘1 + 𝜆𝑏1

−𝑘1 + 𝜆𝑏1 −2(𝑡2 − 𝜆𝑘1)
| = 4𝑏1(𝑡2 − 𝜆𝑘1) − (−𝑘1 + 𝜆𝑏1)2 = 𝑀2 > 0. Therefore, 𝜋2(𝑝2, 𝑒2) is 

a concave function of 𝑝2 and 𝑒2.  

Let 
𝜕𝜋2(𝑝2,𝑒2)

𝜕𝑝2
= 0 and 

𝜕𝜋2(𝑝2,𝑒2)

𝜕𝑒2
= 0, we have 

(𝑎 − 𝑏1𝑝2 + 𝑏2𝑝1 − 𝑘1𝑒2 + 𝑘2𝑒1) − 𝑏1(𝑝2 − 𝑐) + 𝜆𝑒2𝑏1 = 0 (1-3) 

−𝑘1(𝑝2 − 𝑐) + 2𝑡2(𝑒0 − 𝑒2) − 𝜆(𝑎 − 𝑏1𝑝2 + 𝑏2𝑝1 − 𝑘1𝑒2 + 𝑘2𝑒1) + 𝜆𝑒2𝑘1 = 0 (1-4) 

From (1-1), (1-2), (1-3) and (1-4), we get 𝑝1
𝑛 = 𝑐 + 𝑒0 + [2𝑡1 − (𝑘1 + 𝜆𝑏1)]𝐴1, 𝑝2

𝑛 = 𝑐 + 𝑒0 +

[2𝑡2 − (𝑘1 + 𝜆𝑏1)]𝐴2, 𝑒1
𝑛 = 𝑒0 − (𝑘1 + 𝜆𝑏1)𝐴1 and 𝑒2

𝑛 = 𝑒0 − (𝑘1 + 𝜆𝑏1)𝐴2. This completes the 

proof. 

 

Proof of Corollary 1 

Proposition 1 shows 
𝑑𝑝1

𝑛

𝑑𝑎
= [2𝑡1 − (𝑘1 + 𝜆𝑏1)]

𝜕𝐴1

𝜕𝑎
= [2𝑡1 − (𝑘1 + 𝜆𝑏1)]

𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
. Recalling 

assumption, 0 < 𝑌1 = 2[2𝑏2𝑡1 − (𝑘1 + 𝜆𝑏1)(𝑘2 + 𝜆𝑏2)] < 2𝑏2[2𝑡1 − (𝑘1 + 𝜆𝑏1)] , then we get 

2𝑡1 − (𝑘1 + 𝜆𝑏1) > 0 and 𝑀1𝑀2 − 𝑁1𝑁2 > 0, so 
𝑑𝑝1

𝑛

𝑑𝑎
> 0. That is, 𝑝1

𝑛 increases in 𝑎. 

Proposition 1 shows 
𝑑𝑝2

𝑛

𝑑𝑎
= [2𝑡2 − (𝑘1 + 𝜆𝑏1)]

𝜕𝐴2

𝜕𝑎
= [2𝑡2 − (𝑘1 + 𝜆𝑏1)]

𝑀1+𝑁1

𝑀1𝑀2−𝑁1𝑁2
. 

Recalling assumption,  0 < 𝑌2 = 2[2𝑏2𝑡2 − (𝑘1 + 𝜆𝑏1)(𝑘2 + 𝜆𝑏2)] < 2𝑏2[2𝑡2 − (𝑘1 + 𝜆𝑏1)]  and 

𝑀1𝑀2 − 𝑁1𝑁2 > 0, so 
𝑑𝑝2

𝑛

𝑑𝑎
> 0. That is, 𝑝2

𝑛 increases in 𝑎. 

Proposition 1 shows 
𝑑𝑒1

𝑛

𝑑𝑎
= −(𝑘1 + 𝜆𝑏1)

𝜕𝐴1

𝜕𝑎
= −(𝑘1 + 𝜆𝑏1)

𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
 and 

𝑑𝑒1
𝑛

𝑑𝑐
= −(𝑘1 +

𝜆𝑏1)
𝜕𝐴1

𝜕𝑎
= (𝑏1 − 𝑏2)(𝑘1 + 𝜆𝑏1)

𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
. Recalling assumption, 𝑋2 > 0 , 𝑌2 > 0  and  𝑀1𝑀2 −

𝑁1𝑁2 > 0, we get 𝑀2 > 0,  𝑁2 > 0, so 
𝑑𝑒1

𝑛

𝑑𝑎
< 0 and 

𝑑𝑒1
𝑛

𝑑𝑐
> 0. That is, 𝑒1

𝑛  decreases in 𝑎 and 

increases in 𝑐. 
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Proposition 1 shows 
𝑑𝑒2

𝑛

𝑑𝑎
= −(𝑘1 + 𝜆𝑏1)

𝜕𝐴2

𝜕𝑎
= −(𝑘1 + 𝜆𝑏1)

𝑀1+𝑁1

𝑀1𝑀2−𝑁1𝑁2
and 

𝑑𝑒2
𝑛

𝑑𝑐
= −(𝑘1 +

𝜆𝑏1)
𝜕𝐴2

𝜕𝑎
= (𝑏1 − 𝑏2)(𝑘1 + 𝜆𝑏1)

𝑀1+𝑁1

𝑀1𝑀2−𝑁1𝑁2
. Recalling assumption, 𝑋1 > 0 , 𝑌1 > 0  and  𝑀1𝑀2 −

𝑁1𝑁2 > 0, we get 𝑀1 > 0,  𝑁1 > 0, so 
𝑑𝑒2

𝑛

𝑑𝑎
< 0 and 

𝑑𝑒2
𝑛

𝑑𝑐
> 0. That is, 𝑒2

𝑛  decreases in 𝑎 and 

increases in 𝑐. 

From (4), we get 
𝑑𝑞1

𝑛

𝑑𝑎
= 2𝑏1𝑡1

𝑑𝐴1

𝑑𝑎
= 2𝑏1𝑡1

𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
 and  

𝑑𝑞1
𝑛

𝑑𝑐
= 2𝑏1𝑡1

𝜕𝐴1

𝜕𝑎
= −2𝑏1𝑡1(𝑏1 −

𝑏2)
𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
. Recalling assumption, so 

𝑑𝑞1
𝑛

𝑑𝑎
> 0 and 

𝑑𝑞1
𝑛

𝑑𝑐
< 0. That is, 𝑞1

𝑛  increases in 𝑎 and 

increases in 𝑐. 

From (5), we get 
𝑑𝑞2

𝑛

𝑑𝑎
= 2𝑏1𝑡2

𝑑𝐴2

𝑑𝑎
= 2𝑏1𝑡2

𝑀1+𝑁1

𝑀1𝑀2−𝑁1𝑁2
 and  

𝑑𝑞2
𝑛

𝑑𝑐
= 2𝑏1𝑡2

𝜕𝐴2

𝜕𝑎
= −2𝑏1𝑡2(𝑏1 −

𝑏2)
𝑀1+𝑁1

𝑀1𝑀2−𝑁1𝑁2
. Recalling assumption, so 

𝑑𝑞2
𝑛

𝑑𝑎
> 0 and 

𝑑𝑞2
𝑛

𝑑𝑐
< 0. That is, 𝑞2

𝑛  increases in 𝑎 and 

increases in 𝑐. 

From (6), we get 
𝑑𝐼1

𝑛

𝑑𝑎
= 2𝑡1(𝑘1 + 𝜆𝑏1)2𝐴1

𝑑𝐴1

𝑑𝑎
= 2𝑡1(𝑘1 + 𝜆𝑏1)2𝐴1

𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
 and 

𝑑𝐼1
𝑛

𝑑𝑐
=

2𝑡1(𝑘1 + 𝜆𝑏1)2𝐴1
𝑑𝐴1

𝑑𝑎
= −2𝑡1(𝑏1 − 𝑏2)(𝑘1 + 𝜆𝑏1)2𝐴1

𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
. Recalling proposition 1, 𝑒1

𝑛 < 𝑒0, 

we get 𝐴1 > 0, so 
𝑑𝐼1

𝑛

𝑑𝑎
> 0 and 

𝑑𝐼1
𝑛

𝑑𝑐
< 0. That is, 𝐼1

𝑛 decreases in 𝑎 and increases in 𝑐. 

From (7), we get 
𝑑𝐼2

𝑛

𝑑𝑎
= 2𝑡2(𝑘1 + 𝜆𝑏1)2𝐴2

𝑑𝐴2

𝑑𝑎
= 2𝑡2(𝑘1 + 𝜆𝑏1)2𝐴2

𝑀1+𝑁1

𝑀1𝑀2−𝑁1𝑁2
 and 

𝑑𝐼2
𝑛

𝑑𝑐
=

2𝑡2(𝑘1 + 𝜆𝑏1)2𝐴2
𝑑𝐴2

𝑑𝑎
= −2𝑡2(𝑏1 − 𝑏2)(𝑘1 + 𝜆𝑏1)2𝐴2

𝑀1+𝑁1

𝑀1𝑀2−𝑁1𝑁2
. From proposition 1, 𝑒2

𝑛 < 𝑒0, we 

get 𝐴2 > 0,  so 
𝑑𝐼2

𝑛

𝑑𝑎
> 0 and 

𝑑𝐼2
𝑛

𝑑𝑐
< 0. That is, 𝐼2

𝑛 decreases in 𝑎 and increases in 𝑐. 

From proposition 1 and (1), we get
𝑑𝜋1(𝑝1

𝑛,𝑒1
𝑛)

𝑑𝑎
=

𝑑[(𝑝1
𝑛−c)𝑞1

𝑛−𝐼1
𝑛−(𝑞1

𝑛𝑒1
𝑛−𝐾)]

𝑑𝑎
= [2𝑡1 − (𝑘1 +

𝜆𝑏1)]𝑞1
𝑛 𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
+ 2(𝑝1

𝑛 − c)𝑏1𝑡1
𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
− 2𝑡1(𝑘1 + 𝜆𝑏1)2𝐴1

𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
− 𝑞1

𝑛 (−(𝑘1 +

𝜆𝑏1)
𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
) − 2𝑒1

𝑛𝑏1𝑡1
𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
=

2𝑡1[𝑎−(𝑏1−𝑏2)(𝑐+𝜆𝑒0)−(𝑘1−𝑘2)𝑒0](𝑀2+𝑁2)2𝑀1

(𝑀1𝑀2−𝑁1𝑁2)2 .  From 

proposition 1 and assumption, we get 𝑎 − (𝑏1 − 𝑏2)(𝑐 + 𝜆𝑒0) − (𝑘1 − 𝑘2)𝑒0 > 0, so 
𝑑𝜋1(𝑝1

𝑛,𝑒1
𝑛)

𝑑𝑎
> 0. 

That is, 𝜋1(𝑝1
𝑛, 𝑒1

𝑛)  increases in 𝑎 . From proposition 1 and (1), we get 

𝑑𝜋1(𝑝1
𝑛,𝑒1

𝑛)

𝑑𝑐
=

𝑑[(𝑝1
𝑛−c)𝑞1

𝑛−𝐼1
𝑛−(𝑞1

𝑛𝑒1
𝑛−𝐾)]

𝑑𝑐
= −(𝑏1 − 𝑏2)[2𝑡1 − (𝑘1 + 𝜆𝑏1)]

𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
𝑞1

𝑛 − 2(𝑏1 −

𝑏2)(𝑝1
𝑛 − c)𝑏1𝑡1

(𝑀2+𝑁2)

𝑀1𝑀2−𝑁1𝑁2
+ 2𝑡1(𝑏1 − 𝑏2)(𝑘1 + 𝜆𝑏1)2𝐴1

𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
− 𝑞1

𝑛(𝑏1 − 𝑏2)(𝑘1 +
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𝜆𝑏1)
(𝑀2+𝑁2)

𝑀1𝑀2−𝑁1𝑁2
+ 2(𝑏1 − 𝑏2)𝑒1

𝑛𝑏1𝑡1
𝑀2+𝑁2

𝑀1𝑀2−𝑁1𝑁2
= −

2𝑡1(𝑏1−𝑏2)(𝑀2+𝑁2)𝑀1𝐴1

𝑀1𝑀2−𝑁1𝑁2
< 0 . That is, 

𝜋1(𝑝1
𝑛, 𝑒1

𝑛) decreases in 𝑐. 

Similarly, from proposition 1 and (2), we can get 𝜋2(𝑝2
𝑛, 𝑒2

𝑛) increases in 𝑎 and decreases in 𝑐. 

Hence, 𝑝1
𝑛 , 𝑝2

𝑛 , 𝑞1
𝑛, 𝑞2

𝑛 , 𝐼1
𝑛 , 𝐼2

𝑛 , 𝜋1(𝑝1
𝑛, 𝑒1

𝑛) and 𝜋2(𝑝2
𝑛, 𝑒2

𝑛) all increase in 𝑎, 𝑒1
𝑛  and 𝑒2

𝑛 

decrease in 𝑎 . 𝑞1
𝑛 , 𝑞2

𝑛 , 𝐼1
𝑛 , 𝐼2

𝑛   𝜋1(𝑝1
𝑛, 𝑒1

𝑛) and 𝜋2(𝑝2
𝑛, 𝑒2

𝑛) all decrease in 𝑐 , 𝑒1
𝑛  and 𝑒2

𝑛  all 

increase in 𝑐. This completes the proof. 

 

Proof of Proposition 2 

From (3), we get 
𝜕𝜋𝑐(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑝1
= (𝑎 − 𝑏1𝑝1 + 𝑏2𝑝2 − 𝑘1𝑒1 + 𝑘2𝑒2) − 𝑏1(𝑝1 − 𝑐) + 𝜆𝑒1𝑏1 +

𝑏2(𝑝2 − 𝑐) − 𝜆𝑒2𝑏2  and 
𝜕𝜋𝑐(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑒1
= −𝑘1(𝑝1 − 𝑐) + 2𝑡1(𝑒0 − 𝑒1) − 𝜆(𝑎 − 𝑏1𝑝1 + 𝑏2𝑝2 −

𝑘1𝑒1 + 𝑘2𝑒2) + 𝜆𝑒1𝑘1 + 𝑘2(𝑝2 − 𝑐) − 𝜆𝑒2𝑘2. Then, we get 
𝜕𝜋𝑐

2(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑝1
2 = −2𝑏1, 

𝜕𝜋𝑐
2(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑒1
2 =

−2(𝑡1 − 𝜆𝑘1)  and 
𝜕𝜋𝑐

2(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑝1𝜕𝑒1
=

𝜕𝜋𝑐
2(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑒1𝜕𝑝1
= −𝑘1 + 𝜆𝑏1 . So, we get 

|
−2𝑏1 −𝑘1 + 𝜆𝑏1

−𝑘1 + 𝜆𝑏1 −2(𝑡1 − 𝜆𝑘1)
| = 4𝑏1(𝑡1 − 𝜆𝑘1) − (−𝑘1 + 𝜆𝑏1)2 = 𝑀1 > 0 . Therefore, 

𝜋𝑐(𝑝1, 𝑒1, 𝑝2, 𝑒2) is a concave function of 𝑝1 and 𝑒1. 

Let 
𝜕𝜋𝑐(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑝1
= 0 and 

𝜕𝜋𝑐(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑒1
= 0, we get 

(𝑎 − 𝑏1𝑝1 + 𝑏2𝑝2 − 𝑘1𝑒1 + 𝑘2𝑒2) − 𝑏1(𝑝1 − 𝑐) + 𝜆𝑒1𝑏1 + 𝑏2(𝑝2 − 𝑐) − 𝜆𝑒2𝑏2 = 0 (2-1) 

−𝑘1(𝑝1 − 𝑐) + 2𝑡1(𝑒0 − 𝑒1) − 𝜆(𝑎 − 𝑏1𝑝1 + 𝑏2𝑝2 − 𝑘1𝑒1 + 𝑘2𝑒2) + 𝜆𝑒1𝑘1 + 𝑘2(𝑝2 − 𝑐) −

𝜆𝑒2𝑘2 = 0 (2-2) 

Similarly, from (3), we get 
𝜕𝜋𝑐(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑝2
= 𝑏2(𝑝1 − 𝑐) − 𝜆𝑒1𝑏2(𝑎 − 𝑏1𝑝2 + 𝑏2𝑝1 − 𝑘1𝑒2 +

𝑘2𝑒1) − 𝑏1(𝑝2 − 𝑐) + 𝜆𝑒2𝑏1  and 
𝜕𝜋𝑐(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑒2
= 𝑘2(𝑝1 − 𝑐) − 𝜆𝑒1𝑘2 − 𝑘1(𝑝2 − 𝑐) + 2𝑡2(𝑒0 −

𝑒2) − 𝜆(𝑎 − 𝑏1𝑝2 + 𝑏2𝑝1 − 𝑘1𝑒2 + 𝑘2𝑒1) + 𝜆𝑒2𝑘1 . Then, we get 
𝜕𝜋𝑐

2(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑝2
2 = −2𝑏1 , 

𝜕𝜋𝑐
2(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑒2
2 = −2(𝑡2 − 𝜆𝑘1)  and 

𝜕𝜋𝑐
2(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑝2𝜕𝑒2
=

𝜕𝜋𝑐
2(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑒2𝜕𝑝2
= −𝑘1 + 𝜆𝑏1 . So, we get 

|
−2𝑏1 −𝑘1 + 𝜆𝑏1

−𝑘1 + 𝜆𝑏1 −2(𝑡2 − 𝜆𝑘1)
| = 4𝑏1(𝑡2 − 𝜆𝑘1) − (−𝑘1 + 𝜆𝑏1)2 = 𝑀2 > 0 . Therefore, 

𝜋𝑐(𝑝1, 𝑒1, 𝑝2, 𝑒2) is a concave function of 𝑝2 and 𝑒2.  

Let 
𝜕𝜋𝑐(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑝2
= 0 and 

𝜕𝜋𝑐(𝑝1,𝑒1,𝑝2,𝑒2)

𝜕𝑒2
= 0, we have 
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𝑏2(𝑝1 − 𝑐) − 𝜆𝑒1𝑏2(𝑎 − 𝑏1𝑝2 + 𝑏2𝑝1 − 𝑘1𝑒2 + 𝑘2𝑒1) − 𝑏1(𝑝2 − 𝑐) + 𝜆𝑒2𝑏1 = 0 (2-3) 

𝑘2(𝑝1 − 𝑐) − 𝜆𝑒1𝑘2 − 𝑘1(𝑝2 − 𝑐) + 2𝑡2(𝑒0 − 𝑒2) − 𝜆(𝑎 − 𝑏1𝑝2 + 𝑏2𝑝1 − 𝑘1𝑒2 + 𝑘2𝑒1) + 𝜆𝑒2𝑘1 =

0 (2-4) 

From (2-1), (2-2), (2-3) and (2-4), we get 𝑝1
𝑐 = 𝑐 + 𝜆𝑒0 + [2𝑡1 − (𝑘1 − 𝑘2 + 𝜆𝑏1 − 𝜆𝑏2)𝜆]𝐵1 −

𝐶 , 𝑝2
𝑐 = 𝑐 + 𝜆𝑒0 + [2𝑡2 − (𝑘1 − 𝑘2 + 𝜆𝑏1 − 𝜆𝑏2)𝜆]𝐵2 + 𝐶 , 𝑒1

𝑐 = 𝑒0 − [(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]𝐵1 

and 𝑒2
𝑐 = 𝑒0 − [(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]𝐵2. This completes the proof. 

 

Proof of Corollary 2 

From proposition 2, we get 

𝑑𝑝1
𝑐

𝑑𝑎
= [2𝑡1 − (𝑘1 − 𝑘2 + 𝜆𝑏1 − 𝜆𝑏2)𝜆]

𝑑𝐵1

𝑑𝑎
−

𝑑C

𝑑𝑎
=

[2𝑡1−(𝑘1−𝑘2+𝜆𝑏1−𝜆𝑏2)𝜆](𝑋2+𝑌2)−2(𝑡2−𝑡1)(𝑘2+𝑏2)(𝑘1+𝑏1+𝑘2+𝑏2)

𝑋1X2−𝑌1𝑌2
. Recalling assumption,  0 < 𝑌1 =

2[2𝑏2𝑡1 − (𝑘1 + 𝜆𝑏1)(𝑘2 + 𝜆𝑏2)] < 2𝑏2[2𝑡1 − (𝑘1 − 𝑘2 + 𝜆𝑏1 − 𝜆𝑏2)], then we get 2𝑡1 − (𝑘1 −

𝑘2 + 𝜆𝑏1 − 𝜆𝑏2) > 0, Recalling proposition 2, 𝑋1X2 − 𝑌1𝑌2 > 0, so 
𝑑𝑝1

𝑐

𝑑𝑎
> 0. That is, 𝑝1

𝑐 increases 

in 𝑎. 

From proposition 2, we get 

𝑑𝑝2
𝑐

𝑑𝑎
= [2𝑡2 − (𝑘1 − 𝑘2 + 𝜆𝑏1 − 𝜆𝑏2)𝜆]

𝑑𝐵2

𝑑𝑎
+

𝑑C

𝑑𝑎
=

[2𝑡1−(𝑘1−𝑘2+𝜆𝑏1−𝜆𝑏2)𝜆](𝑋1+𝑌1)+2(𝑡2−𝑡1)(𝑘2+𝑏2)(𝑘1+𝑏1+𝑘2+𝑏2)

𝑋1𝑋2−𝑌1𝑌2
. Recalling assumption,  0 < 𝑌2 =

2[2𝑏2𝑡2 − (𝑘1 + 𝜆𝑏1)(𝑘2 + 𝜆𝑏2)] < 2𝑏2[2𝑡2 − (𝑘1 − 𝑘2 + 𝜆𝑏1 − 𝜆𝑏2)], then we get 2𝑡2 − (𝑘1 −

𝑘2 + 𝜆𝑏1 − 𝜆𝑏2) > 0 , From proposition 2, 𝑒1
𝑐 < 𝑒0 , we get 𝐵1 > 0 . Recalling assumption, 

𝑋1X2 − 𝑌1𝑌2 > 0, so 
𝑑𝑝2

𝑐

𝑑𝑎
> 0. That is, 𝑝2

𝑐 increases in 𝑎. 

From (8), we get 
𝑑𝑞1

𝑐

𝑑𝑎
= 2𝑏1𝑡1

𝑑𝐵1

𝑑𝑎
− 2𝑏2𝑡2

𝑑𝐵2

𝑑𝑎
− (𝑏1 + 𝑏2)

𝑑𝐶

𝑑𝑎
=

𝑞1
𝑐

𝑎−(𝑏1−𝑏2)(𝑐+𝑒0)−(𝑘1−𝑘2)𝑒0
>

0 and 
𝑑𝑞1

𝑐

𝑑𝑐
= −(𝑏1 − 𝑏2) [2𝑏1𝑡1

𝑑𝐵1

𝑑𝑎
− 2𝑏2𝑡2

𝑑𝐵2

𝑑𝑎
− (𝑏1 + 𝑏2)

𝑑𝐶

𝑑𝑎
] = −

(𝑏1−𝑏2)𝑞1
𝑐

𝑎−(𝑏1−𝑏2)(𝑐+𝑒0)−(𝑘1−𝑘2)𝑒0
< 0 . 

That is, 𝑞1
𝑐 increase in 𝑎 and decreases in 𝑐. 

From (9), we get 
𝑑𝑞2

𝑐

𝑑𝑎
= 2𝑏1𝑡2

𝑑𝐵2

𝑑𝑎
− 2𝑏2𝑡1

𝑑𝐵1

𝑑𝑎
+ (𝑏1 + 𝑏2)

𝑑𝐶

𝑑𝑎
=

𝑞2
𝑐

𝑎−(𝑏1−𝑏2)(𝑐+𝑒0)−(𝑘1−𝑘2)𝑒0
>

0 and 
𝑑𝑞2

𝑐

𝑑𝑐
= −(𝑏1 − 𝑏2) [2𝑏1𝑡2

𝑑𝐵2

𝑑𝑎
− 2𝑏2𝑡1

𝑑𝐵1

𝑑𝑎
+ (𝑏1 + 𝑏2)

𝑑𝐶

𝑑𝑎
] = −

(𝑏1−𝑏2)𝑞2
𝑐

𝑎−(𝑏1−𝑏2)(𝑐+𝑒0)−(𝑘1−𝑘2)𝑒0
< 0 . 

That is, 𝑞2
𝑐 increase in 𝑎 and decreases in 𝑐. 
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From proposition 2, we get 
𝑑𝑒1

𝑐

𝑑𝑎
= −[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]

𝑑𝐵1

𝑑𝑎
= −[(𝑘1 − 𝑘2) + (𝑏1 −

𝑏2)𝜆]
𝑋2+𝑌2

𝑋1X−𝑌1𝑌2
< 0 and 

𝑑𝑒1
𝑐

𝑑𝑐
= −[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]

𝑑𝐵1

𝑑𝑎
= (𝑏1 − 𝑏2)[(𝑘1 − 𝑘2) + (𝑏1 −

𝑏2)𝜆]
𝑋2+𝑌2

𝑋1X−𝑌1𝑌2
> 0. That is, 𝑒1

𝑐 decreases in 𝑎 and increases in 𝑐. 

From proposition 2, we get 
𝑑𝑒2

𝑐

𝑑𝑎
= −[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]

𝑑𝐵2

𝑑𝑎
= −[(𝑘1 − 𝑘2) + (𝑏1 −

𝑏2)𝜆]
𝑋1+𝑌1

𝑋1X−𝑌1𝑌2
< 0 and 

𝑑𝑒2
𝑐

𝑑𝑐
= −[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]

𝑑𝐵2

𝑑𝑎
= (𝑏1 − 𝑏2)[(𝑘1 − 𝑘2) + (𝑏1 −

𝑏2)𝜆]
𝑋1+𝑌1

𝑋1X−𝑌1𝑌2
> 0. That is, 𝑒2

𝑐 decreases in 𝑎 and increases in 𝑐. 

From (10), we get 
𝑑𝐼1

𝑐

𝑑𝑎
= 2𝑡1[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]2𝐵1

𝑑𝐵1

𝑑𝑎
= 2𝑡1[(𝑘1 − 𝑘2) + (𝑏1 −

𝑏2)𝜆]2𝐵1
𝑋2+𝑌2

𝑋1X−𝑌1𝑌2
> 0 and 

𝑑𝐼1
𝑐

𝑑𝑐
= 2𝑡1[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]2𝐵1

𝑑𝐵1

𝑑𝑎
= −2(𝑏1 − 𝑏2)𝑡1[(𝑘1 − 𝑘2) +

(𝑏1 − 𝑏2)𝜆]2𝐵1
𝑋2+𝑌2

𝑋1X−𝑌1𝑌2
< 0. That is, 𝐼1

𝑐 increases in 𝑎 and decreases in 𝑐. 

From (11), we get 
𝑑𝐼2

𝑐

𝑑𝑎
= 2𝑡2[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]2𝐵2

𝑑𝐵2

𝑑𝑎
= 2𝑡2[(𝑘1 − 𝑘2) + (𝑏1 −

𝑏2)𝜆]2𝐵2
𝑋1+𝑌1

𝑋1X−𝑌1𝑌2
and 

𝑑𝐼2
𝑐

𝑑𝑐
= 2𝑡2[(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝜆]2𝐵2

𝑑𝐵2

𝑑𝑎
= −2(𝑏1 − 𝑏2)𝑡2[(𝑘1 − 𝑘2) +

(𝑏1 − 𝑏2)𝜆]2𝐵2
𝑋1+𝑌1

𝑋1X−𝑌1𝑌2
. From proposition 2, 𝑒2

𝑐 < 𝑒0, we get 𝐵2 > 0 so 
𝑑𝐼2

𝑐

𝑑𝑎
> 0 and 

𝑑𝐼2
𝑐

𝑑𝑐
< 0. That 

is, 𝐼2
𝑐 increases in 𝑎 and decreases in 𝑐. 

Hence, 𝑝1
𝑐, 𝑝2

𝑐, 𝑞1
𝑐, 𝑞2

𝑐, 𝐼1
𝑐 and 𝐼2

𝑐 all increase in 𝑎, both 𝑒1
𝑐 and 𝑒2

𝑐 decrease in 𝑎. 𝑞1
𝑐, 𝑞2

𝑐, 

𝐼1
𝑐 and 𝐼2

𝑐 all decrease in 𝑐, 𝑒1
𝑐 and 𝑒2

𝑐 all increase in 𝑐. This completes the proof. 

 

Proof of Proposition 3 

(1) With cap-and-trade and pure competition, from proposition 1, we get 𝑝1
𝑛 − 𝑝2

𝑛 = {(𝑐 + 𝑒0) +

[2𝑡1 − (𝑘1 + 𝜆𝑏1)]𝐴1} − {(𝑐 + 𝑒0) + [2𝑡2 − (𝑘1 + 𝜆𝑏1)]𝐴2} =

2[𝑎−(𝑏1−𝑏2)(𝑐+𝜆𝑒0)−(𝑘1−𝑘2)𝑒0]

𝑀1𝑀2−𝑁1𝑁2
(𝑡2 − 𝑡1)(𝑘1 + 𝑘2 − 𝜆𝑏1)(𝑘1 + 𝜆𝑏1). So, if 𝜆 ≤

𝑘1+𝑘2

𝑏1
, then 𝑝1

𝑛 ≥ 𝑝2
𝑛; if 

𝜆 >
𝑘1+𝑘2

𝑏1
, then 𝑝1

𝑛 < 𝑝2
𝑛. 

(2) With cap-and-trade and pure competition, from proposition 1, we get 𝑒1
𝑛 − 𝑒2

𝑛 = [𝑒0 −

(𝑘1 + 𝜆𝑏1)𝐴1] − [𝑒0 − (𝑘1 + 𝜆𝑏1)𝐴2] = (𝑘1 + 𝜆𝑏1)(𝐵2 − 𝐵1) =

[𝑎−(𝑏1−𝑏2)(𝑐+𝜆𝑒0)−(𝑘1−𝑘2)𝑒0](𝑘1+𝜆𝑏1)

𝑀1𝑀2−𝑁1𝑁2
(4𝑏1 + 2𝑏2)(𝑡1 − 𝑡2) < 0. That is, 𝑒1

𝑛 < 𝑒2
𝑛.  

(3) With cap-and-trade and co-opetition, from proposition 2, we get 𝑝1
𝑐 − 𝑝2

𝑐 = [𝑐 + 2𝑡1𝐵1 +
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2𝑡2𝐶1 − [(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)]𝐷1] − [𝑐 + 2𝑡2𝐵2 + 2𝑡1𝐶2 − [(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)]𝐷2] =

2[𝑎−(𝑏1−𝑏2)(𝑐+𝑒0)−(𝑘1−𝑘2)𝑒0][(𝑘1−𝑘2)+(𝑏1−𝑏2)][(𝑘1+𝑘2)−(𝑏1+𝑏2)](𝑡2−𝑡1)

𝑋1𝑋2−𝑌1𝑌2
. So, if  ≤

𝑘1+𝑘2

𝑏1+𝑏2
, then 𝑝1

𝑐 ≥ 𝑝2
𝑐; 

if  >
𝑘1+𝑘2

𝑏1+𝑏2
, then 𝑝1

𝑐 < 𝑝2
𝑐. 

(4) With cap-and-trade and co-opetition, from proposition 2, we get 𝑒1
c − 𝑒2

c = [𝑒0 − [(𝑘1 −

𝑘2) + (𝑏1 − 𝑏2)𝑤]𝐷1] − [𝑒0 − [(𝑘1 − 𝑘2) + (𝑏1 − 𝑏2)𝑤]𝐷2] =

−
4[𝑎−(𝑏1−𝑏2)(𝑐+𝑒0)−(𝑘1−𝑘2)𝑒0](𝑏1+𝑏2)[(𝑘1−𝑘2)+(𝑏1−𝑏2)](𝑡2−𝑡1)

𝑋1𝑋2−𝑌1𝑌2
< 0. That is, 𝑒1

c < 𝑒2
c. This completes 

the proof. 

 

Proof of Proposition 4 

(1) With cap-and-trade and pure competition, from (4) and (5), we get 𝑞1
𝑛 − 𝑞2

𝑛 = 2𝑏1𝑡1𝐴1 −

2𝑏1𝑡2𝐴2 =
2𝑏1(𝑡2−𝑡1)(𝑘1+𝜆𝑏1)(𝑘1+𝜆𝑏1+𝑘2+𝜆𝑏2)[𝑎−(𝑏1−𝑏2)(𝑐+𝜆𝑒0)−(𝑘1−𝑘2)𝑒0]

𝑀1𝑀2−𝑁1𝑁2
> 0. That is, 𝑞1

𝑛 > 𝑞2
𝑛. 

From (6) and (7), we get 𝐼1
𝑛 − 𝐼2

𝑛 = 𝑡1(𝑒0 − 𝑒1
𝑒)2 − 𝑡2(𝑒0 − 𝑒2

𝑒)2 = 𝑡1(𝑘1 + 𝜆𝑏1)2𝐴1
2 −

𝑡2(𝑘1 + 𝜆𝑏1)2𝐴2
2  and 𝑡1𝐴1 − 𝑡2𝐴2 =

𝑎−(𝑏1−𝑏2)(𝑐+𝜆𝑒0)−(𝑘1−𝑘2)𝑒0

𝑀1𝑀2−𝑁1𝑁2
[(𝑀2 + 𝑁2)𝑡1 − (𝑀1 + 𝑁1)𝑡2] =

𝑎−(𝑏1−𝑏2)(𝑐+𝜆𝑒0)−(𝑘1−𝑘2)𝑒0

𝑀1𝑀2−𝑁1𝑁2
(𝑡2 − 𝑡1)(𝑘1 + 𝜆𝑏1)(𝑘1 + 𝑘2 + 𝜆𝑏1 + 𝜆𝑏2) > 0, so 𝑡1𝐴1 > 𝑡2𝐴2. Because 

𝑒1
𝑛 < 𝑒2

𝑛, then 𝐴1 > 𝐴2, therefore 𝑡1𝐴1
2 > 𝑡2𝐴2

2, and then we can get 𝑡1(𝑘1 + 𝜆𝑏1)2𝐴1
2 > 𝑡2(𝑘1 +

𝜆𝑏1)2𝐴2
2, that is, 𝐼1

𝑛 > 𝐼2
𝑛. So, with cap-and-trade and pure competition, 𝑞1

𝑛 > 𝑞2
𝑛 and 𝐼1

𝑛 > 𝐼2
𝑛. 

(2) With cap-and-trade and co-opetition, from (8) and (9), we get 

𝑞1
𝑐 − 𝑞2

𝑐 =
2[𝑎−(𝑏1−𝑏2)(𝑐+𝑒0)−(𝑘1−𝑘2)𝑒0][(𝑘1−𝑘2)+(𝑏1−𝑏2)][(𝑘1+𝑘2)+(𝑏1+𝑏2)](𝑡2−𝑡1)

𝑋1𝑋2−𝑌1𝑌2
> 0 . That is, 

𝑞1
𝑐 > 𝑞2

𝑐. 

From (10) and (11), we get 𝐼1
𝑐 − 𝐼2

𝑐 = 𝑡1(𝑒0 − 𝑒𝑐1
𝑒 )2 − 𝑡2(𝑒0 − 𝑒𝑐2

𝑒 )2 = [(𝑘1 − 𝑘2) + (𝑏1 −

𝑏2)𝜆)2(𝑡1𝐵1
2 − 𝑡2𝐵2

2) and 𝑡1𝐵1 − 𝑡2𝐵2 =
𝑎−(𝑏1−𝑏2)(𝑐+𝜆𝑒0)−(𝑘1−𝑘2)𝑒0

𝑋1𝑋2−𝑌1𝑌2
(𝑡2 − 𝑡1)(𝑘1 + 𝑘1 + 𝜆𝑏1 +

𝜆𝑏2)2 > 0, so 𝑡1𝐵1 > 𝑡2𝐵2. Because 𝑒1
𝑐 < 𝑒2

𝑐, then 𝐵1 > 𝐵2, therefore 𝑡1𝐵1
2 > 𝑡2𝐵2

2, [(𝑘1 − 𝑘2) +

(𝑏1 − 𝑏2)𝜆)2(𝑡1𝐵1
2 − 𝑡2𝐵2

2) > 0, that is, 𝐼1
𝑐 > 𝐼2

𝑐. So, with cap-and-trade and co-opetition, 𝑞1
𝑐 > 𝑞2

𝑐 

and 𝐼1
𝑐 > 𝐼2

𝑐. This completes the proof. 


