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Abstract: 

 

In two adaptation experiments we investigated the role of phonemes in speech 

perception.  Participants repeatedly categorized an ambiguous test word that started 

with a blended /f/-/s/ fricative (?ail can be perceived as /fail/ or /sail/) or a blended 

/d/-/b/ stop (?ump can be perceived as /bump/ or /dump/) after exposure to a set of 

adaptor words.  The adaptors all included unambiguous /f/ or /s/ fricatives, or 

alternatively, /d/ or /b/ stops.  In Experiment 1 we manipulated the position of the 

adaptor phonemes so that they occurred at the start of the word (e.g., farm), at the 

start of the second syllable (e.g., tofu), or the end of the word (e.g., leaf).  We found 

that adaptation effects occurred across positions: Participants were less likely to 

categorize the ambiguous test stimulus as if it contained the adapted phoneme.  For 

example, after exposure to the adaptors leaf, golf... etc., participants were more likely 

to categorize the ambiguous test word ?ail as ‘sail’.  In Experiment 2 we also varied 

the voice of the speaker: Words with unambiguous final phoneme adaptors were 

spoken by a female while the ambiguous initial test phonemes were spoken by a male.  

Again robust adaptation effects occurred.  Critically, in both experiments, similar 

adaptation effects were obtained for the fricatives and stops despite the fact that the 

acoustics of stops vary more as a function of position. We take these findings to 

support the claim that position independent phonemes play a role in spoken word 

identification.  
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Traditional linguistic theory postulates a small set of phonemes that can be 

sequenced in various ways in order to represent thousands of words in a language 

(Chomsky & Halle, 1968; Trubetzkoy, 1969).  Phonemes are the smallest linguistic 

unit that can distinguish word meanings and usually are of a size of a single consonant 

or vowel, e.g., the consonants /b/ and /p/ are phonemes in English because they 

differentiate the words “bark” and “park”. Phonemes are critically distinguished from 

speech sounds (i.e. phones) in their level of abstractness. Phones are acoustically 

defined units that are often context-dependent, i.e. in a given language a certain phone 

may be bound to a specific syllable position, or require a certain stress pattern, or 

occur within the context of specific surrounding sounds.  By contrast, phonemes are 

abstract entities that encompass several phones. For example, the phoneme /t/ is an 

abstract representational unit that in English is realized as an aspirated [th] syllable-

initially as in top, as an unaspirated [t] following /s/ as in star or as an unreleased [t˺] 

in the syllable-final position as in cat.  In other words, [th], [t] and [t˺] are different 

phones which in English represent a unique phoneme /t/.  

A key theoretical reason for uniting distinct phones under the same phoneme 

category is that, despite their acoustic and articulatory differences, they operate as a 

single unit across a range of synchronic and historical language processes.  Take the 

case of morphological derivation. Morphological derivation often leads to changes in 

the stress position that in turn result in differences in the quality of the vowel in the 

root morpheme. For example, the stressed vowel [ɒ] in solid [ˈsɒlɪd] changes to an 

unstressed [ə] in solidity [səˈlɪdɪti].1 If phones were used to represent words, then 

there would be no solid in solidity. However, the existence of abstract phonemes 

ensures that solidity contains solid as the root morpheme. The same point can be 

                                                        
1 Throughout the paper British English transcription will be used. 
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illustrated in pairs compete [khəmˈphiːt˺] – competition [ˌkhɒmpəˈthɪʃən], photograph 

[ˈfəʊtəɡrɑːf] – photographer [fəˈthɒɡrəfər] and indeed, is ubiquitous across the 

lexicon.  

Another common effect of morphological derivation involves resyllabification 

of the final consonant of the root morpheme accompanied by a change in the acoustic 

identity of the consonant. For example, /t/ is realized as an unreleased [t˺] at the end 

of float, but as an aspirated [th] in floatation. This process is ubiquitous, e.g. rate 

[ˈreɪt˺] – rated [ˈreɪ.thɪd], type [ˈthaɪp˺] – typing [ˈthaɪ.pɪŋ]. So once again phoneme 

representations are indispensable to preserve the compositionality of morphologically 

complex words.  

In sum, the lexicon is much more regular – and perhaps easier to learn – if 

lexical representations are formulated in terms of phonemes rather than context-

specific or position-specific phones. This may also explain why we employ a common 

written letter ‘t’ for the spelling of top and cat rather than one letter for [th] and 

another for [t˺]. 

Although phonemes are widely assumed in linguistic theory, the psychological 

evidence in support of phonemes, at least in the domain of speech perception, is scant. 

This has given rise to various models that abandon phonemes as a functional unit in 

speech perception.  For example, on one view, words are stored and directly accessed 

by position-specific phones (or positional variants of phonemes in Pierrehumbert’s 

2003 terminology). Pierrehumbert’s (2003) rationale for positional units (defined in 

terms of syllable or word position) stems from the observation that acoustic signature 

is more stable for position-specific phones compared to position-independent 

phonemes. These position-specific phones in turn map onto lexical representations. 
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Similarly, a number of computational models of spoken word identification 

(e.g., Luce, Goldinger, Auer, & Vitevitch, 2000; McClelland & Elman, 1986) bind 

segments to time in long-term memory in order to code for the order of segments. For 

example, in the TRACE model, different ‘d’ segments (d-at-time-1 and d-at-time-3) 

are used to activate dog and god representations, respectively. These time-bound 

segments can be seen as analogous to Pierrehumbert’s position-specific phones (in 

that the segments do not abstract across position) although the input units in these 

models are often labeled phonemes.   

The common rejection of position invariant phonemes in psychological 

theories and models of word perception is a fundamental claim, and we explore this 

issue here.  First we review the current empirical evidence regarding phonemes in the 

domains of speech production and perception, and then describe two experiments that 

provide strong evidence that phonemes do indeed play a role in word perception. 

Empirical evidence for phonemes in speech production 

In the domain of speech production the evidence for phonemes, i.e., segment-

sized position-invariant units, is reasonably strong.  One of the best pieces of evidence 

for segment-sized units comes from speech errors that involve swapping segments in 

corresponding syllable positions (e.g., swaps between onset consonants, such as “heft 

lemisphere” in lieu of “left hemisphere”).  These swaps require positing segment size 

units (Fromkin, 1974).  Evidence that the segment size units are coded independent of 

syllable position comes from swaps in non-corresponding syllable positions.  For 

example, Vousden, Brown and  Harley (2000) found that more than 20% of relevant 

phonological errors involved changes across syllable positions (e.g., film 

mispronounced as flim).  
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Priming studies point to a similar conclusion. For example, when participants 

are asked to name an object and its color, naming is facilitated by phoneme overlap 

between the color and object name both when overlapping segments occur in the 

same position (e.g. green goat vs. red goat) and when they occur in different syllable 

positions (e.g., green flag vs. red flag; Damian & Dumay, 2009). These findings lend 

support to the view that phonemes in speech production are coded independently of 

syllable position and are bound to syllable frames during production (e.g., Shattuck-

Hufnagel, 1986). 

Empirical evidence against phonemes in speech perception 

Although phonemes are widely assumed in theories of speech production, it 

does not necessarily follow that phonemes are involved in speech perception as well.  

Indeed, Hickok (2014) recently developed a model of speech processing that holds 

phonemes as functional units in speech production but not perception.  Consistent 

with this hypothesis, a number of psycholinguistic findings are taken to challenge the 

psychological reality of phonemes as units of perception, and this has led to a number 

of theories and models of speech perception that explicitly reject phonemes (e.g., 

Goldinger 1998; Luce et al., 2000; Oden & Massaro, 1978; Pierrehumbert, 2003). We 

review this data next.  

Perhaps the most common experimental method used to challenge phonemes 

is perceptual learning. In these experiments participants learn to identify a degraded 

or distorted speech sound in one context, and the question is whether the learning 

generalizes to other contexts.  It is assumed that generalization should extend to all 

allophonic forms of a given phoneme if indeed phonemes play a role in speech 

perception.  By contrast, if generalization is restricted, it is taken as evidence against 

phonemes.  
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First consider a perceptual learning study in Dutch by Mitterer, Scharenborg, 

and McQueen (2013) in which no learning was observed between acoustically 

dissimilar allophones both within and between syllable positions.  The phonemes /l/ 

and /r/ in Dutch each have at least two allophones: /l/ includes an alveolar lateral 

approximant [l] used in the syllable onset position (‘light l’), and a velarized 

counterpart [ɫ] used in the syllable offset (‘dark l’); /r/ includes an alveolar trill [r] and 

uvular trill [R] in onset position and, in addition, an alveolar approximant [ɹ] in the 

offset position. Mitterer et al. trained listeners to classify a novel morphed sound [ɫ/ɹ] 

(that was ambiguous between [ɫ] and [ɹ] in syllable offset position) as an /l/ or an /r/ 

by presenting it either in words that ended in /l/ (e.g. acceptabel ‘acceptable’) or in /r/ 

(e.g. winter ‘winter’).  An effect of training was found for new [ɫ/ɹ] morphs that 

occurred in the syllable-final position, but not for new morphs such as [ɫ/r] or [l/r] that 

included another allophone of /l/ and /r/ (regardless of position). On the basis of these 

findings the authors concluded that perceptual learning – and by extension speech 

perception – is mediated by allophones. 2  

Indeed, the results of number of perceptual learning studies have been taken as 

evidence that the relevant sublexical units are more acoustically specific than 

phonemes. For example, Dahan and Mead (2010) trained participants to identify 

consonants in noise-vocoded speech and found that generalization was greatly 

modulated by the degree to which training and test sounds were similar acoustically. 

That is, they found that consonants were easier to recognize when they occurred in the 

same syllabic position at training, when they were flanked by the same vowel, and 

                                                        
2 Jesse and McQueen (2011) did show that learning to categorize a distorted fricative 

in a syllable-final position generalized to the perception of the same fricative in 

syllable-initial position, and they took this to support phonemes. However, fricatives 

are largely acoustically invariant across positions; hence the findings could be 

explained at the allophone level (Mitterer et al., 2013).   
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when spoken by the same speaker.  Based on these results, the authors hypothesized 

that the sub-lexical perceptual categories that support speech perception are even 

more specific than allophones.  Consistent with this conclusion, a number of authors 

have found that perceptual learning is often voice specific (e.g., Eisner & McQueen, 

2005; Kraljic & Samuel, 2005, 2007). 

A similar conclusion was reached by Reinisch, Wozny, Mitterer and Holt 

(2014). These authors found that listeners who learnt to categorize an ambiguous [b/d] 

sound in the context of the vowel /a/ (i.e. a_a) as /b/ or /d/ during a learning phase did 

not generalize to the u_u context even though an acoustic encoding of the /b/ vs /d/ 

distinction is similar in the two vowel contexts.  Based on the context specificity of 

their learning effects the authors concluded: 

 

“From a theoretical perspective the results of the present study suggest that 

pre-lexical processing does not make use of abstract phonological features, 

context-free phonemes, or speech gestures.” (p.104, Reinisch et al., 2014) 

 

Even more dramatically, perceptual learning is sometimes ear specific, 

highlighting that it can be closely tied to the sensory specifics of the learning context 

rather than to abstract categories such as phonemes (Keetels, Pecoraro, & Vroomen, 

2015).  The fact that generalisation is restricted and context-sensitive in the above 

perceptual learning studies is taken as evidence against phonemes.  

In addition to these perceptual learning studies, findings from long-term 

priming studies are often taken as evidence that word identification is mediated 

by perceptually specific as opposed to abstract phoneme representations (e.g., 

Goldinger, 1996).  For example, Pufahl & Samuel (2014) found that priming was 
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greater when words were repeated in the context of the same environmental 

sounds at study and test (e.g., a phone ringing).  The authors took this to suggest 

that non-linguistic sounds are part of the stored phonological representations 

that support word identification. 

At the same time that some authors reject phonemes in favour of smaller and 

more detailed sub-lexical categories such as allophones (Mitterer et al., 2013), others 

reject phonemes in favour of larger sub-lexical representations, including demi-

syllables and syllables.  For example, consider some classic selective adaptation 

studies.  Ades (1974) found that multiple repetitions of a syllable starting with the 

consonant d (e.g., [dæ]) led to a shift in the categorical boundary in the /dæ/-/bæ/ 

continuum towards /bæ/ (i.e., participants responded /bae/ more often).  Critically, 

however, repeated presentation of the syllable [æd] that contained the consonant d in 

the final position did not affect the perception of the /dæ/-/bæ/ continuum.  This 

suggests that the initial and final d’s are coded separately. Similarly, Samuel (1989) 

found that multiple repetitions of a syllable such as [ba] led to a shift in the 

categorical boundary in /ba/-/pa/ continuum towards /pa/, but failed to affect 

perception of the same consonants in the syllable-final /ab/-/ap/ continuum.  Based on 

these findings Samuel rejected position independent phonemes in favor of demi-

syllables as access codes to words (also see Fujimura, 1976; Rosenberg, Rabiner, 

Wilpon, & Kahn, 1983). 

Massaro (1975) argued that syllables rather than phonemes act as sub-lexical 

perceptual representations given that many consonant phonemes cannot be perceived 

in isolation (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967).  For 

example, the consonant d cannot be recognized separately from its coarticulated 

vowel.  That is, when the duration of the vowel in the consonant-vowel syllable (CV) 
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is gradually decreased, there is no point in which the perceiver just hears the d.  

Instead, the CV syllable is perceived as a complete syllable until the vowel is 

eliminated almost entirely.  Once further signal is removed, a nonspeech whistle is 

heard.  The conclusion is that the CV syllable is perceived as an indivisible whole or 

gestalt, and not decomposed into phonemes. In addition, Massaro (1975) rejects 

phonemes based on the claim that there are no invariant acoustic features for many 

consonant phonemes that would allow them to be identified separately from the 

following vowel (for a critical review of the phoneme, see Goldinger  & Azuma, 

2003). 

In Defense of Phonemes: 

Despite aforementioned findings, there are a number of reasons why we think 

it is premature to reject phonemes in speech perception. First, and perhaps most 

importantly, all the above criticisms do not grapple with the strong linguistic 

arguments in support of phonemes.  For example, as noted above, phonemes often 

preserve the compositionality of morphologically complex words (e.g., so that there is 

solid in solidity and float in floatation).  If phonemes are to be rejected, then some 

account of the morphological structure of words needs to be offered.   

Second, much of the evidence presented against phonemes rests on theoretical 

confusions.  Perhaps most importantly, no one claims that phonemes are the sub-

lexical unit of perception (that is, the only sub-lexical unit).  Rather, the claim is that 

phonemes are a sub-lexical unit of perception (that is, one of perhaps several sub-

lexical units). Accordingly, perceptual learning studies that provide evidence for 

allophones or other sub-lexical units do not challenge the existence of phonemes.  

They just show that there are other sub-lexical representations involved in speech 

perception as well.  Indeed, given that perceptual learning can be restricted to one ear 
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(Keetels et al., 2015), it seems that these tasks are sensitive to low-level perceptual 

processes that fall outside the domain of speech perception altogether.  

Furthermore, upon closer inspection, the logic of some of these perceptual 

learning studies is unclear. Consider again the Mitterer et al. (2013) study.  Listeners 

were trained to identify an ambiguous [ɫ/ɹ] morph (produced by combining dark [ɫ] 

allophone of /l/ with approximant [ɹ] allophone of /r/) in syllable-final position as an 

/l/ or /r/, and then at test categorized novel instances of [ɫ/ɹ] morph in syllable-final 

position as /l/ or /r/.  That is, the perceptual space of the allophones [ɫ] or [ɹ] was 

altered to incorporate acoustically similar inputs (various blends of [ɫ/ɹ]).  This shows 

that learning took place at the allophonic level. The key finding taken as inconsistent 

with phonemes is that this learning did not impact on the perception of acoustically 

dissimilar allophones of /l/ and /r/.  For instance, after training with the [ɫ/ɹ] morph, 

the perceptual space associated with the light [l] allophone remained unaltered and 

did not incorporate the morph [l/r].   

There is a problem with this line of reasoning, however.  Namely, no theory 

should expect any generalization given that the [l/r] morph is novel and acoustically 

distinct from the [ɫ/ɹ] morph (given that [ɹ] and [r] are acoustically dissimilar).  To 

illustrate, consider an analogy with written letters.  It is widely agreed that visual 

word identification involves accessing abstract letter codes that map together different 

visual forms of letters, even unrelated visual forms (Bowers, Vigliocco, & Haan, 

1998; Coltheart, 1981; McClelland, 1976).  For example, it is widely assumed that 

different exemplars of lower-case a and upper-case A map onto the abstract code A*.  

Nevertheless, if a participant learns that that a new distorted version of upper-case A 

(e.g., A) is a member of the category A*, it provides no basis for the reader to 

reorganize his or her perceptual space of lower-case a.  Accordingly, the failure to 
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modify the perceptual space of lower-case a provides no reason to reject abstract 

letter identities.  The same is true for the sounds in the Mitterer et al.’s (2013) study.  

The logic of some other studies used to support syllables rather than phonemes 

is also unclear.  For example, consider the finding that some consonant phonemes are 

not accessible to phenomenological experience (e.g., you cannot perceive a /b/ in 

isolation).  Although Massaro (1975) uses this to argue against phonemes, this seems 

a weak basis for rejecting phonemes: there are presumably many representations that 

are not accessible to introspection.  Similarly, the claim that there are no invariant 

acoustics associated with some phonemes provides no basis for rejecting phonemes.  

Consider again the analogous case of visual letters. No one would conclude that 

abstract letter codes do not exist simply because there is no visual invariance between 

an A/a.  Rather, the relevant question is how abstract letter codes might be learnt (e.g., 

see Bowers & Michita, 1998). In the same way, the fact that there is no obvious 

acoustic invariance between stop consonants in different contexts does not rule out 

phonemes.  It just means that the listener would have to learn how to map acoustically 

distinct allophones onto abstract phonemes. 

A third general reason we think it is premature to reject phonemes in 

perception is that phonemes are well accepted in the domain of speech production 

(e.g., Dell, 2014; Fromkin, 1974; Hickock, 2014).  At the very least, evidence for 

phonemes in production increase the a priori plausibility that similar (or the same) 

representations are involved in perception as well. 

Finally, a few empirical studies do provide some evidence that phonemes play 

a role in perception.  For example, Morais, Castro, Scliar-Cabral, Kolinsky and 

Content (1987) presented pairs of CVCV words dichotically to literate and illiterate 

Portuguese speakers and asked them to identify the word presented to either the left or 
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right ear (the target ear varied across trials).  A common error for both groups 

involved single segments, such as initial consonant migrations, with the initial 

consonant of the to-be-ignored words migrating to the corresponding position in the 

target word.  This provides evidence for segment-sized units of perception.  The fact 

that illiterates showed the same pattern of results demonstrates that these units are not 

a by-product of learning a written alphabet. Similarly, Cutting and Day (1975) 

reported phonological fusions in dichotic listening tasks in English in which segments 

in the to-be-ignored input were added to the segments in the target input (rather than 

replacing a segment in the same position).  For example, the presentation of 

banket/lanket led to the identification of blanket.  As argued by Morais, Castro, 

Scliar-Cabral, Kolinsky and Content (1987), if syllables rather than phonemes were 

the smallest unit of perception, it is not clear why two CVC inputs (ban and lan) 

would result in the perception of a CCVC syllable blan (rather than combine into a 

CVCCVC string, for example).   

More recently, Toscano, Anderson, and McMurray (2013) provided evidence 

that phonemes are coded independently of position.  They found that anadromes – 

words that share the same phonemes but in the opposite order, such as sick and kiss – 

are confusable.   In a visual world paradigm study, participants looked at foil 

anadrome pictures (e.g., cat) in response to a spoken target word (e.g., tack) more 

than control items.  Note that the effect cannot be explained at the allophone level as 

there is an aspirated [kh] in cat and an unreleased [k˺] in tack (similarly, ‘t’ is 

aspirated in tack but unreleased in cat), and points to the existence of phonemes /k/ 

and /t/ that are independent of syllable position.  

We readily acknowledge, however, that the psycholinguistic evidence in 

support of phonemes in perception is mixed, and more evidence is needed before any 
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strong conclusions are warranted.  In the current paper we investigate the role of 

phonemes in speech perception by using an adaptation task in which participants 

categorized test stimuli that can be perceived as one word or another due to an 

ambiguous initial phoneme (e.g., ?ail can be perceived as fail or sail; on repetition of 

?ail the perception oscillates between the fail and sail, much like a Necker cube in 

vision).  We assess how participants categorized the test stimuli as a function of 

preceding adaptor words that contained the critical unambiguous phoneme (e.g., /f/ or 

/s/).  In Experiment 1 the critical unambiguous phoneme occurred at the beginning of 

the adaptor word (initial position; e.g., fact), in the onset of the second syllable 

(medial position; e.g., profit), or in the coda of the final syllable (final position; e.g., 

beef).  We manipulated the extent to which the acoustics of the critical phoneme 

within the adaptor words varies across positions by including fricative adaptors (/f/ 

and /s/) that do not vary greatly across position, as well as stop consonant adaptors 

(/d/ and /b/) that vary much more across positions.  In Experiment 2 we assessed 

adaptation when the adaptor words containing the critical unambiguous phoneme in 

final position were pronounced by a female and the test words containing the 

ambiguous phoneme in the initial position were pronounced by a male. Robust 

adaptation effects across position and voice in Experiments 1 and 2 would provide 

evidence for abstract, position-independent phoneme representations.  It is important 

to emphasize that adaptation in this task is manifest as a reduced likelihood of 

identifying the test stimulus as the word starting with the adaptor phoneme. For 

example, adaptation is found when a participant is less likely to identify the target as 

fail after being exposed to adaptors containing the /f/ phoneme.  Accordingly, any 

adaptation effects cannot be attributed to a strategy of categorizing the targets to 

correspond with the adaptors.  
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Experiment 1 

Method 

Participants 

Ninety-six adult participants took part in this study.  Participants were 

undergraduate psychology students at the University of Bristol and adults from the 

Bristol community. All participants were native English speakers with no history of 

dyslexia and normal or corrected-to normal vision. 

Stimuli 

 We recorded an adult male native English speaker (British English, Received 

Pronunciation) using a SHURE SM48 vocal microphone and Cool Edit Pro. Two 

types of stimuli were recorded, namely, adaptor words and word pairs used for 

creating test stimuli. The test word pairs differed in their first phoneme (and first 

letter) and started with fricatives (/f/ and /s/, e.g., funny-sunny) and stop consonants 

(/b/ and /d/, e.g., beer-deer). Thus, the critical ambiguous phoneme in the test 

stimulus was always syllable- and word-initial. We focused on fricatives and stop 

consonants because the acoustics of fricatives are relatively invariant across position 

whereas stop consonants vary a great deal.3  We started with 16 test word pairs (8 

                                                        
3 In both syllable-initial and final positions, /s/ and /f/ are characterised by a salient 

and relatively long-lasting friction noise. /s/ is characterised by a clear distinct 

spectral shape and exhibits a primary spectral peak usually between 4-7 kHz 

independent of syllable position, whereas the spectrum for /f/ is usually flat (Reetz & 

Jongman, 2009). Acoustic measurements confirmed that this held for the fricatives in 

our adaptor stimuli. Furthermore, the amplitude of the friction noise was higher for /s/ 

than /f/ (by 16 and 11 dB in the initial and final positions respectively), which accords 

with previous reports (e.g., Reetz &  Jongman, 2009). The duration of the friction 

noise was longer for /s/ than for /f/ in the initial position (283 vs 256 ms) but similar 

in the final position (both 320 ms). 

 

Acoustic correlates of stops, on the other hand, differ significantly depending on their 

syllable position. Syllable-initially, the primary correlates are the burst quality (if the 
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fricative pairs, 8 stop consonant pairs) and blended them using Tandem-STRAIGHT 

speech modification software resulting in a morphing continuum of 30 steps that 

perceptually changes from one word to the other (e.g., continuum starting with the 

word fail and ending with the word sail). We chose 3-5 blends from the midpoint of 

each continuum for a pilot study. Eighteen participants decided whether each blend 

started with /f/ or /s/, or /b/ or /d/ and we chose the most ambiguous blends as the test 

words; these were the words ?ail (from fail & sail), which was categorised as fail 

58%, and as sail 42 % of the trials, and the blend ?ump, which was categorised as 

bump 45%, and as dump 55% of the trials. 

Adaptor words were chosen by selecting words with the critical phoneme 

(e.g., /d/, /b/, /s/ and /f/) in the initial (e.g., fly), the medial (e.g., tofu), or the final (e.g. 

leaf) position.  Seventy-five adaptor words were selected for the /d/, /b/, /s/, and /f/ 

conditions; 25 words per position. The duration of the adaptor words ranged from 

approximately 350 to 900 ms. No adaptor word contained the opposing critical 

phoneme (e.g. adaptor words starting with /f/ did not contain /s/ anywhere within the 

word). The average duration of the adaptor words was 764 ms in the fricative 

condition and 571 ms in the stop condition. The full list of adaptor words can be 

found in Appendix 1.4 

Design and Procedure 

                                                                                                                                                               
burst is present), voice onset time (VOT) and formant transitions into the following 

vowel (Johnson, 2011; Reetz & Jongman, 2009).  In our sample a discernible burst 

was present in in 22/25 of /b/-initial adaptors and in all (25/25) /d/-initial adaptors; the 

VOT values were 8.4 and 6.1 ms for initial /b/ and /d/ respectively (and typical for 

English voiced consonants). Word finally, two of the acoustic features as defined 

above – VOT and formant transitions – are non-existent due to the lack of a following 

vowel. The release was also weaker and present in 11/25 and 25/25 of word-final /b/ 

and /d/ adaptors respectively. The most reliable acoustic correlate of a word-final stop 

is formant transitions in the preceding vowel. In sum, there is little invariance in 

acoustic realisation of word-initial vs. final stop consonants. 
4 One word in the final-/s/ adaptor condition, lens, was included incorrectly (ends in 

[z] rather than [s]).  
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Each participant was assigned to one of the initial, medial, or final adaptor 

conditions (32 participants in each). The experiment was divided into four blocks, 

each corresponding to one of the four adaptor phoneme conditions (/f/, /s/, /b/, & /d/), 

with the order of block presentation counterbalanced. Each block contained six 

adaptation phases and associated test phases; the initial adaptation phase was 

approximately 3 minutes long, and the remaining five adaptation phases were about 1 

minute long. During the initial adaptation phase participants passively listened to 25 

adaptor words repeated randomly 9 times each in /f/ and /s/ adaptor conditions and 12 

times each in /b/ and /d/ adaptor conditions (in order to equate the total time of the 

adaption phase).  In the following adaptation phases the items were repeated 3 and 4 

times each, respectively. After each adaptation phase, participants were presented 

with ten test trials and asked to categorise the ambiguous test stimulus (e.g., 

categorise ?ail as fail or sail). All stimuli were delivered via headphones. Each 

experimental session consisted of 240 test trials and took approximately 60 minutes to 

complete. 

 During each adaptation phase, participants passively listened to adaptor words 

while an asterisk was visible in the centre of the screen.  Following this, a beep was 

presented for 1000 ms, followed by a 3000 ms pause, and then the 10 test trials. On 

each test trial the response cue “f       s” or “b      d” was presented for 3000 

ms in the centre of the screen, and simultaneously, the auditory test stimulus (?ail or 

?ump) was presented. Participants were asked to categorise the test stimulus by 

pressing the left or right Shift keys on the keyboard (left for ‘fail’ and ‘bump’, right 

for ‘sail’ and ‘dump’). Participants responded while the response cue was on screen. 

After a response, the screen was cleared, there was an inter-trial interval of 500 ms. 
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After completing the ten test trials, participants took a short break before commencing 

the next adaptation phase. 

We arbitrarily assigned ‘sail’ and ‘dump’ as target responses for the stop and 

fricative conditions, respectively.  Accordingly, the /s/-adaptors are considered as 

target congruent in the fricative condition and the /d/-adaptors are considered target 

congruent in the stop condition.  Adaptation effects reflect the impact of the adaptor 

words on the categorisation of the ambiguous test stimulus, with a reduction in the 

number of target congruent categorizations.  For example, a reduction in categorising 

the ambiguous test stimulus ?ail as ‘sail’ following /s/-adaptor words compared to /f/-

adaptor words.  

Results 

The data points excluded from the analysis were response times of 3000 ms or 

greater, as well as response times shorter than 200 ms. Overall, 1.6% of responses 

were excluded based on these criteria; 2.0 % from the initial position condition, 1.2% 

from the middle position condition, and 1.5% from the final position condition. The 

mean percentages of target ‘sail’ and ‘dump’ responses were computed for each 

participant in each adaptation condition, and the results can be seen in Figure 1.  

The data from Experiment 1 were entered into a 2×2×3 mixed samples 

ANOVA with consonant type (fricative vs. stop) and adaptation condition (target-

congruent vs. target-incongruent) as within-subject factors and position (initial vs. 

medial vs. final) as a between-subject factor.  There was a marginally significant 

effect of consonant type (F (1, 95) = 3.46, p = .066, ηp2 = .04) and a significant effect 

of adaptation condition (F (1, 95) = 110.04, p < .001, ηp2 = .54). The interaction 

between adaptation condition and position was significant (F (2, 94) = 18.92, p < 

.001, ηp2 = .29), whereas the interaction between consonant type and position was not 
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(F (2, 94) = .61, p = .55, ηp2 = .01).  Finally, the three-way interaction was not 

significant (F (2, 94) = .82, p = .44, ηp2 = .02), suggesting similar adaptation effects 

across positions for fricatives and stops.   

 Next fricatives and stops were considered separately.  First consider the 

adaptation effects for the fricatives across position. We carried out a 2×3 ANOVA 

that included adaptation condition (target-congruent vs. target-incongruent) as a 

within-subject factor and position within the adaptor word (initial vs. medial vs. final) 

as a between-subject factor.  The analysis showed a large main effect of adaptation 

condition such that the ambiguous test stimulus was more likely to be categorized as 

‘sail’ having been adapted with /f/-adaptors and as ‘fail’ following /s/-adaptors (F (1, 

95) = 81.12, p < .001, ηp2 = .47). The interaction between adaptor condition and 

position was significant (F (2, 94) = 10.94, p < .001, ηp2 = .19) and largely driven by 

the fact that the adaptation effect was largest with adaptor words containing the 

critical phoneme in the initial position.  However, strong adaptation effects were 

found in all positions. A set of planned contrasts showed that the overall adaption 

effect was significant in the initial (t (31) = 6.80, p < .001, d = 1.45, two-tailed), 

medial (t (31) = 4.47, d = .52, p < .001, two-tailed), and final (t (31) = 3.87, p = .001, 

d = .41, two-tailed) position conditions. 

    A similar outcome was obtained for the stop consonants. A parallel 2×3 

ANOVA showed a large effect of adaptor condition such that the ambiguous test 

stimulus was more likely to be categorized as ‘dump’ after having been adapted with 

/b/-adaptors and ‘bump’ following /d/-adaptors (F (1, 95) = 38.07, p < .001, ηp2 = 

.29), and an interaction between adaptor condition and position (F (2, 94) = 9.96, p < 

.001, ηp2 = .18), largely driven by the fact that the adaptation effect was largest with 

adaptor words starting with the critical phoneme. One difference, however, was that 
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the adaptation effects were not found in all three positions. A set of planned contrasts 

showed that the adaption effect was significant in the initial (t (31) = 5.32, p < .001, d 

= .96, two-tailed) and final (t (31) = 2.83, p = .008, d = .25, two-tailed) positions.  

However, this difference (4.38%) did not achieve significance in the medial position, 

(t (31) = 1.66, p = .108, d = .13, two-tailed). 

 We observed robust adaptation effects in five out of six conditions; what 

should be made of the failure to obtain significant adaptation effect for our ambiguous 

stop target (?ump) with medial adaptors?  One possibility is that this reflects a 

methodological weakness of the study, namely, a subset of participants may have 

consistently heard ‘bump’ or ‘dump’ regardless of the adaptors (that is, the test 

stimuli may not have been ambiguous for everyone).  Such ceiling or floor effects 

would reduce overall adaptation effects. In order to explore this possibility we carried 

out a second set of analyses in which we excluded all responses from those 

participants who reported /s/ or /d/ on over 90% of trials or under 10% of the trails (if 

a participant showed a ceiling/floor effect for fricatives but not for stops we kept the 

stop responses and vice versa).  Based on this criterion we excluded the following 

data: For fricatives: 9 out of 32 participants were excluded from the initial position 

condition, 10 out of 32 from the middle position condition, and 14 out of 32 from the 

final position; For stops: 14 out of 32 participants were excluded from the initial 

position, 18 out of 32 from the middle position, and 19 out of 32 from the final 

position.  The adaptation effects for the remaining data are shown in Figure 2. 

Insert Figure 2 about here 

The overall pattern of findings was similar to above, with one critical 

difference, namely, that adaptor effects were now significant for fricatives and stops 

in all conditions.  For fricatives, a set of planned contrasts showed that the adaption 
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effect was significant in the initial (t (22) = 9.89, p < .001, d = 3.04, two-tailed), 

medial (t (21) = 5.58, p < .001, d = 1.07, two-tailed), and final (t (17) = 4.78, p < .001, 

d = 1.14, two-tailed) position conditions.  Critically, the same was found with stops, 

with significant adaptation effects obtained in the initial (t (17) = 8.95, p < .001, d = 

2.00, two-tailed), medial (t (13) = 2.41, p = .031, d = .59, two-tailed), and final (t (12) 

= 3.43, p = .005, d = .90, two-tailed) positions.   

Discussion 

The results of Experiment 1 provide good evidence for position independent 

phonemes.  The categorization of ambiguous fricatives in the syllable-onset position 

in the test words was altered by adaptor words with the critical phoneme in the word-

initial, medial or final position. Similar results were obtained for ambiguous stops 

following word-initial and word-final adaptors. Once floor and ceiling effects were 

removed, adaptation effects occurred for both fricatives and stops across all positions.   

The most critical finding is that adaptation effects were found with stop 

adaptors in the final position despite substantial differences in the acoustic realisation 

of stops across syllable position. In fact, the overall size of the adaptation effects for 

the final fricatives (14.1%) and stops (9.6%) was not so different.  When final 

position adaptation effects are assessed in relation to the size of the effect in the initial 

position (28% for fricatives and 42.5% for stops), then fricatives (9.6/28 = 34%) and 

stops (14.1/42.5= 33%) showed the same degree of abstraction.  It is also interesting 

to highlight the adaptation effects observed in the medial stop and fricative conditions 

given that in the majority of adaptors the second syllable was unstressed. Hence, the 

critical phoneme often occurred in an acoustically less salient, unstressed syllable in 

the adaptors but in an acoustically salient stressed syllable in the test stimulus.  

Indeed, 48 out of 50 stop adaptor words were stressed on first syllable (e.g., robin, 
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idol; the only second-syllable stressed words were Tibet and undo), and 35 of 50 

fricative adaptors were stress-initial (such as awful, gossip).  This again shows that 

adaptation generalized over acoustic changes.  

Experiment 2 

 The most critical result from Experiment 1 is that the adaptation effect 

generalized from word-final to word-initial stops even though acoustic realisation of 

stops varies quite dramatically as a function of syllable position. Accordingly, we 

thought it was important to replicate this finding, particularly so given previous 

failures to obtain adaptation across positions with stops in a similar procedure (Ades, 

1974; Samuel, 1989).  In Experiment 2 we assessed adaptation from final adaptors 

(both fricatives and stops), and in addition, we varied the speaker. That is, we 

included the same ambiguous target stimuli (spoken by a male) and newly recorded 

adaptors (spoken by a female).  Accordingly, acoustic differences between the critical 

phonemes in the adaptors and test stimuli varied even more substantially than in 

Experiment 1. 

 

Participants 

Forty-eight adult participants took part in this study.  Participants were 

undergraduate psychology students at the University of Bristol and adults from the 

Bristol community. All participants were native English speakers with no history of 

dyslexia and normal or corrected-to normal vision. 

Stimuli 

The ambiguous test stimuli ?ail and ?ump from Experiment 1 were again used 

as test stimuli in Experiment 2. New adaptor words were recorded for Experiment 2 

using the same procedure as in Experiment 1; however the adaptor words were 
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recorded with an adult female native English speaker (British English, Received 

Pronunciation) to increase the acoustic dissimilarity between adaptor words and 

targets.  Overall 60 monosyllabic adaptor words were recorded; 15 of each contained 

the critical phonemes (/f/, /s/, /b/, and /d/) in the final position of the word. The 

duration of the adaptor words ranged from approximately 500 to 900 ms. The average 

duration of adaptor words was 768 ms for fricatives and 710 ms for stop consonants. 

The full list of adaptors is given in Appendix 2.  

Design and Procedure 

We followed the same procedure as in Experiment 1.  The experiment was 

divided into four blocks, each corresponding to one of the adaptor conditions (/f/, /s/, 

/b/& /d/) in the final position; the order of block presentation was counterbalanced. 

Each block contained six adaptation phases and associated test phases; the initial 

adaptation phase was approximately 3 minutes long, and the remaining five 

adaptation phases were approximately 1 minute long. During the initial adaptation 

phase participants passively listened to 15 adaptor words repeated 16 times each.  In 

the following adaptation phases the adaptor words were repeated 5 times each. After 

each adaptation phase, participants were presented with ten test trials and asked to 

categorize auditory test stimuli (i.e., categorize  ‘?ail’ as fail or sail or categorize 

‘?ump’ as bump or dump). Each experimental session consisted of 240 test trials and 

took approximately 60 minutes to complete. 

Results 

The data points excluded from the analysis were response times of 3000 ms or 

greater, as well as response times shorter than 200 ms; 1.4% of responses were 

excluded from analysis based on these criteria. As in Experiment 1, we assigned ‘sail’ 

and ‘dump’ as target responses for the stop and fricative conditions, respectively.  The 
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mean percentages of target ‘sail’ and ‘dump’ responses were computed for each 

participant in each adaptation condition, and the results can be seen in Figure 3. A 

2×2 repeated samples ANOVA with factors consonant type (fricative vs. stop) and 

adaptation condition (target-congruent vs. target-incongruent) was applied to the data 

from Experiment 2. There was a significant main effect of adaptation condition (F (1, 

47) = 21.88, p< .001, ηp2 = .32), but no significant effect of consonant type (F (1, 47) 

= 0.08, p = .780, ηp2 = .002), and no interaction between consonant type and 

adaptation condition (F (1, 47) = 1.01, p = .320, ηp2 = .02). Planned pairwise 

comparisons revealed significant adaptation effects for fricatives (t (47) = 2.89, p= 

.006, d = .23, two-tailed), reflecting the higher proportion of ‘sail’ responses after 

listening to /f/ adaptors and ‘fail’ responses following /s/ adaptors, and for stops (t 

(47) = 3.42, p= .001, d = .34, two-tailed) reflecting the higher proportion of ‘dump’ 

responses following /b/ adaptors and ‘bump’ responses following /d/ adaptors. 

Insert Figure 3 about here 

As in Experiment 1 we also assessed the adaptation effects when floor and 

ceiling effects were removed.  That is, we removed all of the responses of those 

participants who responded /s/ or /d/ over 90% or under 10% of the time. For the 

fricative analysis 24 out of 48 participants were excluded, and for the stop analysis 28 

out of 48 participants were excluded.  Now the percentage of /s/ responses in the 

fricative condition was 58.3% after exposure to /f/ adaptors and 43.1% following /s/ 

adaptors (adaptation effect of 15.2%). In the stop consonant condition, the percentage 

of /d/ responses was 65.8% following /b/ adaptors and 35.0% following /d/ adaptors 

(adaptation effect of 30.8%). Pairwise comparisons showed a significant adaptation 

effect for fricatives (t (23) = 2.77, p = .011, d = 0.72, two-tailed), as well as for stop 

consonants (t (19) = 3.82, p = .001, d = 1.15, two-tailed). 
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Discussion 

The key finding is that we obtained robust adaptation effects between syllable- 

final and syllable-initial stops and fricatives despite the fact that the adaptor and test 

stimuli were recorded by a female and male speaker, respectively.  If anything, the 

adaptation effects were larger for the stops compared to the fricatives.  Again, we take 

these findings to support the conclusion that phonemes play a role in speech 

perception.  

     General Discussion 

Our key finding is that robust adaptation effects occurred between phonemes 

in different word positions (e.g., adaptor: leaf; test: ?ail). Critically, the magnitude of 

the adaptation effect across positions was similar for fricatives that are relatively 

invariant in their acoustic form across positions and for stops that are less invariant 

across positions.  Indeed, in Experiment 2, adaptation effects were obtained between 

syllable-final stop adaptors spoken by a female and syllable-initial stops spoken by a 

male. We take these findings to support the claim that position independent phoneme 

representations play a role in speech perception (e.g., Cutler, 2008; Toscano et al., 

2013), and to challenge theories that reject phonemes in language perception (e.g., 

Hickock, 2014; Pierrehumbert, 2003).   

 In Experiment 1 we did observe that adaptation effects were largest when the 

critical phoneme was in the same position in the adaptor and test stimulus (e.g., 

adaptor: farm; test: ?ail).  Indeed, adaptation effects across positions were only ~1/3 

the size as within position.  However, the reduced adaptation effects across position 

do not necessarily undermine our conclusion that phonemes are coded independent of 

their position. It is well known that adaptation effects can occur at multiple levels of 

processing (Samuel & Newport, 1979) and are sensitive to both acoustic and 
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phonological dimensions.  Accordingly, it is likely that our adaptation effects also 

reflected a combination of lower- and higher level representations, with low-level 

acoustic representations playing more of a role in initial position condition (given the 

greater acoustic overlap here). The critical point is that robust adaption effects 

occurred across word and syllable positions, and these effects cannot be reduced to 

the acoustic similarity of phonemes across positions given the similar results were 

obtained with stops and fricatives.  

In contrast, our findings are difficult to reconcile with theories that reject 

position-invariant phoneme representations. For example, if the sub-lexical units of 

speech identification are positional variants of phonemes, as proposed for example by 

Pierrehumbert (2003), then it is not clear why such robust adaption effects were 

obtained across syllable and word positions. Similarly, the hypothesis that the sub-

lexical units of speech perception are syllables (e.g. Oden & Massaro, 1978) or demi-

syllables (e.g., Samuel, 1989) is difficult to reconcile with our findings.  On the 

syllable view, word-final adaptors such as food or kid activate the syllable [fud] or 

[kɪd] which are not organised into phonemes. Hence it is unclear why [fud] or [kɪd] 

decreases the likelihood of perceiving the ambiguous stimulus [?ump] as [dump], 

especially given that there is little acoustic similarity between the final and initial 

consonant d. Similarly, on the demi-syllable view, word final adaptors such as cord, 

need, pond activate demisyllables [ɔːd], [iːd], [ɒnd] which bear little overlap with the 

demisyllable [dʌ] of the target dump. In addition, syllables and demi-syllables do not 

account for the theoretical linguistic observations regarding the compositionality of 

morphologically complex words.  For example, demi-syllables mask the relationship 

between members of a morphological family: kiss represented as a combination of 
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demisyllables [kɪ] and [ɪs] is not present within kissing that is composed of [kɪ], [sɪ] 

and [ɪŋ]. 

How can we reconcile our findings with previous psycholinguistic research 

that has failed to observe evidence for phonemes? As detailed in the Introduction, the 

rejection of phonemes based on previous results often reflects a theoretical confusion.  

For instance, the fact that perceptual learning is often highly perceptually specific (in 

some cases ear specific; Keetels et al., 2015) says nothing about whether the 

perception also includes abstract phoneme representations.  But we would note that 

there is one set of findings that does seem at odds with our results; namely, the 

previous adaptation studies that failed to obtain adaptation across syllable positions in 

non-lexical targets (Ades, 1974; Samuel, 1989).  Why the difference? 

Our speculative explanation for the contrasting results is as follows.  First, our 

adaptation procedure was developed in response to our observation that the 

ambiguous test words regularly swapped with repetition (from ‘dump’ do ‘bump’ for 

example).  This striking illusion suggested to us that these stimuli might make a 

sensitive measure of adaption, especially in light of their lexical status. As noted 

earlier, adaptation effects occur at multiple levels of speech analysis, including low-

level acoustic level and a more complex abstract level (Samuel, 1989). The lexical 

nature of our test stimuli may have resulted in higher-level representations playing a 

greater role in the adaptation effects. Even more critically, unlike Ades (1974) and 

Samuel (1989) who used a single stimulus as an adaptor (e.g. ba), our adaptor 

phonemes where embedded in a variety of words which may also have contributed to 

adaptation effects at a more abstract level of processing. In addition, whether or not 

our procedure is better suited for accessing abstract phoneme representations, the 

important point to emphasize is that the previous authors relied on null results in their 
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adaptation studies to reject phonemes. By contrast, we obtained robust cross-position 

adaptation effects in 6 out of 6 conditions, including between stop adaptors in final-

syllable position spoken by a female and stop adaptors in initial position spoken by a 

male.  Our findings are also consistent with a number of number of speech perception 

studies that have provided evidence for phonemes (e.g., Cutting & Day, 1975; 

Kazanina, Phillips, & Idsardi,2006; Morais et al., 1987; Toscano et al., 2013).  

 How important is it to correctly characterize the sub-lexical coding scheme for 

theories spoken word identification? If it turns out that phonemes contribute to speech 

perception, does it have broad theoretical implications?  Almost certainly it does, as 

nicely illustrated in the domain of visual word identification. Here, the question of 

how written letters within words are coded for order has been the focus of a highly 

active research programme (for review see Grainger, 2008).  Most classic models of 

visual word identification and naming included some version of “slot-coding” in 

which letters are bound to position in long-term memory (e.g., DOG is coded as D-in-

position-1, O-in-position-2, and G-in-position-3; Coltheart, Rastle, Perry, Langdon, & 

Ziegler, 2001; McClelland & Rumelhart, 1981).  However, more recently, a number 

of detailed alternative input coding schemes have been advanced.  On “open-bigram” 

coding schemes, letter order is represented by a set of unordered bigram units that 

code for the relative order of two (not necessarily adjacent) letters. For instance, DOG 

is accessed by the unordered set of bigrams DO, DG, and OG whereas GOD is 

accessed through GO, OD, and GD (e.g., Grainger & Whitney, 2004).  On another 

view, words are accessed via position independent letter codes (e.g, the same ‘D’ 

letter unit is activated DOG and GOD).  In order to distinguish DOG from GOD these 

letter codes are ordered dynamically in short-term memory (Davis 1999, 2010). For 

instance, in Davis (1999), a primacy gradient of level of activation is used to code for 
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order, with the sequence D-O-G encoded through activating the ‘D’ unit the strongest, 

followed by ‘O’ and then ‘G’ whereas the sequence G-O-D encoded through 

activating the ‘G’ unit the most, followed by ‘O’, followed by ‘D’.   

The critical point for present purposes is that the choice of a letter-coding 

scheme has had profound implications for theories of visual word identification and 

naming.  For instance, open bigrams are well suited for recognising the visual forms 

of words but poorly suited for converting letters to sounds (an unordered set of DO, 

OG, and DG bigrams does not lend itself to naming DOG sub-lexically).  For this 

reason, Grainger and Ziegler (2011) were forced to develop a model of word 

processing that includes two qualitatively different sets of representations and 

processes that support these two functions. By contrast, in the case of position-

invariant letter codes, an entirely different set of issues arises. For example, new 

short-term memory processes that are capable of specifying order dynamically need to 

be introduced. This in turn impacts on the processes that mediate word identification 

and word learning (e.g., Davis, 1999, 2010). The different letter coding schemes also 

lead to very different empirical predictions.  For instance, on slot-coding schemes, 

there is no similarly between OWL and HOWL (given that OWL is coded with the 

letters O1, W2, and L3 whereas HOWL is coded with the non-overlapping set of 

letters H1, O2, W3, and L4) whereas according to both open-bigram and position-

invariant letter coding schemes, the two words are similar (e.g., the open bigrams 

OW, WL, and OL are included in both OWL and HOWL).  Consistent with the latter 

theories, embedded words (e.g., the OWL in HOWL) are activated during visual word 

identification (e.g., Bowers, Davis, & Hanley, 2005; Nation & Cocksey, 2009).   

To date there has been relatively little theoretical work concerned with how 

sub-lexical speech units are ordered, and even less empirical work directed at 
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assessing the different hypotheses.  But similar solutions have been considered.  As 

noted above, one of the most common approaches is to assume that segments in long-

term memory are context-specific, such as [th] and [t˺] which are used in the syllable-

initial and syllable-final positions respectively.  In this case, word identification may 

be mediated by allophones whose acoustics often specify their syllable position (e.g., 

Mitterer et al, 2013; Pierrehumbert, 2003).  On another approach, an unordered set of 

position-invariant (adjacent or non-adjacent) diphones is used to code for order 

(Hannagan et al., 2013). For example, the diphones DO, OG, and DG (along with the 

phonemes D, O, and G) are used to access the word representation DOG (as opposed 

to GOD).  And yet other models include position-invariant phonemes that are 

dynamically bound to syllable or word position during speech perception and learning 

(e.g., Page & Norris, 2009).  

The important point to emphasize is that these different approaches to coding the 

order of sub-lexical speech units entail very different theories of speech perception 

(just as the different approaches to ordering letters entails very different theories of 

visual word identification). We take our findings to lend some support to the claim 

that position-invariant phonemes play a role in speech perception, but clearly more 

empirical work is required before any strong conclusions are warranted. We hope our 

results will help kick-start more research on this fundamental issue that has largely 

been ignored in the speech perception literature. 
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 Figure Captions: 

 

Figure 1. a) The mean percentage of /s/ responses in Experiment 1 to the ambiguous 

test stimulus ?ail after exposure to /f/ and /s/ adaptor words in the initial, medial and 

final conditions. b) The mean percentage of /d/ responses in Experiment 1 to the 

ambiguous test stimulus ?ump after exposure to /b/ and /d/ adaptor words in the 

initial, medial and final conditions. Error bars represent a 95% confidence interval. 

Figure 2. The mean percentage of /s/ and /d/ responses in Experiment 1 after 

excluding participants who did not find the test stimuli ambiguous.  a) The mean 

percentage of /s/ responses to the ambiguous test stimulus ?ail after exposure to /f/ 

and /s/ adaptor words in the initial, medial and final conditions. b) The mean 

percentage of /d/ responses to the ambiguous test stimulus ?ump after exposure to /b/ 

and /d/ adaptor words in the initial, medial and final conditions. Error bars represent a 

95% confidence interval. 

Figure 3. The mean percentage of /d/ and /s/ responses in Experiment 2 to the 

ambiguous test stimulus ?ump and ?ail respectively after exposure to adaptor words 

with phonemes /b/, /d/, /f/, and /s/ in the final position.  Adaptor words were spoken 

by a female, ambiguous test stimuli were spoken by a male.  Error bars represent a 

95% confidence interval. 
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Appendix 1. The list of 25 adaptors used in Experiment 1 with the critical phoneme 

in the initial position in adaptor conditions /f/, /s/, /b/, and /d/. 

 

Adaptor condition 

/f/ /s/ /b/ /d/ 

fable sack bail dainty 

fact sage balance dairy 

faint saint bank damp 

fairy sand barn dancer 

farm satin basic deep 

felt save bath delay 

file scar bean dentist 

fire score beast desert 

flag seem bell desk 

flat send bench device 

flick serve berry dial 

floral sick bias dice 

fluid sigh birch dinner 

fool silk blame dive 

foot silly blaze donkey 

forget sink bliss dose 

formal skin blue draft 

forth skull boil dream 

foul slam bonus drift 

frank slap bother driver 

frog smart bowl drug 

front smoke brick drum 

fruit snake bulk dusk 

full spirit burst dust 

fume swan butter dynamic 
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The list of 25 adaptors used in Experiment 1 with the critical phoneme in the 

beginning of the second syllable in adaptor conditions /f/, /s/, /b/, and /d/. 

 

Adaptor condition 

/f/ /s/ /b/ /d/ 

affair answer abbey addict 

affix arson amber cider 

awful bison auburn credit 

before blossom cabbage elder 

cafe classic Cabot Friday 

crafty cluster cobra giddy 

defeat consult elbow hardly 

defend crystal gibbon idol 

defy dusty habit ladder 

effect Easter hobby madly 

griffin glossy label meadow 

inflate gossip limbo media 

inform hasty maybe medic 

leaflet husky orbit modest 

offend loosen public needle 

perfect massive rabbit order 

profile message ribbon poodle 

profit mister robin puddle 

profound oyster robot shadow 

refine passive rubbish studio 

refund pistol sober undo 

toffee plastic tablet voodoo 

tofu tasty Tibet widow 

traffic vista tuba wisdom 

welfare whiskey urban Yiddish 
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The list of 25 adaptors used in Experiment 1 with the critical phoneme in the final 

position in adaptor conditions /f/, /s/, /b/, and /d/. 

 

Adaptor condition 

/f/ /s/ /b/ /d/ 

beef actress Arab ahead 

belief bass cherub avid 

brief boss club cord 

calf brass crib gold 

cliff chess curb humid 

cuff class glib liquid 

golf cross globe load 

gruff dress grab lucid 

half glass grub need 

hoof gloss herb orchard 

knife grass lobe plod 

leaf guess perturb pond 

life hiss probe reed 

loaf kiss proverb road 

motif lens reverb salad 

proof less robe spade 

puff loss scrub tend 

rebuff mass shrub timid 

reef mess slob tread 

relief miss snob vivid 

roof moss superb weed 

tariff nervous throb wicked 

thief pass tribe wind 

wife plus tube word 

wolf tennis verb yard 
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Appendix 2.The list of 15 adaptors used in Experiment 2 with the critical phoneme in 

the final position of the word in adaptor conditions /f/, /s/, /b/, and /d/. 

 

Adaptor condition 

/f/ /s/ /b/ /d/ 

beef bass club cloud 

brief boss crab cord 

cliff brass curb food 

cuff chess herb greed 

golf class jib good 

gruff cross job had 

half dress knob kid 

hoof gloss rib kind 

leaf guess rob mood 

loaf kiss scab mud 

proof less shrub nod 

reef loss snub road 

roof miss sob seed 

thief pass verb shed 

wolf plus web wild 

 


