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MULTIFRACTAL ANALYSIS OF BIRKHOFF AVERAGES FOR
COUNTABLE MARKOV MAPS

GODOFREDO IOMMI AND THOMAS JORDAN

ABSTRACT. In this paper we prove a multifractal formalism of Birkhoff aver-
ages for interval maps with countably many branches. Furthermore, we prove
that under certain assumptions the Birkhoff spectrum is real analytic. We
also show that new phenomena occurs, indeed the spectrum can be constant
or it can have points where it is not analytic. Conditions for these to happen
are obtained. Applications of these results to number theory are also given.
Finally, we compute the Hausdorff dimension of the set of points for which the
Birkhoff average is infinite.

1. INTRODUCTION

The Birkhoff average of a regular function with respect to an hyperbolic dynam-
ical system can take a wide range of values. This paper is devoted to study the fine
structure of level sets determined by Birkhoff averages. The class of dynamical sys-
tems we consider are interval maps with countably many branches. These maps can
be modeled by the (non-compact) full-shift on a countable alphabet. The lack of
compactness of this model, and the associated convergence problems, is one of the
major difficulties that has to be overcome in order to obtain a precise description
of the level sets.

Let us be more precise, denote by I = [0,1] the unit interval. We consider the
class of EMR (expanding-Markov-Renyi) interval maps. This class was considered
by Pollicott and Weiss in [25] when studying multifractal analysis of pointwise
dimension.

Definition 1.1. A map T : I — I is an EMR map, if there exists a countable
family {I;}; of closed intervals (with disjoint interiors int I, ) with I; C I for every
1 € N, satisfying

(1) The map is C* on Uy int I;.

(2) There exists € > 1 and N € N such that for every x € U2 I; and n > N
we have |(T™) (x)] > &™.

(3) The map T is Markov and it can be coded by a full-shift on a countable
alphabet.
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(4) The map satisfies the Renyi condition, that is, there exists a positive number
K > 0 such that

7" (2)]
sup sup i — <
neNz,y,zel, | T (W)|[T"(2)]

The repeller of such a map is defined by
A :={x e UX I;: T"(z) is well defined for every n € N}.

We also assume throughout the paper that zero is the unique accumulation point
of the set of endpoints of {I,}.

Example 1.2. The Gauss map G : (0,1] — (0,1] defined by
1 1
G(z)=—-— {} )

€T

where [-] is the integer part, is an EMR map.

The ergodic theory of EMR maps can be studied using its symbolic model and
the available results for countable Markov shifts. We follow this strategy in order to
describe the thermodynamic formalism for EMR maps for a large class of potentials
(see Section 2).

Let ¢ : A — R be a continuous function. We will be interested in the level sets
determined by the Birkhoff averages of ¢. Let

n—1
. . 1 i
Q= inf {nlggon E H(T'x) :x € A} and
=0

n—1
1 ,
o = sup {nlgr;o - E p(T'x) :x € A} .
i=0

Note that, since the space A is not compact, it is possible for a,, and «aj; to be
minus infinity and infinity respectively. For « € [, aps] we define the level set of
points having Birkhoff average equal to « by

J(a) = {mEA:nli_{I;OiZ_:gb(Tim):a}.

=0
Note that these sets induce the so called multifractal decomposition of the repeller,
QN
A= J | JT,

where J' is the irreqular set defined by,
n—1
1 4
J = {x € A: the limit lim — E #(T"z) does not exist } :
n—oo N =

The multifractal spectrum is the function that encodes this decomposition and it is
defined by
b(a) = dimpy (J (),
where dimp(-) denotes the Hausdorff dimension (see Subsection 2.3).
The function b(«) has been studied in the context of hyperbolic dynamical sys-
tems (for instance EMR maps with a finite Markov partition) for potentials with
different degrees of regularity. Initially this was studied in the symbolic space for
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Holder potentials by Pesin and Weiss [27] and for general continuous potentials
by Fan, Feng and Wu [9]. Lao and Wu, [9], then studied the case of continuous
potentials for conformal expanding maps. Barreira and Saussol [2] showed that the
multifractal spectrum for Hélder continuous functions is real analytic in the setting
of conformal expanding maps. They stated their results in terms of variational for-
mulas. Olsen [24], in a similar setting obtained more general variational formulae
for families of continuous potentials. The multifractal analysis for Birkhoff aver-
ages for some non-uniformly hyperbolic maps (such as Manneville Pomeau) was
studied by Johansson, Jordan, Oberg and Pollicott in [18]. There have also been
several articles on multifractal analysis in the countable state case see for example
[7, 11, 13, 20]. However, these papers look at the local dimension spectra or the
Birkhoff spectra for very specific potentials (e.g. the Lyapunov spectrum).

Our main result is that in the context of EMR maps we can make a variational
characterisation of the multifractal spectrum,

Theorem 1.3. Let ¢ € R be a potential then for o € (—o0, apr) we have that

h
(1) b(a)sup{)\EZ;:,uGMT,/(bd,ua and)\(u)<oo},
where the class R is defined in Subsection 2.2, My denotes the set of T—invariant
probability measures, h(u) denotes the measure theoretic entropy and A(u) is the

Lyapunov exponent (see Section 2).

The other major result, which we prove in Section 4, is that when ¢ is suffi-
ciently regular and satisfies certain asymptotic behaviour as x — 0 the multifractal
spectrum has strong regularity properties.

Theorem 1.4. Let ¢ € R be a potential. The following statements hold.

(1) If limg % = oo and there exists an ergodic measure of full di-
mension pu then b(c) is real analytic on ([ ¢du, anr) and b(e) = dim A for
all a < [ gdyp.

(2) If lim, o % = oo and there does not exist an ergodic measure of
full dimension then b(a) is real analytic for all & € (—oo, apr).

(3) If lim, 0 % = 0 then there are at most two point when b(a) is

non-analytic.

Note that in a sequel to this paper, [14], similar results were obtained in the
case of the quotients of functions. Note that in a sequel to this paper, [14], similar
results were obtained in the case of the quotients of functions. In [5] it was shown

in Theorem 7.2 that in the case where lim,_,¢ [ = 0 it is possible to find

b()
—log [T"(x)
an example where there are two points for which b(«) is not analytic.

Without the assumptions made in Theorem 1.4 it is hard to say anything in
general but it is possible to say things in specific cases. We investigate this further
in Sections 5 and 6. In particular in Section 5 we look at the case when ¢(z) =
—log |T"| and we also look at the shapes b(«) can take.

In Section 6 we apply the above two theorems to the Gauss map and obtain
results relating to the continued fraction expansion. Our results relate to classical
ones by Khinchine [21] regarding the size of sets determined by averaging values of
the digits in the continued fraction expansion of irrational numbers. We not only
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consider the behaviour of the limit

lim Yaj-as-...-an,
n—oo
where the continued fraction expansion of z is given by [a1as . ..]. But we generalise

it to a wide range of other functions. For example, we are able to describe level
sets determined by the arithmetic averages of the digits in the continued fraction:

1
lim — (a1 +as+--+an).

n—oo N
Note that there is related work in [8] where they look at the dimension of the sets
where the frequencies of values the a; can take are prescribed.
Since the potentials we consider are unbounded their Birkhoff average can be
infinite. In Section 7 we compute the Hausdorff dimension of the set of points for
which the Birkhoff average is infinite.

2. SYMBOLIC MODEL AND THERMODYNAMIC FORMALISM

In this Section we describe the thermodynamic formalism for EMR maps. In
order to do so, we will first recall results describing the thermodynamic formalism
in the symbolic setting.

2.1. Thermodynamic formalism for countable Markov shifts. The full-shift
on the countable alphabet N is the pair (X, o) where

Y ={(zi)i>1:z; € N},
and o : ¥ — X is the shift map defined by o(x129-++) = (zox3--+). We equip ¥
with the topology generated by the cylinders sets
o
The n—variation of a function ¢ : ¥ — R are defined by

Via(6) = sup {|(x) — 6(y)| : 2,y € T, = yi for 0< i <n—1}.

We say that a function ¢ : ¥ — R has summable variation if Y, , V,,(¢) < oo.
If ¢ has summable variation then it is continuous. A function ¢ : ¥ — R is called
weakly Holder if there exist A > 0 and 6 € (0,1) such that for all n > 1 we have
Va(@) < Af™. The thermodynamic formalism is well understood for the full-shift
on a countable alphabet. The following definition of pressure is due to Mauldin
and Urbanski [23].

={reX:z;=iforl<j<n}.

10in

Definition 2.1. Let ¢ : ¥ — R be a potential of summable variations, the pressure
of ¢ is defined by

n—1
(2) P(¢) = lim %log > exp <Z¢(aix)>.
on(x)=x =0

The above limit always exits, but it can be infinity. This notion of pressure
satisfies the following results (see [23, 28, 29, 30)),

Proposition 2.2 (Variational Principle). If ¢ : ¥ — R has summable variations
and P(¢) < oo then

P(d’)SUP{h(M)+/¢dui/(bd,u<ooandu€./\/lg},
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where M, is the space of shift invariant probability measures and h(u) is the mea-
sure theoretic entropy (see [32, Chapter 4] ).

Definition 2.3. Let ¢ : X2 — R be a potential of summable variations. A measure
uw € M, is called an equilibrium measure for ¢ if

P(O) = hip) + [ .

Proposition 2.4 (Approximation property). If ¢ : ¥ — R has summable varia-
tions then

P(¢) = sup{P,x(¢) : K C X : K # 0 compact and o-invariant},

where Py (¢) is the classical topological pressure on K (for a precise definition see
[32, Chapter 9]).

Definition 2.5. A probability measure u is called a Gibbs measure for the potential
@ if there exists two constants M and P, such that for every cylinder Cy,. i, and
every x € Cy, ;. we have that

M =~ exp(—nP + Z;-:ol #(oizx))

Proposition 2.6 (Gibbs measures). Let ¢ : ¥ — R be a potential such that
Yorl 1 V() < 0o and P(¢) < oo then ¢ has a unique Gibbs measure.

Proposition 2.7 (Regularity of the pressure function). Let ¢ : ¥ — R be a weakly
Hélder potential such that P(¢) < oo , there exists a critical value s* € (0, 1] such
that for every s < s*we have that P(s¢) = oo and for every s > s*we have that
P(s¢) < co. Moreover, if s > s* then the function s — P(s¢) is real analytic and
every potential s¢ has an unique equilibrium measure.

2.2. Symbolic model. It is a direct consequence of the Markov structure assumed
on a EMR map T that T : A — A can be represented by a full-shift on a countable
alphabet (X, 0). Indeed, there exists a continuous map 7 : ¥ — A such that roo =
Tor. Moreover, if we denote by E the set of end points of the partition {I;}, the map
7: % — A\U,,eny T "F is an homeomorphism. Denote by I(i1,...in) = 7(Cy;..4,)
the cylinder of length n for T'. We will make use of the relation between the symbolic
model and the repeller in order to describe the thermodynamic formalism for the
map 7. We first define the two classes of potentials that we will consider,

Definition 2.8. The class of regular potentials is defined by
R = {(b A= R:¢ <0, ¢por has summable variations and lim ¢(x) = —oo} .

z—0

Note that if we have a potential ¥ : A — R such that ay) + b € R for some
a,b € R then since we can compute the Birkhoff spectrum for ay) + b € R we can
compute the Birkhoff spectrum for 1.

Definition 2.9. The class of strongly regular potentials is defined by
R:i={¢p:AN—R:¢cR and ¢on is weakly Holder} .

Example 2.10. Let {a,}, be a sequence of real numbers such that a,, — —oo. The
locally constant potential ¢ : A — R defined by ¢(x) = a, if x € I(n), is such that
pER.
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The topological pressure of a potential ¢ € R is defined by

PT(¢>)—sup{h(u)+/¢d/,L:—/¢du<ooandu€/\/lT},

where M denotes the space of T—invariant probability measures. Since there
exists a bijection between the space of o—invariant measure M, and the space of
T —invariant measures Mt we have that

(3) Pr(¢) = P(m o ¢).

Therefore, all the properties described in Subsection 2.1 can be translated into
properties of the topological pressure of the map 7. Since both pressures have the
exact same behaviour, for simplicity, we will denote them both by P(-).

Remark 2.11. Since we are assuming that the set E of end points of the parti-
tion has only one accumulation point and it is zero, we have that if ¢ € R then
lim,_,0 ¢(x) = —o0 and if a € A\ {0} then lim,_,, ¢(z) < 00.

Remark 2.12. Note that if T is an EMR map then the potential —log|T’| € R.
If u € My then the integral

N i= [ log ] du
will be called the Lyapunov exponent of p.

2.3. Hausdorff Dimension. In this subsection we recall basic definitions from
dimension theory. We refer to the books [1, 4, 26] for further details. A countable
collection of sets {U; }ien is called a é-cover of F' C R if F' C |J,y Ui, and for every
i € N the sets U; have diameter |U;| at most §. Let s > 0, we define

o0
H;(F) := inf {Z |U;|° : {U;}: is a d-cover of F}
i=1
and
H?(F) := lim H3(F).
0—0

The Hausdorff dimension of the set F' is defined by

dimy (F) :=1inf{s > 0: H*(F) =0}.
We will also define the Hausdorff dimension of a probability measure u by

dimg (p) = inf {dimg(Z) : p(Z) = 1}.

A measure p € My is called a measure of mazimal dimension if dimy p = dimg A.

3. VARIATIONAL PRINCIPLE FOR THE HAUSDORFF DIMENSION

In this section we prove our main result. That is, we establish the Hausdorff
dimension of the level sets J(a) satisfy a conditional variational principle.

Theorem 3.1. Let ¢ € R then for a € (—oo,apr)

(4) dimpg (J(«)) = sup {ZEZ; S E MT,/qbd,u =a and \(p) < oo} )
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Proof of the lower bound. In order to prove the lower bound first note that if
p € My is ergodic and [ ¢dp = o then p(J(e)) = 1. Moreover if A() < oo then
h(p)

dimpy (@) = 3o and we can conclude that
. . h(p)
dimg (J(e)) > dim = —.
Thus we can deduce that
h
dimg (J(«)) > sup {)\Efg : b € Myp and ergodic ,/qﬁdu =« and \(u) < oo} .

To complete the proof of the lower bound we need the following lemma.

Lemma 3.2. Let o € (—oo, ). If p€ My, [ ¢dp = o and N(p) < oo then for
any € > 0 we can find v € My which is ergodic and

(1) [¢dv=aq,
(2) [h(v) = h(p)| <e,
3) [A) = A <e.

Proof. Let p € Mr, [¢dp = o and A(u) < oo. We can then find a sequence
of invariant measures {/,} supported on finite subsystems such that [¢du, =
a, limy o0 A(ptn) = M) and limy, o0 h(pn) = h(p). Since these measures are
supported on finite subsystems we can apply Lemma 2 and Lemma 3 from [18] to

complete the proof. O
We can now immediately deduce that
h
sup{(u) :MEMT,/qu,u:aand Ap) <oo} =
A
h(w) : _
sup o) € My and ergodic , [ ¢du = a and M) < oo ¢,
1

which completes the proof of the lower bound.

3.1. Upper bound. In this section we prove the upper bound of our main result.
We adapt to our setting the method used in [18].

Lemma 3.3. The function

F(a):= sup{m:uEMT,/qbdu:a and A(p) <oo}

is continuous in the domain (—oo, apr).

Proof. Let {un} be a sequence of measures in My satisfying A(p,) < oo and
converging to a measure p where [ ¢dp = a. Let 1, b € M7 such that

/¢dﬂ<a</¢dﬁ

and A(77), A(7z) < oo. By considering convex combinations of j,, with 7z or 4 we can
find a sequence of measures v,, where f ¢ dv, = « for each n and

h(ﬂn) h(vy,)

AMpn)  AMvn)

lim ‘

n—oo

It then follows that
F(a) > limsup F(ay,).

n—oo
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In the other direction we fix p,v € My with [¢dv = 8 < o = [¢dp. Let
vp = pv + (1 — p)p and note that

s : h(”p)_h(ﬂ)
o F(e) 2 iy SO0 = 50

and
h(vp) _ h(v)

. ) > 1 = -
R = 36 T aw)

We can use this to deduce that
F(a) <liminf F(ay,).

n—oo

O

Denote by Spo(z) := Zi‘:ol #(T'z). Let « € R,N € N and € > 0 and consider
the following set,

Sé(r)
k

(5) J(a,N,e) := {xeA: e(as,onre),foreverykzN}.

Note that

J(a) C U J(a, N,¢).
N=1

In order to obtain an upper bound on the dimension of J(a) we will compute
upper bounds on the dimension of J(«, N, ). Denote by Cy the cover of J(«, N, ¢)
by cylinders of length k£ € N, that is

Cr:={I(i1,...,ig) : L(i1,...,ix) N J(ca, N, &) # 0}.
Lemma 3.4. For every k € N the cardinality of Cy, is finite.

Proof. Since ¢ € R we can deduce that lim; o inf,cr(;y ¢(2) = —oo and hence
we can find an ¢ € N such that for all € I(j) with j > ¢ we have that |¢(z)| >
k(o] 4+ €). Tt then follows that Cj only contains cylinders I(i1,...,4) where each
i; < i. There is clearly only a finite number of such cylinders. (|

Let s € R denote the unique real number such that
> (i, i) =1
I(i1,...i%)ECk
We define the following number:

(6) s := limsup sy,
k—o0

Lemma 3.5. The following bound holds,
dimg (J(a, N,¢)) < s,

and there exists a sequence of T—invariant probability measures {p} such that

, h(pk) \ _
’flggo (Sk A(Hk)) =0
and [ ¢dur € (o — 2, + 2¢).
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Proof. To see that dimgy (J(a, N,¢)) < s, we note that for k sufficiently large and
e>0
HAE(J(o,Noe)) < Y (i, i) < L
I(il,...ik)eck

This means that H5"¢(J(a, N,e)) <1 and so dim J(a, N,¢) < s +¢.

For the second part let 7y, be the T*-invariant Bernoulli measure which assigns
each cylinder in Cj, denoted by I(i1,...,4), the probability |I(iy,...,i)|**. Note
that the entropy of this measure with respect to T will be

BT = —se 3 T .erin)|* log | T(ir,....i0)
I(iy,...,ix)€Ck

and there will exist C' > 0 such that for all £ € N the Lyapunov exponent
(g, TFH1) satisfies

Ao, TF) = > (i, i) [ log [T(in, .. ik) || < C.
I(il,...,ik)eck

This then gives that

Sk()‘(nkaTk) - C) < h(M,Tk) < Sk(A(nk’aTk) + C)
)‘(ﬁlmTk) h >‘(77k>Tk) n )\(ﬁlmTk)

¥ k k . : A, T*) o _
and since A(n, T") > £ it follows that limg_, N TE) — Sk = 0. Moreover, for

k sufficiently large each cylinder in C will only contain points x where Si¢(x) €
(v — 2e, + 2¢). This means that f% dny € (o — 2e,a + 2¢). To complete the

proof we simply let p, = (1/k) Ef:_ol ne o T O

Thus, we can deduce that

dimg J(o) < lim sup  F(7).
e—0 vE(a—e,a+e€)

The fact that
dimy J(o) < F(a)
now follows by Lemma 3.3. This completes the proof of Theorem 3.1.

Remark 3.6. I is a direct consequence of the work of Barreira and Schmeling [3]
together with the approzimation property of the pressure (Proposition 2.4) that the
irreqular set has full Hausdorff dimension,

dimH J/ = dlmH A.

4. REGULARITY OF THE MULTIFRACTAL SPECTRUM

This section is devoted to the study of the regularity properties of the multi-
fractal spectrum. We relate the conditional variational principle to thermodynamic
properties and as a result prove Theorem 1.4 . Our proof is based on ideas developed
by Barreira and Saussol [2] in the uniformly hyperbolic (Markov with finitely many
branches) setting. Nevertheless, most of their arguments can not be translated into
the non-compact (Markov with countably many branches) setting. It should be
pointed out that the behaviour of the multifractal spectrum in this setting is much
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richer than in the compact setting. New phenomena occurs, in particular the mul-
tifractal spectrum can be constant and it can have points where it is not analytic.
We obtain conditions ensuring these new phenomena happen.

The following Proposition is a direct consequence of results by Mauldin and
Urbanski [23], Sarig [29] and Stratmann and Urbaiski [31]. We will use it to
deduce certain regularity properties of the multifractal spectrum. Throughout this
section we will let ¢ € R and «ajs to be as in the introduction. Some of the results
will need additionally that ¢ € R.

Proposition 4.1 (Regularity). If ¢ € R, § € (0,1] and a € (—00,ans) then the
function

q— P(q(¢ — o) — dlog|T"]),
when finite is real analytic, and in this case

d
7 Pla(o—a) = slog '] = [Gdugs .
q a=4o
where fig, 5 is the equilibrium state of the potential qo(¢ — o) — 0 log |T"|.

For a € (—o0, apr) we will let

6(a)zsup{m:uEMT,/Qﬁduzaand Alp) <oo}.

We wish to relate d(«) to the function g — P(q(¢ — «) — dlog |T”]). To do this we
introduce the value 6* which is defined by

§* :=inf {6 € [0,1] : P(q¢ — dlog|T'|) < oo for some g > 0} .
This quantity will alway give a lower bound for §(«).
Lemma 4.2. For all o € (—o0, apr) we have that §(a) > §*.

Proof. If §* = 0 then this statement is obvious so we will assume that §* > 0. Let
0<s<d*and a € (—o0,apr). In order to show that §(a) > 6* we will exhibit a
sequence of invariant measures (1,,) such that for every n € N we have [ ¢ dv, = a

and L
lim (vn)

n— oo )\(yn)

> s.

First note that we can find a sequence of invariant measures (u,,) such that for all
h(#‘n)
- f ¢dun
for every ¢ > 0 we have that P(q¢ — slog|T’|) = co. Let ¢ > 0 and A > 0 with
A > qaps. Because of the approximation property of the pressure, we can choose

an invariant measure v satisfying

(8) h(v) + q/(b dv — sA(v) > A.
That is

n we have sA(u,) < h(p,) < oo and lim,, = oo. Indeed, note that

h(v) > (A — qapr) + sA(v).
From where we can deduce that
sA(v) < h(v) < oc.
Since [ ¢ dv < 0 then from equation (8) we have
h(v) A A(v)
©) “Tédv” Jedv “Todv

+q>q.
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Since we can do this for every positive ¢ € R, let ¢ = n and denote by u, an
invariant measures satisfying equations (8) and (9). The sequence () complies
with the required conditions.

Passing to a subsequence if necessary, we can assume that the sequence [ ¢du,
is monotone and that the following limit exists y = lim,_, [ ¢du,, (note that v can
be —o0).

For sufficiently large values of n € N the integral [ ¢dpu, is close to v. Therefore,
there exists f € R and an invariant measure p satisfying:

(1) [¢du =3B,
(2) h(p) < oo and A(u) < oo,
(3) ae (B, [¢duy] or a € [[ ¢duy, B) for n € N large enough.

For n sufficiently large we can also find constants p, € [0,1] such that o =
PuB+ (1 —pn) [ ¢dp,. If p, = 0 for all n sufficiently large then there is nothing to
prove. Consider the following sequence of invariant measures (v,,) defined by

Vn = Pnpt+ (1 = pn)pin-
Then [ ¢ dv, = a. By construction we have that lim,_, h(u,) = co. Since by
assumption « # § we have that lim, (1 — pp) € (0,1]. Therefore
RILH;O(l = pn)h(pn) = oo
This implies that
h(vy)

lim = lim
n—oo A(”n) n—0o0 pn)\(lu’> + (1 - an\(Mn)

(]

For notational ease we will allow P(q(¢ —a) — dlog |T"|) > 0 to include the case
when it is infinite.

Lemma 4.3. If $ € R, a € (—00,aps) and §(a) > §* then for all ¢ € R we have
P(q(¢ — a) — d(a)log|T'[) = 0
Proof. Recall that

6(a)zsup{m:MEMT,/¢du:aand A(p) <oo}.

Denote by (pn)n @ sequence of T—invariant measures such that for every n € N we
have
(1> f ¢ duy = a,
(2) h(pn) < oo and A(pn) < oo,
3) .
lim ) = d(a).
n— oo )\(un)
If we choose 6* < 51 < s2 < §(e) and gp > 0 such that P(gop—s11og|T"|) = K < o0
then by the variational principle for all n we have

qo/aﬁdun — 1A (in) + h(pn) < K

and thus
(10) h(pn) — s1A(pn) < K — qoc.
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Since for n sufficiently large we have

h(”n)
Aftn) < 8la)

we obtain that soA(uy) < h(py). Thus, for n sufficiently large we have that

h(pn) = s1X(pn) = (52 = $1)A(fin)-
Substituting this into inequality (10) we get that for n sufficiently large

82 <

K — g
() < —— 2%,
S9 — 81

Furthermore by the variational principle we have that for all ¢ € R

P(a(é— ) — 5(0) log |T']) > h(jum) + q ( [ - a) ()M (1) =

B(jin) — 8(@)A (i) > Aljin) (QLE“ - 5(a)> |

The result then follows since () is bounded above and lim,, ;oo (h(“") — (5(a)) =

Apn)
(o (35 -40)) -

We can now describe the function ¢ — P(¢(¢ — a) — () log|T”]) in more detail.

0 which means that

(]

Lemma 4.4. For any o € (—oo,ap| one of the following three statements will
hold,

(1) é(ar) = 6*.
(2) There ezists qo € R such that P (qo(¢ — a) — () log |T’|) = 0 and
0
5oL (4@ — a) = 6(a) log |T"]) =0.
q =90

(3) There exists q. € R such that P (q.(¢ — ) — d(a) log |T’|) = 0 and
P(ql¢ —a)—d(a)log|T’|) = <
for all g < qe.
Proof. We will assume throughout that §(«) > 0* since otherwise (1) is satisfied.
We know that when finite the function ¢ — P (¢(¢ — a) — §(«x) log |T”]) is real
analytic. Moreover, in virtue of Lemma 4.3, for all ¢ € R we have
P(g(¢ — ) = (a)log |T"]) > 0.

We will show that if the derivative of the pressure is zero then the pressure itself is
also zero. Indeed, assume that there exists gg € R such that

0
7oL (a(é — @) = d(a) log |T7]) =0.
q 7=qo
Denote by g, the equilibrium measure corresponding to the potential go(¢ — o) —

d(a). Then, Ruelle’s formula for the derivative of pressure gives that [ ¢dpug, = o
Thus

P(q(¢ — a) = d(a)log |T"]) = —6(a)A(ptgo) + Ta(hg,) < 0.
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So, P (go(¢ — ) — 0(a) log|T’|) = 0 and statement 2 holds. Note that if the pres-
sure function ¢ — P (¢(¢ — ) — 6(a) log|T”|) is finite for every ¢ € R then there
must exists go € R such that the derivative of P (¢(¢ — ) — 6() log |T"|) at ¢ = qo
is equal to zero. This follows from Ruelle’s formula for the derivative of pressure
and the fact that « € (—o0, any).

Let us assume now that the derivative of the pressure does not vanish at any
point and let g, = inf{q : P(¢(¢—a)—d()log|T’|) < oo}. It follows from standard
ergodic optimization arguments [17, 22] that

0
lim —P —a) —6(a)log|T’ > 0.
A 5 Plalé = a) = d(e)log|T])| _

If P(g.(¢p — ) —d(a)log|T'|) = oo then by considering compact approximations to
the pressure we can see that

lim P(q(¢ — a) — d(a)log|T’|) = oc.

a—at
But recall that for ¢ > ¢, the pressure is finite. This means that for small € > 0
the derivative of the pressure for ¢ € (g., g. + €) will be negative. This, in turn,

will imply that there is a zero for the derivative and so cannot happen. Thus
P(qe(¢p — a) — 6(a) log |T’]) < oo and

0 :
5o (a6 — @)~ 5(a) log [T _ >0,

If P(q.(¢p — a) — d(a) log|T'|) = C > 0 then there exits a compact invariant set
K on which the pressure restricted to K satisfy Pk (q(¢—«)—0d(a)log|T’|) > 0 for
all ¢ € R. By considering the behaviour as ¢ — co and ¢ — —oo this function must
have a critical point that we denote by gx. denote by pux the equilibrium measure
corresponding to gx (¢ — a) — 6(c) log |T"|. We can conclude that [ ¢dux = a and
S0

0 < Pg(qx(¢ —a) = d(a)log |T"]) = h(px) — 6(a)M(px)-

This means that h(px)/A(px) > 6(c) which contradicts the definition of d(«). So
we can conclude that

P(ge(¢ — ) — () log [T"]) = 0
and Property 3 is satisfied. g

Denote by A(a) the set of values o € (—o0, aps) where case 2 of Lemma 4.4 is
satisfied.

Lemma 4.5. Let I C A(a) be an interval. The function o — b(o) = §(«) s real
analytic on I.

Proof. Recall that

b(oz):sup{;bgz;:MEMT,/¢du:aand Ap) <oo}.

In virtue of the definition of I we have that for « € I there exists ¢(a) € R such
that

P(q(e)(¢ — @) = b(a)log|T"[) = 0.
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Recall that the function (¢,d) — P(g¢(¢ — ) — dlog|T”|) is real analytic on each
variable. In order to obtain the regularity of b(«) we will apply the implicit function
theorem. Proceeding as in Lemma 9.2.4 of [1], if

P(q(¢ — ) — dlog |T"])
G(q,0,a) := < OP(q(p—a)—5log |T"])

Jq

we just need to show that

det Kaa 36’)} _ OP(g(é—a) ~ Slog|T'|) 9*P(g(¢— a) — dlog|T")

dq° 86 dq 9504
9*P(g(¢ — @) —dlog|T"|) 9P(q(¢ — o) — dlog|T"])
0q? o) ’

is not equal to zero for 6 = b(a) and ¢ = ¢g(«). Since IP(q(¢ — ) —dlog |T"])/0q =
0 at ¢ = g(a) it is sufficient to show that 9*(P(q(¢ — ) — dlog|T’|))/dq* and
O(P(q(¢p—a)—dlog|T"]))/dd are nonzero. Since the function P(q(¢—a)—dlog|T’|)
is strictly convex as a function of the variable ¢ we have that

9*(P(q(¢ — a) —dlog |T"]))

0.
0q? 7
Since, there exists an ergodic equilibrium measure . such that
oP —a)—dlog |T'
(q(¢ Oé) Og| |) — /10g|T"d,LLe,
06
then we have
OPla(¢ — ) — Slog|T') _,
00 '
Therefore the function b(«) is real analytic on I. O

Let soo = inf {s € R: P(—slog|T’|) < oo}. We are now ready to complete the
proof of Theorem 1.4 with the following more general proposition.

Proposition 4.6. Let ¢ € R. We have that
1. If §* = dimy A then b(a) = 6* for all a € (—o0, apy].
2. If 6* < so0 < dimpg A then there exists a non-empty interval I for which
I C A(a) and thus b(«) is analytic for a region of values of .
3. Iflim,_,q ﬁ% = 00 then either
(a) A(a) = (—o0,an] and thus b(e) is analytic for a € (—oo, apg) or
(b) there exists an ergodic measure of full dimension v with a = [ ¢pdv >
—oo and then I(a) = |a, ay], b(a) is analytic for a € (—a, apr] and
b(a)) = dimpy A for a < a.
4. If lim,_,q % = 0 then b(a) is analytic on (—o0, ap] except for at
most two points.

Proof. Each part will be proved separately.
Part 1 can be immediately deduced from Lemma 4.2.
To prove part 2 we let s = dimg A and note that 6* < s, < s. Since s, < s then

P(—slog|T’|) = 0 and P(—tlog|T’|) > 0 for so <t < s and P(—tlog|T"|) = o0
for §* <t < so. Denote by v be the equilibrium state corresponding to —slog |T”|
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and @ = [ ¢dv (this can be —oco, but if finite then b(a) = s). Since d(a) is a
continuous function of o we can define

@ =sup{a:d(a) > s}

Now we assume that « € (a,@) and so in particular §(a)) > 6*. Since d(a) > 6*
we are in either case 2 or 3 of Lemma 4.4. Therefore there exist ¢y € R such that
P(go(¢ — a) — 6(a)log |T']) = 0. Let ¢ < 0 and note that there exists a compact
invariant set K C A and a T-invariant measure v, such that dimg v, > d(«) and
[ ¢ dva < a. We have that

Plato~ o) = a(a)log ') = 1) +a ( [ 6, — @) = s(@)Awa)

(o) o (3 - 20

and so go > 0. We also have that P(—d(a)log|T’|) > 0 with equality if and only if
« = «. By the definition of 6* and noticing that d(a) > §* there exists ¢* > 0 such
that if ¢ € (0,¢*) then

P(q(¢ — o) — 6(r) log |T"]) < oo.

Thus if 6(«) < 0* then ¢ — P(q(¢ — ) — 6(a)log |T"|) is decreasing for ¢ suffi-

ciently close to 0 and we can only be in case 2 from Lemma 4.4. If & = a then

P(=é(a)log|T’|) = 0 and %P(qw —a) —slog|T'|) = 0 which means we are
q=0

also in case 2 from Lemma 4.4.

To prove part 3 we first note that 6* = 0 . Indeed, given A > 1 there exists
e > 0 such that if z € (0,¢) then

—4(a)
og | T"(@)] ~

that is, ¢(z) < —Alog|T’(x)|. If we denote by P.(-) the pressure of T restricted
to the maximal T—invariant set in (0,¢) we have that P.(¢) < P.(—Alog|T"|) <
oo. Since the entropy of T restricted to (0,1) \ (0,¢) is finite and the potential ¢
restricted to this set is bounded, we can deduce that P(¢) < co. In particular, we
obtain that 6* = 0.

Let us consider first the case where soo < s. In this setting the potential
—slog|T’| has an associated equilibrium state v with h(v)/A(v) = s. If we have
f ¢dv = —oo then we can just apply the techniques from the previous part. If
J¢dv := a > —oo then for a € (o, apnr) we can see that b(a) = §(a) will be
analytic by applying part 2. For & < a we know for 0 < § < s

(1) P(g(¢p —a) —dlog|T"|) = oo for all ¢ < 0,
(2) P(=6log|T']) > 0,
(3) P(g(¢p — ) —dlog|T']) > q(a — ) — dA(v) + h(v) > 0 for all ¢ > 0.

Note that the first statement follows from the assumption lim,_,q % = o0.
Therefore we cannot be in cases 1 or 2 from Lemma 4.4. This means that we must
be in case 3 from Lemma 4.4 with ¢. = 0 and thus 6(a) = s.

We now assume that s = so,. We start with the case where P(—slog|T’|) <
0. This means that if {u,}nen is a sequence of T-invariant measures such that
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lim,, oo ﬁéﬁ:g = s then lim, o0 A(tn) = 0o0. Indeed, assume by way of contra-

diction that limsup,,_, . A(pr) = L < co. Given € > 0 there exists N € N such
that

h(ﬂN)
Alpn)

that is h(un) — sA(pun) > —eL. Since this holds for arbitrary values of £ we obtain
that P(—slog|T"|) > 0. This contradiction proves the statement. Now, since by

> 8 —g,

assumption lim,_,q % = oo we have that lim,,_,o f ¢dp, = —oco. Therefore

for @ € (—00, aps) we must have §(a)) < s. This means that P(—d(a)log|T’|) = oo
and for all ¢ > 0 we have P(q(¢ — o) — §(«) log|T’|) < oo. Thus we must be in
Case 2 from Lemma 4.4 and the proof is complete.

We now assume that P(—slog|T’|) = 0 and that v is the equilibrium state for
—slog|T"|. For any o < [ ¢dv we can argue exactly as when s, < s to show that
d(a) = s. For a > [ ¢dv we first need to show that d(a) < s. To prove this, note
that the function ¢ — P(q(¢ — ) — slog|T’|) has a one sided derivative at ¢ = 0
with derivative [(¢—a)dr < 0. Thus by Lemma 4.4 it is not possible that 6(a) = s.
So d(e) < s and we can use the same arguments as when P(—slog|T”|) < 0.

We now turn to part 4 of the Lemma. In this case 0" = so,. Indeed, given ¢t > 0
there exist € > 0 such that if z € (0,¢) then —tlog|T'(z)| < ¢(x). If we denote by
P.(-) the pressure of T restricted to the maximal T—invariant set in (0, ) we have
that P.(—(t + ) log |T'|) < P.(q¢ — dlog|T’|). Since the entropy of T restricted
to (0,1) \ (0,¢) is finite and the potentials ¢ and log |T"| restricted to this set are
bounded, we can deduce that for ¢ > 0 and any positive t > 0 we have

P(—(t+0)log|T"]) < P(q¢ — &log |T"]).

Therefore §* = s4.

This implies that if s = so then d(a) = s for all & € (—oo,ap). So we
will assume that seo < s. If §(a) > so then by our assumption on ¢ we have
P(q(¢ — a) — d(a)log |T"]) < oo for all ¢ € R and

. / _
Jm Pa(¢ — a) = d(e) log [T7]) = oo,
and so we must be in case 2 from Lemma 4.4. So we need to show that the set
J={a:0(a) > Soo}
is a single interval. Denote by v be the equilibrium measure corresponding to
—slog|T’"| and by a = [¢dr. Let a € J we know that there is an equilibrium
measure fo, with [¢du, = a and hpa) — 0(a)). Let f € R be real number

)
bounded by a and a. By considering convex combinations of u, and v we can

see that §(8) > d(«). It therefore follows that J is a single interval and the only
possible points of non-analycity for §(a) = b(«) are the endpoints of J.

O

5. THE LYAPUNOV SPECTRUM

A special case of the Birkhoff spectrum, which has received a great deal of atten-
tion, is the Lyapunov spectrum. This can be included in our setting by considering
¢(z) = —log |T'(x)| and then the Lyapunov spectrum is given by L(a) = b(—a).
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The present section is devoted not only to show how previous work on Lyapunov
spectrum can be deduced from ours, but also to present new results on the subject.

In related setting there has been work for the Gauss map in [20, 25]; for fairly
general piecewise linear systems [19] and in [16] the spectra for ratios of functions
is studied where one of the functions is —log |T"(z)].

If T denotes an expanding-Markov-Renyi (EMR) map then the variational for-
mula proved in Theorem 1.3 holds for the Lyapunov spectrum. On the other hand,
neither of the assumptions for Theorem 1.4 are satisfied. However, it is still possible
to describe in great detail the Lyapunov spectrum.

Let ¢(x) = —log|T’(x)| and, as in the previous Section, let

S0 = Inf{d € R: P(d¢) < oo}.
The following Theorem shows how our results fit in with the results in [20, 16, 19].

Theorem 5.1. For all o € (—o0, apr) we have that

(11) b(a) = igf{w P(“f)}.

Furthermore
(1) If P(s00®) = 00 then b(a) is real analytic on (—oo, apy).
(2) If P(s00p) = k < 00 and . is the equilibrium state for seo¢ then b)) is
analytic except at . = [ ¢pdp.. For o < e we have that b(o) = o — g
Proof. The formula for b(«) given in equation (11) was shown in a slightly different
setting in [19]. We show how it can also be derived from the methods in this paper.
For each 6 € R we will denote the function fs: R — R by

f5(@) = P(q¢ + 6¢) = P((¢ + 6)9).
We first assume that P(sec¢) = co. Thus, we have

)0 if ¢ <850 —0;
Jola) = {ﬁnite if g > s — 0.

Therefore, for each a € (—o0, aps) and for each § € R there exist ¢(d) > so — 8
such that f§(¢(0)) = a. Denote by ¢(6(a)) € R the corresponding value for §(c).
We have that

d%P(m + 6(a)d)

g=q(8(a))
Moreover

P(q(0(c))¢ + 0()9) = gq(6(ax))ex.

Thus, for all @ € (—oo,ays] we are in case 2 from Lemma 4.4. Therefore, the
Lyapunov spectrum is real analytic on (—oo, aps].

Now let P : R — R be defined by P(u) := u + %' We can then deduce that
P(q(d(a)) + d(v)) = §(ev) and P'(q(d(«x)) + 6(«)) = 0. Finally since the pressure
is convex we must have that P”(¢(6(a))) > 0 and that ¢(d(«)) will be the only

minimum point for P. Thus

o(a) =t {u s ZEED Y

(67
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We will now assume that P(—s.¢) = k. Let p. be the equilibrium measure
associated to —s¢. If a > f odu,. then we can argue exactly as in the previous
case. For a < a, we let ¢ = § and note that

P(g(¢p —a) + (Soc — q)0) = P(50cp) —g =k — k= 0.
Note that if ¢ < k/« then

P(q(¢—a)+(sm—2)¢> = .
K

Therefore we are in case (3) from Lemma 4.4. Thus b(a) = s — 4. We again
define P : R — R by P(u) := u + @. If ¢ € R is such that P(q) < oo
then we denote by p, be the equilibrium measure associated with g¢. Note that

P'(q) = 1+ —A(pg)—a > 0. Thus the infimum of P will be achieved at so. We
can then calculate.

f (P ()} = Pls0c) = 00— g

O

We now turn our attention to the shapes the Lyapunov spectrum can take. We
start by giving a result which holds for all potentials ¢ € R

Theorem 5.2. Let T be an EMR map with dimg A = s and ¢ € R, then

(1) If there exists a T-ergodic measure of maximal dimension p and o* = f odu
then b(«) is non-increasing on [a*, aps] and non-decreasing on (—oo, a*].
(Note that it is possible that a* = —o0.)

(2) If there exists no ergodic measure of mazimal dimension then b(«) is non-
decreasing on (—o0, apg].

Proof. For the first part. Let a1 > as > a* > —oo. For any € > 0 there exists
an invariant measure y; such that [ ¢duy = a1 and h(p1) > A(p1)(b(ar) — ). If
a* > —oo we can then find p € (0,1) such that as = pa* + (1 — p)az. Now let
vi =pp+ (1 —p)pr. Thus [ ¢dry = as and

h(v) = psA(pa) + (1 = p)(b(ar) — €)M (1) = (b(an) = €)A(v1).

Therefore b(ag) > b(ay). The case where a3 < az < a* is handed analogously.
Now assume that a* = co and a1 > as. Let apr > a3 > as > —oo. By considering
compact approximations we can find an invariant measure p such that [ ¢dp < as
and co > h(p) > (b(ar) — e)A(p). We can also find a measure p; such that
J¢dpr < ai and h(p1) > (b(o) — €)A(p1). To complete the proof we take a
suitable convex combination of pu and .

In the case where there is no ergodic measure of maximal dimension we know

that s = so.. Again by considering compact approximations we can find a sequence

h(pn) _

of invariant measures p, such that lim, ., ¢dp, = —oco and lim, Ny = S

The proof now simply follows the first part when o* = —co.

We now return to the Lyapunov spectrum. It was shown in [15] that in the
hyperbolic case it can have inflection points and it clearly has to have such points
in the non-compact case. An application of the methods used in Theorem 5.2
combined with results from Theorem 5.1 allow us to prove in a simple way that as
long as se < s = dimg(A) the inflection points can only appear in the decreasing
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part of the spectrum. We present the proof in the non-compact case however it
also holds in the compact, hyperbolic case.

Corollary 5.3. Let T be an EMR map such that s < s = dimg(A) then the
increasing part of the Lyapunov spectrum is concave.

Proof. Again we will let ¢ = —log|T’| and note that in this case the Lyapunov
spectrum satisfies L(a) = b(—a). Since s» < s there exists an ergodic measure
of maximal dimension that we denote by u. Let f ¢dp = a*. By Theorem 5.2 we
know that b(«) is non-increasing on [a*, apr). Moreover the proof of Theorem 5.1

implies that for all o € [a*, aps) there will exist a measure p,, such that A(pe) = —«
and ZEZZ% = d0(a).

We now introduce variables A1, Ao such that
inf{/log|T’| dv:v e MT} = A <AL < A < A= /10g|T/\ dp.

Thus we we can find u1, us € My such that L(A;) = dimpg p1, L(Ag) = dimp po,
A(p1) = A1 and A(p2) = Ag. Let

Do) o 1)+ (1= ()
tA(p2) + (1 = t)A(p1)
for ¢t € [0,1]. In order to study the convexity properties of the Lyapunov spectrum
L(«) we compute the derivatives of the function L(t) and note that L(tA; + (1 —
t)A2) > L(t) with equality when ¢ = 0, 1. The derivative of L(¢) is,
(tA(p2) + (1 = t)A(p1))?
The second derivative is given by:
" 2(R(p2)A(pa) — h(pa)A(p2))
PO = )+ e A0 A0
Note that all the Lyapunov exponents are positive therefore the denominator of
(13) is positive. Since
) h(p2)
A(p1) Ap2)’
we have that 2(h(u2)A(1) — h(p1)A(p2)) > 0. Therefore the sign of (13) is deter-

mined by the sign of A(u2) — A(p1). Which by definition satisfies A\; = A(u1) <
A(p2) = Ag. Therefore L (t) < 0 and the function L(«) is concave on [A,, A*]. O

(13)

=dimpg J()\l) < dimgy J()\Q) =

In the case where s = sy then if P(so$) = oo then the above proof can be
easily adapted to show the Lyapunov spectrum is concave.

6. EXAMPLES

An irrational number z € (0,1) can be written as a continued fraction of the
form

1
x = = [ar1azas...],

as +
2 as+ ...
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where a; € N. For a general account on continued fractions see [12, 21]. The Gauss
map (see Example 1.2) G : (0,1] — (0, 1], is the interval map defined by

1

T

This map is closely related to the continued fraction expansion. Indeed, for 0 <
x < 1 with & = [ajagas...] we have that a; = [1/z],a2 = [1/Gx],...,a, =
[1/G™~z]. In particular, the Gauss map acts as the shift map on the continued
fraction expansion,

an = [1/6’”_130]
The following result was initially proved by Khinchin [21, p.86] in the case where
p(n) < Cn'/?=r,
Theorem 6.1 (Khinchin). Let ¢ : N — R be a non-negative potential. If there
exists constants C > 0 and p > 0 such that for every n € N,
p(n) < Cn'=7,

then for Lebesgue almost every x € (0,1) we have that

n—1 ) oo log 1+ #

n=1

Remark 6.2. The above results directly follows form the ergodic theorem applied

to the (locally constant) potential ¢ with respect to the (ergodic) Gauss measure,
1 dx

A)=—7- | ——.

Ha(4) log2 J4 1+

The Gauss measure is absolutely continuous with respect to the Lebesgue measure.
Moreover, it is the measure of mazimal dimension for the map G.

As a direct consequence of Theorem 1.3 we can compute the Hausdorff dimension
of the level sets determined by the potential ¢ (strictly speaking we should apply
our results to the potential —¢, but clearly this does not make any difference).
Indeed, first note that potentials satisfying the assumptions of Khinchin’s Theorem
such that lim,, . ¢(n) = oo satisfy the assumptions of Theorem 1.3. That is, if
¢:(0,1) — R is a non-negative potential such that

(1) if x € (0,1) and « = [a1,az...] then ¢(x) = ¢(a1),
(2) there exists constants C' > 0 and p > 0 such that for every n € N and
ze(1/(n+1),1/n),

¢(x) = p(n) < Cn'~",

(3) limg—0 ¢(z) = oo,
then ¢ € R. Our first result in this setting is the following immediate Corollary to
Theorem 1.3.

Corollary 6.3. Let ¢ € R. Then if we denote by

K(a) := {x €(0,1): nh_)ngo%z_: o(G'z) = a} ;
=0
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we have that

(14) dimg(K(a)) =sup {QLE'Z; NS ./\/lg,/gbdu = exp() and A(pn) < oo} .

A particular case of the above Theorem has received a great deal of attention.
If ¢(x) = logay then the Birkhoff average can be written as the so called Khinchin

function:
k(z) ;= lim (log /a1 -az-... ay).
n—oo
This was first studied by Khinchin who proved that

Proposition 6.4 (Khinchin). Lebesgue almost every number is such that

> 1 155
lim (log {/ai -as- ... ay) = log H (1 + ()) =26...
n

n=1

Recently, Fan et al [7] computed the Hausdorff dimension of the level sets deter-
mined by the Khinchin function. They obtained the following result [loga; duc =
QSsRB < 00,

Proposition 6.5. The function
b(a) := dimpg ({m €(0,1): lim log (%ay -az ... an) = a}) )
n—oo

is real analytic, it is strictly increasing and strictly concave in the interval [, asrB)
and it is decreasing and has an inflection point in (asrp,0).

An interesting family of related examples is given by letting v > 0 and consid-
ering the locally constant potential ¢.([a1,as,...]) = —a]. For this potential the
Birkhoff average is given by

n—1

o1 i 1
(15) nl;n;oﬁzg¢7(G x):—nlgngoﬁ(a¥+ag+...+a%),
where x = [a1,a9,...,an,...]. Let us note that if v > 1 then for Lebesgue almost

every point z € (0,1) the limit defined in (15) is not finite. For v < 1 we let
G(v) := [ ¢ydue > —oco. Nevertheless for any v > 0 we have that ¢, € R, so the
following result is a direct corollary of Theorem 1.3

Corollary 6.6. Denote by

A(O{,"y) = {-’756(0,1)2 lim 1(a¥+ag++a7l)a}’

n—o0o N

we have that

(16)  dimpg(A(a,v)) = sup {;LE'Z; DpE Mg,/Ad,u = —a and A\p) < oo} .

We can also use Theorem 1.4 to give more detail about the function o —
dimy (A(a, 7)).
Proposition 6.7. Let v > 0 then
(1) If v > 1 the function a — dimpy (A(e, 7)) is real analytic and it is strictly
increasing.
(2) If0 < v < 1 the function & — dimp (A(e, 7)) is real analytic on [G(7), an)
and for a < G(vy) we have dimgy (A(a,v)) = 1.
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Proof. Since lim,_q % = oo the Theorem immediately follows from the
first part of Theorem 1.4. ([l

The sets A(a,1) are related to the sets where the frequency of digits in the
continued fraction is prescribed. The Hausdorff dimension of these sets was recently
computed in [8].

We conclude this section exhibiting explicit examples of dynamical systems and
potentials for which the behaviour of the Birkhoff spectra is complicated.

A version of following example appears in [29]. Consider the partition 