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Abstract

Dominance is defined as the preferential access to limited resources. The present study

aimed to characterise dominance in a non-aggressive flatfish species, the Senegalese sole

(Solea senegalensis) by 1) identifying dominance categories and associated behaviours

and 2) linking dominance categories (dominant and subordinate) with the abundance of

selected mRNA transcripts in the brain. Early juveniles (n = 74, 37 pairs) were subjected to a

dyadic dominance test, related to feeding, and once behavioural phenotypes had been

described the abundance of ten selected mRNAs related to dominance and aggressiveness

was measured in the brain. Late juveniles were subjected to two dyadic dominance tests (n

= 34, 17 pairs), related to feeding and territoriality and one group test (n = 24, 4 groups of 6

fish). Sole feeding first were categorized as dominant and sole feeding second or not feed-

ing as subordinate. Three social behaviours (i. “Resting the head” on another fish, ii.

“Approaching” another fish, iii. “Swimming above another” fish) were associated with domi-

nance of feeding. Two other variables (i. Total time occupying the preferred area during the

last 2 hours of the 24 h test, ii. Organisms occupying the preferred area when the test

ended) were representative of dominance in the place preference test. In all tests, dominant

fish compared to subordinate fish displayed a significantly higher number of the behaviours

“Rest the head” and “Approaches”. Moreover, dominant sole dominated the sand at the end

of the test, and in the group test dominated the area close to the feed delivery point before

feed was delivered. The mRNA abundance of the selected mRNAs related to neurogenesis

(nrd2) and neuroplasticity (c-fos) in dominant sole compared to subordinate were signifi-

cantly different. This is the first study to characterise dominance categories with associated

behaviours and mRNA abundance in Senegalese sole and provides tools to study domi-

nance related problems in feeding and reproduction in aquaculture.
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Introduction

Behavioural studies in fish have been used as a model background in the field of perceptive

ethology/evolutionary psychology. Associating several cognitive traits (memory, kin recogni-

tion and learning, among others) with morphology, ecology and a variety of behavioural

parameters could provide a general vision for cognitive ethology [1–4]. Moreover, the study of

flatfish behaviour has attracted the attention of researchers due to their ecology, life history

and adaptations. However, when considered in comparison with pelagic fish species, flatfish

behaviour has received little attention. Similarly, studies have tended to focus on aggressive

species and few social non-aggressive fish species have been studied. General aspects in the

behavioural catalogue of flatfish have been described including feeding behaviour, locomotion,

mimicry and spawning behaviour reviewed in Gibson [5]. However, dominance behaviour in

flatfish has not been described. The understanding of flatfish dominance behavioural patterns

would be very useful to comprehend the biology and ecology of flatfish species and for stock

management in aquaculture and natural populations.

Senegalese sole (Solea senegalensis) is a typical flatfish species that undergoes a larval

metamorphosis to form a flattened shape adapted for a benthic life. The species inhabits the

sediments of the Mediterranean Sea and the Southern European Atlantic coast and in these

areas forms an important fishery that is in decline. The combination of declining market

supply and high market value has resulted in a rapid increase in Senegalese sole culture in

Europe by more than 10 times from 2009 to a production of over 1,200 tons in 2015 [6].

However, at present the culture is unsustainable due to two of the main culture problems [7].

One is the variation in growth that results in large size dispersion during weaning and on-

growing which complicates farming practices [8, 9]. The second issue is the complete failure

in the spawning of cultured breeders (hatched and reared in captivity), which dictates that

currently, the farming of Senegalese sole relies on captures of wild breeders that spawn in

captivity. More specifically, cultured males exhibit a dysfunctional behaviour and conse-

quently do not complete the reproductive courtship to fertilise eggs [10–12]. In addition to

this problem with cultured males, wild Senegalese sole pairs (male and female) that repro-

duce in captivity show intra- and inter-annual fidelity and a few families from a few breeders

(8–40% of the broodstock) dominate the offspring from a captive wild broodstock [13, 14].

In order to understand the reproductive behavioural dysfunction to control reproduction,

the reproductive behaviour has been described (ethogram) [15]. This courtship was charac-

terised as a complex set of behaviours that especially males executed to gain acceptance from

a female to spawn in a pair [15]. In this context, cultured males did not engage with females

and did not participate in reproductive behaviours [11, 12]. Furthermore, stress coping styles

were identified for individual fish and compared between groups with different origins (cul-

tured vs. wild) and reproductive success [16, 17]. However, stress coping styles were not

related to origin or reproductive success [17, 18]. All these studies on growth, courtship and

behavioural aspects found that Senegalese sole could be considered as a social non-aggressive

species [8, 9, 12, 17]. Therefore, under aquaculture conditions Senegalese sole appear to

exhibit dominance several aspects as in growth, feeding and reproduction. However, further

studies are needed to understand inter-individual interactions in captivity of this species and

particularly dominance as both of these problems, variation in growth and failed spawning,

may be related to social interactions and dominance.

Dominance was defined as success in competitions over limited resources such as food, spe-

cific (or preferred) areas, shelter, mates, spawning areas and offspring [19]. Thus, in general,

dominant animals could have better access to food and shelter, lower rates of predation and

higher mating success [20] than subordinates. Conversely, subordinate animals might suffer
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chronic stress, immune depression, reduced disease resistance and lower reproductive success

[21]. Aggressive behaviour was related to social hierarchies and competition in fish species

such as zebrafish (Danio rerio), Nile tilapia (Oreochromis niloticus) or rainbow trout (Oncor-
hynchus mykiss) among other species [20, 22–24]. In fish, social hierarchies are often catego-

rised by agonistic behaviours that are habitually registered through feeding contests or

territoriality. Several variables could be measured to assess these social hierarchies and one of

them is feeding behaviour [25] which has been associated with physiological indicators of

stress [26, 27], aggression and mating success [28]. Currently, place preference test is also used

for fish with several purposes, such as to observe active implication in reproduction and terri-

torial dominance [29]. For example, Nile tilapia is a tropical fish species that build nests and

defends a territory to attract females [30]. Thus, individuals choose between different cubicles

depending on the stimulus motivating the visit, shelter or reproduction [29]. The knowledge

of the natural preference and the competition for different compartments is essential to avoid

a misleading interpretation of results [29, 31]. In addition, animals that acquire the dominant

position in early life stages (juvenile) in fitness-related traits might expand this social status to

reproductive success [32, 33]. Therefore, the use of feeding and place preference tests adapted

to Senegalese sole could provide insights into how dominance is established and expressed in a

social flatfish species and such information can provide tools to establish how social interac-

tions lead to growth dispersion and / or suppression of reproductive success.

In addition, previous studies found that the differences in behavioural phenotype were

associated to different levels of biological regulation measured in the transcriptome, showing

the behaviour might be linked with differential gene transcription [34–36]. These studies are

working towards an increased understanding of the behaviour—transcriptome linkage and

the present study incorporated some of the identified transcripts, which will be briefly

described here. Dominance behaviour has been associated with agonistic behaviour as aggres-

sion and some transcripts have been related to this conduct in zebrafish, for example: The

serotonin receptor 1 A (5-Hydroxytryptamine receptor 1 A; 5-htr1a), which inhibits serotonin

(5-HT) firing, synthesis, release and turnover, has been associated with the control of several

behavioural aspects including aggression [37, 38]. The tryptophan hydroxylase 1b (tph1b) that

is involved in the synthesis of 5-HT [39] and solute carrier family 6 member 13 (slc6a13) that

is a neurotransmitter transporter of gamma—Aminobutyric acid (GABA) were both related to

aggression and impulsivity [40–42]. Lastly, the arginine vasopressin-induced protein 1

(avplr1), which is involved in the hypothalamo-neurohypophysial system (HNS) pathway and

mineralocorticoid receptor (mr) implicated in hypothalamus-pituitary-interrenal (HPI) axis

pathway, were also associated with aggressive behaviour in zebrafish [38]. Similarly, the follow-

ing transcripts in zebrafish were associated with social status [43], bdnf and c-fos, which are

markers of neuroplasticity [44] and nrd2 that was associated with neurogenesis [45]. Finally,

ETS translocation variant 5 (etv5) and nuclear receptor subfamily 4, group A, member 2

(nr4a2), which are implicated in the preservation and differentiation of dopaminergic neurons

in tilapia (Astatotilapia burtoni) [46]. In addition, all of the mentioned transcripts have been

related to social status in zebrafish [37, 38].

In this study, we provide insight into dominance and social interactions of captive Senega-

lese sole aiming to define dominance behaviour by relating behavioural patterns to feeding

response and territory as well as defining mRNA abundance in association to the different

dominance related behavioural responses.
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Material and methods

Ethics statement

All experimental practises on fish that formed part of this study were in agreement with the

Spanish and European regulations on animal welfare (Federation of Laboratory Animal Sci-

ence Associations, FELASA) and approved by the Animal Ethics Committee of IRTA.

Animal rearing conditions

Senegalese sole juveniles (~ 45 g) were provided by Stolt Sea Farm (Santiago de Compostela,

Spain), different fish from the same batch were used for two successive years to conduct differ-

ent behavioural tests. Fish were transported from A Coruña, where the facilities of Stolt Sea

Farm are located, with a specialized transport for aquatic live animals. Fish were maintained at

the Research Centre facilities of IRTA, in St. Carles de la Ràpita, North East Spain and distrib-

uted in two 10 m3 fiberglass tanks with natural photoperiod (using artificial lighting) and sea-

sonally simulated external temperatures (40˚62’82.42”, 0˚66’09.37”/ 9–32˚C) maintained

within the range of 9–20˚C with a recirculation system (IRTAMar1) that recirculated + 400%

and renewed 10% of the water daily. Sole were fed ad libitum five days per week with balanced

feed (LE-3mm ELITE, Skretting, Co.). A total of six identical 400 L fiberglass tank were used,

two tanks were used for acclimation (17–25 fish or 2.5–4.8 kg per tank) and four tanks for the

experiments. One week before dyadic tests started, animals were moved from a large holding

tank and acclimated to the 400 L fiberglass tanks. All fish were tagged with a passive integrated

transponder (PIT) tag (ID—100A, Unique Trovan-Zeuss; Madrid, Spain) and photo identified

individually. Individual markings in the photographs were matched with the corresponding

PIT Tag for later identification in the video images. The acclimation and experimental tanks

were in a recirculation system to control the temperature and water quality in order to reduce

environmental variation. During the tests the temperature was maintained at 15˚C with a

recirculation system (IRTAMar1 described above). The animals were fasted for 48 hours prior

to the experiment.

Behavioural studies

Video recording analyses. Digital cameras (Square black and white CCD camera, model

F60B/N80-50G, KT&C Co. Ltd., Korea Technology and Communications Korea, supplied in

waterproof housing by Praesentis S.L. Barcelona, Spain) were used to film the dyadic and

group dominance tests. One camera per experimental tank was placed above the tank to give a

view of the entire tank. Four cameras (one per experimental tank) were connected to a digital

video recorder (model XMOTION-304H by Praesentis, S.L). The videos were analysed in two

ways, a continuous analysis of 2 hours of the behaviours between the two fish in the dyadic

tests and a discrete analysis of behaviours on particular frames in the group tests. The different

behaviours (defined in the dominance test section) were registered and their frequency was

annotated for further statistical analysis.

Preliminary dyadic test. A preliminary dyadic test was performed with twelve early juve-

nile sole (when fish weight was approximately 100 g) according to Huntingford et al., [47] to

decide which test and setup was the most appropriate to characterise dominance behaviour in

Senegalese sole. Animals were provided with different experimental cues that were visual (ani-

mals were separated by a transparent screen through which the animals could see each other),

chemical (animals were kept apart by an opaque screen with holes through which the sole

could exchange chemical cues) and isolated (sole were separated by an opaque screen without

the possibility to see and smell each other). The different tests were performed at different

Dominance in Senegalese sole (Solea senegalensis)
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daylight hours (morning or night). When preliminary results (S1 File) were analysed Senega-

lese sole did not show differences in behaviour due to the different experimental setups, and all

fish resumed feeding and ate normally. Therefore, visual and chemical cues between separated

fish did not appear to affect feeding. Considering this, the isolation approach was selected to

provide a basal condition, where animals had equal status before testing for dominance over a

limited resource, which is an approach that has been previously used in other fish species [25,

48].

Dominance tests. Three different behavioural tests (two in pairs (dyadic) and one in

group) were performed for Senegalese sole juveniles to test for dominance. Only one of the

behavioural tests, feeding response in a dyadic test, was applied in early juveniles (n = 74;

100.4 ± 10.6 g). All three tests were applied to late juveniles (n = 34; 287.0 ± 30.4 g) and the

resting time between tests was 7 days to allow for full recovery, return to basal conditions and

to avoid learning and conditioning processes plus 7 days of acclimation to the new setting con-

ditions (see Fig 1 for set-up and time line of the experiments). In all dyadic tests the fish were

size-matched and paired (< 10% in weight between animals).

Dyadic tests.

1) Feeding response after a dyadic test. Two size-matched sole taken from different acclima-

tion tanks, to avoid previous competition, were kept apart overnight (19:00 to 8:00 = 13

hours) by a dark polyvinyl chloride (PVC) wall. The wall was removed the following morn-

ing at 08:00 and their behaviours were continuously recorded for the first two hours. After

two hours, fish were hand-fed with approximately 1% of the total biomass of the experi-

mental tank (two sole) and the individual that ate first was classified as dominant. The indi-

vidual that ate afterwards or did not eat was classified as subordinate. Behaviours were

individually registered and their frequency of occurrence was recorded by video monitor-

ing. The behaviours recorded were: “Approaches”, “Swimming above another” (SAA),

“Rest the head” (RTH), “Displacement”, “Burying” and finally order of feeding “Feeding”

that was used to define dominance (categorical variable) (Table 1: ethogram of behaviours).

2) Competitive behaviour for a preferred area: place preference test. For the place preference

test the settings of the tank were modified. First a bottom was created in the tank by placing

twenty white tiling pieces (measuring 24 x 11.5 x 1.5 cm each and the same colour as the

bottom of the tank) and second, one tile was removed to provide a space that was filled with

sand. The area with sand was the standard size of one fish and so just one fish could com-

fortably occupy this area. Sole individuals used for this test had an extra week of acclimation

to those novel objects: the sand and the tiling. The purpose of this test was to create a pre-

ferred area with sand (in nature, sole live buried in sand), which just one fish could occupy

and, therefore, dominate that area (see S1 Fig. for set-up details). Previous studies have

shown that sole prefer sandy areas [49]. The experimental tank was set up with PVC

opaque/grey divisions that separated the two fish from each other and from a third area

that contained the sand. The same pairs of sole that were previously used in the feeding test

were also used in the place preference test and this enabled the place preference behaviour

of the sole to be analysed in relation to the dominant and subordinate status observed in the

feeding test. Fish were physically isolated (in separate acclimation tanks) and were intro-

duced into the experimental tank at 19:00 and left overnight. The dividers were removed

the following morning at 08:00 (after 13 hours of isolation) allowing the fish to see each

other and access the restricted preferred area (sand). The behaviour of the fish in relation to

the preferred sandy area was recorded continuously for 24 hours for further video analysis

of recorded behaviours (Table 1). Red night lighting was used that allowed recording and

observation of the sole behaviour. Red light was from fluorescent lights covered with a red
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filter. The intensity of the red light was adjusted to approximately 5 lux at the water surface.

Previous studies demonstrated that this red light did not affect behaviour or physiological

parameters during the night recordings [50]. The variables registered in this test were mea-

sured in minutes and regarding to the preferred area (sand). The variables were “Total

time” in the preferred area (TT), “Initial time” to occupy the sand (Ti), “Final time” to

occupy the sand (Tf) and order: “first” or “last” (categorical variable) (Table 1).

Fig 1. Experimental chronogram of the different test conducted in Senegalese sole juveniles.

Experimental chronogram of the different dominance behavioural tests conducted on late Senegalese sole

juveniles.

https://doi.org/10.1371/journal.pone.0184283.g001

Table 1. Ethogram of different behaviours registered in Senegalese sole.

Behaviours, parameters

and Index

Acronym Test Description

Approaches 1 A fish approaches another fish without making physical contact.

Swimming above another SAA 1 A fish swims near and above another fish.

Rest the head RTH 1 A fish rests the head on another fish. This behaviour is performed resting the head on different parts of

the body.

Displacement 1 A fish displaces another fish making contact, for example, swimming directly towards the another fish

to make direct contact.

Burying 1 A fish makes a wave type movement of the body and lateral fins starting from the head to the tail that in

substrate would bury the animal. This behaviour has been associated with fear or escape, burying to

rest and to reject other fish.

Feeding 1 A fish eats the pellets provided registered as “Yes” or “No”.

Initial time or latency Ti 2 The total time that each fish remains in the preferred area (sand) during the first 2 hours (minutes) of

the experiment.

Total time TT 2 The total time of each animal remains in the sand during the 24 hours test (minutes)

Final time Tf 2 The total time that each fish remains in the preferred area (sand) during the last 2 hours (minutes) of

the test.

Order position 2 Order that the fish were observed in the preferred sand area at the beginning and end of the

experiment, “First” was the animal which entered the sand first. “last” was the animal in the sand when

the test finished after 24 hours. The same fish could have both positions.

Feeding order 3 Order which fish ate in the group test. Fish that ate first was 1, second fish to eat was 2 etc.

Rest the head index RTH Index 3 The number of times that a fish rests the head on another fish minus the number of times other fish

rested the head on the fish under consideration.

Swimming above another

index

SAA Index 3 The number of times that a fish swims closely above another fish minus the number of times other fish

swam above the fish under consideration.

Position “before feeding”

index

POSITB

Index

3 Index per fish per day = ((position 1 x “y”) + (position 2 x “y”) + (position 3 x “y”) + (position 4 x “y”) +

(position 5 x “y”) + (position 6 x “y”))/6; “y” = frequency of each position during the hour before feeding.

Position was registered every 5 minutes (12 frames).

Position “after feeding”

index

POSITA

Index

3 Index per fish per day = ((position 1 x “y”) + (position 2 x “y”) + (position 3 x “y”) + (position 4 x “y”) +

(position 5 x “y”) + (position 6 x “y”))/6; “y” = frequency of each position during the hour after feeding.

Position was registered every 5 minutes (12 frames).

Feeding index 3 The mean of the feeding order registered each of the 4 days for each individual.

Ethogram of the different behaviours, parameters and index registered (each different behaviour performed were counted and registered) for the three

dominance tests performed (feeding response, place preference test and group test).

https://doi.org/10.1371/journal.pone.0184283.t001
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Group test.

3) Dominance in groups. Immediately after the place preference test were finished, four

groups of six fish (24 fish in total) were randomly selected and placed in four 400 L experi-

mental tanks. As with previous tests the fish were given a one-week recovery period fol-

lowed by a one-week acclimation period that allowed the group to acclimate and to

establish inter-individual hierarchies (Fig 1). After this period of acclimation, each group

of fish was recorded to analyse the social interactions in the group. The different behav-

iours (Table 1) were recorded for 2 hours (every 5 minutes analysing a total of 24 frames)

one hour before fish were fed and one hour after. The social behaviours recorded in the

group test were “Rest the head” (RTH) and “Swimming above another” (SAA). The

behaviours were registered in counts and different indexes were calculated (actions

among animals). The test was performed in four consecutive days and the same behav-

iours for each of the groups of fish were recorded to test for consistency and repeatability

among days. Fish was visually individually identified. An automatic feeder was placed in a

corner of each tank and feed was delivered directly to the bottom of the tank through an

18 mm PVC tube to provide a single feed delivery point (see S2 Fig for set up details). Fish

were fed with approximately 1% of the total biomass of the experimental tank. This single

feed delivery point set-up is known to trigger territoriality and feeding competition

among the individuals and dominant fish, at higher positions in the social hierarchical

rank, tend to monopolise the feeding point [51–54]. The exact physical position of the

fish in relation to the feeding point was recorded every 5 minutes before (1 hour = 12

frames) and every 5 minutes after (1 hour = 12 frames) feeding events (24 frames in total).

The positions of the fish were ranked in order of the fish from the feeding point, i.e. the

fish closest to the feeding point was ranked 1, second closest was ranked 2 etc. The ranked

positions from the analysed frames were used to calculate the indices that were termed:

“Position before feeding index” (POSITB index) and “Position after feeding index”

(POSITA index) per fish and per day (Table 1). Mean of every index was calculated per

fish over the 4 days. In addition, the “Feeding order” (‘pecking order’) for each day of the

experimental period was registered to check for consistency over time.

RNA isolation, complementary DNA synthesis and quantitative real-time

polymerase chain reaction assay

Thirty of the seventy-four early juveniles were randomly chosen, fifteen fish from each cate-

gory (dominant/subordinate) and were sacrificed with an overdose of MS-222 (tricaine metha-

nesulfonate; Acros-Organic, New Jersey, USA). Whole brains were extracted, frozen in dry ice

and stored at -80˚C for molecular analysis. The RNA was extracted using TRI Reagent RNA

Isolation Reagent following manufacturer’s instructions (SigmaAldrich). The cDNA was

synthesised using 1 μg of total RNA and oligo dT (20) in 20 μl reactions and the SuperScript1

III First-Strand Synthesis SuperMix 50 rxn kit following the manufacturer’s protocol (Invitro-

gen, Life technologies, USA). Primers were designed using Primer 3 [55] in 3UTR region.

Before performing the qPCR, primers were validated by conventional PCR using a cDNA pool

from several samples randomly chosen to analyse the primers. MyTaq™ HS Mix (Bioline) was

used to run the conventional PCR with the following conditions: initial activation step at 98˚C

for 1 min, followed by 35 cycles: denaturation at 95˚C for 10s, annealing at Tm (58–60˚C) gra-

dient conditions for 15 s and extension at 72˚C for 15 s. Primer efficiency was evaluated by

serial dilutions to ensure that it was close to 100% performing real time PCR. Target transcripts
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with implication in neuroplasticity, neurogenesis and brain activation (bdnf, c-fos and nrd2)

[43, 44, 56], related to differentiation of dopamine neurons (nr4a2 and etv5) [46, 57], beha-

vioural responses and aggression (5-htr1a, tph1b, avplr1 and slc6a13, mr) [37–39, 42] were ana-

lysed by quantitative PCR (qPCR) (see primer design in Table 2). The qPCR was run using a

Biometra Optical Thermocycler (Analytik Jena, Goettingen, Germany) in 96-well plates in

duplicate 20 μl reaction volumes containing 10 μl of Luminaris Color HiGreen qPCR Master

Mix (Thermo Scientific), 1 μl of the primer corresponding to the analysed gene (10 pmol), 3 μl

of RNA/DNA water free and 5 μl of cDNA in its corresponding dilution. Furthermore, ampli-

fications were carried out with a systematic negative control (NTC; no template control) con-

taining no cDNA. Standard amplification conditions contained an UDG pre-treatment at

50˚C for 2 min, an initial activation step at 95˚C for 10 min, followed by 35 cycles: 15 s at

95˚C, 30 s at the annealing Tm and 30 s at 72˚C. Results were normalised using three house-

keeping genes ubiquitin (ubi52), glyceraldehyde-3-phosphate dehydrogenase (gapdh2) and

elongase factor 1 alpha (eef1a) and applying a geometric average [58]. The mRNA abundance

for each gene was determined using the Pfaffl method [59].

Statistical analysis

Behaviour. All means are presented as mean ± standard error of the mean (SEM). In the

case of paired tests (early and late juveniles), the coefficient of variation (CV % = SD/

mean�100) that represented the inter-individual sole variability were calculated for each cate-

gory (dominant and subordinate) and compared. All data was tested for normality with the

Shapiro-Wilks test and data that failed was corrected with a Log10 transformation. To reduce

variables and define behaviours that best represented dominance, a Principal Component

Table 2. Primers used in this study as possible dominance biomarkers for early Senegalese sole juveniles.

Gene Gene name Amplicon size Accession Number Primer (5’ 3’)

C-FOS c-fos 175 unigene4094 F-CTGGAGTTCATTCTGGCTGC

R-TTGAGGTGAATGTTGGCTGC

Brain-derived neurotrophic factor bdnf 154 unigene54354 F-ACTCGTTTGAAACATCCGGC

R-CAGACAGGGTGAGTGGAGAA

Neurogenic differentiation factor 2 nrd2 396 unigene1444 F-TTATCAGTGTGCGCGTCTGT

R-TTCAGTTCGTCGTACACGGG

ETS translocation variant 5 etv5 165 unigene42532 F-CACTCTGATGCCAACGTTCA

R-CAGCGACAAGAACACGGAG

Nuclear Receptor Subfamily 4, Group A, Member 2 nr4a2 187 unigene55326 F-TCTCCCGAGTTTCAGCACTT

R-CCCAGAGTGAGCCATCATTT

5-hydroxytryptamine receptor 1A 5-htr1a 180 unigene35339 F-GCTGGCTGCCCTTTTTCATC

R-CCGCATGTGGTTATTGCCTG

Arginine Vasopressin-induced protein 1 avplr1 153 unigene17371 F-TGTTGTCGACCACTCACTCA

R-TGAAAGGTTGTGCGTGTCTG

Tryptophan hydroxylase 1b tph1b 218 unigene62116 F-GGAAGCTGCGAGCATATGGA

R-GAAGGGACGCTTGATGTTCT

Solute carrier family 6 member 13 slc6a13 166 unigene3332 F-GTTAACTGCCTGTCCCGTCA

R-ACCGTGTAGTGTGAACGAGG

Mineralocorticoid receptor mr 204 unigene4626 F-GCACTCCACATGCACTCAAA

R-CCTTTGCCCTGTAGTCTTGC

Gene, gene name, size accession number (SoleaDBv4.1) and primer sequence are indicated.

https://doi.org/10.1371/journal.pone.0184283.t002
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Analysis (PCA) with adequacy of Kaiser-Meyer-Olkin test and Bartlett’s test of spherity with

Varimax rotation was applied. In the case of early juveniles, a Spearman’s correlation analysis

was run for the feeding response test between the variable “Feeding” (if the animals ate or not)

and those variables, which were representative in the PCA run for this test. Student’s t-test was

performed to compare means of counts of different behaviours of dominant and subordinate

fish.

For the group test Kendall’s concordance coefficient (0.43 fair concordances) was calculated

for each fish/behaviour index (RTH, SAA, POSITA and POSITB) to check the concordance

among the 4 days for the same fish in each group. A “k” means cluster was applied to variables

chosen by Kendall’s concordance coefficient for all groups. As there was concordance within

the individuals in their behaviours over the 4 days for the index RTH, SAA and POSITB the

mean of each index was calculated. Thus, Student’s t-test was applied to check the differences

between dominants and subordinates. Statistical analyses were performed using SPSS Statistics

19.0 software (IBM Co., Hong Kong) and GraphPad Prism 6 software (GraphPad Software,

Inc.) and P< 0.05 was used to establish significant differences.

q- rtPCR. The outliers of the different categories (dominant/subordinate) of the corrected

ratio of every mRNA were extracted using the Tukey’s test formula (k = 1.5). The data was

transformed to Log10 (var + 1) and Student’s t-test was applied to compare mRNA abundance

between individuals grouped as dominant or subordinate. The threshold was considered at 0.3

related to pooled control animals simulating the population, where values under that threshold

indicated down-regulation and over, up-regulation. The pooled control animals were from the

same batch of the experimental sole used for this study and were acclimated to the same tanks

as the experimental fish. Nevertheless, these fish were fed normally and were not used for any

experimental process to obtain objective data imitating the usual conditions of the facilities.

Raw data from both dominance behaviour and mRNA abundance are available in figshare
(DOI: 10.6084/m9.figshare.4964990).

Results

Senegalese sole behavioural responses in dominance tests

Senegalese sole were classified as dominant or subordinate according to their feeding response

(in dyadic and group feeding tests), the first fish to feed were classified as dominant and fish

that fed second or did not feed at all were classified as subordinate. In general, subordinate

individuals showed more variability in responses than dominant fish, which indicates that sub-

ordinate fish exhibited more variation between individuals.

Comparing the behaviours, “Approaches”, “Swimming above another” (SAA) and “Rest the

head” (RTH), the dominant early juveniles (n = 36 of 74) displayed less variability within these

behaviours (Approaches = 9.6 ± 1.4 counts; CV = 86.5%; SAA = 5.8 ± 1.2 counts;

CV = 119.1%; RTH = 4.5 ± 0.6 counts; CV = 76.5%) than subordinates (n = 38 of 74)

(Approaches = 5.5 ± 1.0 counts; CV = 109.2%; SAA = 2.5 ± 0.6 counts; CV = 141.1%;

RTH = 2.6 ± 0.5 counts; CV = 105.4%). Whilst, the two behaviours, “Burying” and “Displace-

ment”, presented a similar variability for both dominant and subordinate fish (Bury-

ing = 4.4 ± 0.5 counts; CV = 65.8%; Displacement = 1.0 ± 0.2 counts; CV = 150.3% for

dominants and Burying = 4.6 ± 0.5 counts; CV = 66.0%; Displacement = 0.5 ± 0.2 counts;

CV = 187.6% for subordinates respectively).

The trend in late juveniles was similar to that observed in early juveniles, with similar levels

of variation in the behaviours and dominant late juveniles (n = 17 of 34) also displayed less var-

iability (Approaches = 18.9 ± 2.6 counts; CV = 56.4%; SAA = 27.3 ± 9.5 counts; CV = 144.3%;

RTH = 9.1 ± 1.4 counts; CV = 65.9%) than subordinates (n = 17 of 34) (Approaches = 12.1 ± 2.5
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counts; CV = 83.8%; SAA = 12.3 ± 3.6 counts; CV = 120.3%; RTH = 4.1 ± 0.9 counts;

CV = 91.5%).

The same pairs from the dyadic feeding tests were used in the place preference test and

feeding response defined dominance was used in the place preference test to also define which

fish were dominant and subordinate. In the place preference, dominant late juveniles spent

more time in the preferred sand area at the end of the test and had less variability (Initial time

(Ti) = 25.5 ± 9.2 min; CV = 149.6%; Total time (TT) = 377.1 ± 71.1 min; CV = 77.7%; Final

time (Tf) = 60.7 ± 11.4 min; CV = 77.8%) than subordinates (Ti = 33.6 ± 11.7 min;

CV = 144.2%; TT = 302.9 ± 93.9 min; CV = 127.8%; Tf = 38.4 ± 11.1 min; CV = 119.6%).

Observed feeding behaviour (MAPs in Senegalese sole). The feeding behaviour of Sene-

galese sole was similar to that observed for other flatfish species with a defined “predation

cycle or modal action patterns (MAP)”: searching, encountering, capturing and ingesting the

food [5, 60]. In the present study, Senegalese sole both early and late juveniles, showed MAPs

associated with feeding behaviour at the moment food was introduced into the experimental

tank (see S2 File). Therefore, sole classified as dominant interacted first with the food and

blocked other interactions. Furthermore, individuals that ate and were considered as domi-

nant sole, interacted with the food in the first 10 minutes of food delivery starting with a

“searching” MAP that consisted in slow creeping movements over the bottom, moving the

head from side to side in short actions while slowly approaching the food. At the moment an

individual detected the food the fish orientated and swam rapidly straight to it and started to

protect the food and the area in which the food was delivered (direct observation).

Dominance parameters selection

Individual tests. In early juveniles, three behaviours, “Approaches”, “Swimming above

another” (SAA) and “Rest the head” (RTH) (Table 1) were grouped together (PCA, KMO

(0.667), Bartlett’s test (P< 0.001) and X2 (133.523); S3 Fig). These three behaviours expressed

more than 51% of total variance after the principal component analysis. Spearman’s correla-

tions demonstrated that those selected behaviours were weakly correlated to feeding response

(Approaches: rs = 0.372, P< 0.001; RTH: rs = 0.358, P = 0.005; SAA: rs = 0.4, P< 0.001; S4

Fig) In relation to feeding order, animals were classified as dominant or subordinate as

described above. There was a pair that did not feed, and in this case both fish were considered

subordinates. Consequently, the counts of the three behaviours were significantly different

between dominants and subordinates (Approaches: t = 2.675, df = 72, P = 0.01; RTH: t = 2.814,

df = 72, P = 0.01; SAA: t = 2.877, df = 72, P = 0.01; Fig 2A). Dominant sole displayed signifi-

cantly more approaches, resting the head and swimming above another than subordinate sole.

The association between behaviours and dominance was similar for the late juveniles. The

PCA of all the variables from the feeding response and place preference test that were applied

to late juveniles extracted three components that explained 72% of the variance of the data

(KMO (0.6), Bartlett’s test (P< 0.001) and X2 (116.806); S5 Fig). The three behaviours,

Approaches, RTH and SAA were grouped together as the first principal component (PC1).

These three behaviours were also grouped together for the early juvenile sole establishing that

the feeding response test applied to two different groups of sole of different ages and size gave

similar consistent results. The second (PC2) and third components (PC3) for the late juveniles

were both related to behaviours from the place preference test. The PC2 was formed by the

variables; total time each fish occupied the preferred sand area during the last two hours of the

test (Final time—Tf) and which fish was in the sand when the test finished at 24 hours (last

position—last). PC3 consisted of; the time each fish first occupied the sand during the first two

hours (Initial time—Ti), total time each fish was in the sand during the entire 24-hour test
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(Total time—TT) and which fish was first to enter the sand area (first position—first)

(Table 1).

The counts of behaviours “Approaches” (t = 2.036, df = 31.69, P = 0.05) and RTH (t = 2.894,

df = 26.30, P = 0.008) were significantly higher in dominants than subordinates in late juve-

niles. However, SAA (t = 1.083, df = 30.94) was not different between dominants and subordi-

nates (Fig 2B).

The variables that formed the second component were significantly different between dom-

inant and subordinate fish classified by feeding response test, thus sole classified as dominant

(in the feeding test) spent more time in the preferred sandy area during the last two hours of

the test (Tf: t = 2.186, df = 16, P = 0.044; Fig 3A) and dominated the area when the test finished

after 24 hours (X2 = 5.674, P = 0.017; Fig 3B). In summary, the dominant fish that ate first

spent more time in the preferred area over the last two hours of the test and monopolised the

sand, showing that the final position was indicative of a dominant status. All results were ana-

lysed from size-matched pairs and, therefore, variability due to unequal size distribution was

Fig 2. Frequency of the behaviours analysed in early and late juveniles of Senegalese sole. Number of movements

were counted during the 2-hour test that dominant and subordinate (A) early juveniles and (B) late juveniles Senegalese

sole exhibited the three behaviours “Approaches”, “Swimming above another” (SAA) and “Rest the head” (RTH). Data was

shown in Mean ± SEM (n = 74 early juveniles; n = 34 late juveniles). An * indicates a significant difference (P < 0.05).

https://doi.org/10.1371/journal.pone.0184283.g002

Fig 3. Place preference test in late juvenile sole (n = 74). (A) Time in minutes during the last two hours of the test that

dominant and subordinate Senegalese sole were in the preferred sand area (Tf). (B) The proportion of dominant and

subordinate fish that were in the preferred sand area when the test finished (last). An * indicates a significant difference

(P < 0.05).

https://doi.org/10.1371/journal.pone.0184283.g003
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avoided. Thus dominance parameters were observed in each pair representing pairs of similar

weight and length.

Group test. In the group analysis, “Rest the head index” (RTH Index), “Swimming above

another index” (SAA Index), “Position of the fish in relation to the feed delivery tube before

feed” was delivered (POSITB) and “Feeding Order” (from 1st to 6th position) (Table 1) showed

agreement (0.43) according to Kendall’s concordance coefficient (W) among the 4 days for

each group (S1 Table). The animals in the different groups were analysed as a single population

and the Kendall’s concordance coefficient demonstrated that the inter-groups index were con-

sistent. In addition, “k” means cluster classified animals in two clusters that represented domi-

nant and subordinate animals. The two clusters grouped the same animals according to

feeding RTH, SAA and POSITB Index indicating concordance of these behaviours in the dif-

ferent groups. Therefore, 12 fish were classified as dominant and 12 as subordinates. Student’s

t-test applied in those index to compare the significant differences between dominants and

subordinates for different behaviours showed that RTH Index (t = 2.659, df = 10.46, P = 0.015;

Fig 4A) and POSITB Index (t = 3.779, df = 21.57, P = 0.001; Fig 4C) were significantly different

between dominant and subordinate groups. However, the SAA Index (t = 1.231, df = 19.35;

Fig 4B) was not different between dominant and subordinate fish. To summarize, the fish con-

sidered dominant more often occupied positions closer to the feed delivery tube even before

the food was provided (place preference test was covered with those positions) and rested the

head (RTH) in any part of the body more often than the subordinate fish. The group analysis

was performed with the four groups as a population consisting of individuals of different sizes

(simulating the cohabitation in nature). However, no relationship was found between fish size

and the repetition of the different dominance parameters observed. For example, in one of the

groups, the weight range was from 195.7 to 310.6 g and the two smallest animals presented

more actions in RTH and POSITB and presented more consistency in their data than the larg-

est individual throughout the experimental period.

Brain mRNA abundance in relation to dominance

Only two of the ten (Table 2) mRNAs tested exhibited significant differences in mRNA abun-

dance between dominant and subordinate sole (Table 3). Both transcripts, c-fos (t = 2.014,

df = 20.13, P = 0.041; Fig 5A) and nrd2 (t = 1.861, df = 27.15, P = 0.047; Fig 5B), were down reg-

ulated in both dominant and subordinate fish in relation to pooled controls that represent the

entire range for the population. This down-regulation was more pronounced in dominant sole

Fig 4. Mean behavioural indices for dominant (n = 12) and subordinate (n = 12) late juveniles sole in the group-test

according to Kendall’s concordance coefficient. (A) “Rest the head Index” (RTH Index); (B) “Swimming above another

Index” (SAA Index) and (C) “Position before feeding” (POSITB Index). An * indicates a significant difference (P < 0.05).

https://doi.org/10.1371/journal.pone.0184283.g004
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than in subordinate individuals. The nr4a2 mRNA presented marginally different abundance

(t = 1.987, df = 22.56).

Discussion

The present study has shown that Senegalese sole can be categorized for different social status

(dominant and subordinate): (a) when competition was observed between pairs and in groups,

(b) in relation to both feeding response and place preference tests, and (c) at different juvenile

stages, from early juvenile, when fish weight was approximately 100 g, to late juvenile that

weighted approximately 300 g (considered as pre-adult). Across the three tests (dyadic feeding,

dyadic place preference and group) the same behaviours were associated with social status.

Table 3. mRNA abundance in Log (var + 1) fold difference for the several mRNAs analysed in dominant (n = 15) and subordinate (n = 15) early juve-

nile Senegalese sole.

Log (var + 1) Fold difference

Genes Dominant Subordinate p-value

bdnf 0.3506 ± 0.02955 0.3394 ± 0.03255 0.8005

c-fos 0.1787 ± 0.02148 a 0.2548 ± 0.03255 b 0.0410*

etv5 0.3305 ± 0.03719 0.3440 ± 0.03775 0.7950

nr4a2 0.2052 ± 0.01116 0.2481 ± 0.01850 0.0592

mr 0.2614 ± 0.02190 0.2884 ± 0.03130 0.4860

5-htr1a 0.1753 ± 0.01933 0.1825 ± 0.01596 0.7760

tph1b 0.3759 ± 0.07202 0.3270 ± 0.07368 0.6388

avplr1 0.2884 ± 0.02222 0.2981 ± 0.03550 0.8180

nrd2 0.1465 ± 0.02297 a 0.2132 ± 0.02745 b 0.0471*

slc6a13 0.2070 ± 0.01213 0.2607 ± 0.02284 0.1261

Data was shown mean ± SEM.

An * and different letters indicate a significant difference (P < 0.05) in mRNA abundance between dominant and subordinate sole. Means less than the

pooled control population value of 0.3 were considered down-regulated.

https://doi.org/10.1371/journal.pone.0184283.t003

Fig 5. mRNA abundance of dominant (n = 15) and subordinate (n = 15) early juvenile sole. Expression for two genes

(A) c-fos and (B) nrd2 shown as mean ± SEM in Log (var + 1) transformation. Dashed line at 0.3 indicates the value of a

pooled control simulating the population; values under 0.3 indicate down-regulation. An * denotes a significant difference

(P < 0.05).

https://doi.org/10.1371/journal.pone.0184283.g005
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Dominant fish compared to subordinate fish displayed a significantly higher number of the

behaviours “Rest the head” (RTH) on another fish, “Approach” another fish and “Swim above

another” (SAA) fish. This is the first description of behaviours associated to social status in a

non-aggressive fish and/or a flatfish species. Other studies on social status in fish have been

conducted on round fish that display aggressive behaviours [24–26, 29, 31]. For example, pre-

vious studies in rainbow trout demonstrated that after a period of isolation the fish that ate

first won the subsequent contest, showed more aggressive behaviour and were subsequently

categorized as dominant individuals [25]. This agrees with the present study where both ani-

mals were isolated before the dyadic behavioural tests and the sole that ate first exhibited a

higher frequency of the behaviours RTH, Approaches and SAA and also dominated preferred

spatial zones (sand or feed delivery point).

As mentioned in the introduction two of the main problems for sole culture are a large vari-

ation in growth [8, 9] and a complete failure in the spawning of cultured breeders [11, 12].

Therefore, the identification of different social status and associated behaviours in sole have

considerable implications in studies directed to tackling effects of dominance in culture and

ecological studies for sole and flatfish.

Feeding and growth

A major problem during grow out reported in Senegalese sole is a large variation in growth

resulting in a wide dispersion of sizes and the requirement of frequent grading [8, 9]. In the

present study, dominant sole clearly had advantages in access to feed and both ate first and

dominated the feed source (i.e. space where feed was delivered). Therefore, one theory would

be that dominance could explain the size variation observed in cultured stocks and that this

study might be fundamental for future research into the dominance of feeding and effects on

growth in captive conditions. In agreement with this, aggression in feeding behaviour is the

most common method used to establish hierarchies and in different species the dominant fish

have often been the larger individuals [61]. However, juvenile Senegalese sole did not show

any aggressive behaviour at different stocking densities when fed according to the biomass [8]

or in the dominance tests (present study). In the present work, larger body size was not identi-

fied as a factor associated to dominant fish in the present study and consequently dominance

behavioural parameters specifically RTH, SAA and Approaches were not associated to animal

size. These observations would suggest that dominance is probably a contributing factors, but

that dominance alone may not be responsible for the growth variation and other factors, such

as life strategy, appetite and feeding behaviour, should be considered.

Life strategies with differences in appetite can be compared to stress coping styles that

range from a proactive life style where animals take risks to forage for food, suffer higher pre-

dation, grow faster and reach puberty at a younger age [17, 62]. In comparison the opposite

extreme a reactive life style where animals take less risks, exhibit less foraging for food, higher

survival, slower growth and reach puberty at an older age [17, 63]. Proactive and reactive cop-

ing styles have been described in all stages of Senegalese sole, larvae [64], juveniles and adults

[17] and proactive sole were shown to grow faster and reach puberty earlier than reactive sole

[18]. Furthermore, previous studies have shown that benthic larvae of Senegalese sole have

more activity than juveniles, and that juveniles present more activity than adult sole under cer-

tain conditions [17, 18]. Therefore, different life strategies among individuals may modify

changes in activity and feeding to contribute to the size variation observed in cultured stocks.

The feeding behaviour observed during the present study was similar to that described in

the common sole (Solea solea) and other species such as turbot where visual and olfactory cues

are important in searching for food [65–67]. Performance of the different parts of the
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predation cycle (search, encounter, capture and ingestion) can vary between the species. In

common sole feeding behaviour and boldness (associated in some fish species with aggression

and social status such as in cichlid fish [68]) were related to feed intake using isolation and

group tests [69] explaining variability in growth where proactive fish appear to have better

feeding tactics in captivity. Feeding order in fish could be similar to the pecking order found

in other farmed species (poultry, pigs, cows, etc.), pecking order is established at a younger

age, and remains stable along their life determining the social status and hierarchies. In addi-

tion, pecking order has been associated with different activities such as feeding, drinking, and

mating [70, 71]. This could be the explanation for the consistent feeding behaviour in groups

among the four days, considering that the individual behaviour can affect the variability of the

group in captivity.

Reproduction

As explain in the introduction cultured males (born and reared in captivity) presented a dys-

functional behaviour and consequently did not complete the reproductive courtship to fertilise

eggs [10–12]. Wild breeders held in captivity reproduce normally in captive condition, how-

ever, in a broodstock a few reproductive pairs show intra- and inter-annual fidelity and domi-

nate the reproductive output [13, 14]. A description of the reproductive behaviour in captive

wild breeders has shown that the behaviours Rest the head (RTH) and “Approaches” were

essential courtship behaviours that males had to execute towards females to achieve reproduc-

tive success [15]. Immediately before spawning, a male was observed to approach the female

and rest the head on the female. Once the male was accepted, the female swam from the bot-

tom to initiate the coupled swim to the surface to spawn. Particularly, RTH appeared to be a

behaviour that indicated a pair, the female accepting the male and the male protecting or dom-

inating the female from other males. Therefore, the behaviours RTH and “Approaches” indi-

cate dominance in feeding and place preference (present study) and acceptance / dominance

of a partner in mate selection and reproduction [15]. Dominance across different resources

including mate selection has been described in aggressive round species such as Nile tilapia

[30], Ambon damselfish (Pomacentrus amboinensis) [72, 73], Mozambique tilapia (Oreochro-
mis mossambicus) [74] and social mammals such as meerkats [32] or European rabbits [33],

where dominance status started in early life stages and were persistent until adult phase. The

present study provides the bases for further research to determine if the behaviours RTH and

“Approaches” indicate dominance across feed, territory and mate selection.

Place preference test

Place preference test consisted of two areas as choice possibilities, where the animal associates

one of those areas as preferred for a particular purpose (hide, shelter, mating, among others)

[75, 76]. In our study, there was a clear preference for the area with substrate by all experimen-

tal sole. However, the objective of this test was to observe the behaviour of paired Senegalese

sole in response to a preferred area (sand) simulating a limited resource. Preference by domi-

nant sole regarding territory was identified taking the different times of every individual domi-

nating the substrate. Therefore, dominant sole spent more time at the end of the test (last two

hours of test) and were more often present in the sand at the end of the 24-hour test (last posi-

tion). The final two hours of the place preference test coincided with the initiation of a daytime

resting period, when the dominate sole would occupy the preferred space by burying into the

sand to rest. This kind of diurnal activity with daytime burying into sand and resting was first

described in common sole [77]. Therefore, subordinate fish spent less time at the end of the

test and entered the sand earlier in the test or did not enter at all. This was in agreement with
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other fish species with different biology and ecology such as Mozambique tilapia where sub-

strate is important in different contexts [78]. Another example of the use of substrate is the

Nile tilapia, where animals were isolated and individuals could choose different compartments

where the gravel-enriched compartment was the most visited [29].

The movement performed by sole when in contact with the sand was burying. The burying

behaviour has three objectives, burying in to rest, hiding and to displace another sole (when

the burying is displayed under or on top of another sole) [15]. Kruuk (77) described the same

behaviour for common sole having several functions, such as burying to help mimic the sedi-

ment (camouflage enables flatfish to avoid predators and remain hidden to prey), to initiate a

resting period and to avoid currents. However, this behaviour was not extracted as a represen-

tative parameter in feeding response test in early juveniles, it was a key behaviour to determine

the time parameters of place preference test in late juveniles. Previous studies demonstrated

that habitat preference increased the level of territorial protection or dominance displayed by

brown trout (Salmo trutta) [79]. In contests dominant animals defended and displayed more

aggression in order to dominate their preferred territory. In our study, when both sole coin-

cided in the sand the sole in the upper position normally the dominant individual rested the

head (whatever part of the body) on the sole in the bottom position. This behaviour would not

be considered as an aggression as the other animal was not injured, but it could be a harass-

ment tactic. So, the RTH parameter extracted in the feeding response test was also associated

with RTH behaviour in the place preference test. However, the situation of both animals coin-

ciding in the sandy area was not usually observed in fact only in two of the seventeen pairs

studied. In the case of the group test the place preference was analysed according to the posi-

tion regarding the feeder supplier area. Intriguingly, the POSITB Index corroborated that ani-

mals that dominated the area to which feed was delivered were the animals that ate in the first

positions, being stable during the experimental period. This situation is commonly observed

in cultivated fish due to domestication, which depending on the fish species is performed in a

different manner achieving different tactics according to the food delivery [80].

Brain mRNA abundance in association to dominance behaviour

Several sets of genes related to different behavioural processes were analysed in the present

study. However, just two mRNA transcripts related to neurogenesis (nrd2) and neuroplasticity

(c-fos) were differently expressed between dominant and subordinate sole. Besides, nr4a2 one

gene which encode NR4A2 a receptor associated with differentiation of dopamine neurons

[46, 57] was marginally different. These three transcripts presented down-regulation in both

categories (dominant and subordinate) compared to control group (see Fig 5 for nrd2 and c-
fos) and dominant fish exhibited greater down-regulation than subordinate fish. In some

cases, the presence of the same low profile in both dominance categories, dominant and subor-

dinate, results in the adaptive response to slight social stress in comparison to the undisturbed

animals [81]. This could be the explanation of why in our study animals of both dominance

categories showed down-regulation, therefore, dominant and subordinate sole would present

the same pattern of social stress being more pronounced in dominant sole.

In several animal models for social studies such as rodents, social subordination has been

associated to reduced neurogenesis [82]. The mRNA transcript related to neurogenesis was

nrd2 that is essential for the survival of specific populations of neurons and neuronal differen-

tiation in mice [83, 84]. This transcript has also been related to neural plasticity in zebrafish

where the expression was higher in winners than losers in dorsal telencephalic area [45]. Neu-

roplasticity has also been associated with social interactions in fish where the profile of imme-

diate early genes (IEG), including c-fos, in zebrafish exhibited acute changes in the pattern of
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expression due to different social status [45, 85]. Another example was found in tilapia (Astato-
tilapia burtoni); males of this species can change social status between subordinate and domi-

nant in relation to the presence or absence of a larger dominant male in the same territory.

This behavioural change between subordinate and dominant was shown to be accompanied at

the molecular level with changes in the transcript IEG c-fos [86]. In our study, the pattern of

transcript abundance was distinct where dominant and subordinate sole presented lower c-fos
abundance than a representative population pool corroborating that neuroplasticity was possi-

bly associated with social behaviour in this species.

In the present study, 5-htr1a jointly with other aggression-related genes such as tph1b,

avplr1 and slc6a13, mr presented similar mRNA abundance between dominant and subordi-

nate sole contrarily to other fish species where dominance was determined by aggressive

behaviour [38, 87]. However, as previously mentioned Senegalese sole is considered a non-

aggressive species and these transcripts, related to social status and aggression in other species,

may not have a role in social status in the non-aggressive Senegalese sole.

Conclusions

In conclusion, this is the first study using dyadic contests in a flatfish species to describe and

determine social status (dominant/subordinate) when resources were limited. This study

reports upon individual differences in dominance behaviour in Senegalese sole for the first

time. This fish is considered as a non-aggressive species and accordingly different non-aggres-

sive dominance behavioural parameters (Rest the head, Approaches, and Swim above another)

were described in relation to dominance of feeding and territory. Those dominance behav-

iours were consistent in the different juvenile stages (early and late juveniles) and additionally,

those parameters were reliable when applied to sole in groups. Both dominant and subordinate

juvenile Senegalese sole exhibited specific and significantly different levels of abundance of

two brain mRNAs that used to be associated to neurogenesis and neuroplasticity. Nevertheless,

future work would be necessary to completely assess the relationship between brain gene tran-

scription and differences in dominance profiles in this species. These results are highly relevant

for the fish farming industry of Senegalese sole in order to tackle problems that appear to be

linked to dominance in the culture system and form the bases for work to improve culture

conditions by understanding the behavioural profile of these animals. This essential under-

standing of hierarchical distribution in the population will be linked to methods to ensure

future reproductive success.

Supporting information

S1 Fig. Experimental tank set up used for the place preference test (with sand) in pairs. A

Preferred area (sand) and B white tiles forming a false bottom characterized the novel condi-

tions. C Water inlet. D Water outlet.

(TIF)

S2 Fig. Group experimental tank set up used for feeding response and point feed delivery.

A PVC tube to deliver the food. B Water Inlet. C Water Outlet. Different position areas (1–6)

were shown by point lines.

(TIF)

S3 Fig. Principal component analysis of the different behaviours registered during the

“feeding response test” in pairs. The three variables “Approaches, SAA and RTH” were

grouped together and explained the 53% of the variance of the data. KMO (0.667), Bartlett’s
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test (P< 0.05) and X2 (133.523).

(TIF)

S4 Fig. Spearman’s correlations from the three variables “Approaches, SAA and RTH”

with feeding. (��) correlation was significant P< 0.05.

(TIF)

S5 Fig. Principal component analysis of the different behaviours registered during the

feeding dominance test and place preference test (sand) in pairs. The three variables

“Approaches, SAA and RTH” and the “TF and last” explained the 56% of the variance of the

data in two different components. KMO (0.6), Bartlett’s test (P< 0.05) and X2 (116.806) (SPSS

19.0 IBM Statistics).

(TIF)

S1 Table. Classification of the different variables in groups according to Kendall’s concor-

dance coefficient (W) for every group. (�P < 0.05) level of significance.

(DOCX)

S1 File. Raw data of preliminary results in dyadic pairs of early Senegalese sole juveniles.

(XLSX)

S2 File. Modal action patterns related to feeding in late Senegalese sole juveniles.

(WMV)
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