
A Novel Use of Individual Code Reviews to Improve Solo Programming on an

Introductory Programming Course (1000 Words)

Dr. Glenn L Jenkins

Programming is a difficult subject for many students and therefore a popular topic in computing

education research, with extensive research into the teaching and learning of programming [1].

Collaborative learning approaches are desirable as they fit well with the needs of industry [2]. Such

approaches have recently been used [1-3] to combat high attrition rates (common on programming

courses [2, 4],) along with pair programming [5-7] and other techniques [8].

Peer code reviews (or code inspections,) have been successfully applied to the teaching of programming

[2, 4, 9]. Code reviews can also be applied in a individual context as in the Personal Software Process

(PSP) [10]. Students at present undertake pair programming (which has an element of code review [2],)

and work on a number of collaborative exercises on this basis. The utilisation of pair programming

raises a number of concerns, firstly pair breakups and their effect on retention [11], secondly difficulties

associated with identifying the contribution of individual students to joint assignments [6] and finally the

effect on progression (some student may struggle to make the transition between a first year of pair

programming and solo programming later modules [12]). The compromise is a mixture of independent

and paired assessment (as suggested by Jacobson and Schaefer [11],) encouraging the development of

both pair and individual programming skills.

Making the review process individual eliminates the problems associated with group and pair work as

the student is working alone. Research has been conducted into individual code reviews and their

improvement on solo programming and Humphrey provides some evidence that students using the PSP

(which includes code review) show improved development skills [10]. This suggests individual reviews

may be well suited to solo programming assignments. However, PSP itself is a formal documentation

heavy technique focused on recording metrics (development time, lines of code, defects etc.,) of a

program in order to gauge its size and complexity as a basis for future estimation [13]. The lengthy

documentation is a cause of resistance amongst some students and training in the process is required

[13].

The aim of this research is to ascertain whether individual code reviews based on checklists (like those

used in PSP [10] and during formal code inspections in industry [14],) with minimal reporting can be

used to improve solo programming. This will allow students to systematically check their work as they

would have done for pair programming and complement the pair programming approach currently used

within the module.

A preliminary study was conducted on first year students enrolled on BSc. Software Engineering and BSc.

Games Development at Swansea Metropolitan University. This is a small group (around 25 in total,) who

study C and C++ programming in their first year. For the experiment the students were split into two

groups (a test group and control group,) with alternating students being picked from a sorted list based

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Wales Trinity Saint David

https://core.ac.uk/display/96773434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on an earlier assignment. The test group was provided with a checklist (based on widely available code

reviews [15] and teaching material,) along with some brief training. The students were also tasked with

recording which of the points helped them to identify defects in their code (though simple annotation of

the list rather than a formal reporting process). Unlike the test group the control group were not

provided with the checklist. The average mark of the group on the assessment was used to quantify

the results (as used by Brykczynski [15]), accompanied by a survey which provides an insight into the

student’s perception of the process for future refinement (as used by Hundhausen et al [2]).

The results shown an increase in performance but due in part to the small sample size this not

statistically significant. The survey results are more encouraging suggesting that the students who

undertook the code review believed the process to be beneficial and that undertaking the review had

improved the programs they had produced. Additionally the majority of students reported they would

use code reviews for future assignments.

In conclusion it remains unclear whether code reviews can be used as an additional component to first

year assignments to improve program quality. Perhaps as software engineering texts suggest quality

cannot be built in at the end [14]. However from a pedagogical perspective students have found the

process beneficial they feel their programs have improved suggesting they have found errors and

omissions in their code and corrected them. They have also been reminded of things they have learned

and can apply and in some cases gained additional knowledge. An analogy can perhaps be made with

proof reading, observations suggest only those students who finish their reports in good time will proof-

read (this has also been observed in other studies [16]). Similarly few students will proofread their code

to identify errors/omissions once the code compiles and passes rudimentary testing it is submitted.

Code reviews may provide a mechanism for encouraging students to proofread code prior to

submission.

Current studies include a number of potential improvements, notably the code review now forms part

of the submission and has associated marks providing students with a crude incentive for students to

undertake the review. The submission takes the form of a table where students to indicate which

elements they found useful providing a mechanism for improving the review in future years.

The code review is being evolved on a topic by topic basis. This provides students with a reference for

best practice and a review checklist for the staged formative assessment. Common errors from which

can be added to the checklist. This incremental approach provides an opportunity to train students in

the review process motivated by research stating that peer and individual assessment in higher

education requires training and academic maturity amongst the students [17] and the results of the

earlier survey. If exposing students to the peer review process earlier in the year can be shown to

provide them with a framework for assessing their code (and making improvements,) it may be possible

to extend the checklist into a means for self or peer assessment. Future studies will include all students

studying introductory programming modules allowing for a deeper analysis of the results.

[1] J. Sheard, S. Simon, M. Hamilton, and J. Lonnberg, "Analysis of reserach into teaching and

learning programming," presented at 5th International workshop on Computing education
research, Berkeley, CA, USA, 2009.

[2] C. Hundhausen, A. Agrawal, D. Fairbrother, and M. Trevisan, "Intergrating Pedagogical Code
Reviews into a CS 1 Course: an Emperical Study," ACM SIGCSE, vol. 41, pp. 291-295, 2009.

[3] J. K. Huggins, "Engaging Computer Science Studetns through Cooperative Education," ACM
SIGCSE, vol. 41, pp. 90-94, 2009.

[4] D. A. Trytten, "A Design for Team Peer Code Review," ACM SIGCSE, vol. 37, pp. 455-459, 2005.
[5] C. McDowell, L. Werner, H. E. Bullcock, and J. Fernland, "The effects of pair-programming on

performance in an introductory programming course," presented at ACM Special Interest Group
on Computer Science Educaton Technical Symposium, Cincinnati, Kentucky, 2002.

[6] C. McDowell, L. Werner, H. E. Bullcock, and J. Fernland, "Pair Programming Improves Student
Retention, Confidence and Program Quality," Communications of the ACM, vol. 39, pp. 90-95,
2006.

[7] L. Williams and R. L. Upchurch, "In Support of Student Pair-Programming," ACM SIGCSE Bulletin,
vol. 33, pp. 327-331, 2001.

[8] J. K. Doyle, "Improving performance and retention in CS1," Journal of Computer Science in
Colleges, vol. 21, pp. 11-18, 2005.

[9] Y. Wang, Y. Li, M. Collins, and P. Liu, "Process Improvement of Peer Code Reivew and Behaviour
Analysis of its Participants," ACM SIGCSE, vol. 40, pp. 107-111, 2008.

[10] W. S. Humphrey, "Finding Defects," in Introduction to the Personal Software Process. New York,
USA: Addison Wesley Longman Inc, 1997, pp. 157-174.

[11] N. Jacobson and S. K. Schaefer, "Pair Programming in CS1: Overcomming Objections to its
Adoption," ACM Special Interest Group on Computer Science Education, vol. 40, pp. 93-96, 2008.

[12] B. Simon and B. Hanks, "First-year students' impressions of pair programming in CS1," Journal on
educational resources in computing, vol. 7, pp. 5:1-5:28, 2008.

[13] S. A. Bloch, "Scheme and Java in the first year," Journal of Computing in Small Colleges, vol. 15,
pp. 157-165, 2000.

[14] I. Sommerville, "Verification and Validation," in Software Engineering, 8th ed. Essex, England:
Pearson Education Limited, 2007, pp. 516-136.

[15] B. Brykczynski, "A Servey of Software Inspection Checklists," ACM SIG SOFT Software
Engineering Notes, vol. 24, pp. 82-89, 1999.

[16] T. J. Gambell, "University Education Students' Self-Perceptions of Writing," Canadian Journal of
Education, vol. 16, pp. 420-433, 1991.

[17] S. Fallows and B. Chandramohan, "Multiple Approaches to Assessment: Reflections on the use of
Tutor, Peer and Self Assessment," Association for Learning Technology Journal (ALT-J), vol. 9, pp.
26-37, 2001.

