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Abstract. We introduce a modified L1 scheme for solving time fractional partial differential
equations and obtain error estimates for smooth and nonsmooth initial data in both homogeneous
and inhomogeneous cases. Jin et al. (2016, An analysis of the L1 scheme for the subdiffusion equation
with nonsmooth data, IMA J. of Numer. Anal., 36, 197-221) established an O(k) convergence rate for
the L1 scheme for smooth and nonsmooth initial data for the homogeneous problem, where k denotes
the time step size. We show that the modified L1 scheme has convergence rate O(k2−α), 0 < α < 1
for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Numerical
examples are given to show that the numerical results are consistent with the theoretical results.
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1. Introduction. Consider the following time fractional partial differential equa-
tion, with 0 < α < 1,

(1.1) C
0 D

α
t u(t) +Au(t) = f(t), for 0 < t ≤ T, with u(0) = u0,

where C
0 D

α
t u(t) denotes the Caputo fractional derivative defined by

C
0 D

α
t u(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αu′(s) ds,

and u′(s) = ∂u/∂s and A is a selfadjoint positive definite second order elliptic partial
differential operator in a bounded regular domain Ω ⊂ Rd, d = 1, 2, 3, with D(A) =
H1

0 (Ω) ∩H2(Ω), where H1
0 (Ω),H

2(Ω) denote the standard Sobolev spaces. We also
denote L2(Ω) the standard square integrable function space with norm ∥ · ∥.

The equation (1.1) can be written as, [9]

(1.2) R
0 D

α
t

(
u(t)− u(0)

)
+Au(t) = f(t), for 0 < t ≤ T,

where R
0 D

α
t u(t) denotes the Riemann-Liouville fractional derivative defined by

R
0 D

α
t u(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αu(s) ds.

Our analysis will use Laplace transform method. The assumption that A is
positive definite implies that A generates an analytic semigroup, so that for some
π/2 < θ0 < π and with C = Cθ0 we have the resolvent estimate, see Lubich et al.
[30], Thomée [38],

(1.3) ∥(zI +A)−1∥ ≤ C|z|−1, for z ∈ Σθ0 = {z ̸= 0 : | arg z| < θ0}.
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2 AN ANALYSIS OF THE MODIFIED L1 SCHEME

In our analysis, we will choose θ > π/2 close to π/2 such that θ < θ0 which
implies that zα ∈ Σθ0 for any z ∈ Σθ since arg(zα) = αθ < θ < θ0 for 0 < α < 1.
Hence there exists a constant C which depends only on θ and α such that, see Jin
et al. [20, (2.3)],

(1.4) ∥(zαI +A)−1∥ ≤ C|z|−α, ∀ z ∈ Σθ = {z ̸= 0 : | arg z| < θ}.

Further we choose θ > π/2 close to π/2 such that zαk ∈ Σθ0 for z ∈ Γ which implies
that (zαk I +A)−1 exists where zk is defined in (2.5) and Γ = Γθ = {z : | arg z| = θ}.

Many application problems can be modelled by (1.1), for example, thermaldiffu-
sion in media with fractional geometry [35], highly heterogeneous aquifer [1], under-
ground environmental problems [18], random walks [17], [31], etc.

There has been much recent interest in developing numerical methods for (1.1),
especially spectral methods, [4], [5], [43], [45], and the discontinuous Galerkin method
[8], [32], [33], [34]. In this paper, we will consider some time discretization schemes for
(1.1) using the direct approximation of the time fractional derivative. There are two
predominant approaches for approximating the fractional derivative: one approach is
by using Lubich’s convolution quadrature [27]-[29] and another approach is by using
the L1 scheme (or Diethelm’s finite difference method). For the recent developments
for solving fractional ordinary (or partial ) differential equations by using the Lubich’s
convolution quadrature method, readers may refer to e.g., [39], [11], [3], [42], [6], [44],
[46], [47], [22], [21], [19], etc.

Let us briefly review the approach for approximating the fractional derivative by
using the L1 scheme (or Diethelm’s finite difference method) which we will forcus on
in this paper. The L1 scheme may be obtained by the direct approximation of the
derivative in the definition of the Caputo fractional derivative, e.g., [25], [24], [16],
[26], [37], or by the approximation of the Hadamard finite-part integral, e.g., [9], [10],
[13], [14], [15], [23], [41]. Since its first appearance the L1 scheme has been extensively
used in practice and currently it is one of the most popular and successful numerical
methods for solving the time fractional diffusion equation.

Recently, Jin et al. [20] obtained the error estimates of the L1 scheme for solving
(1.1) with the convergence order O(k) for smooth and nonsmooth initial data in the
homogeneous case, i.e., f = 0. We will introduce a modified L1 scheme for solving
(1.1) and prove that this scheme has the optimal convergence order O(k2−α) in both
homogeneous and inhomogeneous cases for smooth and nonsmooth initial data. Our
error estimates depend only on data regularity, without assuming any compatibility
conditions on the source term. We derive the error estimates by using the techniques
developed in Lubich et al. [30] for solving the integro-differential equation, see also
[36], [7], [2]. We shall use some delicate estimates of the kernel function which involves
the polylogarithmic functions, see Jin et al. [20].

Let u(t)− u0 = V (t). Then (1.1) is equivalent to, with u0 ∈ D(A),

(1.5) C
0 D

α
t V (t) +AV (t) = −Au0 + f(t), 0 < t ≤ T, with V (0) = 0.

It proves more convenient to consider the error estimates of the time discretization
scheme for solving (1.5) instead of solving (1.1), see [30].

The homogeneous equation of (1.5) reads, with u0 ∈ D(A),

(1.6) C
0 D

α
t V (t) +AV (t) = −Au0, with V (0) = 0.

Let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ] and k the time step size.
Let V n ≈ V (tn), n = 0, 1, 2, . . . , N be the approximate solutions of V (tn). We first
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define the following time discretization scheme for solving the homogeneous equation
(1.6), with u0 ∈ D(A),

(1.7) k−α
n∑

j=1

wn−jV
j +AV n = −Au0, n ≥ 1, with V 0 = 0.

where the weights wj , j = 1, 2, . . . , n, n ≥ 1 are defined by (2.4).
Jin et al. [20, Theorem 3.16] proved the following nonsmooth data error estimates:

Theorem 1.1. ([20, Theorem 3.16]) Let V (tn) and V n be the solutions of (1.6)
and (1.7), respectively. Let u0 ∈ L2(Ω). Then we have, with 0 < α < 1,

(1.8) ∥V (tn)− V n∥ ≤ Ckt−1
n ∥u0∥, n ≥ 1.

Remark 1.2. In the time discretization scheme (1.7), we require Au0 ∈ L2(Ω),
i.e., the initial data u0 is reasonably smooth. However one may use the scheme (1.7)
to prove the error estimates with the nonsmooth initial data u0 ∈ L2(Ω). This idea
has been used in Lubich et al. [30, (1.8)] and Jin et al. [22, Remark 2.4]. The similar
remark is also for our modified L1 scheme (1.9)-(1.11) below.

To improve the convergence rate of the L1 scheme (1.7) for solving (1.6), we
introduce the following modified L1 scheme: with c0 = 1/2, with u0 ∈ D(A),

k−α
n∑

j=1

wn−jV
j +AV n = (−Au0)(1 + c0), for n = 1,(1.9)

k−α
n∑

j=1

wn−jV
j +AV n = −Au0, for n ≥ 2,(1.10)

V 0 = 0,(1.11)

where the weights wn−j , j = 1, 2, . . . , n are given by (2.4). We then have the following
nonsmooth data error estimates:

Theorem 1.3. Let V (tn) and V n be the solutions of (1.6) and (1.9)-(1.11),
respectively. Let u0 ∈ L2(Ω). We have

∥V (tn)− V n∥ ≤ Ck2−αtα−2
n ∥u0∥.

Based on the modified L1 scheme (1.9)-(1.11), we introduce the following modified
L1 scheme for solving the inhomogeneous equation (1.5), with V 0 = 0 and u0 ∈ D(A),

k−α
n∑

j=1

wn−jV
j +AV n = −Au0 + f(tn) + c0(−Au0 + f(0)), n = 1,(1.12)

k−α
n∑

j=1

wn−jV
j +AV n = −Au0 + f(tn), n = 2, 3, . . . , N,(1.13)

where wj , j = 0, 1, 2, . . . are defined by (2.4).
We obtain the following error estimates with nonsmooth data:
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Theorem 1.4. Let V (tn) and V n be the solutions of (1.5) and (1.12)-(1.13),
respectively. Let u0 ∈ L2(Ω). Then we have, with 0 < α < 1,
(1.14)

∥V (tn)−V n∥ ≤ Ck2−α
(
tα−2
n ∥u0∥+t2α−2

n ∥f(0)∥+t2α−1
n ∥f ′(0)∥+

∫ tn

0

(tn−s)2α−1∥f ′′(s)∥ ds
)
.

The main contributions of this paper are as follows:
• we introduce the modified L1 scheme for solving time-fractional partial dif-
ferential equations and prove that the convergence rate of this scheme is
O(k2−α), 0 < α < 1 for both smooth and nonsmooth initial data in the
homogeneous case.

• we also obtain error estimates of the modified L1 scheme in the inhomoge-
neous case for smooth and nonsmooth initial data.

The rest of the paper is organized as follows. In Section 2, we consider the
error estimates for the homogeneous problem and in Section 3, we consider the error
estimates for the inhomogeneous problem. Numerical examples are given in Section
4.

Throughout, the notations C and c, with or without a subscript, denote generic
constants, which may differ at different occurrences, but are always independent of
the step size k.

2. The homogeneous problem. In this section we will consider the time dis-
cretization scheme for solving the homogeneous equation (1.5).

Recall that the Caputo fractional derivative can be approximated by using the
so-called L1 scheme, see [20],

C
0 D

α
t V (tn) = k−α

(
b0V (tn) +

n−1∑
j=1

(bj − bj−1)V (tn−j)− bn−1V (0)
)
+O(k2−α), k → 0,

where the weights bj are given by

bj =
(
(j + 1)1−α − j1−α

)
/Γ(2− α), j = 0, 1, 2, . . . , n− 1.

Rearranging the coefficients, we may write

C
0 D

α
t V (tn) = k−α

n∑
j=0

wn−j,nV (tj) +O(k2−α), k → 0,(2.1)

where wj,n, j = 0, 1, 2, . . . , n are given by

Γ(2− α)wj,n =


1, for j = 0,

−2j1−α + (j − 1)1−α + (j + 1)1−α, for j = 1, 2, . . . , n− 1,

(j − 1)1−α − j1−α, for j = n.

We remark that the above weights wj,n, j = 0, 1, 2, . . . , n can also be obtained by
using Diethelm’s finite difference method [9]. More precisely, the L1 scheme for ap-
proximating the Caputo fractional derivative may be obtained first by approximating
the Riemann-Liouville fractional derivative with Diethelm’s finite difference method
[9] and then applying the relation between the Riemann-Liouville and Caputo frac-
tional derivatives, i.e., C

0 D
α
t V (t) = R

0 D
α
t (V (t) − V (0)) for 0 < α < 1. (In our case

V (0) = 0).
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2.1. L1 scheme. We now define the following L1 scheme for solving (1.6),

(2.2) k−α
n∑

j=0

wn−j,nV
j +AV n = −Au0, n ≥ 1, with V 0 = 0,

or

(2.3) k−α
n∑

j=1

wn−j,nV
j +AV n = −Au0, n ≥ 1, with V 0 = 0.

For any fixed n ≥ 1, we observe that wj,n, j = 0, 1, . . . , n − 1 only depend on
j = 0, 1, 2, . . . , n − 1. For example, we have w0,n = 1/Γ(2 − α) for any n ≥ 1,
w1,n = 1/Γ(2−α)

(
(−2)11−α+(1− 1)1−α+(1+1)1−α

)
for any n ≥ 2, . . . . Therefore,

we may write w0 = w0,n, w1 = w1,n, w2 = w2,n, . . . , wn−1 = wn−1,n for any fixed
n ≥ 1. More precisely, we define wj , j = 0, 1, 2, . . . as follows

Γ(2− α)wj =

{
1, for j = 0,

−2j1−α + (j − 1)1−α + (j + 1)1−α, for j = 1, 2, . . . .
(2.4)

Our time discretization scheme (1.7) in the introduction section is then defined by
using the weights wj , j = 0, 1, 2, . . . in (2.4).

We remark that in the proof of the error estimates below, we shall see that it is
necessary to use the notations wj , j = 0, 1, 2, . . . in (1.7) instead of using the notations
wn−j,n in (2.3) since we need to apply the discrete Laplace transform of the sequence
(w0, w1, w2, . . . ).

The error estimate in Theorem 1.1 was proved in Jin et al. [20, Theorem 3.16].
For completeness, we will give the idea of the proof of Theorem 1.1 in a slightly
simpler way in the next subsections. We then follow the same idea to prove the error
estimates for the modified L1 scheme later.

2.1.1. Some lemmas. To prove Theorem 1.1, we need to show that zαk ∈ Σθ0

for some θ0 ∈ (π/2, π) where zk is defined in (2.5) below and θ0 is introduced in (1.3).

Lemma 2.1. [20, Lemma 3.7] Let θ > π/2 be close to π/2. Let z ∈ Γk with
Γk = {z ∈ Γ : |ℑz| ≤ π/k} and Γ = {z : |arg z| = θ} (with ℑz running from −∞ to
∞). Denote

(2.5) zk =
δ(ζ)

k
, with δ(ζ)α =

∞∑
j=0

wjζ
j , ζ = e−zk,

where wj , j = 0, 1, 2, . . . are defined by (2.4). Then there exists θ0 ∈ (π/2, π) such
that

(2.6) zαk ∈ Σθ0 , for all z ∈ Σθ.

Remark 2.2. In Lemma 3.7 in Jin et al. [20], the authors proved that for all
π/2 < θ < π, there exists θ0 ∈ (π/2, π) such that zαk ∈ Σθ0 for all z ∈ Σθ. Actually in
our analysis, we only need to show zαk ∈ Σθ0 for all z ∈ Σθ for some θ > π/2 close to
π/2.
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We also need the following lemmas in the proof of Theorem 1.1.
Lemma 2.3. Let wj , j = 0, 1, 2, . . . be defined by (2.4). We have the following

singularity expansion, with ζ = e−zk,

∞∑
j=0

wjζ
j = (zk)α + c2(zk)

2 + c3(zk)
3 + . . . .

for some suitable constants c2, c3, . . . .
To prove Lemma 2.3, we need to introduce the polylogorithm function

Lip(z) =

∞∑
j=1

zj

jp
.

The polynomial function Lip(z) is well defined for |z| < 1 and p ∈ C. It can be analyt-
ically continued to the split complex plane C\[1,+∞); see Flajolet [12]. With z = 1,
it recovers the Riemann zeta function ς(p) = Lip(1). We also recall an important
singular expansion of the function Lip(e

−z) (Flajolet [12, Theorem 1]).
Lemma 2.4. [20, Lemma 3.2] For p ̸= 1, 2, . . . , the function Lip(e

−z) satisfies
the singular expansion

Lip(e
−z) ∼ Γ(1− p)zp−1 +

∞∑
l=0

(−1)lς(p− l)
zl

l!
, as z → 0,

where ς(z) denotes the Riemann zeta function.
Lemma 2.5. [20, Lemma 3.4] Let |z| ≤ π

sin θ with θ ∈ (π2 ,
5π
6 ) and −1 < p < 0.

Then

Lip(e
−z) = Γ(1− p)zp−1 +

∞∑
l=0

(−1)lς(p− l)
zl

l!
,

converges absolutely.
Proof. [Proof of Lemma 2.3] We have, by the definition of the weights in (2.4),

with ζ = e−zk,

∞∑
j=0

wjζ
j =

1

Γ(2− α)
(ζ−1 − 2 + ζ)

( ∞∑
j=1

j1−αζj
)

=
1

Γ(2− α)

(
(e−zk)−1 − 2 + e−zk

)( ∞∑
j=1

j1−αζj
)

=
1

Γ(2− α)

(
(e−zk)−1 − 2 + e−zk

)
Liα−1(ζ),

where Liα−1(ζ) denotes the polylogarithm function. Thus, by Lemma 2.5,

Liα−1(ζ) = Liα−1(e
−zk) = Γ(2− α)(zk)α−2 +

∞∑
l=0

(−1)lς(1− α− l)
(zk)l

l!
,

where ς(z) denotes the Riemann zeta function.
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Hence, with some suitable constants c2, c3, d0, d1, . . . ,

∞∑
j=0

wjζ
j =

(
(zk)2 +

1

12
(zk)4 + . . .

)(
(zk)α−2 + d0(zk)

0 + d1(zk)
1 + . . .

)
= (zk)α + c2(zk)

2 + c3(zk)
3 + . . . .

Together these estimates complete the proof of Lemma 2.3.
Lemma 2.6. Let ζ = e−zk and z ∈ Γk. Let zk be defined as in (2.5). Further we

denote

(2.7) µ(ζ) =
ζ

1− ζ
(kzk),

and

(2.8) K(z) = z−1(zα +A)−1A.

Then we have

µ(e−zk)− 1 = O
(
zk

)
, as zk → 0,(2.9)

c|z| ≤ |zk| ≤ C|z|,(2.10) ∥∥K(zk)−K(z)
∥∥ ≤ Ck2−α|z|−α+1.(2.11) ∥∥µ(ζ)K(zk)−K(z)

∥∥ ≤ Ck|z|0.(2.12)

Proof. We first show (2.9). It is sufficient to show

(2.13) |µ(e−w)− 1| ≤ C|w|, as w → 0.

Note that, by Lemma 2.3,

µ(e−w)− 1 =
e−w

1− e−w

( ∞∑
j=0

wj(e
−w)j

) 1
α − 1

=
e−w

1− e−w

(
wα + c2w

2 + c3w
3 + . . .

) 1
α − 1

= e−w
( w

1− e−w

)(
1 + c2w

2−α + c3w
3−α + . . .

) 1
α − 1

= e−w
( w

1− e−w

)(
1 + c2w

2−α + . . .
)
− 1.

It is easy to see that limw→0

(
µ(e−w) − 1

)
= 0, which implies that limw→0

µ(e−w)−1
w

exists. Hence (2.13) holds.
Next we show (2.10). Note that

|z|
|zk|

=
|z|∣∣∣ δ(e−zk)
k

∣∣∣ = |zk|
|δ(e−zk)|

.

To show (2.10), it suffices to prove |zk|
|δ(e−zk)| has limit as |zk| → 0, which follows from

lim
w→0

w

δ(e−w)
= lim

w→0

w(∑∞
j=0 wj(e−w)j

) 1
α

= lim
w→0

w

(wα + c2w2 + . . . )
1
α

= lim
w→0

1

(1 + c2w2−α + . . . )
1
α

= 1.
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Hence we have proved, for any fixed constant M > 0, there exists a constant C such
that

|z|
|zk|

≤ C, ∀ |zk| ≤ M.

Similarly we may show |zk|
|z| ≤ C, ∀ |zk| ≤ M . Thus we get (2.10).

We now show (2.11). Note that

zk − z =
δ(e−zk)

k
− z =

δ(e−zk)− zk

k
=

(∑∞
j=0 wj(e

−zk)j
) 1

α − zk

k

=

(
(zk)α + c2z

2k2 + . . .
) 1

α − zk

k
=

(zk)
(
1 + c2(zk)

2−α + . . .
) 1

α − zk

k

=
(zk)

(
1 + c2

α (zk)2−α + . . .
)
− zk

k
= O(k2−αz3−α), as kz → 0.

Thus we have, following the proof of [30, (4.6)] and noting ∥K ′(z)∥ ≤ C|z|−2 in
[30, (3.12)],

∥K(zk)−K(z)∥ ≤ C|z|−2k2−α|z|3−α = Ck2−α|z|1−α.

Finally we show (2.12). Following the same proof as in the proof of [30, Lemma
4.3], we have∥∥µ(ζ)K(zk)−K(z)

∥∥ ≤
∥∥(µ(ζ)− 1

)
K(zk)

∥∥+
∥∥K(zk)−K(z)

∥∥
≤

(
C|zk

)
|C|z|−1 + Ck2−α|z|1−α ≤ Ck|z|0 + Ck2−α|z|1−α ≤ Ck|z|0.

Together these estimates complete the proof of Lemma 2.6.

2.1.2. Proof of Theorem 1.1. In this subsection, we shall give the idea of the
proof of Theorem 1.1. Then we follow the same idea to prove the error estimates for
the modified L1 scheme in Theorem 1.3 later.

By using the Laplace transform and discrete Laplace transform, we have, see Jin
et al. [20, Proof of Theorem 3.10],

(2.14) V (tn) = − 1

2πi

∫
Γ

etnzz−1(zα +A)−1Au0 dz,

and, with zk = δ(ζ)
k , ζ = e−zk defined by (2.5),

V n = − 1

2πi

∫
Γk

etnz
ζ

1− ζ

(
kzk

)
z−1
k (zαk +A)−1Au0 dz,(2.15)

where Γ and Γk are defined as in Lemma 2.1.
Thus we have, subtracting (2.15) from (2.14),

V (tn)− V n =
1

2πi

∫
Γk

etnz
(
µ(ζ)K(zk)−K(z)

)
u0 dz +

1

2πi

∫
Γ/Γk

etnzK(z)u0 dz

= I + II,

where µ(ζ) and K(z) are defined by (2.7) and (2.8), respectively.
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For I, we have, by (2.12), with some suitable constant c > 0,

∥I∥ ≤ 1

2π

∫
Γk

∣∣etnz∣∣∥∥µ(ζ)K(zk)−K(z)
∥∥∥u0∥ |dz|

≤ 1

2π

∫
Γk

∣∣etnz∣∣Ck∥u0∥ |dz| ≤ Ck

∫ ∞

0

e−ctnrt−1
n d(rtn)∥u0∥ ≤ Ckt−1

n ∥u0∥.

For II, we have, by (1.4) and noting that (zα +A)−1A = I − zα(zα +A)−1, with
some suitable constant c > 0,

∥II∥ ≤ 1

2π

∫
Γ/Γk

∣∣etnz∣∣∥u0∥
∥∥z−1(zα +A)−1A∥∥u0∥ |dz|∥u0∥ ≤ C

∫ ∞

1
k

e−ctn|z||z|−1 |dz|∥u0∥

≤ Ck

∫ ∞

1
k

e−ctn|z| |dz|∥u0∥ ≤ Ckt−1
n

∫ ∞

0

e−cr dr∥u0∥ ≤ Ckt−1
n ∥u0∥.

The proof of Theorem 1.1 is now complete.
Remark 2.7. We remark that assuming that u0 ∈ D(A) rather than u0 ∈ L2(Ω)

reduces the singular behaviour of the error bound at t = 0. We can prove the conver-
gence order O(k), 0 < α < 1 similarly, see Lubich et al. [30, p.16].

2.2. The modified L1 scheme. In this section, we shall consider the modified
L1 scheme (1.9)-(1.11) for solving (1.6) and prove that this scheme has the convergence
rate O(k2−α) for smooth and nonsmooth initial data.

The idea of introducing the correction term in the first step n = 1 in (1.9) comes
from Lubich et al. [30] where the authors introduced a modified scheme to construct
second order time discretization scheme for solving an evolution equation with a
positive-type memory term. To see this, let us write (1.6) into the equivalent form,
with 0 < α < 1,

(2.16) V (t) + R
0 D

−α
t (AV (t)) = −R

0 D
−α
t (Au0), with V (0) = 0,

where R
0 D

−α
t V (t) denotes the Riemann-Liouville fractional integral. To obtain a

higher order time discretization scheme for solving (2.16), following the idea in Lubich
et al. [30], we may introduce the following modified time discretization scheme to
approximate (2.16),

(2.17) V n + qcn(AV ) = −qcn(Au0), with V (0) = 0,

where qcn(φ) is the modification of the quadrature formula approximating the Riemann-
Liouville fractional integral R

0 D
−α
t φ, defined by

(2.18) qcn(φ) = k−α
n∑

k=1

βn−jφ
j + c0βn−1φ

0, with c0 = 1/2.

Here β0, β1, . . . are generated by some function β̂(ζ) =
∑∞

j=0 βjζ
j .

We have the following lemma.

Lemma 2.8. Assume that β̂(ζ) =
(∑∞

j=0 wjζ
j
)−1

, where wj , j = 0, 1, 2, . . . are
defined in (2.4). Then the modified L1 scheme (1.9)-(1.11) is equivalent to (2.17).

Proof. Denote

an =

{
1 + c0, c0 = 1/2, for n = 1,

1, for n ≥ 2.
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The time discretization problem of (1.9)-(1.11) can then be written as

k−α
n∑

j=1

wn−jV
j +AV n = (−Au0)an.

Taking the discrete Laplace transform in both sides, we have

∞∑
n=1

(
k−α

n∑
j=1

wn−jV
j
)
ζn +

∞∑
n=1

(AV n)ζn = (−Au0)

∞∑
n=1

(anζ
n).

Note that

(2.19)
∞∑

n=1

( n∑
j=1

wn−jV
j
)
ζn =

( ∞∑
j=0

wjζ
j
)(

V 1ζ1 + V 2ζ2 + . . .
)
,

we have, with ŵ(ζ) =
∑∞

j=0 wjζ
j , V̂ (ζ) =

∑∞
j=0 V

jζj ,

(2.20) k−αŵ(ζ)V̂ (ζ) +AV̂ (ζ) = (−Au0)
( ζ

1− ζ
+ c0ζ

)
.

By the assumption for β̂(ζ), we have

V̂ (ζ) + kαβ̂(ζ)AV̂ (ζ) = kαβ̂(ζ)(−Au0)
( ζ

1− ζ
+ c0ζ

)
.

Thus we get

∞∑
n=1

V nζn + kα
∞∑

n=1

( n∑
j=1

βn−jAV j
)
ζn

= −kα
∞∑

n=1

( n∑
j=1

βn−jAu0

)
ζn − kα

∞∑
n=1

(
c0βn−1Au0

)
ζn.

Hence

V n + kα
n∑

j=1

βn−jAV
j = −kα

n∑
j=1

βn−jAu0 − kαc0βn−1Au0, n ≥ 1,

which is (2.17).
Together these estimates complete the proof of Lemma 2.8.
Remark 2.9. From Lemma 2.8, we note that the correction on the first step

n = 1 in (1.9)-(1.11) is equivalent to the correction in (2.17). Therefore we see
that the modified L1 scheme (1.9)-(1.11) is actually equivalent to the modified scheme
(2.17) which has been used to improve the convergence rate of the time discretization
scheme for solving an evolution equation with a positive-type memory term in Lubich
et al. [30].

2.2.1. Proof of Theorem 1.3. In this subsection, we shall prove Theorem 1.3
for the error estimates of the modified L1 scheme (1.9)-(1.11). To prove Theorem 1.3,
we need the following lemma.
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Lemma 2.10. Let ζ = e−zk and z ∈ Γk. Let zk and K(z) be defined as in (2.5),
(2.8), respectively. Further we denote, with c0 = 1/2,

(2.21) µ̄(ζ) =
( ζ

1− ζ
+ c0ζ

)
δ(ζ),

where δ(ζ) is defined in (2.5). Then we have

µ̄(e−zk)− 1 = O
(
(zk)2−α

)
, as zk → 0,(2.22) ∥∥µ̄(ζ)K(zk)−K(z)

∥∥ ≤ Ck2−α|z|1−α.(2.23)

Proof. We first show (2.22). It is sufficient to show

(2.24) |µ̄(e−w)− 1| ≤ C|w|2−α, as w → 0.

Note that, by Lemma 2.3,

µ̄(e−w)− 1 =
( e−w

1− e−w
+ c0e

−w
)( ∞∑

j=0

wj(e
−w)j

) 1
α − 1

=
( e−w

1− e−w
+ c0e

−w
)(

wα + c2w
2 + c3w

3 + . . .
) 1

α − 1

=
(
e−w + c0e

−w(1− e−w)
)( w

1− e−w

)(
1 + c2w

2−α + c3w
3−α + . . .

) 1
α − 1

=
(
e−w + c0e

−w(1− e−w)
)( w

1− e−w

)(
1 + c2w

2−α + . . .
)
− 1

= f1(w)f2(w)f3(w)− 1,

where f1(w) = e−w+c0e
−w(1−e−w), f2(w) =

w
1−e−w , and f3(w) = 1+c2w

2−α+. . . .
Here c2, c3, . . . denote generic constants, which may differ at different occurrences.

We now have

lim
w→0

µ̄(e−w)− 1

w2−α
= lim

w→0

F (w) + f1(w)(f2(w)f
′
3(w))

(2− α)w1−α

= lim
w→0

F (w) + f1(w)f2(w)
(
c2w

1−α + . . .
)

(2− α)w1−α
.

Here

F (w) = f ′
1(w)f2(w)f3(w) + f1(w)f

′
2(w)f3(w)

=
(
e−w(−1) + c0e

−w(−1)(1− e−w) + c0e
−we−w

)
f2(w)f3(w)

+
(
e−w + c0e

−w(1− e−w)
)( (1− e−w)− we−w

(1− e−w)2

)
f3(w)

With c0 = 1/2, it is easy to see that limw→0 F (w) = O(w). Further we have
limw→0 f1(w)f2(w) = C. Thus the following limit exists

lim
w→0

µ̄(e−w)− 1

w2−α
= lim

w→0

F (w) + f1(w)f2(w)
(
c2w

1−α + . . .
)

(2− α)w1−α
,
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which shows (2.24).
Finally we show (2.23). Following the same proof as in the proof of [30, Lemma

4.3], we have∥∥µ̄(ζ)K(zk)−K(z)
∥∥ ≤

∥∥(µ̄(ζ)− 1
)
K(zk)

∥∥+
∥∥K(zk)−K(z)

∥∥
≤ |zk|2−αC|z|−1 + Ck2−α|z|1−α ≤ Ck2−α|z|1−α.

Together these estimates complete the proof of Lemma 2.10.

Proof. [Proof of Theorem 1.3] Following the same argument as in the proof of
Theorem 1.1, we may obtain this time

V (tn)− V n =
1

2πi

∫
Γk

etnz
(
µ̄(ζ)K(zk)−K(z)

)
u0 dz

+
1

2πi

∫
Γ/Γk

etnzK(z)u0 dz = I + II,

where K(z) and µ̄(ζ) are defined by (2.8) and (2.21), respectively. Then we have, by
(2.23), with some suitable constant c > 0,

∥I∥ ≤ 1

2π

∫
Γk

∣∣etnz∣∣∥∥µ̄(ζ)K(zk)−K(z)
∥∥∥u0∥ |dz|

≤ 1

2π

∫
Γk

∣∣etnz∣∣C(
k2−α|z|1−α

)
∥u0∥ |dz|

≤ Ck2−α

∫ ∞

0

e−ctnr(tnr)
1−αd(rtn)t

α−1
n t−1

n ∥u0∥

≤ Ck2−αtα−2
n ∥u0∥ ≤ Ck2−αtα−2

n ∥u0∥.

For II, we have, by (1.4) and noting that (zα +A)−1A = I − zα(zα +A)−1, with
some suitable constant c > 0,

∥II∥ ≤ 1

2π

∫
Γ/Γk

∣∣etnz∣∣∥u0∥
∥∥z−1(zα +A)−1A∥∥u0∥ |dz|∥u0∥ ≤ C

∫ ∞

1
k

e−ctn|z||z|−1 |dz|∥u0∥

≤ C

∫ ∞

1
k

e−ctn|z||z|−(2−α)|z|−α+1 |dz|∥u0∥ ≤ Ck2−α

∫ ∞

1
k

e−ctn|z||z|1−α |dz|∥u0∥

≤ Ck2−αtα−2
n

∫ ∞

0

e−crr−α+1 dr∥u0∥ ≤ Ck2−αtα−2
n ∥u0∥.

The proof of Theorem 1.3 is now complete.

Remark 2.11. We remark that assuming that u0 ∈ D(A) rather than u0 ∈
L2(Ω) reduces the singular behavior of the error bound at t = 0. We can prove the
convergence order O(k2−α), 0 < α < 1 similarly, see Lubich et al. [30, p.16]

3. The inhomogeneous problem. In this section we will consider the error
estimates of the time stepping method (1.12)-(1.13) for solving the inhomogeneous
problem (1.5) and prove Theorem 1.4. To do this, we need the following lemma.

Lemma 3.1. Let zk be defined as in (2.5). We have, with ζ = e−zk,∥∥∥(zα +A)−1z−2 − (zαk +A)−1
(
k

∞∑
n=1

tnζ
n
)∥∥∥ ≤ Ck2−α|z|−2α.
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Proof. We have∥∥∥(zα +A)−1z−2 − (zαk +A)−1
(
k

∞∑
n=1

tnζ
n
)∥∥∥

≤ ∥(zα +A)−1z−2 − (zαk +A)−1z−2
k ∥+

∥∥∥(zαk +A)−1z−2
k

(
1− z2kk

∞∑
n=1

tnζ
n
)∥∥∥.

It is easy to show that ∥∥∥1− z2kk
∞∑

n=1

tnζ
n
∥∥∥ ≤ C|zk|2−α.

The rest of the proof of Lemma 3.1 follows from the arguments for the proofs of (2.11)
and (2.12).

Proof. [Proof of Theorem 1.4] The proof is following the arguments developed in
[21] and [22] for the time fractional diffusion problem in the inhomogeneous case.

Denote

f(t) = f(0) +R(t), R(t) = tf ′(0) + (t ∗ f ′′)(t).

Here f ∗ g denotes the convolution of f and g.
Taking the Laplace transform in (1.5), we have

zαV̂ (z) +AV̂ (z) = −Au0z
−1 + f̂(z) = −Au0z

−1 + f(0)z−1 + R̂(z),

which implies that

V (t) =
1

2πi

∫
Γ

ezt
(
(zα +A)−1z−1(−Au0 + f(0)) + (zα +A)−1R̂(z)

)
dz.

Taking the discrete Laplace transform in (1.12)-(1.13), we have

∞∑
n=1

(
k−α

n∑
j=1

wn−jV
j
)
ζn +

∞∑
n=1

(AV n)ζn

=
∞∑

n=1

(−Au0 + f(0))ζn +
∞∑

n=1

R(tn)ζ
n + c0

(
−Au0 + f(0)

)
ζ,

which implies that

V n =
1

2πi

∫
Γk

eztn(zαk +A)−1z−1
k µ̄(e−zk)(−Au0 + f(0)) dz

+
1

2πi

∫
Γk

eztn(zαk +A)−1k
( ∞∑

n=1

R(tn)ζ
n
)
dz,

where µ̄(ζ) and zk are defined by (2.21) and (2.5), respectively. Thus we have

V (tn)− V n = I1 + I2,
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where

I1 =
1

2πi

∫
Γ/Γk

eztn(zα +A)−1z−1(−Au0 + f(0)) dz

+
1

2πi

∫
Γk

eztn
(
(zα +A)−1z−1 − (zαk +A)−1z−1

k µ̄(e−zk)
)
(−Au0 + f(0)) dz,

I2 =
1

2πi

∫
Γ

eztn
(
(zα +A)−1z−1

)(
zR̂(z)

)
dz

− 1

2πi

∫
Γk

eztn
(
(zαk +A)−1z−1

k

(
zkk

∞∑
n=1

R(tn)ζ
n
))

dz.

For I1, we have, following the argument in the proof of Theorem 1.3,

∥I1∥ ≤ Ck2−αtα−2
n ∥u0∥+ Ck2−αt2α−2

n ∥f(0)∥.

For I2, noting that R(t) = R1(t) + R2(t), where R1(t) = tf ′(0) and R2(t) =
(t ∗ f ′′)(t), we may write I2 as

I2 = I12 + I22 ,

where

I12 =
1

2πi

∫
Γ

eztn
(
(zα +A)−1z−1

)(
zR̂1(z)

)
dz

− 1

2πi

∫
Γk

eztn
(
(zαk +A)−1z−1

k

(
zkk

∞∑
n=1

R1(tn)ζ
n
))

dz

I22 =
1

2πi

∫
Γ

eztn
(
(zα +A)−1z−1

)(
zR̂2(z)

)
dz

− 1

2πi

∫
Γk

eztn
(
(zαk +A)−1z−1

k

(
zkk

∞∑
n=1

R2(tn)ζ
n
))

dz.

For I12 , we have

∥I12∥ =
∥∥∥ 1

2πi

∫
Γ

eztn
(
(zα +A)−1z−2

)
dzf ′(0)

− 1

2πi

∫
Γk

eztn
(
(zαk +A)−1

(
k

∞∑
n=1

tnζ
n
))

dzf ′(0)
∥∥∥

=
∥∥∥ 1

2πi

∫
Γ/Γk

eztn
(
(zα +A)−1z−2

)
dzf ′(0)

− 1

2πi

∫
Γk

eztn
(
(zα +A)−1z−2 − (zαk +A)−1

(
k

∞∑
n=1

tnζ
n
))

dzf ′(0)
∥∥∥.

By Lemma 3.1, we have

∥I12∥ ≤ Ck2−αt2α−1
n ∥f ′(0)∥.

For I22 , we have, following the arguments as in Jin et al. [21], [22],

∥I22∥ ≤ Ck2−α

∫ tn

0

(tn − s)2α−1∥f ′′(s)∥ ds.
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Together these estimates complete the proof of Theorem 1.4.

Remark 3.2. We remark that assuming that u0 ∈ D(A) rather than u0 ∈ L2(Ω)
reduces the singular behavior of the error bound at t = 0. Let V (tn) and V n be the
solutions of (1.5) and (1.12)-(1.13), respectively. Let u0 ∈ D(A). Then we can prove,
following the argument of the proof in Jin et al. [22, Theorem 2.2], with 0 < α < 1,
(3.1)

∥V (tn)−V n∥ ≤ Ck2−α
(
t2α−2
n ∥f(0)+Au0∥+t2α−1

n ∥f ′(0)∥+
∫ tn

0

(tn−s)2α−1∥f ′′(s)∥ ds
)
.

Thus we observe that if f(0)+Au0 = 0 and f ′(0) = 0, we obtain the uniform conver-
gence rate O(k2−α).

4. Numerical simulations. In this section, we will consider the experimentally
determined convergence rates of the L1 and the modified L1 schemes for smooth and
nonsmooth data in both homogeneous and inhomogeneous cases.

Example 4.1. Let us consider the following homogeneous problem

C
0 D

α
t u(x, t)− uxx = 0, 0 < x < 1, t > 0,(4.1)

u(0, t) = u(1, t) = 0,(4.2)

u(x, 0) = u0(x),(4.3)

where u0(x) = x(1− x) or u0(x) = χ(0,1/2).
Let 0 < t0 < t1 < . . . tN = T be the time partition on [0, T ] and k the time step

size. Let Nh be a positive integer. Let 0 = x0 < x1 < x2 < . . . xNh
= 1 be the space

partition on [0, 1] and h the space step size. We will use the linear finite element
method to consider the spatial discretization.

We first consider the scheme (1.7) and the convergence rate was proved to be
O(k) for both smooth and nonsmooth data in [20]. To observe this convergence
order, we first calculate the reference solution uref (t) at T = 1 with href = 2−6 and
kref = 2−10. We then use h = 2−6 and k = κ ∗ kref with κ = [22, 23, 24, 25, 26] to
obtain the approximate solutions u(t) at T = 1. We choose the smooth and nonsmooth
initial data (a) u0 = x(1 − x) and (b) u0 = χ(0,1/2). We obtain the following results
which are consistent with the Table 1 in [20]. The convergence rate indeed is almost
O(k) for the different α ∈ (0, 1) for smooth and nonsmooth initial data.

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 (a) 0.0212e-4 0.0496e-4 0.1067e-4 0.2218e-4 0.4564e-4 1.1063

(b) 0.0055e-3 0.0127e-3 0.0274e-3 0.0570e-3 0.1172e-3 1.1063
0.3 (a) 0.0056e-3 0.0130e-3 0.0280e-3 0.0585e-3 0.1209e-3 1.1100

(b) 0.0143e-3 0.0333e-3 0.0718e-3 0.1479e-3 0.3094e-3 1.1099
0.8 (a) 0.0078e-3 0.0185e-3 0.0403e-3 0.0857e-3 0.1824e-3 1.1359

(b) 0.0198e-3 0.0466e-3 0.1017e-3 0.2160e-3 0.4595e-3 1.1350
0.9 (a) 0.0054e-3 0.0128e-3 0.0284e-3 0.0621e-3 0.1404e-3 1.1766

(b) 0.0134e-3 0.0320e-3 0.0708e-3 0.1546e-3 0.3490e-3 1.1757

Table 1
Time convergence rates with the different α for the L1 scheme (1.7) in Example 4.1
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We next consider the modified L1 scheme (1.9)-(1.11). By Theorem 1.3, the
convergence rate of the modified L1 scheme (1.9)-(1.11) is O(k2−α) for smooth and
nonsmooth initial data. We use the same notations as in Table 1 and we obtain the
following results in Table 2.

We found that the modified L1 scheme has the better accuracy than the L1 scheme
and the errors are about 1e − 05 or 1e − 04 for all α ∈ (0, 1). The errors of the L1
scheme are only 1e− 03. For the convergence rates, when α < 1/2, we observe that,
in Table 2, the convergence rates are almost 2 which is better than the theoretical
results 2 − α. However when α > 1/2, the convergence rates are almost 2 − α as we
expected.

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 (a) 0.0013e-5 0.0055e-5 0.0233e-5 0.0985e-5 0.4265e-5 2.0985

(b) 0.0018e-5 0.0078e-5 0.0322e-5 0.1333e-5 0.5658e-5 2.0668
0.3 (a) 0.0013e-5 0.0064e-5 0.0291e-5 0.1302e-5 0.5891e-5 2.1914

(b) 0.0004e-4 0.0017e-4 0.0076e-4 0.0339e-4 0.1527e-4 2.1839
0.8 (a) 0.0079e-4 0.0201e-4 0.0462e-4 0.0981e-4 0.1782e-4 1.1223

(b) 0.0196e-4 0.0496e-4 0.1140e-4 0.2421e-4 0.4407e-4 1.1230
0.9 (a) 0.0141e-4 0.0345e-4 0.0778e-4 0.1687e-4 0.3484e-4 1.1573

(b) 0.0347e-4 0.0851e-4 0.1920e-4 0.4162e-4 0.8597e-4 1.1572

Table 2
Time convergence rates with the different α for the modified L1 scheme (1.9)-(1.11) in Example

4.1

Example 4.2. Let us consider the following inhomogeneous problem

C
0 D

α
t u(x, t)− uxx = f(x, t), 0 < x < 1, t > 0,(4.4)

u(0, t) = u(1, t) = 0,(4.5)

u(x, 0) = x(1− x),(4.6)

where f(x, t) = sin(t)(1 + χ(0,1/2)(x)). Here the source term f is smooth in time,
therefore Theorem 1.4 is applicable.

We use the same notations as in Example 4.1. We first consider the L1 scheme
(1.12)-(1.13) (i.e., c0 = 0) and we find that the experimentally determined convergence
rate is almost O(k) for the different values of α ∈ (0, 1), see Table 3.

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 0.0212e-4 0.0492e-4 0.1050e-4 0.2161e-4 0.4370e-4 1.10929
0.3 0.0055e-3 0.0127e-3 0.0270e-3 0.0553e-3 0.1111e-3 1.0859
0.8 0.0353e-3 0.0761e-3 0.1486e-4 0.2811e-3 0.5570e-3 0.9953
0.9 0.0169e-4 0.0452e-4 0.1083e-4 0.2350e-4 0.4200e-4 1.1589

Table 3
Time convergence rates for the L1 scheme (1.12)-(1.13) (i.e., c0 = 0) in Example 4.2
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We then consider the modified L1 scheme (1.12)-(1.13) (i.e., c0 = 1/2) . By
Theorem 1.4, the convergence rate of the modified L1 scheme (1.9)-(1.11) is O(k2−α)
for the sufficiently smooth source term f . This is fully supported by the numerical
results in Table 4.

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 0.0020e-5 0.0078e-5 0.0293e-5 0.1094e-5 0.4139e-5 1.9239
0.3 0.0011e-4 0.0038e-4 0.0131e-4 0.0448e-4 0.1562e-4 1.7972
0.8 0.0273e-4 0.0713e-4 0.1732e-4 0.4109e-4 0.9776e-4 1.2903
0.9 0.0057e-3 0.0139e-3 0.0315e-3 0.0687e-3 0.1474e-3 1.1761

Table 4
Time convergence rates for the L1 scheme (1.12)-(1.13) (i.e., c0 = 1/2) in Example 4.2

REFERENCES

[1] E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial
moments analysis, Water Res. Research, 28(1992), pp. 3293-3307.

[2] E. Bazhlekova, B. Jin, R. Lazarov, and Z. Zhou, An analysis of the Rayleigh-Stokes problem
for a generalized second-grade fluid, Numer. Math., 131(2015), pp. 1-31.

[3] W. Cao, F. Zeng, Z. Zhang, and G. E. Karniadakis, Implicit-explicit difference schemes for non-
linear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput.,
38(2016), pp. A3070-A3093.

[4] F. Chen, Q. Xu, and J. S. Hesthaven, A multi-domain spectral method for time-fractional
differential equations, J. Comput. Phys., 293(2015), pp. 157-172.

[5] S. Chen, J. Shen, and L.-L. Wang, Generalized Jacobi functions and their applications to
fractional differential equations, Math. Comp., 85(2016), pp. 1603-1638.

[6] X. Chen, F. Zeng, and G.E.Karniadakis, A tunable finite difference method for fractional
differential equations with non-smooth solutions, Comput. Methods Appl. Mech. Engrg.,
318(2017), pp. 193-214.

[7] E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional
diffusion-wave equations, Math. Comp., 75(2006), pp. 673- 696.

[8] W. Deng and J. S. Hesthaven, Local discontinuous Galerkin methods for fractional ordinary
differential equations, BIT, 55(2015), pp. 967-985.

[9] K. Diethelm, An algorithm for the numerical solution of differential equations of fractional
order, Electronic Transactions on Numerical Analysis, 5(1997), pp. 1-6.

[10] K. Diethelm, N. J. Ford, and A. D. Freed, Detailed error analysis for a fractional Adams
method, Numer. Algorithms, 36(2004), pp. 31-52.

[11] K. Diethelm, J. M. Ford, N. J. Ford, and M. Weilbeer, Pitfalls in fast numerical solution of
fractional differential equations, J. Comput. Appl. Math., 186(2006), pp. 482-503.

[12] P. Flajolet, Singularity analysis and asymptotics of Bernoulli sums, Theoret. Comput. Sci.,
215(1999), pp. 371-381.

[13] N. J. Ford, K. Pal, and Y. Yan, An algorithm for the numerical solution of space-fractional
partial differential equations, Computational Methods in Applied Mathematics, 15(2015),
pp. 497-514.

[14] N. J. Ford, J. Xiao, and Y. Yan, Stability of a numerical method for a space-time-fractional
telegraph equation, Computational Methods in Applied Mathematics, 12(2012), pp. 1-16.

[15] N. J. Ford, J. Xiao, and Y. Yan, A finite element method for time-fractional partial differential
equations, Fract. Calc. Appl. Anal., 14(2011), pp. 454-474.

[16] G.-H. Gao, Z.-Z. Sun, and H.-W. Zhang, A new fractional numerical differentiation formula
to approximate the Caputo fractional derivative and its applications, J. Comput. Phys.,
259(2014), pp. 33-50.

[17] R. Gorenflo and F. Mainardi, Random walk models for space fractional diffusion processes,
Fract. Calc. Appl. Anal., 1(1998), pp. 167-191.



18 AN ANALYSIS OF THE MODIFIED L1 SCHEME

[18] Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation
of long-tailed profiles, Water Res. Research, 34(1998), pp. 1027-1033.

[19] B. Jin, R. Lazarov, and Z. Zhou, Two fully discrete schemes for fractional diffusion and
diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38(2016), pp. A146-
A170.

[20] B. Jin, R. Lazarov, and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation
with nonsmooth data, IMA J. of Numer. Anal., 36(2016), pp. 197-221.

[21] B. Jin, B. Li, and Z. Zhou, An analysis of the Crank-Nicolson method for subdiffusion, IMA J.
of Numer. Anal., in press, 2017, arXiv:1607.06948.

[22] B. Jin, B. Li, and Z. Zhou, Correction of high-order BDF convolution quadrature for fractional
evolution equations, preprint, arXiv:1703.08808, 2017.

[23] Z. Li, Z. Liang, and Y. Yan, High-order numerical methods for solving time fractional partial
differential equations, J. Sci. Comput., 71(2017), pp. 785-803.

[24] C. Li and H. Ding, Higher order finite difference method for the reaction and anomalous-
diffusion equation, Appl. Math. Model., 38 (2014), pp. 3802-3821.

[25] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion
equation, J. Comput. Phys., 225(2007), pp. 1533-1552.

[26] C. Lv and C. Xu, Error analysis of a high order method for time-fractional diffusion equations,
SIAM J. Sci. Comput., 38(2016), pp. A2699-A2724.

[27] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17(1986), pp. 704-719.
[28] C. Lubich, Convolution quadrature and discretized operational calculus. I., Numer. Math.,

52(1988), pp. 129-145.
[29] C. Lubich, Convolution quadrature revisited, BIT, 44(2004), pp. 503-514.
[30] C. Lubich, I. H. Sloan, and V. Thomée, Nonsmooth data error estimates for approximations

of an evolution equation with a positive-type memory term, Math. Comp., 65(1996), pp.
1-17.

[31] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments
in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen.,
37(2004), pp. 161-208.

[32] K. Mustapha, Time-stepping discontinuous Galerkin methods for fractional diffusion problems,
Numer. Math., 130(2015), pp. 497-516.

[33] K. Mustapha, B. Abdallah, and K. M. Furati, A discontinuous Petrov-Galerkin method for
time-fractional diffusion equations, SIAM J. Numer. Anal., 52(2014), pp. 2512-2529.
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