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Abstract. We consider error estimates for some time stepping methods for solving fractional
diffusion problems with nonsmooth data in both homogeneous and inhomogeneous cases. McLean
and Mustapha [19] (Time-stepping error bounds for fractional diffusion problems with non-smooth
initial data, Journal of Computational Physics, 293(2015), 201-217) established an O(k) convergence
rate for the piecewise constant discontinuous Galerkin method with nonsmooth initial data for the
homogeneous problem when the linear operator A is assumed to be self-adjoint, positive semidefinite
and densely defined in a suitable Hilbert space, where k denotes the time step size. In this paper, we
approximate the Riemann-Liouville fractional derivative by Diethelm’s method (or L1 scheme) and
obtain the same time discretisation scheme as in McLean and Mustapha [19]. We first prove that this
scheme has also convergence rate O(k) with nonsmooth initial data for the homogeneous problem
when A is a closed, densely defined linear operator satisfying some certain resolvent estimates.
We then introduce a new time discretization scheme for the homogeneous problem based on the
convolution quadrature and prove that the convergence rate of this new scheme is O(k1+α), 0 < α < 1
with the nonsmooth initial data. Using this new time discretization scheme for the homogeneous
problem, we define a time stepping method for the inhomogeneous problem and prove that the
convergence rate of this method is O(k1+α), 0 < α < 1 with the nonsmooth data. Numerical
examples are given to show that the numerical results are consistent with the theoretical results.
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1. Introduction. Consider the following time fractional diffusion problem, with
0 < α < 1, [18, (4)], [9],

(1.1) C
0 D

α
t u(t) +Au(t) = f(t), for 0 < t ≤ T, with u(0) = u0,

where f is a given function, u0 is the initial value and C
0 D

α
t u(t) denotes the Caputo

fractional derivative defined by

(1.2) C
0 D

α
t u(t) =

1

Γ(1− α)

∫ t

0

(t− s)−α
(du(s)
ds

)
ds.

Here A is a closed, densely defined linear operator and the resolvent satisfies, for some
π/2 < θ0 < π, see Lubich et al. [17], Thomée [25],

(1.3) ∥(zI +A)−1∥ ≤ C|z|−1 for z ∈ Σθ0 = {z ̸= 0 : |arg z| < θ0}.

For example, A may be the Laplacian −∆ on a polyhedral domain Ω ⊂ Rd(d =
1, 2, 3) with the homogeneous Dirichlet boundary condition. In this case (1.3) holds
for all θ0 ∈ (π/2, π), see Jin et al. [12, (1.3)].

In our analysis, we will choose θ > π/2 close to π/2 such that θ0 > θ which implies
that zα ∈ Σθ0 for any z ∈ Γ = Γθ = {z : |arg z| = θ}, since arg(zα) = αθ < θ < θ0
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for 0 < α < 1. Hence there exists a constant C which depends only on θ and α such
that, see Jin et al. [10, (2.3)],

(1.4) ∥(zαI +A)−1∥ ≤ C|z|−α, ∀ z ∈ Γθ = {z : |arg z| = θ}.

We also need to restrict θ further and choose θ > π/2 close to π/2 such that zαk ∈ Σθ0

for z ∈ Γθ which implies that (zαk I + A)−1 exists, where zk = δ(e−zk)
k is defined in

(2.11) or (2.36) below.
Let us first consider the homogeneous problem (1.1), that is, f = 0. It is well

known that the homogeneous problem (1.1) is equivalent to, [19]

(1.5) ut +
R
0 D

1−α
t Au = 0, for 0 < t ≤ T, with u(0) = u0,

where ut denotes the time derivative and R
0 D

α
t u(t) denotes the Riemann-Liouville

fractional derivative defined by

R
0 D

1−α
t u(t) =

1

Γ(α)

d

dt

∫ t

0

(t− s)α−1u(s) ds.

The time discretisation of (1.5) has been considered by many authors. Under
the assumptions that the solution of (1.5) is sufficiently smooth, e.g., u ∈ C2[0, T ]
in the time variable, the optimal order error estimates uniformly in t for the time
discretisation schemes of (1.5) can be obtained, see, for example, [1], [16], [3], [13],
[20], [2], [26], [7], [14], [4], [15]. However the C2-regularity assumption for the solution
of (1.5) does not hold when the initial value u0 ∈ L2(Ω). For example, Sakamoto and
Yamamoto [23, Theorem 2.1] showed that the solution u of (1.5) satisfies

∥C
0 D

α
t u∥L2(Ω) ≤ ct−α∥u0∥L2(Ω),

which implies that the Caputo derivative may not be bounded when u0 ∈ L2(Ω).
Hence in general u /∈ C2[0, T ] [10]. Therefore the optimal convergence rates of the
time discretization schemes cannot be achieved uniformly in t when u0 ∈ L2(Ω) with
uniform meshes. By using the variable time steps, uniform error estimates in t can be
achieved when the solution u is not sufficiently smooth, see, for example, [19], [21],
[22], [24]. However no error estimates with nonsmooth initial data were given in [19],
[21], [22], [24]. In this paper, we will consider the time discretization schemes for
(1.1) with nonsmooth initial data, at the cost of requiring a constant time step. More
precisely, we will first consider the nonsmooth data error estimates for the piecewise
constant discontinuous Galerkin method introduced in McLean and Mustapha [19]
for solving the homogeneous problem (1.5). Then we introduce and analyze a new
time discretization scheme for solving (1.5) based on the approximation of the time
derivative with the backward difference formula of order 2 and the approximation of
the Riemann-Liouville fractional derivative with a suitable convolution quadrature.

The discontinuous Galerkin method and the convolution quadrature method are
both very popular time discretization methods for solving the time fractional partial
differential equations and they have the different advantages. The advantages of
the discontinuous Galerkin method are as follows: 1). the discontinuous Galerkin
method is unconditionally stable even when we choose a different trial space for each
time step combined with arbitrarily-spaced time levels which allows great flexibility
in the choice of mesh, McLean and Mustapha [18]; 2). the error bounds of the
discontinuous Galerkin method can be proved uniformly in t with the variable steps
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even the derivative of the solution u(t) is unbounded as t→ 0, McLean and Mustapha
[19]. The convolution quadrature method has other advantages: 1). the convolution
quadrature method enables us to approximate the time derivative and the Riemann-
Liouville fractional derivative as a whole and the error estimates can be considered
based on the resolvent bounds of the elliptic operator; 2). the error estimates depend
only on the regularity of the data rather than of the solution u(t), Cuesta et al. [2]; 3).
it is possible to restore the convergence orders of some higher order time discretization
schemes by correcting a few starting steps of the schemes when the solution u(t) is
not smooth, Jin et al. [12].

Let N ≥ 1 be a positive integer and let 0 = t0 < t1 < t2 < · · · < tN = T be a
partition of [0, T ] with k the time step size. Let Un ≈ u(tn), n = 1, 2, . . . , N be the
approximate solution of u(tn). McLean and Mustapha [19, (6)] define the following
piecewise constant discontinuous Galerkin method for solving (1.5), with U0 = u0,

Un − Un−1 + kα
n∑

j=1

wn−jAU
j = 0, n ≥ 1,(1.6)

where wj , j = 0, 1, 2, . . . , n− 1, n ≥ 1 are given by

(1.7) Γ(1 + α)wj =

{
1, for j = 0,

−2jα + (j − 1)α + (j + 1)α, for j = 1, 2, . . . , n− 1.

Assume that A is self-adjoint, positive semidefinite and densely defined operator
in H = L2(Ω), with a complete orthonormal eigensystem. Let Un and u(tn), n =
1, 2, . . . , N be the solutions of (1.6) and (1.5), respectively. McLean and Mustapha
[19, Theorem 5] proved the following error estimates with nonsmooth data u0 ∈ H:

(1.8) ∥Un − u(tn)∥ ≤ ckt−1
n ∥u0∥.

Starting from the scheme (1.6), we will consider the following issues in this paper:
• We show that the piecewise constant discontinuous Galerkin method intro-
duced in McLean and Mustaph [19] for the homogeneous problem (1.5) can
also be derived by approximating the Riemann-Liouville fractional derivative
with Diethelm’s method [5] (or the L1 scheme [16]).

• We show that the nonsmooth data error estimates of the numerical meth-
ods introduced in McLean and Mustaph [19] for the homogeneous problem
(1.5) also hold for the general linear operator A by using Laplace transform
method developed in Lubich et al. [17], where A is a closed, densely defined
operator satisfying (1.4). In McLean and Mustaph [19], the linear operator
A is assumed to be self-adjoint, positive semidefinite and densely defined in
H = L2(Ω), with a complete orthonormal eigensystem.

• We introduce a modified piecewise constant discontinuous Galerkin method
for the homogeneous problem (1.5) and prove that this method has the con-
vergence rate O(k1+α), 0 < α < 1 with nonsmooth initial data by using
Laplace transform method.

• We introduce a new time discretization scheme for solving the inhomogeneous
problem (1.1) and the error estimates with the convergence rate O(k1+α) are
proved.

The rest of the paper is organized as follows. In Section 2, we consider the error
estimates for the homogeneous problems with nonsmooth initial data for the different
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time discretization schemes. In Section 3, we consider the error estimates for the
inhomogeneous problem with nonsmooth initial data u0 and some suitable f . Finally
in Section 4, we give some numerical examples to illustrate the theoretical results
developed in this paper.

Throughout, the notations C and c, with or without a subscript, denote generic
constants, which may differ at different occurrences, but are always independent of
the step size k.

2. Homogeneous problem. In this section, we will introduce and analyze three
types of time discretization schemes for solving (1.5).

2.1. A time stepping method with the convergence rate O(kα), 0 < α <
1. In this section, we will consider a time stepping method for solving (1.5) which has
only O(kα), 0 < α < 1 convergence rate. We then modify this time stepping method
in the subsequent subsections to obtain the time discretization schemes for solving
(1.5) with the convergence rates O(k) and O(k1+α), 0 < α < 1, respectively.

At t = tn, we approximate the time derivative by using the backward Euler
method

ut(tn) =
(
u(tn)− u(tn−1)

)
/k +O(k), as k → 0.

To approximate the Riemann-Liouville fractional derivative R
0 D

1−α
t Au(tn), we shall

use the following Diethelm’s finite difference method [5], with u ∈ C2[0, T ;D(A)]

R
0 D

1−α
t Au(tn) = kα−1

n∑
j=0

wn−jAu(tj) +O(k1+α), as k → 0,(2.1)

where wj , j = 0, 1, 2, . . . , n− 1 are given by (1.7) and wn satisfies

(2.2) Γ(1 + α)wn = (n− 1)α − nα + αnα−1.

We remark that the weights wj , j = 0, 1, 2, . . . , n− 1, n in (2.1) can also be obtained
by using the L1 scheme, see, for example, [16].

With Un ≈ u(tn), we define the following time discretization problem for solving
(1.5), with Au0 ∈ L2(Ω),

Un − Un−1 + kα
n∑

j=0

wn−jAU
j = 0, n ≥ 1, with U0 = u0,(2.3)

where wj , j = 0, 1, 2, . . . , n− 1 are given by (1.7) and wn is corrected as

(2.4) Γ(1 + α)wn = −2nα + (n− 1)α + (n+ 1)α.

The reason for correcting wn is that we shall use the discrete Laplace transform
w̃(z) =

∑∞
j=0 wjz

j to prove the error estimates. To obtain the expression for w̃, we
shall choose w0, w1, w2, . . . , wn, . . . as the following

(2.5) Γ(1+α)w0 = 1, Γ(1+α)wj = −2jα + (j − 1)α + (j +1)α, j = 1, 2, . . . , n, . . . .

Theorem 2.1. Let the operator A be a closed, densely defined linear operator
satisfying (1.4). Let u(tn) and Un be the solutions of (1.5) and (2.3), respectively.
Let u0 ∈ L2(Ω). Then we have, with 0 < α < 1,

(2.6) ∥u(tn)− Un∥ ≤ C
(
kαt−α

n + kt−1
n

)
∥u0∥.
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Remark 2.2. In the time discretization scheme (2.3), we require Au0 ∈ L2(Ω),
i.e., the initial data u0 is reasonably smooth. But one may use the scheme (2.3) to
prove the error estimates with the nonsmooth initial data u0 ∈ L2(Ω) as we will do in
the proof of Theorem 2.1 below, such idea has been used in Jin et al, [12, Remark 2.4]
and Lubich et al. [17, (1.8)]. The simialr remark is also for the time discretization
scheme (2.29)-(2.31) below.

Remark 2.3. We remark that the convergence rate in Theorem 2.1 is O(kα), 0 <
α < 1 for tn not close to t0. The similar remarks are also for other time discretization
schemes discussed in Sections 2.2 and 2.3 below.

To prove Theorem 2.1, we need to show that zαk ∈ Σθ0 for z ∈ Γ = Γθ = {z :
|arg z| = θ} with some θ > π/2 close to π/2, where θ0 ∈ (π/2, π) and zk is defined in
(2.11) below. We have

Lemma 2.4. Let θ > π/2 be close to π/2. Let z ∈ Γk with Γk = {z : z ∈
Γ, |ℑz| ≤ π/k} where Γ = {z : | arg z| = θ} (with ℑz running from −∞ to ∞). Let
zk = δ(ζ)/k with ζ = e−zk be defined by (2.11), where

(2.7) δ(ζ)α = (1− ζ)w̃(ζ)−1,

and w̃(ζ) =
∑∞

j=0 wjζ
j with wj , j = 0, 1, 2, . . . defined by (2.5). Then there exists

θ0 ∈ (π/2, π) such that

zαk ∈ Σθ0 , for all z ∈ Γθ.

Proof. See the Appendix.
Lemma 2.5. Let wj , j = 0, 1, 2, . . . , n, . . . be defined as in (2.5). Then we have

the following singularity expansion, with ζ = e−zk,

(1− ζ)w̃(ζ)−1 = (zk)α + c1(zk)
1+α + c2(zk)

1+2α + . . . .

for some suitable constants c1, c2, . . . .
Proof. By (5.1) and (5.2) in the Appendix, we have, with some suitable constants

c1, c2, . . . ,

w̃(ζ) =
1

Γ(1 + α)

(
(e−zk)−1 − 2 + e−zk

)
Li−α(ζ)

=
(
(zk)2 +

1

12
(zk)4 + . . .

)(
(zk)−α−1 + c1(zk)

0 + c2(zk)
1 + . . .

)
= (zk)1−α + c1(zk)

2 + c2(zk)
3−α + . . . .(2.8)

Thus

(1− ζ)w̃(ζ)−1 = (1− e−zk)
(
w̃(e−zk)

)−1

=
(
zk − (zk)2

2
+

(zk)3

3!
+ . . .

)(
(zk)1−α + c1(zk)

2 + c2(zk)
3−α + . . .

)−1

=
(
zk − (zk)2

2
+

(zk)3

3!
+ . . .

)
(zk)α−1

[
1 +

(
c1(zk)

1+α + c2(zk)
2 + . . .

)
+
(
c1(zk)

1+α + c2(zk)
2 + . . .

)2
+ . . .

]
=

(
zk − (zk)2

2
+

(zk)3

3!
+ . . .

)
(zk)α−1

(
1 + c1(zk)

1+α + c2(zk)
2 + . . .

)
= (zk)α + c1(zk)

1+α + c2(zk)
1+2α + . . . .
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Together these estimates complete the proof of Lemma 2.5.
Proof. [Proof of Theorem 2.1] Let v(t) = u(t)− u0 and V n = Un − u0. It suffices

to show

∥v(tn)− V n∥ ≤ C
(
kαt−α

n + kt−1
n

)
∥u0∥,

which we will prove now.
Note that, by (1.5)

(2.9) vt +
R
0 D

1−α
t Av(t) = −R

0 D
1−α
t Au0, 0 < t ≤ T.

Taking the Laplace transform in (2.9), we have,

v̂(z) = −z−1(zα +A)−1Au0,

which implies that

(2.10) v(t) = − 1

2πi

∫
Γ

eztz−1(zα +A)−1Au0 dz,

where Γ = Γθ = {z : |arg z| = θ}, for some θ > π
2 determined by Lemma 2.4.

Further we note that V n, n = 1, 2, 3, . . . satisfy, by (2.3), with V 0 = 0,

V n − V n−1 + kα
n∑

j=0

wn−jAV
j = −kα

n∑
j=0

wn−jAu0, n ≥ 1.

Thus we have

∞∑
n=1

(
V n−V n−1

)
ζn+

∞∑
n=1

kα
( n∑

j=0

wn−jAV
j
)
ζn = −

∞∑
n=1

kα
( n∑

j=1

wn−jAu0+wnAu0

)
ζn.

With Ṽ (ζ) =
∑∞

n=0 V
nζn, we have

(1− ζ)Ṽ (ζ) + kαw̃(ζ)AṼ (ζ) = −kα
(
w̃(ζ)

ζ

1− ζ
+ w̃(ζ)− w0

)
Au0

= −kα
(
w̃(ζ)

1

1− ζ
− w0

)
Au0.

With δ(ζ)α = (1− ζ)w̃(ζ)−1 defined by (2.7), see [17], we have(δ(ζ)
k

)α

Ṽ (ζ) +AṼ (ζ) = −
(δ(ζ)

k

)α(
kα(1− ζ)−1

)(
w̃(ζ)

1

1− ζ
− w0

)
Au0.

Therefore we get

Ṽ (ζ) = −
((δ(ζ)

k

)α

+A
)−1(

w̃(ζ)−1
(
w̃(ζ)

1

1− ζ
− w0

)
Au0

)
= −

((δ(ζ)
k

)α

+A
)−1( 1

1− ζ
− w0w̃(ζ)

−1
)
Au0.

Further we denote

(2.11) zk =
δ(ζ)

k
.
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By Lemma 2.4, we see that (zαk +A)−1 exists and hence we have

Ṽ (ζ) = −(zαk +A)−1
( 1

1− ζ
− w0w̃(ζ)

−1
)
Au0,

which implies that

V n = − 1

2πi

∫
|ζ|=ρ

ζ−n−1
( 1

1− ζ
− w0w̃(ζ)

−1
)
(zαk +A)−1Au0 dζ

= − 1

2πi

∫
|ζ|=ρ

ζ−n−1
( 1

1− ζ
− w0w̃(ζ)

−1
)(δ(ζ)

k

)
z−1
k (zαk +A)−1Au0 dζ.

Let ζ = e−zk, z = 1
k log

1
ρ + i

(
− θ

k

)
, |θ| ≤ π, we have

V n =
1

2πi

∫
Γk

etnz
( 1

1− ζ
− w0w̃(ζ)

−1
)
δ(ζ)z−1

k (zαk +A)−1Au0 dz,

where Γk = {z ∈ Γ : |ℑz| ≤ π/k}. For the details of the notation Γk, see the proof of
[17, Lemma 3.2].

Denote

(2.12) µ(ζ) =
( 1

1− ζ
− w0w̃(ζ)

−1
)
δ(ζ) =

( 1

1− ζ
− w0w̃(ζ)

−1
)
(1− ζ)1/αw̃(ζ)−1/α,

we get

V n = − 1

2πi

∫
Γk

etnzµ(ζ)z−1
k (zαk +A)−1Au0 dz.(2.13)

Thus, subtracting (2.13) from (2.10),

v(tn)− V n =
1

2πi

∫
Γk

etnz
(
µ(ζ)z−1

k (zαk +A)−1 − z−1(zα +A)−1
)
Au0 dz

+
1

2πi

∫
Γ/Γk

etnzz−1(zα +A)−1Au0 dz

= I + II.(2.14)

Further we denote

(2.15) K(z) = z−1(zα +A)−1A.

For I, we have, by (2.19), with some suitable constant c > 0,

∥I∥ ≤ 1

2π

∫
Γk

∣∣etnz∣∣∣∣µ(ζ)K(zk)−K(z)
∣∣∥u0∥ |dz|

≤ 1

2π

∫
Γk

∣∣etnz∣∣C(kα|z|α−1 + k
)
∥u0∥ |dz|

≤ Ckα
∫ ∞

0

e−ctnr(rtn)
α−1t1−α

n d(rtn)t
−1
n ∥u0∥+ Ck

∫ ∞

0

e−ctnrd(rtn)t
−1
n ∥u0∥

≤ Ckαt−α
n ∥u0∥+ Ckt−1

n ∥u0∥.
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For II, we have, by (1.4) and noting that (zα +A)−1A = I − zα(zα +A)−1, with
some suitable constant c > 0,

∥II∥ ≤ 1

2π

∫
Γ/Γk

∣∣etnz∣∣∥∥z−1(zα +A)−1A∥ |dz|∥u0∥ ≤ C

∫
Γ/Γk

e−ctn|z||z|−1 |dz|∥u0∥

≤ Ck

∫ ∞

1
k

e−ctnr dr∥u0∥ ≤ Ck

∫ ∞

0

e−ctnr d(rtn)t
−1
n ∥u0∥ ≤ Ckt−1

n ∥u0∥.

The proof of Theorem 2.1 is now complete.

Lemma 2.6. Let ζ = e−zk and z ∈ Γk. Let µ(ζ), zk and K(z) be defined as in
(2.12), (2.11), (2.15), respectively. We have

µ(e−zk)− 1 = O((zk)α), as zk → 0,(2.16)

c|z| ≤ |zk| ≤ C|z|,(2.17) ∥∥K(zk)−K(z)
∥∥ ≤ Ck|z|0,(2.18) ∥∥µ(ζ)K(zk)−K(z)

∥∥ ≤ C
(
kα|z|α−1 + k

)
.(2.19)

Proof. We first show (2.16). It is sufficient to show

(2.20) µ(e−w)− 1 = O(wα), as w → 0.

By Lemma 2.5, we have

µ(e−w)− 1 =
( 1

1− e−w
− w0

(
w̃(e−w)

)−1
)(

(1− e−w)w̃(ζ)−1
)1/α

− 1

=
(1− w0

(
w̃(e−w)

)−1
(1− e−w)

1− e−w

)(
wα + c1w

1+α + c2w
1+2α + . . .

) 1
α − 1,

and

1− w0

(
w̃(e−w)

)−1
(1− e−w) = 1 + c1w

α + c2w
1+α + . . . .

Hence

µ(e−w)− 1 =
(
1 + c1w

α + c2w
1+α + . . .

)( w

1− e−w

)(
1 + c1w + c2w

1+α + . . .
) 1

α − 1

=
(
1 + c1w

α + c2w
1+α + . . .

)( w

w − w2

2 + . . .

)(
1 + c1w + c2w

1+α + . . .
) 1

α − 1

=
(
1 + c1w

α + c2w
1+α + . . .

)(
1 +

w

2
+ . . .

)
·
[
1 +

1

α

(
c1w + c2w

1+α + . . .
)
+

1
α (

1
α − 1)

2!

(
c1w + c2w

1+α + . . .
)2

+ . . .
]
− 1

= 1 +O(wα)− 1 = O(wα), as w → 0,

which shows (2.20).
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Next we show (2.17). Note that

|z|
|zk|

=
|z|∣∣∣ δ(e−zk)
k

∣∣∣ = |zk|
|δ(e−zk)|

.

To show (2.17), it suffices to prove |zk|
|δ(e−zk)| has limit as |zk| → 0, which follows from,

noting that δ(ζ) = (1− ζ)w̃(ζ)−1,

lim
w→0

w

δ(e−w)
= lim

w→0

w(
(1− e−w)

(
w̃(e−w)

)−1
) 1

α

= lim
w→0

w

(wα + c1w1+α + c2w1+2α + . . . )
1
α

= lim
w→0

1

(1 + c1w + c2w1+α + . . . )
1
α

= 1.

Hence we have proved, for any fixed constant M > 0, there exists a constant C such
that

|z|
|zk|

≤ C, ∀ |zk| ≤M.

Similarly we may show |zk|
|z| ≤ C, ∀ |zk| ≤M . Thus we get (2.17).

We now show (2.18). Note that

zk − z =
δ(e−zk)

k
− z =

δ(e−zk)− zk

k
=

(
(1− e−zk)

(
w̃(e−zk)

)−1) 1
α − zk

k

=

(
(zk)α + c1(zk)

1+α + . . .
) 1

α − zk

k
=

(zk)
(
1 + c1(zk) + . . .

) 1
α − zk

k

=
(zk)

(
1 + c2

α (zk) + . . .
)
− zk

k
= O(kz2), as kz → 0.

Thus we have, following the proof of [17, (4.6)] and noting ∥K ′(z)∥ ≤ C|z|−2 in
[17, (3.2)],

∥K(zk)−K(z)∥ ≤ C|z|−2k|z|2 = Ck.

Finally we show (2.19). Following the same proof as in the proof of [17, Lemma
4.3], we have, noting that |K(zk)| ≤ C|z|−1,∥∥µ(ζ)K(zk)−K(z)

∥∥ ≤
∥∥(µ(ζ)− 1

)
K(zk)

∥∥+
∥∥K(zk)−K(z)

∥∥
≤ C|zk|α|z|−1 + k|z|0 ≤ Ckα|z|α−1 + Ck.

Together these estimates complete the proof of Lemma 2.6.

2.2. A piecewise constant discontinuous Galerkin method with the con-
vergence rate O(k). We note that the convergence rate of the time stepping method
(2.3) is onlyO(kα), 0 < α < 1 with nonsmooth data. To derive a time stepping method
for solving (1.5) with the convergence rate O(k) for nonsmooth initial data u0, we
will approximate R

0 D
1−α
t Au(tn) by

R
0 D

1−α
t Au(tn) ≈ kα−1

n∑
j=1

wn−jAu(tj),
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where we ignore the term Au(t0) in (2.1). More precisely, we choose wn = 0 in the
summation

∑n
j=0 wn−jAu(tj) in (2.1). It is easy to show that

R
0 D

1−α
t Au(tn) = kα−1

n∑
j=1

wn−jAu(tj) +O(k), as k → 0.(2.21)

To see this, by (2.1), it suffices to show that, for the fixed tn = nk = constant,

(2.22) kα−1wn = tα−1
n O(k), as k → 0.

In fact, let tn be fixed, for example, assume that tn = 1, n = 1/k, we have, by (2.2),

Γ(1 + α)kα−1wn = kα−1
(
αnα−1 + (n− 1)α − nα

)
= αtα−1

n + (n− 1)αkα−1 − nαkα−1

= tα−1
n

(
α+

(n− 1)α

nα−1
− nα

nα−1

)
= tα−1

n

(
α+

(1/k − 1)α

(1/k)α−1
− 1

k

)
= tα−1

n

(
α+

(1− k)α − 1

k

)
= tα−1

n

(
α+

(1− kα+O(k2)− 1

k

)
= tα−1

n O(k), as k → 0,

which implies (2.22) and therefore (2.21) follows.
Based on the approximation (2.21) for the Riemann-Liouville fractional derivative,

we obtain the time stepping method (1.6) which was first introduced in McLean and
Mustapha [19] for solving (1.5) by using the piecewise discontinuous Galerkin method.

Theorem 2.7. Let the operator A be a closed, densely defined linear operator
satisfying (1.4). Let u(tn) and Un be the solutions of (1.5) and (1.6), respectively.
Let u0 ∈ L2(Ω). Then we have, with 0 < α < 1,

(2.23) ∥u(tn)− Un∥ ≤ Ckt−1
n ∥u0∥.

Proof. The proof is similar as the proof of Theorem 2.1. We shall use the same
notations here as in the proof of Theorem 2.1.

Let v(t) = u(t)− u0 and V n = Un − u0. It suffices to show

∥v(tn)− V n∥ ≤ Ckt−1
n ∥u0∥,

which we will prove now.
This time V n, n = 1, 2, 3, . . . satisfy, by (1.6), with V 0 = 0,

V n − V n−1 + kα
n∑

j=1

wn−jAV
j = −kα

n∑
j=1

wn−jAu0, n ≥ 1.

Thus we have

∞∑
n=1

(V n − V n−1)ζn + kα
∞∑

n=1

kα
( n∑

j=1

wn−jAV
j
)
ζn = −

∞∑
n=1

kα
( n∑

j=1

wn−jAu0

)
ζn,

which implies that

(1− ζ)Ṽ (ζ) + kαw̃(ζ)AṼ (ζ) = −kα
(
w̃(ζ)

ζ

1− ζ

)
Au0 = −kα

(
w̃(ζ)

ζ

1− ζ

)
Au0.
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Denote

(2.24) µ(ζ) =
( ζ

1− ζ

)
δ(ζ) =

( ζ

1− ζ

)
(1− ζ)1/αw̃(ζ)−1/α,

we obtain

V n = − 1

2πi

∫
Γk

etnzµ(ζ)z−1
k (zαk +A)−1Au0 dz.(2.25)

The rest of the proof is to bound ∥v(tn)−V n∥ which can be done by using (2.27)
below and the arguments for estimating (2.14) in the proof of Theorem 2.1. We omit
the details here.

Lemma 2.8. Let ζ = e−zk and z ∈ Γk. Let µ(ζ) and K(z) be defined as in (2.24)
and (2.15), respectively. We have

µ(e−zk)− 1 = O(zk), as zk → 0,(2.26) ∥∥µ(ζ)K(zk)−K(z)
∥∥ ≤ Ck|z|0.(2.27)

Proof. We first show (2.26). It is sufficient to show

(2.28) µ(e−w)− 1 = O(w), as w → 0,

which follows from, by Lemma 2.5,

µ(e−w)− 1 =
( e−w

1− e−w

)(
(1− e−w)w̃(ζ)−1

)1/α

− 1

= e−w
( w

1− e−w

)(
1 + c1w + c2w

1+α + . . .
)
− 1 = O(w), as w → 0.

We next show (2.27). Following the same proof as in the proof of [17, Lemma
4.3], we have, by (2.18), (2.26) and noting again that |K(zk)| ≤ C|z|−1,∥∥µ(ζ)K(zk)−K(z)

∥∥ ≤
∥∥(µ(ζ)− 1

)
K(zk)

∥∥+
∥∥K(zk)−K(z)

∥∥
≤ C|zk||z|−1 + k|z|0 ≤ Ck.

Together these estimates complete the proof of Lemma 2.8.

2.3. A new time discretization with the convergence rate O(k1+α), 0 <
α < 1. In this subsection, we shall introduce a new time discretization scheme for
solving (1.5) by using the convolution quadrature method. We prove that this method
has the convergence rate O(k1+α) with nonsmooth initial data u0.

Following the idea in Lubich et al. [17], we shall approximate the time derivative
ut(tn) by using a second order backward difference method

ut(tn) =
3
2u(tn)− 2u(tn−1) +

1
2u(tn−2)

k
+O(k2), as k → 0.

We define the following finite difference method for solving (1.5), with Un ≈ u(tn)
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and c0 = 1/2,

D̄Un + kα−1
( n∑

j=1

wn−jAU
j + c0wn−1Au0

)
= 0, n ≥ 2,(2.29)

D̄Un + kα−1
( n∑

j=1

wn−jAU
j + c0wn−1Au0

)
= 0, n = 1,(2.30)

U0 = u0, U
−1 = u0,(2.31)

where

D̄Un =
3
2U

n − 2Un−1 + 1
2U

n−2

k
, n ≥ 1,

and wj , j = 0, 1, 2, . . . , n − 1 are defined by (1.7). Here we use a modification term
c0wn−1Au0 as in Lubich et al. [17, (1.18)].

Theorem 2.9. Let the operator A be a closed, densely defined linear operator
satisfying (1.4). Let u(tn) and U

n be the solutions of (1.5) and (2.29)-(2.31), respec-
tively. Let u0 ∈ L2(Ω). Then we have, with 0 < α < 1,

(2.32) ∥u(tn)− Un∥ ≤ Ck1+αt−1−α
n ∥u0∥.

To prove Theorem 2.9, we need to show that zαk ∈ Σθ for some θ ∈ (π/2, π) where
zk is defined in (2.36) below.

Lemma 2.10. Let θ > π/2 be close to π/2. Let z ∈ Γk with Γk = {z : z ∈
Γ, |ℑz| ≤ π/k} where Γ = {z : | arg z| = θ} (with ℑz running from −∞ to ∞). Let
zk = δ(ζ)/k with ζ = e−zk be defined by (2.36), where

(2.33) δ(ζ)α =
(3
2
− 2ζ +

1

2
ζ2
)
w̃(ζ)−1,

and w̃(ζ) =
∑∞

j=0 wjζ
j with wj , j = 0, 1, 2, . . . defined by (2.5). Then there exists

θ0 ∈ (π/2, π) such that

zαk ∈ Σθ0 , for all z ∈ Γθ.

Proof. The proof is similar as the proof of Lemma 2.4. We omit the proof here.
Proof. [Proof of Theorem 2.9] Let v(t) = u(t)− u0 and V n = Un − u0. It suffices

to show

∥v(tn)− V n∥ ≤ Ck1+αt−1−α
n ∥u0∥,

which we will prove now.
This time V n, n = 1, 2, 3, . . . satisfy, by (2.29)-(2.31), with c0 = 1/2,(3

2
V n − 2V n−1 +

1

2
V n−2

)
+ kα

( n∑
j=1

wn−jAV
j + c0wn−1Au0

)
= −kα

( n∑
j=1

wn−jAu0 + c0wn−1Au0

)
, n ≥ 1,(2.34)

V 0 = 0, V −1 = 0.(2.35)
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Thus we have

∞∑
n=1

(3
2
V n − 2V n−1 +

1

2
V n−2

)
ζn +

∞∑
n=1

kα
( n∑

j=1

wn−jAV
j + c0wn−1Au0

)
ζn

= −
∞∑

n=1

kα
( n∑

j=1

wn−jAu0 + c0wn−1Au0

)
ζn,

which implies that

(3
2
− 2ζ +

1

2
ζ2
)
Ṽ (ζ) + kαw̃(ζ)AṼ (ζ) = −kαw̃(ζ)

(
(1 + c0)ζ + ζ2 + ζ3 + . . .

)
Au0

= −kαw̃(ζ)
( ζ

1− ζ
+ c0ζ

)
Au0.

Hence (δ(ζ)
k

)α

Ṽ (ζ) +AṼ (ζ) = −
( ζ

1− ζ
+ c0ζ

)
Au0,

where the generating function δ(ζ)α is defined by (2.33), see also [17].
Denote

(2.36) zk =
δ(ζ)

k
.

By Lemma 2.10, we see that (zαk +A)−1 exists and hence we have

Ṽ (ζ) = −(zαk +A)−1
( ζ

1− ζ
+ c0ζ

)
Au0.

Denote

(2.37) µ(ζ) =
( ζ

1− ζ
+ c0ζ

)
δ(ζ) =

( ζ

1− ζ
+ c0ζ

)(3
2
− 2ζ +

1

2
ζ2
)1/α

w̃(ζ)−1/α,

we get

V n = − 1

2πi

∫
Γk

etnzµ(ζ)z−1
k (zαk +A)−1Au0 dz.(2.38)

The rest of the proof is to bound ∥v(tn)−V n∥ which can be done by using (2.42)
below and the arguments for estimating (2.14) in the proof of Theorem 2.1. We omit
the details here.

Lemma 2.11. Let wj , j = 0, 1, 2, . . . , n, . . . be defined as in (2.5). Then we have
the following singularity expansion, with ζ = e−zk,(3

2
− 2ζ − 1

2
ζ2
)
w̃(ζ)−1 = (zk)α + c1(zk)

1+2α + c2(zk)
2+α . . . .

for some suitable constants c1, c2, . . . .
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Proof. We have, by the expansion of w̃(z) in (2.8),(3
2
− 2ζ − 1

2
ζ2
)
w̃(ζ)−1 =

(3
2
− 2e−zk − 1

2
e−2zk

)(
w̃(e−zk)

)−1

=
(
(zk)− (zk)3

3
+ + . . .

)(
(zk)1−α + c1(zk)

2 + c2(zk)
3−α + . . .

)−1

= (zk)α + c1(zk)
1+2α + c2(zk)

2+α . . . .

Together these estimates complete the proof of Lemma 2.11.
Lemma 2.12. Let ζ = e−zk and z ∈ Γk. Let µ(ζ) and zk be defined as in (2.37)

and (2.36), respectively. We have

µ(e−zk)− 1 = O((zk)1+α), as zk → 0,(2.39)

c|z| ≤ |zk| ≤ C|z|,(2.40) ∥∥K(zk)−K(z)
∥∥ ≤ Ck1+α|z|α,(2.41) ∥∥µ(ζ)K(zk)−K(z)

∥∥ ≤ Ck1+α|z|α.(2.42)

Proof. We first show (2.39). It is sufficient to show

(2.43) µ(e−w)− 1 = O(w1+α), as w → 0,

which follows from, by Lemma 2.11,

µ(e−w)− 1 =
( e−w

1− e−w
+ c0e

−w
)((3

2
− 2e−w − e−2w

)
w̃(ζ)−1

)1/α

− 1

=
( e−w

1− e−w
+ c0e

−w
)(
wα + c1w

1+2α + c2w
2+α + . . .

) 1
α − 1 = O(w1+α), as w → 0.

Next we show (2.40). Note that

|z|
|zk|

=
|z|∣∣∣ δ(e−zk)
k

∣∣∣ = |zk|
|δ(e−zk)|

.

To show (2.40), it suffices to prove |zk|
|δ(e−zk)| has limit as |zk| → 0, which follows from,

noting that δ(ζ) =
(

3
2 − 2ζ − 1

2ζ
2
)
w̃(ζ)−1,

lim
w→0

w

δ(e−w)
= lim

w→0

w((
3
2 − 2e−w − 1

2e
−2w

)
w̃(e−w)−1

) 1
α

= lim
w→0

w

(wα + c1w1+2α + c2w2+α + . . . )
1
α

= lim
w→0

1

(1 + c1w1+α + c2w2 + . . . )
1
α

= 1.

Hence we have proved, for any fixed constant M > 0, there exists a constant C such
that

|z|
|zk|

≤ C, ∀ |zk| ≤M.
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Similarly we may show |zk|
|z| ≤ C, ∀ |zk| ≤M . Thus we get (2.40).

We now show (2.41). Note that

zk − z =

(
( 32 − 2e−zk − 1

2e
−2zk)w̃(e−zk)−1

) 1
α − zk

k

=

(
(zk)α + c1(zk)

1+2α + c2(zk)
2+α + . . .

) 1
α − zk

k

=
(zk)

(
1 + c1(zk)

1+α + c2(zk) + . . .
) 1

α − zk

k

=
(zk)

(
1 + c1(zk)

1+α + c2(zk) + . . .
)
− zk

k
= O(k1+αz2+α), as zk → 0.

Thus we have, following the proof of [17, (4.6)] and noting ∥K ′(z)∥ ≤ C|z|−2 in
[17, (3.12)],

∥K(zk)−K(z)∥ ≤ C|z|−2k1+α|z|2+α = Ck1+α|z|α.

Finally we show (2.42). Following the same proof as in the proof of [17, Lemma
4.3], we have, noting that |K(zk)| ≤ C|z|−1,∥∥µ(ζ)K(zk)−K(z)

∥∥ ≤
∥∥(µ(ζ)− 1

)
K(zk)

∥∥+
∥∥K(zk)−K(z)

∥∥
≤ C|zk|1+α|z|−1 + k1+α|z|α ≤ Ck1+α|z|α.

Together these estimates complete the proof of Lemma 2.12.
Remark 2.13. We remark that assuming that u0 ∈ D(A) rather than u0 ∈ L2(Ω)

reduces the singular behavior of the error bound at t = 0. We can also prove the
convergence rates O(kr) with r = α, 1 and 1 + α for 0 < α < 1, respectively as in the
Theorems 2.1, 2.7, 2.9, see Lubich et al. [17, p.16]

3. Inhomogeneous problem. In this section we will consider the time stepping
method for solving the inhomogeneous problem (1.1) based on the time stepping
method introduced in Section 2 for the homogeneous problem.

Let u(t)− u0 = v(t). Then (1.1) is equivalent to

(3.1) C
0 D

α
t v(t) +Av(t) = −Au0 + f(t), 0 < t ≤ T, with v(0) = 0.

With V n ≈ v(tn), n = 0, 1, 2, . . . , N , we define the following time stepping method for
solving (3.1), with V 0 = 0 and c0 = 1/2,

k−α
n∑

j=1

δ
(α)
n−jV

j +AV j = −Au0 + f(tn) + c0(−Au0 + f(0)), n = 1,(3.2)

k−α
n∑

j=1

δ
(α)
n−jV

j +AV j = −Au0 + f(tn), n = 2, 3, . . . , N,(3.3)

where δ
(α)
j , j = 0, 1, 2, . . . are generated by δ(ζ)α =

∑∞
j=0 δ

(α)
j ζj . Here δ(ζ) is defined

by (2.33).
Theorem 3.1. Let the operator A be a closed, densely defined linear operator

satisfying (1.4). Let u(tn) and Un be the solutions of (3.1) and (3.2)-(3.3), respec-
tively. Let u0 ∈ L2(Ω) and f ∈ H2(0, T ;L2(Ω)). Then we have, with 0 < α < 1,
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(3.4) ∥u(tn)−Un∥ ≤ Ck1+α
(
t−1−α
n ∥u0∥+ t−1

n ∥f(0)∥+∥f ′(0)∥+
∫ tn

0

∥f ′′(s)∥L2(Ω)

)
.

To prove Theorem 3.1, we need the following lemma.
Lemma 3.2. Let zk be defined as in (2.36). We have

∥∥∥(zα +A)−1z−2 − (zαk +A)−1
(
k

∞∑
n=1

tnζ
n
)∥∥∥ ≤ Ck1+α|z|−1.

Proof. We have

∥∥∥(zα +A)−1z−2 − (zαk +A)−1
(
k

∞∑
n=1

tnζ
n
)∥∥∥

≤ ∥(zα +A)−1z−2 − (zαk +A)−1z−2
k ∥+

∥∥∥(zαk +A)−1z−2
k

(
1− z2kk

∞∑
n=1

tnζ
n
)∥∥∥.

It is easy to show that

∥∥∥1− z2kk
∞∑

n=1

tnζ
n
∥∥∥ ≤ C|zk|1+α.

The rest of the proof of Lemma 3.2 follows from the arguments in the proof of (2.27).

Proof. [Proof of Theorem 3.1] The proof is similar to the arguments in [11] and
[12] for the error estimates of the inhomogeneous problem.

Denote

f(t) = f(0) +R(t), R(t) = tf ′(0) + (t ∗ f ′′)(t).

Here f ∗ g denotes the convolution of f and g.
Taking the Laplace transform in (3.1), we have

zαv̂(z) +Av̂(z) = −Au0z−1 + f̂(z) = −Au0z−1 + f(0)z−1 + R̂(z),

which implies that

v(t) =
1

2πi

∫
Γ

ezt
(
(zα +A)−1z−1(−Au0 + f(0)) + (zα +A)−1R̂(z)

)
dz.

Taking the discrete Laplace transform in (3.2)-(3.3), we have

∞∑
n=1

(
k−α

n∑
j=1

δ
(α)
n−jV

j
)
ζn +

∞∑
n=1

(AV n)ζn

=
∞∑

n=1

(−Au0 + f(0))ζn +
∞∑

n=1

R(tn)ζ
n + c0

(
−Au0 + f(0)

)
ζ,



YUBIN YAN AND NEVILLE. J. FORD 17

which implies that

V n =
1

2πi

∫
Γk

eztn(zαk +A)−1z−1
k µ(e−zk)(−Au0 + f(0)) dz

+
1

2πi

∫
Γk

eztn(zαk +A)−1k
( ∞∑

n=1

R(tn)ζ
n
)
dz,

where µ(ζ) and zk are defined by (2.37) and (2.36), respectively.
The rest of the proof may be completed by using Lemma 3.2 and the arguments

in Jin et al. [11], [12].
Together these estimates complete the proof of Theorem 3.1.

4. Numerical examples. In this section, we will consider the numerical simu-
lations of the different time discretization schemes discussed in Section 2 for solving
(1.5). We only consider the homogeneous problem and illustrate the experimentally
determined convergence rates with nonsmooth data. Similarly we may illustrate the
inhomogeneous problem with some sufficiently smooth source term f .

Let us consider the following time fractional partial differential equation in one
dimensional case.

C
0 D

α
t u(x, t)− uxx = 0, 0 < x < 1, 0 < t ≤ T,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x).

Let 0 < t0 < t1 < · · · < tN = T be the time partition of [0, T ] with T = 1 and k the
time step size. Let Nh be a positive integer. Let 0 = x0 < x1 < x2 < · · · < xNh

= 1
be the space partition and h the space step size. The space is discretized by using the
standard linear finite element method.

α k = 2−4 k = 2−5 k = 2−6 k = 2−7 k = 2−8

0.1 1.57e-01 1.27e-01 9.84e-02 7.13e-02 4.59e-02
0.308 0.370 0.464 0.635

0.3 1.64e-01 1.21e-01 8.62e-02 5.76e-02 3.43e-02
0.434 0.492 0.581 0.747

0.8 1.90e-02 1.06e-02 5.75e-03 2.99e-03 1.42e-03
0.848 0.877 0.939 1.076

0.9 7.73e-03 3.99e-03 2.04e-03 1.00e-03 4.52e-04
0.953 0.970 1.023 1.151

Table 1
Time convergence rates with the different α ∈ (0, 1) for the numerical method (2.3)

We first consider the scheme (2.3) and the convergence rate was proved to be
O(kα) for both smooth and nonsmooth data in Theorem 2.1. To observe this conver-
gence rate, we first calculate the reference solution uref(t) at T = 1 with href = 2−6

and kref = 2−10. We then use h = 2−6 and k = kappa ∗ kref with kappa =
[22, 23, 24, 25, 26] to obtain the approximate solution at u(T ) with T = 1. Let ek
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denote the error of u(T ) at T = 1 with the time step size k and the fixed space step
size h = 2−6. By Theorem 2.1, we have

∥ek∥ ≤ Ckα.

Thus the convergence rate α is determined experimentally by

α ≈ log 2
(∥e2k∥
∥ek∥

)
.

Choosing the nonsmooth initial data u0 = χ[0,1/2], we observe, in Table 1, that the
experimentally determined convergence rate is indeed almost O(kα) for the different
α ∈ (0, 1) with the nonsmooth initial data.

We next consider the numerical method (1.6) proposed by McLean and Mustapha
[18] which has the convergence rate O(k) for both smooth and nonsmooth initial
data. Using the same notations and the same initial data as in Table 1, we found,
in Table 2, that the experimentally determined convergence rate of this method is
indeed approximately 1.

α k = 2−4 k = 2−5 k = 2−6 k = 2−7 k = 2−8

0.1 1.20e-04 6.53e-05 3.43e-05 1.71e-05 7.73e-06
0.876 0.929 1.01 1.14

0.3 6.99e-04 3.57e-04 1.77e-04 8.46e-05 3.69e-05
0.972 1.01 1.07 1.19

0.8 1.29e-03 6.01e-04 2.83e-04 1.30e-04 5.54e-05
1.103 1.088 1.120 1.233

0.9 9.66e-04 4.35e-04 2.02e-04 9.22e-05 3.91e-05
1.151 1.109 1.130 1.238

Table 2
Time convergence rates with the different α ∈ (0, 1) for the numerical method (1.6)

In Figure 1, by using the time discretization method (1.6), we show how the error
varies with tn = 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 by choosing α = 0.3 and the time step
size k = 2−6 and the space step size h = 2−6. Here the reference solution is calculated
by using kref = 2−10 and href = 2−6.

Finally we consider the improved numerical method (2.29)-(2.31) which has the
convergence rate O(k1+α) for both smooth and nonsmooth data. Using the same
notations and the same initial data as in Tables 1 and 2, we found, in Table 3, that
the experimentally determined convergence rate is approximately k1+α ( actually the
experimentally determined convergence rate is better than 1 + α) as we expected.
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5. Appendix. In this Appendix, we will give the proof of Lemma 2.4. To do
this, we need to introduce the polylogarithm function

Lip(z) =

∞∑
j=1

zj

jp
.

The polynomial function Lip(z) is well defined for |z| < 1 and p ∈ C. It can be
analytically continued to the split complex plane C\[1,+∞); see Flajolet [6]. With z =
1, it recovers the Riemann zeta function ς(p) = Lip(1). We also recall an important
singular expansion of the function Lip(e

−z) (Flajolet [6, Theorem 1]).
Lemma 5.1. ([10, Lemma 3.2]) For p ̸= 1, 2, . . . , the function Lip(e

−z) satisfies
the singular expansion

Lip(e
−z) ∼ Γ(1− p)zp−1 +

∞∑
l=0

(−1)lς(p− l)
zl

l!
, as z → 0,

where ς(z) denotes the Riemann zeta function.
Lemma 5.2. ([10, Lemma 3.4]) Let |z| ≤ π

sin θ with θ ∈ (π2 ,
5π
6 ) and −1 < p < 0.

Then

Lip(e
−z) = Γ(1− p)zp−1 +

∞∑
l=0

(−1)lς(p− l)
zl

l!

converges absolutely.
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Proof. [Proof of Lemma 2.4] We have, by the weights in (2.5), with ζ = e−zk,

w̃(z) =
∞∑
j=0

wjζ
j =

1

Γ(1 + α)
(ζ−1 − 2 + ζ)

∞∑
j=1

jαζj

=
1

Γ(1 + α)

(
(e−zk)−1 − 2 + e−zk

)
Li−α(ζ),(5.1)

where, by Lemma 5.2,

(5.2) Li−α(ζ) = Li−α(e
−zk) = Γ(1 + α)(zk)−α−1 +

∞∑
l=0

(−1)lς(α− l)
(zk)l

l!
.

By (2.11), we have

zαk =
(δ(ζ)

k

)α

=
w̃(ζ)−1(1− ζ)

kα
=

1

kαψ(zk)
,

where

ψ(zk) =
1

Γ(1 + α)
(ezk − 1)Li−α(e

−zk).

Using [19, Lemma 1] we may write, with Cα = π
sin(πα) and zk = ρeiθ = r + iϕ,

ψ(zk) =
1

Γ(1 + α)
(ezk − 1)Li−α(e

−zk) =
1

Cα

∫ ∞

0

s−α

1− e−zk−s

1− e−s

s
ds

=
1

Cα

∫ ∞

0

s−α

1− e−zk−s

1− e−s

s
ds =

1

Cα

∫ ∞

0

s−α

1− e−r−iϕ−s

1− e−s

s
ds

=
1

Cα

∫ ∞

0

s−α

1− e−r−s(cosϕ− i sinϕ)

1− e−s

s
ds

=
1

Cα

∫ ∞

0

(
s−α−1(1− e−s)(1− e−r−s cosϕ)

)
−

(
s−α−1(1− e−s)(e−r−s sinϕ)

)
i

1− 2e−r−s cosϕ+ e−2r−2s
ds,

which implies that

zαk =
Cα

kα
1

A−Bi
=
Cα

kα
A+Bi

A2 +B2
,

where

A =

∫ ∞

0

(
s−α−1(1− e−s)(1− e−r−s cosϕ)

)
1− 2e−r−s cosϕ+ e−2r−2s

ds,

B =

∫ ∞

0

(
s−α−1(1− e−s)(e−r−s sinϕ)

)
1− 2e−r−s cosϕ+ e−2r−2s

ds.

Therefore

ℜ(zαk ) =
Cα

kα
A

A2 +B2
, ℑ(zαk ) =

Cα

kα
B

A2 +B2
.

Let us first consider the case for θ = π
2 . In this case, we have, with r = ρ cos θ =

0, ϕ = ρ sin θ = ρ,

ℜ(zαk ) =
Cα

kα(A2 +B2)

∫ ∞

0

s−α−1(1− e−s)(1− e−s cos ρ)

1− 2e−s cos ρ+ e−2s
ds.
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Note that

1− 2e−s cos ρ+ e−2s > 1− 2e−s + e−2s = (1− e−s)2 ≥ 0,

and

1− e−s cos ρ > 1− e−s > 0,

we get ℜ(zαk ) ≥ 0 which implies that zαk ∈ Σθ0 for any θ0 ∈ (π2 , π). Now let us choose
θ close to π

2 , θ >
π
2 . By the continuity of zαk with respect to θ, [10, Proof of Lemma

3.6], there exists θ0 ∈ (π2 , π) such that

zαk ∈ Σθ0 for all z ∈ Γθ.

Together these estimates complete the proof of Lemma 2.4.


