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Abstract

In this thesis we prove several results in extremal combinatorics from areas including

Ramsey theory, random graphs and graph saturation. We give a random graph analogue

of the classical Andrásfai, Erdős and Sós theorem showing that in some ways subgraphs

of sparse random graphs typically behave in a somewhat similar way to dense graphs. In

graph saturation we explore a ‘partite’ version of the standard graph saturation question,

determining the minimum number of edges in H-saturated graphs that in some way

resemble H themselves. We determine these values for K4, paths, and stars and determine

the order of magnitude for all graphs. In Ramsey theory we give a construction from a

modified random graph to solve a question of Conlon, determining the order of magnitude

of the size-Ramsey numbers of powers of paths. We show that these numbers are linear.

Using models from statistical physics we study the expected size of random matchings

and independent sets in d-regular graphs. From this we give a new proof of a result of

Kahn determining which d-regular graphs have the most independent sets. We also give

the equivalent result for matchings which was previously unknown and use this to prove

the Asymptotic Upper Matching Conjecture of Friedland, Krop, Lundow and Markström.

Using these methods we give an alternative proof of Shearer’s upper bound on off-diagonal

Ramsey numbers.
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1
Introduction

Since Erdős’ [32] introduction of the probabilistic method in the late 1940’s, using ideas

from probability has become widespread and fruitful in combinatorics. Whilst it may

at first seem counter-intuitive that a randomised method could prove a deterministic

result, it turns out that often a randomly generated graph will have properties that it is

very hard to explicitly construct a graph with. For example, in 1959 Erdős [33] showed

there there are graphs with both arbitrarily high girth and chromatic number. Whilst

there are now non-random proofs of this statement, Erdős’ proof is arguably still the

simplest and most elegant. For this example it is not simply enough to take a randomly

generated graph. Although randomly generated graphs with enough edges tend to have

high chromatic number they also typically have low girth. However they tend to only

have a small number short cycles and so, after removing vertices from these short cycles,

the graph that remains has both high chromatic number and high girth.

This concept has similarities to ideas in other fields. For example it is more difficult to

demonstrate a transcendental number than it is to prove that such numbers exist. The

first number to be proved to be transcendental was
∞∑
n=1

10−n! ,

by Liouville [67]. However it is easy to see that there are just countably many algebraic

numbers, and so uncountably many transcendental numbers. In this way, ‘almost all

numbers’ are transcendental, even though it can be difficult to find them.

One could attribute this to the idea that if we construct a graph, or define a number,

ourselves, then since we will likely define it in a relatively simple and finite way, such a

graph or number will be in some sense simple and structured. If the graph property we

desire requires the graph to be in some sense complex or unstructured then displaying
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Chapter 1. Introduction

it explicitly may prove substantially harder than arguing non-constructively that such a

graph (or number) exists.

Of course we have not yet defined what we mean by a graph being structured, and in

fact we will avoid doing so for the reason that there will be two competing notions of

structure. Under several natural (informal) definitions of structure for graphs, randomly

generated graphs are with high probability very unstructured. And yet, there is a sense,

that we will look at shortly, in which randomly generated graphs typically exhibit a lot

of structure.

At first we would like to think of a graph as being structured if the vertex set can be

partitioned into a small number of parts so that for any given pair of vertices we can

determine whether they define an edge simply by knowing which parts the two vertices

are in. A very simple example is that of complete bipartite graphs which consist of vertices

in two parts with edges just between vertices from distinct parts. This definition seems

particularly suited to problems involving counting particular subgraphs. For example

it is easy to count the number of copies of C4, the cycle on four vertices, in a graph

defined by a small number of parts as above. One downside of this definition is that other

simple graphs that we might consider structured do not fit into this category. Cycles

Cn, grid graphs Pn × Pm and hypercubes H2d are examples of such graphs. We could

instead consider a graph to be structured if it can be described easily or in few words.

By both definitions it is straightforward to show that randomly generating a graph will

almost certainly generate an unstructured graph. In particular if we generate a graph

on n vertices by flipping unbiased coins independently for each pair of vertices to choose

which pairs have an edge then it requires an average of
(
n
2

)
bits of information to describe

the graph.

This model of generating a random graph is called G(n, p). In general for a positive

integer n and a real number p ∈ [0, 1] we let G(n, p) denote the random graph model on

n vertices where each pair of vertices contains an edge independently with probability p.

Of course if p = 0 or 1, this gives the empty graph or complete graph respectively, but

if p is not near either 0 or 1, the result is random and unpredictable. Yet, whilst the

exact graph outputted by this model may be unpredictable, it turns out there are many

properties of the random graph that we can be highly confident of, even before seeing the

output. For example, if n > 20 and p = 1/2 then we can be more than 99% sure that

the graph generated will be connected, in the sense that we can walk from any vertex to

any other along edges. We can also accurately estimate many parameters of the random

graph with a high degree of confidence. For large values of n, with probability very near
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Chapter 1. Introduction

to 1, G(n, 1/2) has roughly 1
2

(
n
2

)
edges. We will make this more precise later in the thesis.

Erdős’ idea of using random graphs, or modifications of random graphs, to display prop-

erties that it is hard to exhibit constructively, has been used many times since 1959. The

results presented in Chapter 4 are of this flavour. We use modified random graphs to

prove the existence of graphs without too many edges that satisfy a certain property.

Over the last few decades, the random graph model G(n, p) itself has become an important

object of study, rather than merely a useful tool. Questions about G(n, p) typically choose

a graph property P (n) and ask for the asymptotic behaviour of the probability thatG(n, p)

satisfies P (n) as n tends to infinity. We say that G(n, p) has P (n) with high probability if

the probability that G(n, p) satisfies P (n) tends to 1 as n tends to infinity.

One particular theme is taking properties that hold deterministically for the complete

graph Kn, and studying related problems for the random graph G(n, p). For example,

a well known result due to Mantel [70] is that, for any n, the graph on n vertices with

the most edges whilst not containing a triangle, is also the largest bipartite subgraph

of Kn. That is to say, the complete bipartite graph Kdn/2e,bn/2c has the most edges of

any triangle-free graph on n vertices. We can ask whether the same phenomena happens

for other graphs. Given a graph G, we can ask if the largest bipartite subgraph is the

largest triangle-free subgraph, where by largest we mean the subgraph with the most

edges. Babai, Simonovits and Spencer [9] showed that in G(n, 1/2) the probability that

the largest bipartite subgraph is also the largest triangle-free subgraph tends to 1 as n

tends to infinity. In Chapter 2 we prove a result of this type giving a random graph

analogue of a theorem of Andrásfai, Erdős and Sós [8]. This theorem states that triangle-

free graphs on n vertices with minimum degree greater than 2n/5 are bipartite. We show

that it is almost always the case that triangle-free subgraphs of random graphs with a

corresponding minimum degree condition are nearly bipartite. The particular emphasis

of our result is determining sharp bounds for how near to bipartite such subgraphs must

be.

Curiously, results of this type can be seen as saying that some structural properties of

Kn are typically shared by random graphs. In particular, it is in general, the fact that

random graphs are highly connected with edges distributed all across the graph, that tends

to result in such properties holding. This is the reason we avoided defining ‘structure’ in

some way that would exclude random graphs.

For some problems random constructions are far from best and deterministic techniques

are needed. We study one such set of problems in Chapter 3 when we study graph
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Chapter 1. Introduction

saturation. One property of random graphs is that typically different parts of a random

graph all look quite similar. One could say that in a randomly generated graph “no vertex

is special”. For example, usually all vertices of the random graph have a very similar

number of neighbours. In the extremal graphs that arise in the saturation problems of

Chapter 3 there tend to be a small number of ‘special’ vertices with very high degree

whilst all other vertices have very few neighbours.

Chapter 5 contains results that are both deterministic and probabilistic. The probabilistic

results of this chapter however, do not concern creating a graph randomly, but choosing

a random independent set or matching from a fixed graph. We look at the expected

size of a random independent set or matching drawn from a d-regular graph. We show

that the d-regular graph that maximises the expected fraction of vertices in a random

independent set, is the complete bipartite graph Kd,d. We show that Kd,d also maximise

the expected fraction of vertices in a random matching. We prove both these results using

very little probability theory, instead primarily relying on linear programming. We prove

these results when the random independent set or matching is drawn uniformly and also

when it is drawn from a more general distribution. We then show how these results about

random independent sets and matchings imply the deterministic results that the graph

consisting of multiple copies of Kd,d, has the most independent sets and matchings of

any d-regular graph on a fixed number of vertices. In Chapter 5 we also show that, with

the right probability distribution, a random independent set drawn from a triangle-free

graph on n vertices with maximum degree d, contains on average at least log d
d n vertices.

This gives a new proof of Shearer’s upper bound [81] on the off-diagonal Ramsey numbers

R(3, k). Intriguingly, and counter-intuitively, our method works best when we randomly

choose the independent set in a way that is biased towards selecting smaller independent

sets.

1.1 Thesis overview

1.1.1 Chapter 2

This chapter is based on the paper ‘Triangle-free subgraphs of random graphs’ [5] and

looks at taking extremal graph theory problems and asking to what extent analogues of

these hold for random graphs. For example; a theorem of Andrásfai, Erdős and Sós [8]

states that triangle-free graphs on n vertices with minimum degree greater than 2n/5 are

bipartite. We show that for any ε > 0, with high probability, all triangle-free subgraphs
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Chapter 1. Introduction

of G(n, p) with minimum degree at least (2
5 + ε)pn are ‘close’ to bipartite. By close to

bipartite we mean that such triangle-free subgraph can be made bipartite by removing

just O(n/p) edges.

We use our methods to give the same treatment to a theorem of Thomassen [83]. This

theorem states that triangle-free graphs on n vertices with minimum degree at least

(1
3 +ε)n for any ε have bounded chromatic number. The bound on the chromatic number

is a function of ε that does not depend on n. We show that for all ε > 0 there exists rε so

that, with high probability, all triangle-free subgraphs of G(n, p) with minimum degree

at least (1
3 + ε)pn are ‘close’ to rε-partite. Again this means that such subgraphs can be

made rε-partite by removing at most O(n/p) edges.

It turns out that this caveat that we have to remove O(n/p) edges is necessary. For some

values of p there exist triangle-free subgraphs of G(n, p) with minimum degree very close

to 1
2pn which even after removing Ω(n/p) edges have arbitrarily high chromatic number.

We construct such graphs to show that our main results are sharp.

1.1.2 Chapter 3

This chapter is based on the paper ‘Partite saturation problems’ [77]. Saturation problems

look at graphs that avoid a certain substructure but in some sense nearly contain that

structure. For example we say a graph is triangle-saturated if it has no triangles but

adding any edge would create a triangle. In this chapter we look at a set of problems

in what we call partite saturation in which the saturated graphs must bear some specific

resemblance to the structure they avoid. For a graph H we let H[n] denote the blow-up

of H where each vertex of H is replaced by an independent set of size n and each edge is

replaced by a complete bipartite graph between the corresponding independent sets. For

example Kr[n] is the complete balanced r-partite graph on rn vertices. If G is a subgraph

of H[n] we refer to a copy of H in G as partite if it has one vertex in each of the parts of

H[n]. We say G ⊆ H[n] is (H,H[n])-partite-saturated if G contains no partite copy of H

but the addition of any extra edge from H[n] would create one. We study the minimum

number of edges in such graphs which we call the partite saturation number. This type

of question was first approached by Ferrara, Jacobson, Pfender, and Wenger [41] who

showed (among other things) that all (K3,K3[n])-partite saturated contain at least 6n−6

edges. We show that for large enough n it is the case that (K4,K4[n])-partite-saturated

graphs always have at least 18n− 21 edges. We determine the unique graph that attains

this bound. We also determine the partite saturation numbers of paths and stars. Finally,
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Chapter 1. Introduction

we discover an interesting connection between the 2-connectivity of a graph H, and its

partite saturation number. A graph is 2-connected if it requires at least two vertices to

be removed, in order to break it into multiple components. Equivalently, it has no cut

vertex, the removal of which separates the graph. If H is not 2-connected all (H,H[n])-

partite-saturated graphs have quadratically many edges whilst if H is 2-connected there

exist (H,H[n])-partite-saturated graphs with linearly many edges.

1.1.3 Chapter 4

This chapter is based on the paper ‘The size-Ramsey number of powers of paths’ [21].

This is a type of problem in Ramsey theory which concerns partitioning the edge set of

graphs in such a way that each part avoids some particular structure. Conversely it also

asks for graphs which cannot be partitioned in such a way. We use colours to refer to

the parts, and so by a q-colouring of a graph G, we simply mean a partition of the edge

set of G into q parts. Given graphs G and H and a positive integer q we say that G is

q-Ramsey for H, denoted G → (H)q, if every q-colouring of the edges of G contains a

monochromatic copy of H. If q = 2 then we will just say G is Ramsey for H.

The classic Ramsey theory question asks for the smallest number of vertices of a graph

which is Ramsey for H. In this case we need only consider G which are complete graphs

as extra edges can only help. Size Ramsey theory instead asks for the smallest number

of edges in a graph G which is Ramsey for H. Here it is not enough to only consider

complete graphs. In fact it is the range of possible graphs that require consideration, that

makes these questions so interesting. Determining the size-Ramsey numbers of paths

was a problem asked by Erdős [34]. Beck [11] showed that these numbers are linear as

exhibited by a random graph. Conlon [22] asked whether the same is true for powers

of paths. Here random graphs are not sufficient, however by using a modification of a

random graph, we showed that the size-Ramsey numbers of powers of paths are indeed

linear. Using a random graph here is something of a choice in that it is really just the

property that edges are distributed somewhat evenly across the graph that we require.

Graphs with this property can be constructed explicitly, but their existence is easier to

prove probabilistically.

1.1.4 Chapter 5

This chapter is an amalgamation of the papers ‘Independent sets, matchings and oc-

cupancy fractions’ [26] and ‘On the average size of independent sets in triangle-free
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Chapter 1. Introduction

graphs’ [27]. In this chapter we look primarily at counting independent sets and match-

ings in d-regular graphs, determining which such graphs have the most independent sets

and matchings. For independent sets this was already known due to work by Kahn [56]

for bipartite graphs via the entropy method, and by Zhao [87] using the bipartite swap-

ping trick for all d-regular graphs. The answer to both these questions is that so long

as the number of vertices of the graph, n, is a multiple of 2d the optimal graph is the

disjoint union on n/2d copies of the complete bipartite graph Kd,d. We use probabilistic

models from statistical physics to turn these problems into linear optimisation problems.

Perhaps the most striking element of our method is that we exploit a connection between

the average size of independent sets (and respectively matchings) when drawn according

to a particular family of probability distributions, and the total number of independent

sets (or matchings) in the graph. This family of distributions includes the uniform dis-

tribution and so our results also show that on a fixed number of vertices n, so long as

2d|n the graph on n vertices with the largest average independent set size is n/2d copies

of Kd,d. The same holds for matchings. We then use our results to solve the asymp-

totic upper matching conjecture of Friedland, Krop, Lundow and Markström [43] and

the equivalent result for independent sets. This conjecture, roughly speaking, required

estimating the upper bound on the number of independent sets, of fixed size, in d-regular

graphs to within a multiplicative factor that is sub-exponential. We give a bound that is

off by a factor of
√
n. We use the same techniques to give an alternative proof of a result

of Shearer on the upper bound for off-diagonal Ramsey numbers R(3, k). This problem

asks how large an independent set there must be in triangle-free graphs. Curiously our

method approaches these very different sounding problems in a remarkably similar way.

We are again looking at the average size of an independent set in a graph; this time

specifically triangle-free graphs. We show that the average size of an independent set in

a triangle-free graph on n vertices with maximum degree d is at least (1 + o(1)) log d
d n.

Shearer’s result was the same except with the words average and maximum switched. He

showed that the largest independent sets in triangle-free graphs with average degree d

contain at least (1 + o(1)) log d
d n vertices.

1.2 Notation

We write [n] for the set {1, ..., n}, and the notation x = (1 ± ε) is used to mean x ∈

[1− ε, 1 + ε].

For disjoint sets of vertices X and Y in G we will use EG(X,Y ) to denote the set of edges
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Chapter 1. Introduction

between X and Y in G and EG(X) to denote the set of edges of G with both ends in

X. We denote the sizes of these sets by eG(X,Y ) and eG(X) respectively. We will use

NG(v,X) to denote the set of vertices in X which are adjacent to a vertex v of G and

degG(v,X) for the number of vertices in NG(v,X). In a graph G we say a vertex is a

common neighbour of a pair of vertices if it is adjacent to both of them. For two vertices

u, v we will write NG(u, v,X) for the common neighbourhood NG(u,X) ∩NG(v,X) of u

and v in X, and degG(u, v,X) for its size. For X = V (G) we will simply use NG(v),

degG(v) and NG(u, v). When it is clear which graph is being referred to, we omit the

subscripts. For a graph G and a vertex set S we will use G[S] to denote the induced

subgraph of G on the set S. We let V (G) denote the vertex set of a graph G and let

v(G) = |V (G)| be the number of vertices in G. We use δ(G) to denote the minimum

degree of G and ∆(G) the maximum degree.

We use o(.), ω(.), O(.), Ω(.) notation in the standard way, where f(n) = o(g(n)) if

limn→∞ f(n)/g(n) = 0 and f(n) = ω(g(n)) if the same limit tends to ∞. We say f(n) =

O(g(n)) if there is a constant C such that, for all n, f(n) 6 g(n) and say that f(n) =

Ω(g(n)) if there is a constant c > 0 such that for all n we have f(n) > c · g(n). We use �

only in informal discussions where a � b will mean that our argument holds so long as

a is small enough compared to b (depending just on b). Throughout this thesis we shall

omit floor and ceiling symbols when they do not affect our argument.

The next few sections will give an overview of some of the themes of this thesis including

some history, related work as well as some methods we will make direct use of.

1.3 Chromatic threshold and minimum degree conditions

in triangle-free graphs

One of the earliest results in extremal graph theory is Mantel’s Theorem [70] which states

that any graph on n vertices with more than bn/2c · dn/2e edges contains a triangle. An

even simpler (and weaker) statement says that if a graph on n vertices has minimum

degree greater than n/2 it must contain a triangle. This can be seen by noting that for

any edge, by the pigeon-hole principle, the neighbourhoods of the endpoints must overlap,

giving a triangle. In fact this shows further that in a graph with minimum degree greater

than n/2 every edge is in a triangle. The minimum degree condition here is tight as shown

by a complete balanced bipartite graph.

But what if we did reduce the minimum degree condition? What would we be able to

13
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say about graphs that satisfy some smaller minimum degree condition but still happen to

be triangle free? Andrásfai, Erdős and Sós [8] approached this question, proving that so

long as the minimum degree of an n-vertex, triangle-free graph is greater than 2n/5, the

graph is bipartite. We will give a short proof of this result here.

Theorem 1.1 (Andrásfai, Erdős and Sós ). If G is a triangle-free graph on n vertices

with δ(G) > 2n/5 then G is bipartite.

Proof. Suppose for contradiction that G is a counter-example on n vertices and further-

more assume G has the most edges of any counter-example on n vertices. As G is not

bipartite there must be an odd cycle. Choose a shortest odd cycle with vertices v1, ..., vk.

We claim that the shortest cycle is a C5. If not we could add the edge v1v4 and the

graph would still be triangle free, as if there was a triangle v1v4x then we would have

had a C5 in G on the vertices v1v2v3v4x. This is a contradiction to the choice of G as

the counter-example with the most edges. So now the vertices v1, ..., v5 form a C5 and

we know that each of these five vertices has more than 2n/5 neighbours. From this we

can see that there are at least 2n− 4 edges leaving this C5. By the pigeon-hole principle

one of the n− 5 vertices not in the C5 is adjacent to at least 2n−4
n−5 > 2 vertices of the C5.

As this vertex is adjacent to an integer number of vertices of the C5 it is adjacent to at

least three such vertices, two of these must be adjacent and this gives a triangle. This

contradiction completes the proof.

It is easy to extend the proof above to see that the only non bipartite triangle-free graphs

with minimum degree at least 2n/5 (rather than strictly greater than 2n/5) are complete

balanced blow-ups of C5. That is, graphs which can be partitioned into 5 equal sizes

vertex sets V1, ..., V5 with edges just between Vi and Vi+1 modulo 5.

There followed a series of results showing that triangle-free graphs satisfying lower min-

imum degree conditions still have small chromatic number. Häggkvist [48] showed that

triangle-free graphs with minimum degree greater than 3n
8 are 3-colourable. Jin [54] re-

duced the minimum degree condition of Häggkvist’s result to 10n
29 , matching a construction

of Häggkvist [48]. Thomassen [83] showed that for any ε > 0 there exists rε such that if

H is triangle-free and δ(H) > (1
3 + ε)n then H is rε-partite. Finally, in 2006, Brandt and

Thomassé [18] proved that all triangle-free graphs with minimum degree strictly greater

than n
3 are 4-partite. No similar result with a minimum degree condition lower than n

3

holds as shown by Hajnal (see [38]) who exhibited triangle-free graphs with minimum

degree (1
3 − ε)n and arbitrarily high chromatic number.

14
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The fact that minimum degree conditions above 1
3n lead to triangle-free graphs having

small chromatic number whilst triangle-free graphs with smaller minimum degree can have

arbitrarily large chromatic number leads to 1
3 being known as the Chromatic Threshold

of the triangle.

For a graph H, the Chromatic Threshold of H, δχ(H), is defined as the infimum over

all d > 0 such that there exists a constant C = C(H, d) such that every H-free graph G

with minimum degree at least d|G| satisfies χ(G) 6 C. Thus for the triangle K3 we have

δχ(K3) = 1
3 . In [3] the chromatic threshold for all non-bipartite graphs was determined.

For r > 3 it was shown that every graph with chromatic number r has chromatic threshold

either r−3
r−2 , or 2r−5

2r−3 , or r−2
r−1 .

1.4 The random graph model G(n, p)

The random graph model G(n, p) where n is a natural number and p ∈ [0, 1] is a way of

randomly generating a graph on n vertices. For each pair of vertices x, y a biased coin is

flipped. If the coin lands on heads (which happens with probability p) the edge xy is put

in the graph. Otherwise it is not. All coin flips are independent of each other.

Of course as the output of this procedure is random we cannot guarantee for sure that

the graph created satisfies any interesting properties but we will be able to say that some

properties ‘almost always hold’.

For a property P we say that P holds asymptotically almost surely (a.a.s) or with high

probability (w.h.p) if

lim
n→∞

P(G(n, p) satisfies P) = 1 .

As an example we will prove that for any ε > 0 with p = ω(n−2) the random graph G(n, p)

a.a.s has (1± ε)p
(
n
2

)
edges and if p = ω(n−2/3) then a.a.s every vertex is in (1± ε)p3n2/2

triangles. To do so we first introduce the Chernoff bound, see for example [53]. We use

Bin(n, p) to denote the binomial distribution with n trials and success probability p for

each trial.

Theorem 1.2. Let X be a random variable with distribution Bin(n, p) and 0 < δ < 3
2 .

Then

P(X < (1− δ)EX) < exp
(−δ2

3 EX
)

and P(X > (1 + δ)EX) < exp
(−δ2

3 EX
)
.

Since the number of edges in G(n, p) has distribution Bin(
(
n
2

)
, p) we see that with prob-

ability at least 1− 2 exp(−ε
2

3 p
(
n
2

)
) the number of edges in G(n, p) is between (1− ε)p

(
n
2

)
15
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and (1 + ε)p
(
n
2

)
. This probability tends to one for p = ω(n−2).

Counting triangles is slightly harder as the number of triangles is not binomially dis-

tributed. We proceed by first showing that all vertices have roughly pn neighbours and

then that within each neighbourhood there are roughly p
(
pn
2

)
edges.

First note that for each the vertex the number of neighbours has distribution Bin(n−1, p)

and hence each vertex has (1− ε
3)p(n− 1) neighbours with probability at least

1− 2 exp

(
− ε

2

27
p(n− 1)

)
,

and so the probability that all vertices have this many neighbours is at least

1− 2n exp

(
− ε

2

27
p(n− 1)

)
.

For the rest of the argument we assume that all vertices have neighbourhoods in this

range. We can now use the Chernoff bound again to say that with high probability the

number of edges in each vertex neighbourhood is

(1± ε/3)p

(
(1± ε/3)pn

2

)
,

which lies within (1 ± ε)p3n2/2. For a vertex v let X denote the number of edges in

the neighbourhood of v; equivalently the number of triangles v is in. Conditioned on the

value of deg(v) the distribution of X is Bin(deg(v), p) and so with probability at least

1− 2 exp

(
− ε

2

27
E[X]

)
> 1− 2 exp

(
− ε

2

27
(1− ε)p3n2/2

)
,

the vertex v is in (1±ε)p3n2/2 triangles. Hence, conditioned on all vertices having degrees

in (1± ε/3)p(n− 1), with probability at least

1− 2n exp

(
− ε

2

27
(1− ε)p3n2/2

)
,

all vertices are in that many triangles. Putting all this together we see that with proba-

bility at least

1− 2 exp

(
− ε

2

27
(1− ε)p3n2/2

)
− 2n exp

(
− ε

2

27
p(n− 1)

)
,

each vertex is in (1± ε)p3n2/2 triangles. This probability tends to one for p = ω(n−2/3).

1.5 Sparse analogues of extremal graph theory results

Looking at versions of classical extremal graph theory problems in the setting of random

graphs has proved to be an interesting, fruitful and popular area of study.
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Recall that Mantel’s theorem [70] states that all triangle-free graphs on n vertices have

at most dn2 eb
n
2 c edges, achieving equality if and only if the graph is a complete bipartite

graph which is as balanced as possible. If one rephrases ‘triangle-free graphs on n vertices’

as ‘triangle-free spanning subgraphs of Kn then it seems natural to replace Kn with other

graphs and ask similar questions. If we replace Kn with the random graph G(n, p) we can

ask how many edges the largest triangle-free spanning subgraph of G(n, p) typically has.

We could also ask whether the largest triangle-free subgraphs of G(n, p) are bipartite as is

the case for Kn. Babai, Simonovits and Spencer [9] showed that this is indeed true with

high probability as n tends to infinity so long as p > 1
2 . This was improved by Brightwell,

Panagiotou and Steger [19] who proved the same conclusion holds for p > n−c for some

positive number c. DeMarco and Kahn [29] showed that there exists a constant C such

that this is still the case for any p > C(log n/n)
1
2 .

With the aim of giving a systematic method to approach these kind of problems, Ko-

hayakawa [63] and Rödl (unpublished) developed a sparse analogue of Szemerédi’s Regu-

larity Lemma and together with  Luczak [60] formulated the K LR conjecture which asserts

the existence of a corresponding ‘counting lemma’. The definitions and statements relat-

ing to the original Szemerédi’s Regularity Lemma [82] can be obtained from the discussion

below by taking p = 1. We postpone discussion of the K LR conjecture to Chapter 2.

We use the following definitions of regularity. We define the density d(U, V ) of a pair of

disjoint vertex sets (U, V ) to be the value e(U, V )/|U ||V |. A pair (U, V ) is called (ε, d, p)-

lower-regular if for any sets U ′ ⊆ U , V ′ ⊆ V satisfying |U ′| > ε|U |, |V ′| > ε|V | we have

d(U ′, V ′) > (d− ε)p. We say a pair (U, V ) is (ε, d, p)-regular if d(U, V ) > dp and for any

sets U ′ ⊆ U , V ′ ⊆ V satisfying |U ′| > ε|U |, |V ′| > ε|V | we have d(U ′, V ′) = (d(U, V )±εp).

We say (U, V ) is (ε, p)-regular if it is (ε, d, p)-regular for some d.

An (ε, p)-regular-partition of a graph H is a vertex partition V0 ∪ V1 ∪ · · · ∪ Vt of V (G)

with |V0| 6 ε|V | and |V1| = |V2| = · · · = |Vt| such that all but at most ε
(
t
2

)
pairs (Vi, Vj)

with i, j > 1 are (ε, p)-regular. The corresponding (ε, d, p)-reduced graph R is the graph

with vertex set [t] where ij is an edge precisely if (Vi, Vj) is an (ε, d, p)-lower-regular pair

in H. The following version of the Sparse Regularity Lemma can be deduced from [2,

Lemma 12]. We show how in Chapter 2.

Lemma 1.3 (Sparse regularity lemma, minimum degree version). For all β ∈ [0, 1], ε > 0

and every integer t0 there exists t1 > 1 such that for all d ∈ [0, 1] the following holds for

any p > 0. For any graph G on n vertices with minimum degree βpn, such that for any

X,Y ⊆ V (G) with |X|, |Y | > εn
t1

we have e(X,Y ) 6 (1+ 1
1000ε

2)p|X||Y |, there is an (ε, p)-
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regular-partition of V (G) with (ε, d, p)-reduced graph R satisfying δ(R) > (β−d−ε)|V (R)|

and t0 6 |V (R)| 6 t1. Furthermore, for each i ∈ V (R) the number of j ∈ V (R) such that

(Vi, Vj) is not (ε, p)-regular is at most εv(R), and for each i ∈ V (R) and v ∈ Vi, at most

(d+ ε)pn neighbours of v lie in
⋃
j:ij 6∈R Vj.

Note that the regularity lemma above is not specifically for G(n, p) but for graphs in

which the density of edges between pairs of large sets is never much greater than p. For

p = ω(n−1) the random graph G(n, p) a.a.s. satisfies this.

The primary reason for the power of the Szemerédi regularity lemma is that it comes

with a counting lemma. The counting lemma ensures that once a regular partition is

given the number of copies of a small fixed graph H can be estimated accurately. For the

sparse regularity lemma such a counting result is not true. In particular there are triples

(V1, V2, V3) (with |Vi| = n for each i) such that each (Vi, Vj) is (ε, d, p)-regular but with no

triangles rather than approximately (dpn)3 as one might expect. Such examples however

were shown by Kohayakawa,  Luczak and Rödl [60] to be in some sense ‘rare’ for triples.

We discuss this in Chapter 2.

1.6 Graph saturation

For a graph H we say another graph G is H-saturated if it contains no copy of H, yet

adding any new edge would result in a copy of H. For example a complete bipartite

graph is K3-saturated, as it is triangle free but every pair of non-adjacent vertices has a

common neighbour and so adding an edge between any non-adjacent pair would result

in a triangle. It is then natural to ask what are the greatest and least number of edges

an H-saturated graph can have. Asking for the most edges in an H-saturated graph

on a fixed number of vertices is identical to the Turán problem asking for the most

edges in an H-free graph; if an H-free graph is not saturated there is an edge that can

be added to give an H-free graph with more edges. Looking for the minimum number

of edges in an H-saturated graph is a problem with a very different feel. We define

sat(H,n) to be the minimum number of edges over all H-saturated graphs on n vertices

and call this the saturation number of H. Returning to triangles we can easily show that

sat(K3, n) = n−1. Firstly note that if G is K3-saturated, it must be connected, as adding

an edge between distinct connected components cannot create a triangle. Therefore all

K3-saturated graphs contain a spanning tree, and hence at least n − 1 edges. The star

K1,n−1 on n vertices has exactly n − 1 edges and is K3-saturated, giving an extremal
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construction. The study of these saturation numbers was initiated by Erdős, Hajnal and

Moon [36] who proved that sat(Kr, n) = (r − 2)(n − 1
2(r − 1)). Kászonyi and Tuza [57]

later showed that cliques have the largest saturation number of any graph on r vertices

which in particular implies that for any H the saturation number sat(H,n) grows linearly

in n. This is in stark contrast to the Turán numbers which are quadratic in n for any

graph H which is non-bipartite.

1.7 Ramsey theory

Ramsey theory deals with results on partitioned structures, claiming that in any partition

of some sufficiently large structure one of the parts will have some nice property. It is

often convenient to use colours to label the different parts of the partition. We begin by

stating Ramsey’s theorem.

Theorem 1.4. For every natural number k there exists N ∈ N such that in any colouring

of the edges of KN with red and blue there exists a monochromatic copy of Kk.

The Ramsey number R(k) is defined to be the least N for which the above conclusion

holds. Thus there must be a way to colour the edges of KR(k)−1 with red and blue to

avoid a monochromatic Kk but no such way to colour KR(k).

A result of Erdős and Szekeres [40] states that R(k) 6
(

2k−2
k−1

)
6 4k. We will give a short

proof of the upper bound 4k.

Proof. We do so by proving the stronger statement that the size of the largest red and

largest blue cliques add up to at least 2k. We use induction on k noting that for k = 1

the result is clear. Now suppose k > 2 and let G be a complete graph on 4k vertices in

which the edges have each been coloured either red or blue. Choose an arbitrary vertex

x. Either x has at least 1
24k neighbours in blue or in red. Without loss of generality

assume x has at least this many neighbours in blue and let A denote the set of vertices

adjacent to x in blue. Now choose an arbitrary vertex y in A. The vertex y either has at

least 4k−1 blue neighbours in A or that many red neighbours in A. Let B be the set of at

least 4k−1 vertices that are adjacent to y in the most common colour. By the induction

hypothesis there is a red clique and a blue clique in B such that their combined size is at

least 2(k − 1). We can add the vertex x to the blue clique and the vertex y to the clique

of the same colour that y is adjacent to B in. This gives a red clique and a blue clique

covering at least 2k vertices in total.
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Erdős [32] also gave a lower bound on the Ramsey number R(k) using the probabilistic

method to show that R(k) > 2(k−1)/2. We give the proof here.

Proof. Letting N = d2(k−1)/2e we need to show the existence of a colouring of the edges

of KN with two colours such that there is no monochromatic copy of Kk. Rather than

constructing such a colouring explicitly, we will colour KN randomly and show that there

is a positive probability that the colouring avoids containing a monochromatic Kk. If we

colour each edge red or blue independently with 50% probability of each colour, then the

expected number of monochromatic copies of Kk is(
N

k

)
21−(k2) .

If we can show this is less than one then there must have been a colouring with no

monochromatic copies of Kk. Recalling that N = d2(k−1)/2e we see that(
N

k

)
<
Nk

k!
6

2(k2)

k!
,

and so the expected number of monochromatic copies of Kk is less than 2/k! < 1.

We can generalise these ideas in a number of ways. We could ask to find monochromatic

copies of graphs other than cliques and this has been a large area of research over many

years with Ramsey numbers of paths, cycles, trees and bounded degree graphs in partic-

ular receiving a lot of attention. We could also change the graph that is being coloured.

We say that a graph G is Ramsey for H if any 2-colouring of the edges of G contains a

monochromatic copy of H. We denote this by G → H. In particular KR(k) → Kk. This

sets us up to introduce the concept of size-Ramsey numbers. Rather than looking for how

small a complete graph can be such that however it is coloured it contains a particular

monochromatic subgraph, the study of size-Ramsey asks for how few edges a graph can

have whilst being Ramsey for H. We define the size-Ramsey number r̂(H) to be this

minimum.

r̂(H) := min{e(G) : G→ H} ,

where the minimum is taken over all graphs. It is clear that for any H we have r̂(H) 6(
R(H)

2

)
as the clique on R(H) vertices is Ramsey for H by definition and has this many

edges. The study of these numbers was introduced by Erdős, Faudree, Rousseau and

Schelp [35] who in particular were interested in graphs where the trivial bound could be

substantially improved.
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Erdős [34] posed the problem of determining the order of magnitude of r̂(Pn). This was

resolved by Beck [11], who showed that the size-Ramsey numbers of paths are linear in

the length of the path.

1.8 Partition functions

In Chapter 5 we use the monomer-dimer and hard-core models of statistical physics to

study problems in d-regular graphs. These models give a probability distribution for

selecting a random matching and independent set respectively from a graph.

1.8.1 The monomer-dimer model

The matching polynomial (or matching partition function) of a graph G is defined to be

MG(λ) =
∑
M∈M

λ|M | ,

whereM is the set of all matchings in G, including the empty matching. For a matching

M the size of M , denoted by |M |, is the number of edges in M . In particular we see that

MG(1) is the total number of matchings in G. Letting λ tend to infinity we see that

pm(G) = lim
λ→∞

MG(λ)

λ|G|/2
,

where pm(G) denotes the number of perfect matchings of G. For each λ > 0 we can

define a probability distribution on M by choosing each matching M with probability

proportional to λ|M |. Thus, a particular matching M is chosen with probability

λ|M |

MG(λ)
.

This distribution is known as the monomer-dimer model. Setting λ = 1 gives the uniform

distribution on the set of matchings. The edges of the matching are the ‘dimers’ whilst the

vertices that are not incident to any dimers are referred to as ‘monomers’. This notion

comes from chemistry, originating with the study of Roberts [78] on the adsorption of

oxygen and hydrogen on a flat tungsten surface. The λ parameter is known as the

fugacity.

For more on the monomer-dimer model we recommend reading [51] which in particular

shows there is never a phase transition in the monomer-dimer model.
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1.8.2 The hard-core model

The independence polynomial (or independent set partition function) of a graph G is

PG(λ) =
∑
I∈I

λ|I| ,

where I denotes the set of independent sets in G including the empty set. For λ = 1 this

gives the total number of independent sets in G. Similarly to matchings, we can use this

to define a probability distribution on the set of independent sets of a graph. This will

be called the hard-core model. Each independent set I will be chosen with probability

λ|I|

PG(λ)
,

and so again setting λ = 1 gives the uniform distribution.

The origin of the hard-core model lies with the hard-sphere model. The hard-sphere model

is a probability distribution of unit radius spheres placed randomly in a large volume such

that no two overlap. This gives a way of modelling the distribution of gases. The hard-

core model is a discretisation of the hard-sphere model. The vertices of the independent

set can be thought of as the centres, or cores, of the spheres whilst requiring the random

set be independent ensures the centres are not too close.

1.8.3 Spatial Markov property

An important feature of the two models above, which we use heavily in Chapter 5, is that

they have what is known as the spatial Markov property. Specifically, with the hard-core

model, if we choose a set A of vertices that separates the graph G into multiple connected

components G1, G2, ... then conditioned on which vertices of A are in the independent set

I the intersection of I with each Gi is independent. In particular, if we choose a vertex

v and a natural number r we can look at the set of vertices at distance exactly r from v.

Call this set N r(v). Let Br(v) denote the set of all vertices at distance at most r from

v. If we condition on I ∩ N r(v) then we can determine the distribution of I ∩ Br−1(v)

without knowing anything about the graph outside N r(v). In particular, conditioned on

I ∩N r(v) the sets I ∩Br−1 and I \Br(v) are independent. Furthermore, if we let B̃r−1(v)

denote the vertices in Br−1(v) that are not adjacent to a vertex of I ∩ N r(v) then the

distribution of I ∩ B̃r−1(v) is precisely the hard-core model run on G[B̃r−1(v)] with the

same value of λ.
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1.9 Linear programming and duality

Linear programming deals with optimising the value of a linear expression under linear

inequality constraints. For example we may wish to maximise the expression

2x+ y

under the constraints

x > 0, y > 0, x+ y 6 1, 4x+ y 6 2 .

It is helpful to write a linear program in its canonical form, that is:

maximise cTx

subject to Ax 6 b

and x > 0 .

In the example above we have

c =

2

1

 , x =

x
y

 , A =

1 1

4 1

 , b =

1

2

 .

Such a problem as above is referred to as the primal problem. We can convert the primal

into a dual problem. The dual gives an upper bound on the solution to the primal. For

a primal in the canonical form above the dual program is:

minimise bTy

subject to ATy > c

and y > 0 .

It is possible for the primal to be unbounded (with cTx able to be arbitrarily large) or

infeasible (meaning no value of x satisfies all constraints). Similarly the dual may also be

unbounded or infeasible.

The ‘weak duality theorem’ tells us that for any x that satisfies the primal constraints

and any y that satisfies the dual constraints the value of cTx is always at most that of

bTy. The ‘strong duality theorem’ states that if the primal has an optimal solution x∗

then the dual also has an optimal y∗ and furthermore cTx∗ = bTy∗. That is to say that

when an optimum value exists for the primal, the dual also has the same optimal value.

By the weak duality theorem if we have a value that we believe is optimal for the primal
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it is enough to find some y satisfying the dual constraints such that bTy∗ attains this

value.

After a little thought we may suspect that the optimal value of the example primal above

is 4
3 attained at (1

3 ,
2
3). With y = (2

3 ,
1
3) we see that bTy also attains the value 4

3 . This

confirms that 4
3 is indeed the optimal value of the primal.

In our applications of linear programming we will in fact use equality constraints rather

than inequality constraints. Equality constraints can be created by using two inequality

constraints. The main change is that the extra constraints in the primal give extra freedom

in the dual which means we do not have to require the dual variables to be positive.

24



2
Triangle-free subgraphs of random

graphs

2.1 Introduction

In a 1948 edition of the recreational maths journal Eureka, Blanche Descartes [30] proved

that triangle-free graphs can have arbitrarily large chromatic number, and thus be complex

in structure. This motivates the question of which additional restrictions on the class of

triangle-free graphs allow for a bound on the chromatic number. By Mantel’s theorem [70],

the densest triangle-free graphs are balanced complete bipartite graphs. So we may first

ask whether triangle-free graphs H with minimum degree somewhat below 1
2v(H) are still

necessarily bipartite. This is true, as Andrásfai, Erdős and Sós showed in 1974.

Theorem 2.1 (Andrásfai, Erdős, Sós [8]). All triangle-free graphs H with δ(H) > 2
5v(H)

are bipartite.

Triangle-free graphs of smaller minimum degree do not need to be bipartite, as blow-ups

of a 5-cycle illustrate. But one may still ask whether their chromatic number is bounded

(questions of this type were first addressed by Erdős and Simonovits in [38]). In 2002

Thomassen [83] proved that this is the case for triangle-free graphs of minimum degree

at least (1
3 + ε)n.

Theorem 2.2 (Thomassen [83]). For any ε > 0 there exists rε such that if H is triangle-

free and δ(H) > (1
3 + ε)v(H) then H is rε-colourable.

A construction of Hajnal (see [38]) shows that the minimum degree bound in this theorem

cannot be replaced by (1
3 − ε)n. A much stronger result was established by Brandt and
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Thomassé [18], who showed that triangle-free graphs H with δ(H) > 1
3n are 4-colourable.

In this chapter we are interested in random graph analogues of Theorem 2.1 and Theo-

rem 2.2. Establishing such analogues for prominent results in extremal graph theory has

been a particularly fruitful area of study in the last few years. A good overview can be

found in Conlon’s survey paper [23].

In order to study these kinds of questions systematically, Kohayakawa [63] and Rödl (un-

published) developed a sparse analogue of Szemerédi’s Regularity Lemma, and, together

with  Luczak [60] formulated the K LR conjecture which asserts the existence of a corre-

sponding ‘counting lemma’. Recently Conlon, Samotij, Schacht and Gowers [25] proved

this conjecture (see also [10, 79]). It is easy (as observed in [25]) to use these results to

prove ‘approximate’ random versions of Theorems 2.1 and 2.2, as well as to re-prove Man-

tel’s theorem for random graphs. Thus if p � n−1/2 then asymptotically almost surely

(a.a.s.) the random graph G(n, p) has the property that all subgraphs with minimum

degree a little larger than 2
5pn can be made bipartite by deleting o(pn2) edges. Similarly,

the sparse random version of Mantel’s theorem obtained states that any subgraph with a

little more than half the edges of G(n, p) contains a triangle.

One might expect that all subgraphs of G(n, p) with minimum degree a little larger than

2
5pn are bipartite. Indeed, an alternative sparse random version of Mantel’s theorem,

proved by DeMarco and Kahn [29], states that a largest triangle-free subgraph of G(n, p)

coincides exactly with a largest bipartite subgraph for p � (log n/n)1/2. However, sub-

graphs of G(n, p) with minimum degree larger than 2
5pn which are not bipartite do exist

(see Theorem 2.5 below). We determine for all p how far from bipartite such graphs can

be.

Theorem 2.3. For any γ > 0, there exists C such that for any p(n) the random graph

Γ = G(n, p) a.a.s. has the property that all triangle-free spanning subgraphs H ⊆ Γ with

δ(H) > (2
5 + γ)pn can be made bipartite by removing at most min

(
Cp−1n, (1

4 + γ)pn2
)

edges.

In addition we derive an analogous random graph version of Theorem 2.2.

Theorem 2.4. For any γ > 0, there exist C and r such that for any p(n) the random

graph Γ = G(n, p) a.a.s. has the property that all triangle-free spanning subgraphs H ⊆ Γ

with δ(H) > (1
3 +γ)pn can be made r-partite by removing at most min

(
Cp−1n, ( 1

2r+γ)pn2
)

edges.

Up to the values of C, these theorems are best possible as shown by the theorem below.
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Theorem 2.5. For any γ > 0 and r ∈ N, there exist constants c, c′ > 0 such that if

n−1/2/c′ 6 p(n) 6 c′ then Γ = G(n, p) a.a.s has a triangle-free spanning subgraph H with

δ(H) > (1
2 − γ)pn which cannot be made r-partite by removing fewer than cp−1n edges.

Note that for p� n−1/2 the minimum in each of Theorems 2.3 and 2.4 is achieved by the

second term and that these statements are easy: For such values of p only a tiny fraction

of the edges of G(n, p) are in triangles and the question reduces to asking for the largest

bipartite (respectively, r-partite) subgraph of G(n, p). For p close to 1, by the original

Theorems 2.1 and 2.2, the conclusion of Theorem 2.5 becomes false. For this reason we

need a condition of the form p 6 c′.

It would be interesting to obtain analogous results for Kr-free subgraphs of G(n, p) for

r > 3. It would also be interesting to know whether Theorem 2.4 could be improved to

generalise the result of Brandt and Thomassé. We conjecture that this is the case.

Organisation In Section 2 we will introduce some of the main tools that will be used

throughout the chapter. Section 3 of this chapter will give a method of constructing a

triangle-free subgraph from a given, randomly generated graph. We will then prove a

series of results about this construction which will result in proving Theorem 2.5. In

Section 4 we will state and prove some properties that a.a.s. Γ = G(n, p) possesses. We

will then use these properties in Section 5 to prove Theorem 2.3, and in Section 6 to prove

Theorem 2.4.

2.2 Tools

Probability We write Bin(n, p) for the binomial distribution with n trials and success

probability p. Our proofs we will make frequent use of the following Chernoff bound,

which is an immediate corollary of [53, Theorem 2.1].

Lemma 2.6 (Chernoff bound). Let X be a random variable with distribution Bin(n, p)

and 0 < δ < 3
2 . Then

P(X < (1− δ)EX) < exp
(−δ2

3 EX
)

and P(X > (1 + δ)EX) < exp
(−δ2

3 EX
)
.

Sparse regularity We define the density d(U, V ) of a pair of disjoint vertex sets (U, V )

to be the value e(U, V )/|U ||V |. A pair (U, V ) is called (ε, d, p)-lower-regular if for any
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sets U ′ ⊆ U , V ′ ⊆ V satisfying |U ′| > ε|U |, |V ′| > ε|V | we have d(U ′, V ′) > (d − ε)p.

We say a pair (U, V ) is (ε, d, p)-regular if d(U, V ) > dp and for any sets U ′ ⊆ U , V ′ ⊆ V

satisfying |U ′| > ε|U |, |V ′| > ε|V | we have d(U ′, V ′) = (d(U, V ) ± ε). We say (U, V ) is

(ε, p)-regular if it is (ε, d, p)-regular for some d.

An (ε, p)-regular-partition of a graph H is a vertex partition V0 ∪ V1 ∪ · · · ∪ Vt of V (G)

with |V0| 6 ε|V | and |V1| = |V2| = · · · = |Vt| such that all but at most ε
(
t
2

)
pairs (Vi, Vj)

with i, j > 1 are (ε, p)-regular. The corresponding (ε, d, p)-reduced graph R is the graph

with vertex set [t] where ij is an edge precisely if (Vi, Vj) is an (ε, d, p)-lower-regular pair

in H. The following version of the Sparse Regularity Lemma can be deduced from [2,

Lemma 12]

Lemma 2.7 (Sparse Regularity Lemma, Minimum Degree Form Version). For all β ∈

[0, 1], ε > 0 and every integer t0 there exists t1 > 1 such that for all d ∈ [0, 1] the following

holds for any p > 0. For any graph G on n vertices with minimum degree βpn, such that

for any X,Y ⊆ V (G) with |X|, |Y | > εn
t1

we have e(X,Y ) 6 (1+ 1
1000ε

2)p|X||Y |, there is a

regular-partition of V (G) with (ε, d, p)-reduced graph R satisfying δ(R) > (β−d−ε)|V (R)|

and t0 6 |V (R)| 6 t1. Furthermore, for each i ∈ V (R) the number of j ∈ V (R) such that

(Vi, Vj) is not (ε, p)-regular is at most εv(R), and for each i ∈ V (R) and v ∈ Vi, at most

(d+ ε)pn neighbours of v lie in
⋃
j:ij 6∈R Vj.

The statement above is identical to that in [2] except for the final ‘Furthermore’ conclu-

sion. That we can assume no part is in many irregular pairs follows from the proof there.

The final condition can be obtained by applying the statement in [2] with ε/100 replacing

ε and removing vertices from V1, . . . , Vv(R) to V0, keeping the sizes of the Vi equal, until

no vertices failing the condition remain. Initially, by regularity and by the upper bound

on densities in G, we remove at most ε
20n vertices. Thereafter, we remove vertices only

because they have at least εpn/2 neighbours in the current set V0. If at some point in the

process V0 has εn/10 vertices, then it contains at least ε2pn2/40 edges, so contains a bi-

partite subgraph with at least ε2pn2/80 edges, in contradiction to the density assumption

on G. We conclude the process stops before this point, as desired.

Note that the regularity lemma above is not specifically for G(n, p) but for graphs in

which the density edges between pairs of large sets is never much greater than p. For

p = ω( logn
n ) the random graph G(n, p) a.a.s. satisfies this, see for example Lemma 2.14

part (c ).

When applying the Sparse Regularity Lemma we will wish to say that if H is triangle-free

then the reduced graph is also triangle-free. In order to do this we use the following regu-
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larity inheritance lemma, which is [4, Lemma 1.27] and is based on techniques from [62].

Lemma 2.8 (Regularity Inheritance). For any 0 < ε′, d there exist ε0 and C ′ such that

for any 0 < ε < ε0 and any 0 < p = p(n) < 1 the random graph Γ = G(n, p) a.a.s. has

the following property. For any X,Y ⊆ V (Γ) with |X|, |Y | > C ′max{p−2, p−1 log n}

and any subgraph H of Γ[X,Y ] which is (ε, d, p)-lower-regular, there are at most

C ′max{p−2, p−1 log n} vertices v of V (Γ) such that (X∩NΓ(v), Y ∩NΓ(v)) is not (ε′, d, p)-

lower-regular in H.

We shall also want the following consequence of this lemma, stating that for every regular

partition of every H ⊆ G(n, p) the neighbourhoods of most vertices induce lower-regular

subgraphs on the regular pairs of the partition.

Lemma 2.9. For any 0 < ε′, d < 1 there exist ε0 and C ′ such that for any t1 ∈ N and

any p > 2C ′t1n
−1/2 the random graph Γ = G(n, p) a.a.s. satisfies the following. For any

0 < ε < ε0, any spanning subgraph H of Γ and any (ε, d, p)-regular-partition V0∪V1∪· · ·∪Vt
of H with t 6 t1 and reduced graph R, all but at most

(
t1
2

)
C ′max{p−2, p−1 log n} vertices

v of H have the property that for each ij ∈ E(R) the pair (NΓ(v) ∩ Vi, NΓ(v) ∩ Vj) is

(ε′, d, p)-lower-regular in H.

Proof. By applying Lemma 2.8 with ε′ and d we are given ε0 and C ′. Suppose p >

2C ′tn−1/2 and that Γ satisfies the probable event of Lemma 2.8. Now let H ⊆ Γ and a

partition V0 ∪V1 ∪ · · · ∪Vt of H with reduced graph R be given. Let ij ∈ E(R). For large

enough n we have C ′max{p−2, p−1 log n} 6 C ′max{ n
4C′2t21

,
√
n logn
2C′t1

} 6 n
2t1

6 |Vi|, |Vj |.

So we conclude from Lemma 2.8 that for all but at most C ′max{p−2, p−1 log n} vertices

v ∈ V (H) the pair (NΓ(v) ∩ Vi, NΓ(v) ∩ Vj) is (ε′, d, p)-lower-regular in H. The lemma

follows by summing over all ij ∈ E(R).

The following lemma combines Lemma 2.7 with Lemma 2.8 to give a regular partition of

a triangle-free subgraph H for which the reduced graph is triangle-free.

Lemma 2.10. For any 0 < ε, d, β < 1 and any t0 there exist c and t1 such that for

p > cn−1/2 in Γ = G(n, p) a.a.s. any triangle-free subgraph H with δ(H) > βpn has an

(ε, d, p)-regular-partition V0 ∪ V1 ∪ · · · ∪ Vt with t0 6 t 6 t1 such that the corresponding

reduced graph R is triangle-free and has minimum degree at least (β − d− ε)v(R).

Proof. Suppose we are given ε, d, β, t0 as in the lemma statement. Set ε′ = d
3 and apply

Lemma 2.8 (Regularity Inheritance) to ε′ and d to obtain ε0 and C ′. Now apply Lemma 2.7
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(Sparse Regularity, Minimum Degree Form) with d, β, t0 as given and with ε also required

to be smaller than ε0. This gives t1. Take c = 6t1C
′.

Lemma 2.7 has given us an (ε, d, p)-regular-partition of H with reduced graph R that

satisfies all the conditions we require except that of R being triangle free. Suppose for

a contradiction there is a triangle in R. This corresponds to an (ε, d, p)-lower-regular

triple (X,Y, Z). First observe that |X| = |Y | > n
2t1

and for p(n) > cn−1/2 we have

n
4t1

> C ′max{p−2, p−1 log n}. By lower-regularity of (X,Z) and (Y, Z), at least 1
2 |Z|

vertices z of Z have degH(z,X) > d
2p|X| and also degH(z, Y ) > d

2p|Y |. Furthermore, for

all but at most C ′max{p−2, p−1 log n} 6 |Z|
3 vertices z of Z, the pair

(
NΓ(z,X), NΓ(z, Y )

)
is (ε′, d, p)-lower-regular. Choosing a vertex z ∈ Z which satisfies both conditions, by

regularity of
(
NΓ(z,X), NΓ(z, Y )

)
the edge density of

(
NH(z,X), NH(z, Y )

)
is at least

(d− ε)p > 0. This gives a triangle, the desired contradiction.

Finally, we need the following special case of the Slicing Lemma.

Lemma 2.11 (Slicing Lemma). Let (Vi, Vj) be (ε, d, p)-lower-regular. For any X ⊆ Vi,

Y ⊆ Vj such that |X| > d|Vi|, |Y | > d|Vj | the pair (X,Y ) is ( εd , d, p)-lower-regular.

Proof. Let X ′ ⊆ X, Y ′ ⊆ Y satisfy |X ′| > ε
d |X| > ε|Vi| and |Y ′| > ε

d |Y | > ε|Vj |. So

d(X ′, Y ′) > (d− ε)p >
(
d− ε

d

)
p.

2.3 Proof of Theorem 2.5

Recall that Theorem 2.5 asserts that for any γ > 0 and r ∈ N, there are c, c′ > 0 such

that for any n−1/2/c′ 6 p 6 c′ the random graph G(n, p) a.a.s. contains a subgraph which

is triangle-free, whose minimum degree is at least
(

1
2 − γ

)
pn, and which cannot be made

r-partite by removing any cp−1n edges.

The idea of the proof of this theorem is as follows. Let Γ = G(n, p) and partition [n]

into sets B = [n/2] and A = [n] \ B. We remove all edges in A. We further ‘sparsify’

Γ[B], keeping edges with a suitable probability p′. The goal of this ‘sparsification’ is to

obtain a subgraph of Γ[B] which is still complex enough for the rest of the argument, but

is such that for each vertex a in A the number of edges in N(a,B) is negligible compared

to the degree of a (see Lemma 2.12(b )). Observe that this subgraph is distributed as the

following inhomogeneous random graph model. We define G(n, p, p′) to be the random

graph on [n] obtained by letting pairs of vertices within [n/2] be edges independently with
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probability pp′, letting pairs in [n] \ [n/2] all be non-edges, and letting all other pairs be

edges independently with probability p.

We next use the fact, first proved in [30], that there exists a triangle-free graph F which

is not r-partite. Let [`] be the vertex set of F . We place a ‘random blow-up’ of F

into B as follows: We partition B into ` equal sets B1, . . . , B` and keep only those edges

in B running between Bi and Bj with ij ∈ F . Finally, we remove in B all edges with

an endpoint whose degree in B deviates too much from expectation, and then all edges

between A and B which are in a triangle with a vertex from B. This last step is the only

step in which we delete edges between A and B.

It is easy to check that the resulting graph is triangle-free by construction. Using some

properties of G(n, p, p′) and the blow-up of F we can also show that it cannot be made

r-partite by deleting cp−1n edges. Moreover, using the fact that for each vertex a in A

the number of edges in N(a,B) is small and hence in the last step not many edges were

deleted at any vertex, we can also conclude that the minimum degree of the resulting

graph is at least
(

1
2 − γ

)
pn.

The typical properties of G(n, p, p′) we need are the following.

Lemma 2.12. For any ε > 0 and K > 10, there exists 0 < c < ε such that the following

holds. If Kn−1/2 6 p(n) 6 ε2c/(104K2) and p′ = cK2p−2n−1, then a.a.s. the random

graph G(n, p, p′) has the following properties. Let B = [n/2] and A = [n] \B.

(a ) deg(b, A),deg(a,B) =
(

1
2 ± ε

)
pn for every a ∈ A and b ∈ B.

(b ) For each a ∈ A, at most p′p3n2 edges have both ends in N(a,B).

(c ) For each b ∈ B with deg(b, B) > 1
10p
′pn, the number of vertices a ∈ A such that there

exists b′ ∈ B with abb′ a triangle is at most pn
(
1− (1− p)deg(b,B)

)
.

(d ) At most cp−1n edges in B are incident to some b ∈ B with deg(b, B) > pp′n or deg(b, B) 6
1
10p
′pn.

(e ) e(U, V ) > 2cp−1n for every pair of disjoint sets U, V ⊆ B with |U |, |V | > 2n/K.

We delay the proof of this lemma to after the proof of Theorem 2.5.

Proof of Theorem 2.5. Given γ > 0 and r ∈ N, let F be a triangle-free graph which is not

r-partite. Let ` = v(F ). We set K = 8r` and

ε = 1
400γr

−2`−2 . (2.1)
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Now we let c > 0 with c < ε be returned by Lemma 2.12 for input ε and K. We choose

c′ = min
(

1
K ,

c
104

)
.

Given n−1/2/c′ 6 p(n) 6 c′, let p′ = cK2p−2n−1. Observe that p′ 6 1 by choice of p. Let

B = [n/2], and A = [n] \ B. We generate Γ = G(n, p), and let G1 be the subgraph of Γ

obtained by sparsifying B, keeping edges independently with probability p′ and removing

all edges of A. Since G1 is distributed as G(n, p, p′), by Lemma 2.12 it a.a.s. satisfies the

properties (a )–(e ). We now condition on G1 satisfying these properties.

Partition B into ` equal sets B1, . . . , B`. Let G2 be the subgraph of G1 obtained by

keeping only edges of the form ab with a ∈ A and b ∈ B, or of the form bb′ with b ∈ Bi
and b′ ∈ Bj for some ij ∈ F . We claim that G2[B] is far from r-partite.

Claim 2.13. G2[B] cannot be made r-partite by deleting any 2cp−1n edges.

Proof. Given a (not necessarily proper) r-colouring χ : B → [r], we define a majority

r-colouring χ′ : [`]→ [r] by setting χ′(i) equal to the smallest j such that
∣∣χ−1(j)∩Bi

∣∣ >
|Bi|/r. Since F is not r-partite, the colouring χ′ is not proper, and hence there exists

ij ∈ F such that χ′(i) = χ′(j). The subsets B′i and B′j of Bi and Bj respectively

which are given colour χ′(i) by χ are by construction disjoint and each of size at least

n/(4r`) = 2n/K. Thus by Lemma 2.12(e ) we have e(B′i, B
′
j) > 2cp−1n, and the claim

follows. 2

Now we let G3 be obtained from G2 by deleting all edges of G2[B] which use a vertex

b ∈ B with deg(b, B) > pp′n or deg(b, B) 6 pp′n/10. By Lemma 2.12(d ) the number of

edges deleted is at most cp−1n.

Finally, we let H be obtained from G3 by deleting all edges ab of G3 with a ∈ A and

b ∈ B such that there exists b′ ∈ B with abb′ a triangle of G3. Observe that since A is

independent in H, any triangle of H has at most one vertex in A. By construction of

H, there are no triangles with exactly one vertex in A, so any triangle of H has all three

vertices in B. But then the three vertices of a triangle in H would lie in sets Bi, Bj and

Bk with ijk a triangle in F , and we chose F to be a triangle-free graph. We conclude

that H is triangle-free. Furthermore, if H can be made r-partite by deleting cp−1n edges,

then certainly H[B] can be made r-partite by deleting cp−1n edges. But since we deleted

at most cp−1n edges from G2[B] in order to obtain G3[B], and no further edges to obtain

H[B], this implies G2[B] can be made r-partite by deleting at most 2cp−1n edges, in

contradiction to Claim 2.13.

It remains only to show that δ(H) >
(

1
2 − γ

)
pn. First consider any vertex b ∈ B. By
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Lemma 2.12(a ) we have degG1
(b, A) >

(
1
2 − ε)pn. By construction, no edge from b to

A was deleted in creating G2 from G1, or G3 from G2. By construction of G3, either

degG3
(b, B) = 0, in which case no edge from b to A was deleted in creating H, or we have

1
10pp

′n 6 degG1
(b, B) 6 pp′n. By Lemma 2.12(c ) we conclude that the total number of

edges deleted from b to A in forming H from G3 is at most

pn
(
1− (1− p)pp′n

)
6 p3p′n2 6 64r2`2cpn

(2.1)

6 1
2γpn ,

because c < ε. Thus we have

dH(b) >
(

1
2 − ε

)
pn− 1

2γpn
(2.1)

>
(

1
2 − γ

)
pn

as desired.

Now consider any a ∈ A. Again by Lemma 2.12(a ) we have degG1
(a,B) >

(
1
2 − ε)pn.

Again no edges from a to B are deleted in forming G2 or G3. In forming H from G3, we

delete edges from a to each of b and b′ in B whenever abb′ forms a triangle in G3. Since

G3[B] is a subgraph of G1[B], this means that we delete at most 2 · e
(
NG1(a;B)

)
edges

from a to B, which by Lemma 2.12(b ) is at most 2p′p3n2. Thus we have

dH(a) >
(

1
2 − ε

)
pn− 2p′p3n2

(2.1)

>
(

1
2 −

1
2γ
)
pn− 1

2γpn =
(

1
2 − γ

)
pn ,

which completes the proof.

We now give the proof of Lemma 2.12.

Proof of Lemma 2.12. Choose c = min{1
2ε,K

−2}. These properties follow from easy

applications of the Chernoff bound, Lemma 2.6. We omit the proof of (a ) as it is standard.

(b ): By property (a ) we may assume that there are at most (1
2 +ε)pn vertices in N(a,B)

for each a ∈ A. Now consider an arbitrary set S of (1
2 + ε)pn vertices in B. The

expected number of edges in S is
(|S|

2

)
p′p 6 1

2 |S|
2p′p. By Lemma 2.6 the probability that

S has more than |S|2p′p 6 p′p3n2 edges is less than exp(−1
6 |S|

2p′p) 6 exp(− 1
100p

′p3n2) =

exp(− 1
100K

2cpn). Hence the claimed property follows by taking a union bound over all

a ∈ A.

(c ): Assume that we first only reveal the edges of G(n, p, p′) in B and consider a vertex

b ∈ B for which deg(b, B) > 1
10p
′pn. Now reveal also the edges between A and B. Then a

fixed a ∈ A forms a triangle with b in which the third vertex is also in B with probability

p · (1− (1− p)deg(b,B)). Therefore the expected number of such a ∈ A is

1

2
np(1− (1− p)deg(b,B)) >

1

2
np · (1− (1− p)p′pn/10) >

1

40
p′p3n2 ,
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where the inequality follows from 1 − (1 − p)p′pn/10 > 1
10p
′p2n − 1

100p
′2p4n2 > 1

20p
′p2n,

which uses p′ = K2cp−2n−1. Hence by Lemma 2.6 the probability that there are more

than pn(1−(1−p)deg(b,B)) such a ∈ A is less than exp(−10−3p′p3n2) = exp(−10−3K2cpn).

Taking a union bound over vertices in B the claimed property follows.

(d ): Two applications of Lemma 2.6 and simple union bounds show that a.a.s. for any

S ⊆ B with |S| = n/(2K2) we have

e(S) 6 (1 + ε)p′p

(
|S|
2

)
and (2.2)

e(S,B \ S) = (1± ε)p′p|S||B \ S| , (2.3)

since p 6 ε2c/(104K2). This implies that for any S ⊆ B with |S| 6 n/(2K2) the number

of edges in B adjacent to S is at most

(1 + ε)p′p

(
n/(2K2)

2

)
+ (1 + ε)p′p

n

2K2

(n
2
− n

2K2

)
6 (1 + ε)p′p

n

2K2
· n

2
6

1

2
cp−1n .

Hence, with C = {b ∈ B : deg(b, B) 6 1
10p
′pn} and D = {b ∈ B : deg(b, B) > p′pn}, the

claimed property follows if |C| 6 n/(2K2) and |D| 6 n/(2K2).

So assume that there is C ′ ⊆ C with |C ′| = n/(2K2). But then e(C ′, B \ C ′) 6

|C ′| 1
10p
′pn 6 1

20K2 p
′pn2, contradicting (2.3). Similarly, assuming there is D′ ⊆ D with

|D′| = n/(2K2) and using (2.2) we get

e(D′, B \D′) > |D′|p′pn− 2e(D′) >
n2p′p

2K2
− (1 + ε)p′p

( n

2K2

)2
>

1

3K2
p′pn2 ,

contradicting (2.3).

(e ): For any disjoint U, V ⊆ B each with at least 2n
K vertices the expected number of

edges between U and V is |U ||V |p′p > 4n2

K2 p
′p = 4cp−1n, so the result follows from another

application of Lemma 2.6 and a union bound (using p 6 ε2c/(104K2)).

2.4 Auxiliary properties of G(n, p)

In this section we list some typical properties of G(n, p), which we shall use in the proofs

of Theorems 2.3 and 2.4.

Lemma 2.14. For any 0 < ε < 3
2 and M ∈ N and any p = ω

(
lnn
n

)
, the graph Γ = G(n, p)

a.a.s. satisfies the following.

(a ) degΓ(v) = (1± ε)pn for every v ∈ V (Γ).
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(b ) eΓ(A) 6 max{|A|2p, 9n} for every A ⊆ V (Γ).

(c ) eΓ(A,B) = (1 ± ε)p|A||B| for every disjoint A,B ⊆ V (Γ) with |A|, |B| > n
M . If on the

other hand |A| < M−1n, then eΓ(A,B) 6 (1 + ε)pM−1n2.

(d ) For any A ⊆ V (Γ) with |A| > n
M all but at most 10Mε−2p−1 vertices in V (Γ) have

(1± ε)p|A| neighbours in A.

Proof. These properties follow from standard applications of the Chernoff bound,

Lemma 2.6. Here we only show (b ); the other properties follow similarly.

Suppose that A is an arbitrarily chosen vertex subset. The expected number of edges in

A is
(|A|

2

)
p 6 |A|2p. By Lemma 2.6 the probability that there are more than |A|2p edges

in A is less than exp(−1
3

(|A|
2

)
p) 6 exp(−1

7 |A|
2p). For |A| > 3p−1/2n1/2 this probability

is less than exp(−9
7 n) and so taking a union bound over all subsets the probability that

Property (b ) fails for a set of size at least 3p−1/2n1/2 is less than 2n exp(−9
7 n), which tends

to zero. A set A with |A| < 3p−1/2n1/2 is less likely to have more than 9n edges than a set

B with |B| = 3p−1/2n1/2 6 n. Therefore, since |B|2p = 9n and by the previous argument,

the probability that a set A of size less than 3p−1/2n1/2 has more than 9n edges tends to

zero.

The next lemma shows that for any partition V
(
G(n, p)

)
= A ∪B with neither A nor B

very small, most edges of G(n, p) have ‘typical’ neighbourhoods in each set.

Lemma 2.15. For any 0 < ε < 1
2 , M ∈ N and p = ω

(
lnn
n

)
in Γ = G(n, p) a.a.s. for any

two subsets A,B of V (Γ) with n
M 6 |A|, |B| all but at most 103Mε−2p−1n edges uv in Γ

satisfy all of the following:

• degΓ(u,A),degΓ(v,A) = (1± ε)p|A|.

• degΓ(u,B),degΓ(v,B) = (1± ε)p|B|.

• degΓ(u, v,B) > (1− ε)p2|B|.

Proof. By Lemma 2.14(d ) we may assume that all but a set S of at most 20Mε−2p−2

vertices in Γ have (1 ± ε)p|B| neighbours in B and (1 ± ε)p|A| neighbours in A. By

Lemma 2.14(c ) we further may assume that we have

e(S,A) 6 (1 + ε)p · 20Mε−2p−2n = 20(1 + ε)Mε−2p−1n . (2.4)
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We now consider an arbitrary vertex v in V \ S and two arbitrary sets P,Q ⊆ N(v)

satisfying |P | > (1− 1
2ε)p|B| and |Q| > 100Mε−2p−1. The probability that all vertices in

Q have fewer than (1− ε)p2|B| 6 (1− 1
2ε)p|P | neighbours in P is less than

exp
(
− ε2

12
p|P ||Q|

)
6 exp

(
− ε2

12
p · 1

2
p
n

M
· 100Mε−2p−1

)
6 exp(−3pn) .

Since P,Q ⊆ N(v) we have |P |, |Q| 6 (1+ε)pn. So, taking a union bound, the probability

that there exist v, P,Q as above is less than n2(1+ε)pn2(1+ε)pn exp(−3pn) which tends to

zero as n tends to infinity for p = ω(log n/n). Hence a.a.s. each vertex v in V \ S has at

most 100Mε−2p−1 neighbours u such that deg(u, v,B) < (1 − ε)p2|B|. Summing over v

we obtain at most 100Mε−2p−1n such edges, which along with the edges incident to S

by (2.4) gives at most 103Mε−2p−1n edges.

The following lemma is crucial in the proofs of Theorems 2.3 and 2.4. Before stating

it we need some definitions. For any s ∈ N, the s-star is the star K1,s. The vertex of

degree s in the s-star is called its centre, all other vertices are its leaves. For A ⊆ V (Γ) and

0 < q, ε < 1 we say that an s-star with centre x is (q, ε)-bad for A if there is S ⊆ NΓ(x,A)

with |S| 6 qp|A| such that each leaf y of the s-star satisfies degΓ(y, S) > (1 + ε)qp2|A|; in

other words y has substantially more neighbours in S than expected. We also say that S

witnesses this badness.

When we use this definition, we will choose a star with centre x and set S = NΓ(x,A) \

NH(x,A), where H is a triangle-free subgraph of Γ with large minimum degree, and we

will choose our star such that that NΓ(y, S) is quite large for each leaf y. Now if the star

is good it follows that S itself must be quite large, so that the degree of x in H cannot be

too large, leading to a contradiction to the minimum degree of H. The following lemma

however implies that bad stars cover only O(p−1n) edges, which is where the sharp bounds

in Theorems 2.3 and 2.4 come from.

Lemma 2.16. For every 0 < ε < 1 and every p the random graph G(n, p) a.a.s. satisfies

the following. For every A ⊆ V (Γ) with n
3 6 |A|, every q with ε < q < 1, and every

s > 100q−1ε−2p−1 there are fewer than 1
2p
−1 vertex disjoint s-stars in V (Γ)\A which are

(q, ε)-bad for A.

Proof. First let A be fixed. Consider an s-star with centre x and a set S ⊆ NΓ(x,A) with

|S| 6 qp|A|. By the Chernoff bound, Lemma 2.6, the probability that S witnesses that

this star is (q, ε)-bad for A is less than exp
(−ε2

3 · qp
2|A|s

)
. Observe that |S| 6 qp|A| 6 pn

and that we may assume s 6 degΓ(x) 6 2pn by Lemma 2.14(a ). So by taking a union
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bound over choices of S for a single s-star, and then considering collections of 1
2p
−1 vertex

disjoint s-stars, and taking another union bound over all such collections, we obtain that

the probability that there are at least 1
2p
−1 disjoint (q, ε)-bad stars for A in V (Γ) \ A is

less than(
n · 22pn

) 1
2
p−1

·
(

2pn exp
(−ε2

3 qp2|A|s
))1

2p
−1

6
(
24pn exp

(−ε2
9 qp2ns

))1
2p
−1

.

By taking a union bound over choices of A we find that the probability that there is A

such that 1
2p
−1 stars K1,s outside A are (q, ε)-bad for A is less than

2n
(
24pn exp

(−ε2
9 qp2ns

))1
2p
−1

6 exp
(
n+ 2n− ε2

18qpns
)
,

which tends to zero for s > 100ε−2q−1p−1. (Observe that we do not have to take a union

bound over s, because for s′ > s any s-star which is a subgraph of a (q, ε)-bad s′-star is

also (q, ε)-bad.)

2.5 Proof of Theorem 2.3

Recall that Theorem 2.3 states the following.

Theorem 2.3. For any γ > 0, there exists C such that for any p(n) the random graph

Γ = G(n, p) a.a.s. has the property that all triangle-free spanning subgraphs H ⊆ Γ with

δ(H) > (2
5 + γ)pn can be made bipartite by removing at most min

(
Cp−1n, (1

4 + γ)pn2
)

edges.

The main strategy of the proof is as follows. We first apply Lemma 2.10 (which is a con-

sequence of the Sparse Regularity Lemma) to H to obtain a dense triangle-free reduced

graph R of H with minimum degree above 2
5v(R), which by the Andrásfai–Erdős–Sós The-

orem, Theorem 2.1, is bipartite. We conclude that H can be made bipartite by removing

o(pn2) edges. Hence in a maximum cut X ∪ Y of H we have eH(X), eH(Y ) = o(pn2).

Our goal will then be to improve this bound on eH(X) and eH(Y ) by distinguishing be-

tween ‘typical’ and ‘atypical’ edges in these sets and applying the results established in

the previous section to count these, using that X ∪ Y is a maximum cut and that H is

triangle-free.

Proof of Theorem 2.3. Let

ε =
γ4

107
, d =

γ2

103
, η = d+ 3ε, β =

2

5
+ γ, t0 =

1

ε
(2.5)
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and let c and t1 be the values attained by applying Lemma 2.10 with inputs ε, d, β and

t0. Let M = t21, and let

C = max
(
1010ε−2, c2

)
. (2.6)

We first consider the easy case that p is small. If p 6 n−7/4, then the expected number

of paths with two edges in G(n, p) is at most p2n3 6 n−1/2. In particular a.a.s there

are no such paths, so a.a.s. G(n, p) is bipartite and the statement of Theorem 2.3 holds

trivially. We may therefore assume p > n−7/4, so by Lemma 2.6 a.a.s. G(n, p) has at most(
1
2 + γ

)
pn2 edges. Now if G is any graph with at most

(
1
2 + 2γ

)
pn2 edges, then we can

make G bipartite by removing all the edges of G not in a maximum cut. Since a maximum

cut of G contains at least half its edges, we remove at most
(

1
4 + γ

)
pn2 edges. Again, if

min
(
Cp−1n, (1

4 + γ)pn2
)

= (1
4 + γ)pn2, which occurs when p 6 cn−1/2, the statement of

Theorem 2.3 follows.

It remains to consider the hard case that p > cn−1/2. We now assume Γ = G(n, p) satisfies

the properties stated in Lemma 2.14 with input ε and M , Lemma 2.15 with input ε and M ,

Lemma 2.16 with input ε and Lemma 2.10 for the parameters given above.

Consider any triangle-free H ⊆ Γ with δ(H) > (2
5 + γ)pn and let X ∪ Y be a maximum

cut of the vertex set of H. Assume without loss of generality that eH(X) > eH(Y ). Our

goal is to show eH(X) 6 1
2Cp

−1n. We start with the following observation.

Claim 2.17. eH(X) 6 ηpn2.

Proof of Claim 2.17. By the property asserted by Lemma 2.10 we obtain an
(
ε, d, p

)
-

regular partition V (Γ) = V0 ∪ V1 ∪ · · · ∪ Vt of H with t0 6 t 6 t1 whose corresponding

reduced graph R is triangle-free and has minimum degree at least (2
5 + γ − d− ε)v(R) >

2
5v(R). Therefore, by the Andrásfai–Erdős–Sós Theorem, Theorem 2.1, R is bipartite.

By Lemma 2.14(a ) at most εn(1+ε)pn edges have at least one end in V0. Moreover, since

at most an ε-fraction of all pairs are irregular, by Lemma 2.14(c ) at most ε(1+ε)pn2 edges

are contained in irregular pairs. Finally, at most dpn2 edges are in pairs with density less

than d. We conclude that at most (d + 2(1 + ε)ε)pn2 6 ηpn2 edges of H do not lie in

pairs corresponding to edges of R, which proves the claim. 2

We next bound the sizes of X and Y .

Claim 2.18.
(

2
5 + 1

2γ
)
n 6 |X|, |Y | 6

(
3
5 −

1
2γ
)
n.

Proof of Claim 2.18. Suppose for a contradiction that X satisfies |X| > (3
5 −

1
2γ)n and
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hence |Y | < (2
5 + 1

2γ). Then by Lemma 2.14(c ) we see that eH(X,Y ) 6 eΓ(X,Y ) 6

(1 + ε)(3
5 −

1
2γ)(2

5 + 1
2γ)pn2.

On the other hand, by our minimum degree condition 2eH(X)+eH(X,Y ) > (2
5 +γ)pn|X|,

and similarly 2eH(Y ) + eH(X,Y ) > (2
5 + γ)pn|Y |. Since eH(X), eH(Y ) 6 ηpn2 this gives

eH(X,Y ) > (2
5 + γ)pn · max{|X|, |Y |} − 2ηpn2. Since max{|X|, |Y |} > (3

5 −
1
2γ)n we

obtain eH(X,Y ) >
(
(3

5 −
1
2γ)(2

5 + γ)− 2η
)
pn2, a contradiction.

So |X| 6 (3
5 −

1
2γ)n, and analogously |Y | 6 (3

5 −
1
2γ)n, proving the claim. 2

We next define

X̃ =
{
x ∈ X : degH(x,X) > γ · degH(x)

}
,

a set of vertices with high degree in X, which require special treatment later on. The

next claim shows that X̃ is small and contains at most half of the edges in X.

Claim 2.19. |X̃| 6 1
100γn, and if eH(X) > 1

2Cp
−1n then eH(X̃) 6 1

2eH(X).

Proof of Claim 2.19. By Claim 2.17 and the definition of X̃ we have

ηpn2 > eH(X) >
1

2
|X̃|γδ(H) >

γ

2

(2

5
+ γ
)
pn|X̃| , (2.7)

hence |X̃| 6 2ηn
γ(2/5+γ) 6 5γ−1ηn 6 γn/100 by (2.5).

For the second part of the claim assume that eH(X) > 1
2Cp

−1n. By Lemma 2.14(b )

we have eH(X̃) 6 eΓ(X̃) 6 max{|X̃|2p, 9n}. If this maximum is attained by 9n, then

we are done because 9n 6 1
4Cp

−1n < 1
2eH(X). Otherwise eH(X̃) 6 |X̃|2p, and since

|X̃| 6 1
100γn, we have

|X̃|2p 6 1

100
γpn|X̃| 6 γ

4

(2

5
+ γ
)
pn|X̃|

(2.7)

6
1

2
eH(X) ,

and we are also done. 2

We continue by removing ‘atypical’ edges from H. Let H ′ be the graph obtained from H

by removing edges from EH(X) which do not satisfy the conditions of Lemma 2.15 with

respect to the partition X ∪ Y . We also remove the edges in EH(X̃). By Lemma 2.15

and Claim 2.19 we have eH(X) 6 1
2Cp

−1n or

eH(X)− eH′(X) 6 103ε−2p−1n+
1

2
eH(X)

(2.6)

6
1

10
Cp−1n+

1

2
eH(X) . (2.8)

Our goal in the remainder is to bound the number of H ′-edges in X.

Let xz be any H ′-edge in X. We have

degΓ(x, z, Y ) > (1− ε)p2|Y | (2.9)
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by construction of H ′, so this common neighbourhood constitutes many Γ-triangles xzy,

for each of which either xy or zy is not present in H ′. We now would like to direct the

edges in X according which of these two cases is more common – however, it turns out

that we need to favour vertices not in X̃ in this process; so we direct with a bias.

More precisely, for any H ′-edge in X, if one of its vertices is in X̃ call it x, otherwise let x

be any vertex of the edge. Let x′ be the other vertex of the edge. We direct xx′ towards

x if

|NΓ(x, x′, Y ) \NH′(x, Y )| > 2

3
degΓ(x, x′, Y ) ,

that is if many edges from x to NΓ(x, x′, Y ) were deleted. We direct xx′ towards x′

otherwise, in which case we have

|NΓ(x, x′, Y ) \NH′(x
′, Y )| > 1

3
degΓ(x, x′, Y ) ,

An s-in-star in this directed graph is an s-star such that all edges are directed towards

the centre. Recall that an s-star with centre x is (q, ε)-bad for Y if there is a witness

S ⊆ NΓ(x, Y ) with |S| 6 qp|Y | such that each leaf z of the s-star satisfies degΓ(z, S) >

(1 + ε)qp2|Y |. The next claim shows that in-stars in H ′[X] are bad. We define

s = 103ε−2p−1 , q̃ = (1− 2ε)
2

3
, q = (1− 2ε)

1

3
.

Claim 2.20. Each s-in-star in H ′[X] with centre x ∈ X̃ is (q̃, ε)-bad for Y , and each

s-in-star in H ′[X] with centre x 6∈ X̃ is (q, ε)-bad for Y .

Proof of Claim 2.20. First assume F is an s-in-star with centre x ∈ X̃ which is not (q̃, ε)-

bad. We first show that this implies

|NΓ(x, Y ) \NH′(x, Y )| > q̃p|Y | . (2.10)

Indeed, assume otherwise. Then, since F is not (q̃, ε)-bad for Y we have for S = NΓ(x, Y )\

NH′(x, Y ) that there is a leaf z of F such that

|NΓ(x, z, Y ) \NH′(x, Y )| = degΓ(z, S) < (1 + ε)q̃p2|Y | 6 2

3
(1− ε)p2|Y | .

This however contradicts the fact that F is an in-star and thus

|NΓ(x, z, Y ) \NH′(x, Y )| > 2

3
degΓ(x, z, Y )

(2.9)

>
2

3
(1− ε)p2|Y | .

Accordingly (2.10) holds.

Since degH(x, Y ) = degH′(x, Y ) we conclude that

degH(x, Y ) 6 degΓ(x, Y )− q̃p|Y | 6 (1 + ε)p|Y | − (1− 2ε)
2

3
p|Y | 6

(1

3
+ 3ε

)
p|Y | .
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Because X ∪ Y is a maximum cut this implies by Claim 2.18 that

degH(x) 6 2
(1

3
+ 3ε

)
p
(3

5
− 1

2
γ
)
n <

(2

5
+ γ
)
pn ,

contradicting the minimum degree of H.

For the second part of the claim assume that F is an s-in-star with centre x 6∈ X̃ which

is not (q, ε)-bad. By similar logic to the proof of (2.10), this implies that

|NΓ(x, Y ) \NH′(x, Y )| > qp|Y |

by using that for any leaf z of F we have |NΓ(x, z, Y )\NH′(x, Y )| > 1
3 degΓ(x, z, Y ). Also

analogously, this implies that degH(x, Y ) 6 (2
3 + 3ε)p|Y |. Recall that x 6∈ X̃ means that

degH(x,X) < γ degH(x) and hence degH(x) 6 1
1−γ degH(x, Y ) 6 (1 + 2γ) degH(x, Y ).

Thus, by Claim 2.18,

degH(x) 6 (1 + 2γ)
(2

3
+ 3ε

)
p
(3

5
− 1

2
γ
)
n 6

(2

3
+

5

3
γ
)
p
(3

5
− 1

2
γ
)
n <

(2

5
+ γ
)
pn ,

again contradicting the minimum degree of H. 2

By Lemma 2.16, however, the number of s-stars in Γ which are either (q̃, ε)-bad or (q, ε)-

bad is less than p−1. So Claim 2.20 implies that the number of vertex disjoint s-in-stars

in H ′[X] is less than p−1. The following claim shows that this implies that eH′(X) is

small.

Claim 2.21. eH′(X) 6 1
10Cp

−1n.

Proof of Claim 2.21. Assume for a contradiction that eH′(X) > 1
10Cp

−1n > 104ε−2p−1n.

Using a greedy argument, we will show that we then can find more than p−1 stars in

H ′[X] which are s-in-stars (with s = 103ε−2p−1). Indeed, the average in-degree is at least

104ε−2p−1, so we can find at least one (103ε−2p−1)-in-star. If we remove from H ′[X] this

star and all edges adjacent to it this accounts for at most (1 + s)(1 + ε)pn 6 2spn edges.

So we can repeat this process p−1 times, after which at most 2sn = 2 · 103ε−2p−1n edges

have been deleted from H ′[X], hence H[X] still contains more than 103ε−2p−1n edges in

X, still giving an average in-degree of at least 103ε−2p−1, and hence we can find another

(103ε−2p−1)-in-star, which is the desired contradiction. 2

Now (2.8) and Claim 2.21 imply eH(Y ) 6 eH(X) 6 1
2Cp

−1n, hence H can be made

bipartite by removing at most Cp−1n edges as claimed.
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2.6 Proof of Theorem 2.4

The proof of Theorem 2.4 adds the techniques developed for the proof of Theorem 2.3

to ideas used in [3, 69]. Our strategy is as follows. Given a subgraph H of Γ = G(n, p)

with δ(H) >
(

1
3 + γ

)
pn, we will apply the sparse regularity lemma to obtain a regular

partition V (H) = V0 ∪ · · · ∪ Vt with (ε, d, p)-reduced graph R. We let W be the set of all

vertices whose degree, in Γ, to some set Vi is far from the expected p|Vi|, and then for

each I ⊆ [t] we let NI be the subset of vertices in V (H) \W with many H-neighbours in

exactly the clusters {Vi : i ∈ I}, which gives a partition of V (H) into 2t + 1 sets. We will

show that there are O(p−1n) edges in W and in each NI , hence we can remove all such

edges to obtain a graph with bounded chromatic number. We do this by showing that W

is too small to contain many edges, and that the same is true for any NI such that R[I]

contains an edge. If on the other hand R[I] is independent, we use an argument similar

to that in the proof of Theorem 2.3.

Proof of Theorem 2.4. Given γ > 0, let

d =
γ

20
, ε′ =

d3

30
, β =

1

3
+ γ , t0 =

1

ε′
. (2.11)

Let ε0, CL2.9 be the outputs if Lemma 2.9 is applied with ε′ and d. We take ε = min{ε0, ε
′}

and let t1 be the output if Lemma 2.7 is applied with β, ε and t0. We require as well

that t1 > 10. We choose c = 2CL2.9t1 (which is needed for the application of Lemma 2.9).

Finally we choose

M = 2t1 , r = 2t1 + 1 , C ′ = 104 · 210t1ε−3 , C = max(rC ′2, c2) . (2.12)

As in the proof of Theorem 2.3, if p 6 n−7/4 a.a.s. G(n, p) is bipartite and the statement is

trivially true, while for any graph G a maximum r-partition of G contains at least r−1
r e(G)

edges, so that when p > n−7/4 a.a.s. we can make any subgraph of G(n, p) r-partite by

deleting at most
(

1
2r + γ

)
pn2 edges. Again, this leaves the hard case when p > cn−1/2.

Now sample Γ = G(n, p). Since p > cn−1/2 = ω( lnn
n ) we can assume that Γ satisfies the

properties of Lemmas 2.7, 2.14, 2.15, and 2.16 with the parameters chosen above.

Let H be a triangle-free spanning subgraph of Γ with δ(H) >
(

1
3 + γ

)
n. By Lemma 2.7

there is an (ε, d, p)-regular partition V0 ∪ V1 ∪ · · · ∪ Vt of H with t 6 t1 such that the

reduced graph R has δ(R) >
(

1
3 + γ− d− 3ε

)
v(R) >

(
1
3 + γ

2

)
v(R), and such that for each

i and each v ∈ Vi, the vertex v has at most (d+ ε)pn neighbours in
⋃
j:ij 6∈R Vj .

Let W consist of all vertices which either have more than (1 + ε)p|Vi|, Γ-neighbours

in Vi for some i, or more than 2εpn, Γ-neighbours in V0. By Lemma 2.14(d ) we have
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|W | 6 10M(t+ 1)ε−2p−1, and by Lemma 2.14(b ) the number of edges in W is therefore

at most max
(
100M2(t + 1)2ε−4p−1, 9n

)
6 10p−1n, where the inequality holds for all

sufficiently large n. Now for each I ⊆ [t], let NI be the set of vertices of H with many

H-neighbours exactly in the clusters Vi with i ∈ I, that is,

NI = {v ∈ V (H) : |NH(v) ∩ Vi| > 10dp|Vi| if and only if i ∈ I} .

Claim 2.22. {NI : |I| > t
3} partitions V (H) \W .

Proof. The sets {NI : I ⊆ [t]} are disjoint and partition V (H)\W by definition. If |I| 6 t
3

then any vertex v ∈ NI has at most
∑

i∈I(1 + ε)p|Vi|+
∑

i 6∈I 10dp|Vi|+ 2εpn <
(

1
3 + γ

)
pn

neighbours since v 6∈ W and by definition of NI , which is a contradiction, so NI = ∅ if

|I| 6 t
3 . 2

Our goal is thus to show that eH(NI) 6 C ′2p−1n for any I with |I| > t
3 , since this implies

that H can be made r-partite with r = 2t1 + 1 by removing at most rC ′2p−1n 6 Cp−1n

edges. This is established by the following two claims.

Claim 2.23. If R[I] contains an edge, then eH(NI) 6 C ′2p−1n.

Proof of Claim 2.23. Suppose that ij ∈ R[I]. If v ∈ NI is such that
(
NΓ(v, Vi), NΓ(v, Vj)

)
is (ε′, d, p)-lower-regular inH, since v 6∈W , the pair

(
NH(v, Vi), NH(v, Vj)

)
is
(
ε′ 1+ε

10d , d, p
)
-

lower-regular in H. Since d > ε′ 1+ε
10d , there is an edge of H in this latter pair and hence

H contains a triangle, a contradiction.

We conclude that there are no such vertices in NI , so by Lemma 2.9 we have |NI | 6

C ′max
(
p−2, p−1 log n

)
. By Lemma 2.14(b ) the number of edges in NI is therefore at

most max
(
C ′2p−3, C ′2p−1 log2 n, 9n

)
6 C ′2p−1n by choice of p and C ′. 2

Claim 2.24. If R[I] is independent, then eH(NI) 6 C ′p−1n.

Proof of Claim 2.24. Since δ(R) >
(

1
3 + γ

2

)
t, if R[I] is independent then |I| < 2t

3 . Let

SI :=
⋃
i∈I Vi. We first show that SI and NI are disjoint. Indeed, if v ∈ Ni were in some

Vi with i ∈ I, then by definition of NI the vertex v has at least
∑

j∈I 10dp|Vj | > 5dpn/3

neighbours in
⋃
j∈I Vj , where the inequality follows since |I| > t/3. Since ij is not an edge

of R for any j ∈ I, this is in contradiction to the guarantee that v has at most (d+ ε)pn

neighbours in
⋃
j:ij 6∈R Vj .

We now delete some ‘atypical’ edges from H[NI ]. Remove from H[NI ] each edge uv with

degΓ(u, v, SI) < (1− ε)|SI |p2. to obtain the graph H ′. By Lemma 2.15 this accounts for

at most 103 · 4ε−2p−1n 6 ε
10C

′p−1n edges.
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Let Z be the set of vertices v ∈ NI such that degH(v) − degH′(v) > εpn. By double

counting we have |Z| 6 εC′p−1n
5εpn = 1

5C
′p−2.

We now proceed similarly as in the proof of Theorem 2.3. We orient the edges uv in

H ′[NI ] towards u if |NΓ(u, v, SI)\NH′(u, SI)| > 1
2 degΓ(u, v, SI) and towards v otherwise.

Again, for s = 103q−1ε−2p−1 and q = (1 − 2ε)1
2 any s-in-star with centre x not in Z is

(q, ε)-bad with respect to SI . Indeed, otherwise, analogously to the proof of (2.10), we

have |NΓ(x, SI) \NH′(x, SI)| > qp|SI |, which implies

degH′(x, SI) < (1 + ε)p|SI | − qp|SI | =
1

2
p|SI | 6

1

2
p

2

3
n =

1

3
pn

Since x 6∈ Z, we have degH(x) 6 degH′(x) + εpn <
(

1
3 + γ)pn, a contradiction.

We now pick greedily vertex disjoint s-in-stars whose centres are not in Z until no more

remain. By Lemma 2.16, since SI and NI are disjoint, this process terminates having

found less than 1
2p
−1 such stars. Let Y be the set of vertices contained in all these stars;

then |Y | 6 1
2p
−1s 6 103q−1ε−2p−2. Now eH′

(
NI \ (Y ∪ Z)

)
6 s|NI | since NI \ (Y ∪ Z)

contains no s-in-star, so we conclude

eH(NI) 6 (1 + ε)pn|Y ∪ Z|+ s|NI |+ 1
10C

′p−1n 6 C ′p−1n ,

as desired. 2

Finally, these claims show that deleting all edges internal to any of the sets W and NI

for I ⊆ [t] yields a 2t + 1 = r-partite graph, and that the number of edges deleted is at

most Cp−1n, as desired.
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3
Partite saturation problems

3.1 Introduction

The Turán problem of asking for the maximum number of edges a graph on a fixed number

of vertices can have without containing some fixed subgraph H is one of the oldest and

most famous questions in extremal graph theory, see [70],[84],[39].

Since the corresponding minimisation problem - asking how few edges an H-free graph can

have - trivially gives the answer zero, if we want an interesting complementary question

to the Turán problem we can require that our H-free graph G also has the property that

it nearly contains a copy of H. By this we mean that the addition of any new edge to

G creates an copy of H as a subgraph. Such a graph G is called H-saturated and over

H-saturated graphs on n vertices the minimum number of edges is called the saturation

number, sat(H,n). The study of saturation numbers was initiated by Erdős, Hajnal and

Moon [36] when they proved that sat(Kr, n) = (r−2)(n− 1
2(r−1)). It was later shown by

Kászonyi and Tuza in [57] that cliques have the largest saturation number of any graph

on r vertices which in particular implies that for any H the saturation number sat(H,n)

grows linearly in n.

These saturation questions can be generalised to require our H-free graph G to be a

subgraph of another fixed graph F . Here we insist that adding any new edge of F to G

would create a copy of H in G. The minimum number of edges in such a G we denote by

sat(H,F ). One natural class of host graphs are complete r-partite graphs. In the bipartite

case Bollobás [15, 16] and Wessel [85, 86] independently determined the saturation number

sat(Ka,b,Kc,d). Working in the r-partite setting with r > 3, Ferrara, Jacobson, Pfender,

and Wenger determined in [41] the value of sat(K3,Kr[n]) for sufficiently large n and

45



Chapter 3. Partite saturation problems

showed that sat(K3,K3[n]) = 6n−6 for all n, where Kr[n] denotes the complete balanced

r-partite graph on parts of size n.

In this chapter we consider the saturation problem when the host graph is a blow-up of

the forbidden subgraph H. For any graph H and any n ∈ N let H[n] denote the graph

obtained from H by replacing each vertex with an independent set of size n and each edge

with a complete bipartite graph between the corresponding independent sets. A copy of

H in H[n] is called partite if it has exactly one vertex in each part of H[n]. For a subgraph

G of H[n] we say G is H-partite-free if there is no partite copy of H in G. We say G is

(H,H[n])-partite-saturated if G is H-partite-free but for any uv ∈ E(H[n] \G) the graph

G ∪ uv is not H-partite-free. We consider the problem of determining the value

satp(H,H[n]) := min
{
e(G) : G ⊆ H[n] is (H,H[n])-partite-saturated

}
for graphs H.

Note that for a graphH with no homomorphism onto any proper subgraph of itself we have

by definition satp(H,H[n]) = sat(H,H[n]). In this way we know that satp(K3,K3[n]) =

6n− 6 from [41] and can drop the partite requirement when considering cliques.

Our main result is the following looking at (K4,K4[n])-saturation.

Theorem 3.1. For all large enough n ∈ N we have

sat(K4,K4[n]) = 18n− 21 .

Furthermore we determine the unique graph achieving equality.

In addition we calculate the partite-saturation numbers of stars and paths proving the

following two results.

Theorem 3.2. For any r > 2 and n ∈ N all (K1,r,K1,r[n])-partite-saturated graphs have

exactly (r − 1)n2 edges.

Theorem 3.3. For any r > 4 and n > 2r we have the following.

satp(Pr, Pr[n]) =

( r2 − 1)n2 + (r − 2)n+ 3− r, for r even

( r2 −
1
2)n2 + (r − 4)n+ 5− r, for r odd

In the original paper by Erdős, Hajnal and Moon they did not in fact require the graph G

to be H-free but only required that the addition of any edge would create an extra copy of

H. Interestingly for the problem they studied this did not have an effect as the extremal
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graphs were Kr-free even without requiring this restriction. We consider a similar notion

in the partite setting. For G ⊆ H[n] and n ∈ N we say G is (H,H[n])-partite-over-

saturated if for any uv ∈ E(H[n] \G) the graph G∪uv has more partite copies of H than

G. We also ask, given a graph H and n ∈ N, the value of

exsatp(H,H[n]) := min
{
e(G) : G ⊆ H[n] is (H,H[n])-partite-over-saturated

}
.

We observe some interesting differences in behaviour between these partite-saturation

numbers and the saturation numbers studied by Erdős, Hajnal and Moon. Whilst for

graphs on r vertices cliques gave the largest values of sat(H,n) we find that cliques are not

the graphs which maximise satp(H,H[n]). In fact we prove the following theorem which

shows that satp(H,H[n]) grows quadratically for graphs H which are not 2-connected

whilst it grows linearly for those which are.

Theorem 3.4. For any graph H with e(H) > 2 and no isolated vertices, if H is 2-

connected then satp(H,H[n]) = Θ(n) and if H is not 2-connected then satp(H,H[n]) =

Θ(n2).

On the other-hand we show in Theorem 3.5 that cliques do maximise the partite-over-

saturation numbers and that all partite-over-saturation numbers are linear.

Theorem 3.5. For any integer r > 4 and all large enough n ∈ N we have

exsatp(Kr,Kr[n]) = (2n− 1)

(
r

2

)
.

Finally we determine the partite-over-saturation numbers of trees.

Theorem 3.6. For any tree T on at least 3 vertices and any natural number n > 4 we

have exsatp(T, T [n]) = (|T | − 1)n .

Organisation Section 3.2 is dedicated to determining the partite-saturation number

of K4. In Section 3.3 we then determine the partite-saturation numbers of paths and

stars. We look at the link between 2-connectivity and the order of magnitude of partite-

saturation numbers in Section 3.4 before focusing on partite-over-saturation numbers in

Section 3.5. Finally in Section 3.6 we give some further remarks and open problems.

3.2 The partite-saturation number of K4

Theorem 3.1 For all large enough n ∈ N we have

sat(K4,K4[n]) = 18n− 21 .
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Furthermore we determine the unique graph for which equality holds.

We first give a construction of a graph G ⊆ K4[n] that is (K4,K4[n])-saturated and has

18n− 21 edges.

Let X1, X2, X3, X4 be the parts of K4[n]. Choose vertices xi and x′i in each Xi. Let Z

denote the set of these 8 vertices. Include in G the following 15 edges x1x2, x1x
′
2, x1x

′
3,

x1x
′
4, x′1x

′
2, x′1x3, x′1x4, x2x3, x2x4, x2x

′
4, x′2x

′
3, x′2x4, x3x

′
4, x′3x4, x′3x

′
4. These are the

edges drawn in the figure below. We now only add edges between Z and V (G)\Z. Include

all edges between X1 \ Z and each of x2, x3, x′3 and x4. Attach all vertices in X2 \ Z to

x′1, x3, x′3, x4 and x′4. Join all of X3 \ Z to each of x1, x′1, x2 and x4 and finally add all

edges from X4 \ Z to x1, x′1, x2, x′2 and x3.

x1

x′1

x2

x′2

x3

x′3

x4

x′4

X1 \ Z

all vertices adjacent

to: x2, x3, x′3, x4

X2 \ Z

all vertices adjacent

to: x′1, x3, x′3, x4, x′4

X3 \ Z

all vertices adjacent

to: x1, x′1, x2, x4

X4 \ Z

all vertices adjacent

to: x1, x′1, x2, x′2, x3

Figure 3.1: K4-Partite-Saturation Construction

Proposition 3.7. G is a (K4,K4[n])-saturated graph with 18n− 21 edges.

Proof. To see that this graph is K4-free note that the graph induced on V (G) \Z has no

edges so any K4 would have to come from a triangle in Z extended to a vertex outside of

Z. There are just six triangles induced on Z and none of them extend to a K4.

To see that G is (K4,K4[n])-saturated we first observe that for any pair i, j there is an
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edge in Z such that (Xi ∪Xj) \Z is contained in the common neighbourhood of the ends

of that edge. Therefore we could only add an edge with at least one end in Z.

For a vertex v ∈ X1 \ Z the only incident edges we could add are vx′2 or vx′4. These

additional edges would create a K4 on vx′2x
′
3x4 or vx2x3x

′
4 respectively. For a vertex

v ∈ X2 \ Z the only incident edge we could add is vx1 but this would create a K4 on

x1vx
′
3x
′
4. Similar arguments show we cannot add edges incident to X3 \ Z and X4 \ Z.

Adding any edge to Z that has either x1 or x′3 as an endpoint will create a K4 in Z.

Adding any other edge of Z will create a triangle on Z that extends to a K4 with a vertex

outside of Z. That G has 18n− 21 edges is easy to check.

Before proving a matching lower bound we need the following lemmas.

Lemma 3.8. Any (K4,K4[n])-saturated graph G with n > 2 has minimum degree at least

4.

Proof. Let G be a (K4,K4[n])-saturated graph on X1∪· · ·∪X4. Suppose for contradiction

that there exists a1 ∈ X1 with at most 3 neighbours. If a1 has no neighbours in one part,

say X2, then by saturation it must be adjacent to all vertices in the other parts, which for

n > 2 contradicts the fact that deg(a1) 6 3. So a1 must have exactly three neighbours

with one in each of the parts. Call these xi ∈ Xi for i = 2, 3, 4. Then for any i = 2, 3, 4

adding the edge a1yi for some yi ∈ Xi \xi must create a K4. This implies that x2x3, x2x4

and x3x4 are all edges of G but along with a1 this gives a K4.

We can also say more about the neighbourhoods of vertices with degree exactly 4.

Lemma 3.9. Let G be a (K4,K4[n])-saturated graph on X1 ∪ · · · ∪X4 with n > 3 and let

v be a vertex of degree exactly 4. Then v has one neighbour in each of two parts and two

neighbours in one part. The neighbourhood of v induces a path beginning and ending with

the vertices in the same part. All neighbours of v have degree at least n− 2.

Proof. Suppose v ∈ X1. If v had no neighbour in some Xi (i 6= 1) it would be adjacent to

all vertices in other parts meaning it would have degree greater than 4. Suppose without

loss of generality that the neighbours of v are x2, x3, x′3 and x4 with the subscripts

denoting the parts containing each vertex. By considering the effect of adding the edge

vy3 for some y3 ∈ X3 \ {x3, x
′
3} we see that the edge x2x4 is present. We also see that all

vertices in X3 \ {x3, x
′
3} are adjacent to x2 and x4. Similarly by considering a vertex in

X2 \ {x2} we see that there must be an edge between x4 and one of x3 or x′3. Without
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loss of generality assume x4x
′
3 is present. Finally by considering a vertex in X4 \ {x4} we

see that x2 is adjacent to either x3 or x′3. In order not to create a K4 it must be that x2x3

is present. We now cannot have the edges x4x3 or x2x
′
3. We then see that all vertices in

X4 \ {x4} are adjacent to x3 and all vertices in X2 \ {x2} are adjacent to x′3. Hence the

neighbours of v all have degree at least n− 2.

It follows that when n > 6 vertices of degree exactly 4 cannot be adjacent.

The following lemma gives us minimum degree conditions that more reflect those of the

upper bound construction.

Lemma 3.10. Let G be a (K4,K4[n])-saturated graph with n > 22 on X1 ∪ · · · ∪ X4.

There cannot be two degree 4 vertices, ai ∈ Xi and aj ∈ Xj with i 6= j such that ai has

just one neighbour in Xj. Furthermore there are at most two parts with minimum degree

4.

Proof. Suppose for contradiction that a1 ∈ X1 and a2 ∈ X2 are degree 4 vertices such

that a1 has just one neighbour in X2 and let x2, x3, x
′
3, x4 denote the neighbours of a1.

Then by Lemma 3.9 (up to switching between x′3 and x3) the edges x2x3, x2x4, x
′
3x4 are

all present. We also know that x2 is adjacent to all of (X3∪X4)\x′3, that x3 is adjacent to

all of X4\x4, that x′3 is adjacent to all of X2\x2, and x4 is adjacent to all of (X2∪X3)\x3.

In particular this implies we have the edges a2x
′
3 and a2x4. The vertex a2 also has some

neighbour x1 ∈ X1 \ a1. As a2 has degree 4 it must have one more neighbour. We split

into cases depending on where this final neighbour is and show that each case leads to a

contradiction. The possible cases are:

(i) a2 has another neighbour v ∈ (X1 ∪X3) \ {a1, x1, x3, x
′
3}.

(ii) a2 is adjacent to x3.

(iii) a2 has another neighbour x′4 ∈ X4 \ x4.

Case i) Since x3 is not adjacent to a2 it must be adjacent to x4 as X4 ∩ N(y2) = {x4}

and hence x1x2x3x4 forms a K4.

Case ii) By considering vertices in X3 \ N(a2) we must have the edge x1x4 and we see

that x1 is adjacent to all of X3 \ {x3, x
′
3}. We also see that all vertices in X1 \N(a2) are

adjacent to x′3 and x4. This means that in fact all vertices in (X1 ∪ X2) \ {x1, x2} are

adjacent to x′3 and x4 and hence all edges in X1 ∪X2 have one end in {x1, x2}. In fact all
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edges in X1 ∪X2 have exactly one end in {x1, x2} as if the edge x1x2 were present this

would create a K4 with x4 and any vertex in X3 \ {x3, x
′
3}.

If all vertices in X3 \ {x3, x
′
3} were adjacent to all of X4 \ x4 this would give at least

(n−2)(n−1) edges which is greater than 18n for n > 22. Therefore consider some vertex

v3 ∈ X3 \ {x3, x
′
3} which is non-adjacent to some v4 ∈ X4 \ x4. As v4 is non-adjacent to

v3 it must be adjacent to both ends of an edge in N(v3) ∩ (X1 ∪X2). We know that this

edge has exactly one end in {x1, x2} but this creates a K4 with v3 and x4.

Case iii) As x′4 is not adjacent to a1 it is adjacent to x2 and x3. By considering vertices

in X4 \N(a2) we see that x1x
′
3 is an edge of G and all vertices in X4 \N(a2) are adjacent

to x1 and x′3. By considering vertices in X3 \ N(a2) we see that x1x
′
4 is an edge of G

(as x1x4 would create a K4) and all vertices in X3 \ N(a2) are adjacent to x1 and x′4.

Finally by considering vertices in X1 \ N(a2) we observe that all vertices in X1 \ x1 are

adjacent to x′3 and x4 (as x′4 cannot be adjacent to x′3). Now we know that all vertices

in (X1 ∪ X2) \ {x1, x2} are adjacent to both ends of the edge x′3x4 and so there are no

edges in (X1 ∪X2) \ {x1, x2}. Furthermore x1x2 /∈ E(G) as this would create a K4 with

x′4 and any vertex in X3 \ {x3, x
′
3}. If all vertices in X3 \ {x3, x

′
3} were adjacent to all of

X4 \ {x4, x
′
4} there would be at least (n − 2)2 edges in G which is more than 18n edges

for n > 22. Therefore we can assume there is a vertex v3 ∈ X3 \ {x3, x
′
3} and a vertex

v4 ∈ X4 \ {x4, x
′
4} which is not adjacent to v3. Then v4 must be adjacent to both ends of

an edge e in N(v3) ∩ (X1 ∪X2). This edge has exactly one end in {x1, x2}. If the edge e

is incident to x2 but not x1 then it forms a K4 with v3 and x4. If instead e is incident to

x1 but not x2 it forms a K4 with x′3 and v4.

It follows from Lemma 3.9 and the above that there can be at most two parts with

minimum degree exactly 4 otherwise we would have a degree 4 vertex with just one

neighbour in the part containing another degree 4 vertex.

Another distinctive feature of the upper bound construction is that low degree vertices

are not adjacent to other low degree vertices. In proving the lower bound it is helpful to

prove that at most a constant number of low degree vertices are adjacent to other low

degree vertices. We do that in the following lemma.

Lemma 3.11. For any k > 5 suppose G is a (K4,K4[n])-saturated graph on X1∪· · ·∪X4.

Then there are at most 24k2(2k2)2k2 vertices v such that 5 6 deg(v) 6 k and v is adjacent

to another vertex of degree between 5 and k.

Proof. Call a vertex bad if it satisfies 5 6 deg(v) 6 k and is adjacent to another vertex
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with degree between 5 and k. Let K = 24k2(2k2)2k2 and suppose for contradiction that

there are more than K bad vertices in G. Without loss of generality assume there are at

least K
4 such vertices in X1. Call the set of these vertices A0 and let B0 denote the set

of bad vertices in X2 ∪X3 ∪X4 which are adjacent to a bad vertex in A0. By counting

e(A0, B0) from each side we see that |A0| 6 e(A0, B0) 6 k|B0| and hence |B0| > K
4k . By

averaging we may assume without loss of generality that there are at least K
12k bad vertices

in X2 adjacent to vertices in A0. Let B1 denote B0 ∩ X2 and let A1 be the vertices of

A0 which have a neighbour in B1. Then every vertex in A1 and B1 has a neighbour in

the other. By double counting we see that |B1| 6 e(A1, B1) 6 k|A1| and so we know that

both A1 and B1 contain at least K
12k2

vertices.

For i = 0, ..., k2 +1 we construct a collection of sets Ui ⊆ X1, Vi ⊆ X2 such that Ui+1 ⊆ Ui
and Vi+1 ⊆ Vi. We also select vertices ui ∈ Ui and edges ei ∈ E(X3, X4) such that the

following properties are satisfied for all i = 0, ..., k2 + 1.

(i) All vertices in Vi+1 are adjacent to both endpoints of ei+1.

(ii) The vertex ui is adjacent to both endpoints of ei+1.

(iii) |Vi| > K
12k (2k2)−i = 2k(2k2)2k2−i.

(iv) Each vertex in Ui has a neighbour in Vi.

(v) Each vertex in Vi has a neighbour in Ui.

(vi) |Ui| > K
12k2

(2k2)−i = 2(2k2)2k2−i.

(vii) Each vertex in Ui ∪ Vi has degree at most k.

Before constructing these objects we show how they prove the lemma. Since |Vi| >

2k(2k2)2k2−i we see that the set Vk2+1 is non-empty. Any vertex in Vk2+1 is adjacent to

both ends of all the edges e1, ..., ek2 . As vertices in Vk2+1 have at most k neighbours it

must be that two of these edges are the same. If es = et for some s < t 6 k2 then we

have that ut is adjacent to some vertex v in Vs. As v is in Vs it is adjacent to both ends

of es and so forms a K4 along with ut. This gives our contradiction.

We begin constructing these objects by letting U0 = A1 and V0 = B1. This ensures that

property (vii) always holds. Given Ui and Vi satisfying the above properties we choose

any ui ∈ Ui and will find Ui+1, Vi+1, and ei satisfying the properties above. By saturation

for any vertex v in Vi \N(ui) there exists an edge e ∈ E(X3, X4) such that both v and ui

are adjacent to both of the endpoints of e. Since ui has at most k neighbours there are
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fewer than k2 such candidates for e and hence at least 1
k2
|Vi \N(ui)| vertices of Vi \N(ui)

are adjacent to the endpoints of the same edge e ∈ E(X3, X4). Let ei+1 be this edge and

let Vi+1 be the vertices of Vi \N(ui) that are adjacent to both ends of ei+1. From this we

see that properties (i) and (ii) hold.

Using |Vi| > K
12k (2k2)−i > 2k we then have

|Vi+1| >
1

k2
|Vi \N(ui)| >

1

k2
(|Vi| − k)

>
1

2k2
|Vi| >

K

12k
(2k2)−(i+1) .

This gives property (iii). We let Ui+1 = Ui∩N(Vi+1) which ensures (iv) and (v). Therefore

by double counting |Vi+1| 6 e(Ui+1, Vi+1) 6 k|Ui+1| and we see that |Ui+1| > 1
k |Vi+1| >

K
12k2

(2k2)−(i+1) giving (vi).

With these lemmas we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let G be a (K4,K4[n])-saturated graph.

We first make the following claim, the proof of which we postpone, about the minimum

degree conditions of the parts of G.

Claim 3.12. If G has at most 18n−21 edges then G has precisely two parts of minimum

degree exactly 4 and two parts of minimum degree exactly 5.

From Lemma 3.10 we know that all degree 4 vertices in the two minimum degree 4 parts

have two neighbours in the other minimum degree 4 part. We can now assume we have

degree 4 vertices a1 ∈ X1 and a3 ∈ X3. Let the neighbours of a1 be x2, x3, x′3 and x4. We

see that all vertices in X3 \ {x3, x
′
3} (including a3) are adjacent to x2 and x4 and that x2

and x4 are adjacent. Let the other two neighbours of a3 be x1 and x′1. Since any vertex

v in X2 \ x2 is not adjacent to a1, adding the edge a1v must create a K4 using v and a1.

Similarly, since any vertex v in X2 \ x2 is not adjacent to a3, adding the edge a3v must

create a K4 using v and a3. This implies that v is adjacent to x4 and that x4 is adjacent

to one of x1 or x′1 and also one of x3 or x′3. Without loss of generality assume we have the

edges x′1x4 and x′3x4. Similar arguments with a vertex in X4 \ x4 show that all vertices

in X4 are adjacent to x2 and also that we have the edges x1x2 and x2x3.

We further see that by saturation every vertex of (X1 ∪X3) \ {x1, x
′
1, x3, x

′
3} is adjacent

to x2 and x4. This means there are no edges with both ends lying in (X1 ∪ X3) \

{x1, x
′
1, x3, x

′
3}. All vertices in X2 \ x2 are adjacent to x′1, x′3 and x4. All vertices of

X4 \ x4 are adjacent to x1, x3 and x2.
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We now have that all vertices in (X1∪X3)\{x1, x
′
1, x3, x

′
3} are adjacent to x2 and x4. All

vertices in X2 \x2 are adjacent to x′1, x′3 and x4 whilst all vertices in X4 \x4 are adjacent

to all of x1, x2 and x3.

The following claim, for which we again postpone the proof, gives us more conditions on

the neighbourhoods of various vertices.

Claim 3.13. All vertices in X1 \ {x1, x
′
1} are adjacent to x3 and x′3. All vertices in

X3 \ {x3, x
′
3} are adjacent to x1 and x′1. All vertices in (X2 ∪X4) \ {x2, x4} are adjacent

to at least 3 of {x1, x
′
1, x3, x

′
3}. Both x1x

′
3 and x′1x3 are edges of G.

Under the assumption of Claim 3.13 we now see that all vertices in X2 \ x2 are adjacent

to x′1, x′3, x4 and one of x1 or x3. Let A1 denote the set of vertices in X2 \ x2 which

are adjacent to x1 but not x3 and let A3 denote the set of vertices in X2 \ x2 which are

adjacent to x3 but not x1.

Similarly all vertices in X4 \ x4 are adjacent to x1, x3, x2 and one of x′1 or x′3. Let B1

denote the set of vertices in X4 \x4 which are adjacent to x′1 but not x′3 and let B3 denote

the set of vertices in X4 \ x4 which are adjacent to x′3 but not x′1.

Adding any edge between A1 and B1 (likewise between A3 and B3) cannot create a K4

so by saturation the induced graphs on (A1, B1) and (A3, B3) are complete. Any edge

between A1 and B3 would create a K4 with x1x
′
3 whilst any edge between A3 and B1

would give a K4 using x′1x3 therefore the bipartite graphs on (A1, B3) and (A3, B1) are

empty.

Hence we see that there are at least

5
(
2n− 2− |A1| − |A3| − |B1| − |B3|

)
+4
(
|A1|+ |A3|+ |B1|+ |B3|

)
+|A1||B1|+ |A3||B3|+ 4n− 4 + 1

edges with at least one end in X2 ∪ X4. The +1 term comes from the edge x2x4 and

the +4n − 4 term comes from the edges with one end in {x2, x4} and the other end in

X1 ∪X3. Along with the 4n− 6 edges between X1 and X3 this gives a total of at least

18n− 21 +
(
|A1| − 1

)(
|B1| − 1

)
+
(
|A3| − 1

)(
|B3| − 1

)
(3.1)

edges. We argue that either A1 or B1 being non-empty implies the other is non-empty.

Suppose there were a vertex in A1. Then because it has degree at least 5 but is not

adjacent to x3 it has a neighbour v in X4 \x4. This neighbour v cannot be adjacent to x′3
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or we would have a K4. Therefore v ∈ B1. Similarly for a vertex in B1. Likewise either

of A3 or B3 being non-empty implies the other is also non-empty.

This now means we have at least 18n− 21 edges. Furthermore, since A1 ∪ A3 = X2 \ x2

and B1 ∪ B3 = X4 \ x4, equality in (3.1) is attained only if either |A1| = |B3| = 1 or

|A3| = |B1| = 1. Letting x′2 and x′4 be the vertices in the sets of size 1 we have our

extremal construction.

It remains to prove Claims 3.12 and 3.13.

Proof of Claim 3.12. We use Lemma 3.11 applied with k = 180. As in Lemma 3.11 we

refer to vertices of degree between 5 and k which are adjacent to another such vertex as

bad.

We now split our vertices into groups by their degrees and whether or not they are bad,

and then count edges of G by counting edges between these groups.

We label our groups as follows

• Vbad is the set of bad vertices.

• A := {v : deg(v) > k + 1}.

• B := {v : 5 6 deg(v) 6 k} \Vbad.

• C := {v : deg(v) = 4}.

We note that vertices in B ∪ C only have neighbours in A.

Now e(G) > e(B,A) + e(C,A) > 5|B|+ 4|C|. We also have e(G) > e(A, V (G)) > k+1
2 |A|.

If |A| > 36n
k+1 this gives at least 18n edges so we may assume |A| < 36n

k+1 .

Along with the fact that |Vbad| 6 K = 24k2(2k2)(2k2) we see that |B| > 4n−|C|−K− 36n
k+1 .

Since e(G) > 5|B|+ 4|C| we have at least 20n− |C| − 5K − 180n
k+1 edges.

If we have at most one Xi with minimum degree 4 we know |C| 6 n. This implies that G

has at least 19n− 5K − 180n
k+1 edges. For k = 180 and large enough n this is at least 18n.

We can also rule out the possibility of there being a part with minimum degree greater

than 5. With Vbad, A, and C defined as above let B(5) := {v ∈ B : deg(v) = 5}

and let B(6+) := {v ∈ B : deg(v) > 6}. We still have that |B| = |B(5)| + |B(6+)| >

4n− |C| −K − 36n
k+1 and |C| 6 2n. If one part had minimum degree at least 6 that would
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imply that |B(5)| 6 n and so we would have

e(G) >6|B(6+)|+ 5|B(5)|+ 4|C|

=6|B| − |B(5)|+ 4|C|

>6
(
4n− |C| −K − 36n

k+1

)
− |B(5)|+ 4|C|

=24n− 2|C| − |B(5)| − 6K − 216n
k+1

>19n− 6K − 216n
k+1 .

For k = 216 and n large enough this is more than 18n. 2

Proof of Claim 3.13. We first consider a degree 5 vertex, a2, in X2 \ x2. We consider

separately the cases of whether a2 is adjacent to neither, one, or both of x1 and x3.

Firstly we suppose the vertex a2 is not adjacent to either of x1 or x3. Adding the edge

a2x1 must create a K4 using a2, x1 and a vertex in X4. Since x4 is not adjacent to x1

it must be the case that a2 has a neighbour x′4 ∈ X4 \ x4. If a2 had no neighbours in

(X1 ∪X3) \ {x′1, x′3} there would have to be an edge from x′1 to x′3 but this would create

a K4. Assume, without loss of generality, that a2 has a neighbour x′′1 ∈ X1 \ {x1, x
′
1}. By

considering vertices in X4 \N(a2) we see that x′3 is adjacent to x′′1. This means we now

have a K4 on the vertices x′′1, a2, x
′
3, x4.

If instead a2 had exactly one neighbour from {x1, x3} then by symmetry we may assume

it is adjacent to x1 but not x3. By saturation the addition of the edge a2x3 must create

a K4. Since x3 is not adjacent to x4 the vertex a2 must have a neighbour x′4 in X4 \ x4.

Now a2 is adjacent to x1, x′1, x′3, x4 and x′4 and because a2 has degree 5 these are all of its

neighbours. As the only neighbour of a2 in X3 is x′3 it must be the case that all vertices

in (X1 ∪X4) \N(a2) are adjacent to x′3. We also see that if any vertex v in X3 \ {x3, x3}

were not adjacent to x′1 then, since adding the edge a2v must create a K4, we must have

that v is adjacent to x1 and x′4 which would create a K4 on {x1, x2, v, x
′
4}. Therefore

every vertex in X3 \ {x3, x
′
3} is adjacent to x′1. By considering vertices on X4 \N(a2) it

must also be the case that x′3 is adjacent to x1. From the fact that x3 is not adjacent to

a2 we can see that x3 must be adjacent to x′1 and that x′4 is also adjacent to x′1. Now

consider a degree 5 vertex, a4 in X4 \ {x4, x
′
4}. We know that a4 is adjacent to x′3 and we

split into the case of when a4 is adjacent to x′1 or not.

If a4 is not adjacent to x′1 then a4 has a neighbour x′2 ∈ X2 \ x2. We know that x′2 is

adjacent to x′1. In order to create a K4 if a4x
′
1 were added it must be the case that x′2

is adjacent to x3. As x1 is the only neighbour of a4 in X1 is must be the case that all
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vertices in (X2∪X3)\N(a4) are adjacent to x1. Now all vertices in (X3∪X4)\{x3, x
′
3, x4}

are adjacent to both x1 and x2 which are themselves adjacent to each other. Therefore

there are no edges between X3 \ {x3, x
′
3} and X4 \ x4. We also know that all vertices in

(X2∪X4)\{x2, x
′
2, x4, x

′
4} are adjacent to both ends of the edge x1x

′
3. Hence there are no

edges between X2 \{x2, x
′
2} and X4 \{x4, x

′
4}. Since all vertices in (X1∪X2)\{x1, x

′
1, x2}

are adjacent to x′3 and x4 there are no edges between X1 \ {x1, x
′
1} and X2 \ x2. In

particular any vertex v in X1 \ {x1, x
′
1} is not adjacent to x′2 and by considering the K4

created if a4v were added we see that v is adjacent to x3. Since v was arbitrary all vertices

in X1 \ {x1, x
′
1} are adjacent to x3. This proves the lemma for this case.

If instead a4 is adjacent to x′1 then as a4 is of degree 5 and is adjacent to x1, x
′
1, x2, x3,

and x′3 these are all of its neighbours. Any vertex in X1 \ {x1, x
′
1} is non-adjacent to a4

and so must be adjacent to both ends of some edge in N(a4). This edge must be x2x3 and

so all vertices in X1 \ {x1, x
′
1} are adjacent to x3. Similarly vertices in X3 \ {x3, x

′
3} are

non-adjacent to a4 and so must be adjacent to x1. All vertices in X2 \x2 are non-adjacent

to a4 and hence must be adjacent to an edge in N(a4) implying each vertex in X2 \ x2 is

adjacent to at least one of x1 or x3.

Finally we consider the case where a2 is adjacent to both x1 and x3. We can assume

all degree 5 vertices in X4 are adjacent to both x′1 and x′3 or we would be in a situation

symmetric to the last case we considered. Let a4 be such a degree 5 vertex in X4. Since

all vertices in X1 \ {x1, x
′
1} and X3 \ {x3, x

′
3} are not adjacent to either a2 or a4 they

must be adjacent to both ends of an edge in N(a2) and both ends of an edge in N(a4).

This implies that vertices in X1 \ {x1, x
′
1} are adjacent to x3 and x′3 and that vertices

in X3 \ {x3, x
′
3} are adjacent to x1 and x′1. Similarly we see that vertices in X4 \ x4 are

non-adjacent to a2 and hence must be adjacent to an edge in N(a2). Therefore all vertices

in X4 \ x4 are adjacent to one of x′1 or x′3. Similarly all vertices in X2 \ x2 are adjacent

to one of x1 or x3. This also shows that at least one of the edges x1x
′
3 or x′1x3 exists. If

one of them is not present, say x1x
′
3 /∈ E(G) then by saturation there is some adjacent

pair b2 ∈ X2 \ x2, b4 ∈ X4 \ x4 which are both adjacent to x1 and x′3. We also know,

however, that b2 and b4 are both adjacent to x′1 and x3 but this gives a K4 on x′1, b2, x3, b4.

Therefore both x1x
′
3 and x′1x3 exist. 2

This completes the proof.
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3.3 Saturation numbers of paths and stars

We begin this section by determining the partite-saturation numbers of stars on at least

three vertices.

Lemma 3.14. For any r > 2, n ∈ N and any connected graph H which contains a vertex

v such that H \ v has r components we have satp(H,H[n]) > (r − 1)n2.

Theorem 3.2 For any r > 2 and n ∈ N all (K1,r,K1,r[n])-partite-saturated graphs have

exactly (r − 1)n2 edges.

We show how Theorem 3.2 follows from Lemma 3.14 before proving Lemma 3.14 itself.

Proof of Theorem 3.2. The star K1,r has a vertex v such that K1,r \ v has r connected

components and hence satp(K1,r,K1,r[n]) > (r − 1)n2. For any (K1,r,K1,r[n])-partite-

saturated graph G any vertex in the part corresponding to the centre of the star must

have degree at most (r − 1)n or by the pigeonhole principle it would have a neighbour

in each remaining part giving a partite copy of K1,r. This maximum degree condition

implies at most (r − 1)n2 edges.

Proof of Lemma 3.14. Let v1 be the cut-vertex of H and let v2, . . . , vr+1 be neighbours

of v1 which are in distinct components of H \ {v1}. Let Xi denote the part of H[n]

corresponding to vi and let Hi denote the component of vi in H \ {v1}. Consider an

(H,H[n])-partite-saturated graph G and an arbitrary vertex x1 ∈ X1. If x1 has fewer

than (r − 1)n neighbours then there are two parts, say X2 and X3, such that each has a

vertex non-adjacent to x1. Call these vertices x2 and x3. Since G is saturated adding the

edge x1x2 must create a copy of H using x1 and hence there must be a copy of H \H2 in G

using x1. Similarly adding the edge x1x3 must create a copy of H implying the existence

of a copy of H \ H3 at x1. The union of these two subgraphs contains a partite copy

of H which contradicts G being H-free. Hence each vertex in X1 has at least (r − 1)n

neighbours and so G has at least (r − 1)n2 edges.

We now determine the partite-saturation numbers of paths on at least 4 vertices.

Theorem 3.3 For any r > 4 and n > 2r we have the following.

satp(Pr, Pr[n]) =

( r2 − 1)n2 + (r − 2)n+ 3− r, for r even

( r2 −
1
2)n2 + (r − 4)n+ 5− r, for r odd

(3.2)
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Proof. Let X1, . . . , Xr be the parts of Pr[n] with Xi adjacent to Xi+1 for each i.

We first give an upper bound construction. Given subsets Ai ⊆ Xi define the graph G

on
⋃
iXi to be the graph with precisely the edges that lie in (Ai, Ai+1) or (Xi \Ai, Xi+1)

for some i 6 r − 1. For the upper bound if r is even consider the graph G created as

above with A1 := X1, Ar := ∅, |Ai| = 1 for all even i 6 r − 2 and |Ai| = n − 1 for all

odd 3 6 i 6 r − 1. If r is odd consider the construction G given as above but with the

Ai satisfying A1 := X1, Ar = ∅, |Ar−1| = n − 1, |Ai| = 1 for all even i 6 r − 3 and

|Ai| = n− 1 for all odd 3 6 i 6 r − 2.

A1

A2 A3 A4 A5

X6

X2 \A2 X3 \A3 X4 \A4 X5 \A5

X2 \A2 X4 \A4

A1

A3 A5

X6

Figure 3.2: P6-Partite-Saturation Construction

For the lower bound we assume that for some r > 4 and some n > 2r equation (3.2)

does not hold. Then consider the least such r and some n > 2r for which (3.2) fails.

In particular by this minimality and Theorem 3.2 (which gives the partite-saturation of

K1,2 = P3) we see that

satp(Pr−1, Pr−1[n]) >
(
r−1

2 − 1
)
n2 . (3.3)

Now consider a (Pr, Pr[n])-partite-saturated graph G on X1∪· · ·∪Xr. Let N2 denote the

set of vertices in X2 which are adjacent to at least one vertex of X1. For each i > 3 let Ni

denote the set of vertices of Xi which are adjacent to at least one vertex of Ni−1. Since

there can be no partite path on r vertices it must be the case that Nr = ∅. If Nr−1 = ∅

then (Xr−1, Xr) must be complete in G as adding an edge to this pair cannot create a

partite copy of Pr. If (Xr−1, Xr) is complete then X1 ∪ · · · ∪ Xr−1 is (Pr−1, Pr−1[n])-

partite-saturated so by (3.3) there are at least r−1
2 n2 edges in G. This is at least as many

as required. Therefore we may assume Ni 6= ∅ for all 2 6 i 6 r − 1. If Ni = Xi for some

i > 2 then the pairs (Xj , Xj+1) are complete for all 1 6 j 6 i − 1. Then Xi ∪ · · · ∪ Xr

is (Pr−i+1, Pr−i+1[n])-partite-saturated so by (3.3) there are at least ( r−1
2 )n2 edges in G.
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This is at least as many as required. We now assume Ni 6= Xi for all 2 6 i 6 r so for

all i = 2, . . . , r − 1 we have 1 6 |Ni| 6 n − 1. For each i > 2 let Ni denote Xi \Ni. We

observe that (X1, N1) and (Nr−1, Xr) must be complete. As are (Ni, Ni+1) and (Ni, Xi+1)

for 2 6 i 6 r − 2 because adding edges to either of these pairs cannot create a partite

copy of Pr. Therefore we find that G has all possible edges except those in pairs (X1, N2)

or (Ni, Ni+1) for 2 6 i 6 r − 1 and so e(G) is at least

(r− 1)n2−n|N2|−
r−1∑
i=2

|Ni||Ni+1| = (r− 2)n2 +n|N2|−n
r−1∑
i=2

|Ni|+
r−2∑
i=2

|Ni||Ni+1| . (3.4)

Suppose N2, ..., Nr−1 have been chosen to minimise the above expression under the as-

sumption that each |Ni| is between 1 and n − 1. The contribution to (3.4) from terms

that include N2 is exactly |N2||N3| which (regardless of the value of |N3|) is minimised

by taking |N2| = 1. For 3 6 i 6 r − 2 the contribution to (3.4) from terms that include

Ni is

|Ni|
(
|Ni−1|+ |Ni+1| − n

)
.

When |Ni−1| = 1 the above expression is at most zero and so minimised by taking

|Ni| = n− 1. If |Ni−1| = n− 1 it is at least zero and so minimised by taking |Ni| = 1. In

this way using |N2| = 1 we can see that for 2 6 i 6 r − 2 we have the following.

|Ni| =

1, for i even

n− 1, for i odd

The contribution to (3.4) from the Nr−1 terms is |Nr−1|
(
|Nr−2| − n

)
which is always

negative and so the expression is minimised when |Nr−1| = n− 1. The graph given with

the Ni taking these sizes is the same as our upper bound construction completing the

proof.

3.4 2-connectivity and the growth of saturation numbers

Recall that a graph is 2-connected if after the removal of any single vertex it is still

connected. Observe that if H ′ can be obtained from H by adding or removing isolated

vertices then satp(H,H[n]) = satp(H ′, H ′[n]). It is also clear that satp(K2,K2[n]) = 0.

Theorem 3.4 For any graph H with e(H) > 2 and no isolated vertices, if H is 2-

connected then satp(H,H[n]) = Θ(n) and if H is not 2-connected then satp(H,H[n]) =

Θ(n2).
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Proof. If H is connected but not 2-connected then there must be a cut vertex, v, of H such

that H\v has at least two components. Then by Lemma 3.14 we have satp(H,H[n]) > n2.

We now consider the case when H is disconnected but has no isolated vertices. Let H1

and H2 be two connected components of H. If G ⊆ H[n] is (H,H[n])-partite-saturated

then by saturation the induced graph of G onto at least one of H1[n] or H2[n] must be

complete. Since each Hi contains an edge this means G has at least n2 edges.

Finally we consider the case when H is 2-connected. The fact that satp(H,H[n]) = Ω(n)

comes from the fact that in an (H,H[n])-saturated graph G every vertex, x, has degree

at least one. If not adding an edge incident to x would not create a copy of H since H

has minimum degree at least two by 2-connectivity.

We now give an upper bound construction. For each edge ij of H we define Hij to be the

graph obtained from H be removing all edges incident to i or j including the edge ij. We

define Vi(Hij) to be the vertices of Hij \ {i, j} which were incident to i in H. Similarly

Vj(Hij). For n > e(H) we let G1 ⊆ H[n] be the disjoint union of a copy of Hij for each

edge ij of H. Create G2 from G1 by adjoining each vertex of Vi(Hij) (in the copy of Hij

in G1) to every vertex in Xi \ V (G1), and by adjoining each vertex of Vj(Hij) to every

vertex in Xj \ V (G1) for each edge ij of H. We then create G3 from G2 by arbitrarily

adding edges until the graph is (H,H[n])-partite-saturated.

We claim that G3 is (H,H[n])-partite-saturated and has at most 2e(H)2n− e(H)3 edges.

To prove this it is sufficient to show that G2 has no partite copy of H and that G3 has

at most 2e(H)2n− e(H)3 edges. We first note that there are no edges of G2 or G3 with

both end points in V (G3) \ V (G1) since any such edge xixj would form a copy of H with

the Hij . We can then bound the number of edges of G3 by E(H[n])−E(H[n− e(H)]) =

n2e(H)− (n− e(H))2e(H) = 2e(H)2n− e(H)3.

Suppose now for contradiction that G2 has a partite copy of H. Denote the vertices of

this copy of H by xi for i = 1, . . . , |H|. Since G1 is H-free at least one of the xi’s lies

in V (G2) \ V (G1). Suppose without loss of generality that x1 /∈ V (G1). Let x2 be a

neighbour of x1 in the partite copy of H. Since there are no edges with both end points

in V (G2) \ V (G1) it must be the case that x2 ∈ V (G1). Since x1x2 is an edge of G2 it

must be the case that x2 ∈ V1(H1i) for some i adjacent to 1 in H. Suppose x2 ∈ V1(H13).

Then similarly x3 ∈ V1(H1k) for some k 6= 3. Therefore x2 and x3 are in different Hij ’s

and hence different connected components of G1. Our copy of H is separated by following
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the set

{xi : xi /∈ V (G1) and xi is adjacent to a vertex in H13} .

Since H is 2-connected this set must contain at least two vertices, one of which is x1.

The only xi’s that vertices in H13 can be adjacent to outside of H13 are x1 and x3 but

x3 ∈ V (G1) which gives a contradiction.

3.5 Over-saturation numbers

In this section we determine the partite-over-saturation numbers of cliques and trees,

and show that of graphs on r vertices the cliques have the largest partite-over-saturation

numbers.

Since it follows from the proof of sat(K3,K3[n]) = 6n−6 in [41] that exsatp(K3,K3[n]) =

6n− 6 we look only at cliques on at least 4 vertices. The proof of the following Theorem

uses ideas from [41].

Theorem 3.5 For any integer r > 4 and all large enough n ∈ N we have

exsatp(Kr,Kr[n]) = (2n− 1)

(
r

2

)
.

Proof. For the upper bound consider the graph G consisting of a copy of Kr with each

vertex of this clique adjacent to all vertices in adjacent parts of Kr[n]. For the lower

bound consider a (Kr,Kr[n])-partite-over-saturated graph G on X1 ∪ · · · ∪Xr.

For all i = 1, . . . , r let δi := min{deg(x) : x ∈ Xi}. Since for any i we have e(G) > δin we

must have δi < r2 or G would have more than (2n − 1)
(
r
2

)
edges. By the fact that any

vertex which is not adjacent to some part must be incident to all vertices in the other

parts we see that δi > r − 1 for all i.

Claim 3.15. All vertices of degree r − 1 are in a Kr.

Proof. If v ∈ X1 is a vertex of degree r − 1 it must have a neighbour in each adjacent

part. Denote these by xi ∈ Xi for i = 2, ..., r. For any y2 ∈ X2 \ x2 adding the edge vy2

must create a new Kr. This new clique must be on {v, y2, x3, x4, ..., xr} so x3, ..., xr must

all be pairwise adjacent. Similarly for any y3 ∈ X3 \x3 adding the edge vy3 must create a

new Kr (which must be {v, x2, y3, x4, x5, ..., xr}) so x2, x4, x5, ..., xr must all be pairwise

adjacent. This gives a Kr on v, x2, x3, ..., xr. 2
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Let xi be a vertex of degree δi for each i. For each i let Yi :=
⋃
j 6=i
(
N(xj) ∩Xi

)
and let

Y :=
⋃
i Yi =

⋃
iN(xi). Observe that |Y | 6 r3.

Claim 3.16. For all i 6= j, each vertex in Xi \ Yi has a neighbour in Yj.

Proof. Given some i 6= j and a vertex v ∈ Xi \ Yi consider any k ∈ {1, ..., r} \ {i, j}. As v

is not in Yi it must be that v is not adjacent to xk. Therefore, by saturation, adding vxk

creates a new Kr. This Kr must use a neighbour of xk in Xj and hence this neighbour is

both in Yj and also adjacent to v. 2

We can now lower bound the edges of G by

e(G) > e(Y,X \ Y ) + e(X \ Y )

>
∑

v∈X\Y

(
deg(v, Y ) + 1

2

(
deg(v,X \ Y )

))
>
∑
i

|Xi \ Y |
(
r − 1 + 1

2

(
δi − (r − 1)

))
= 1

2(r − 1)|X \ Y |+ 1
2

∑
i

|Xi \ Y |δi

> 1
2n

(
r(r − 1) +

∑
i

δi

)
− 1

2r
3

(
r − 1 +

∑
i

δi

)
> 1

2n

(
r(r − 1) +

∑
i

δi

)
− r6

= (2n− 1)

(
r

2

)
+ 1

2n
∑
i

(
δi − (r − 1)

)
+

(
r

2

)
− r6 .

(3.5)

The third inequality comes from the minimum degree condition. The first equality uses

|X \ Y | =
∑

i |Xi \ Y |. The fourth inequality uses |Y | 6 r3 whilst the fifth uses δi 6 r2.

By equation (3.5) for n > 2r6 we have δi = r − 1 for all i. Each of the xi’s has one

neighbour in each adjacent part and is in a copy of Kr. We see that by saturation for a

vertex v of degree r− 1 every vertex w in a different part from v which is not adjacent to

v is incident to all neighbours of v outside of the part of w. Therefore vertices of degree

r − 1 are not adjacent. We also see that for any i 6= j the vertices xi and xj have r − 2

common neighbours and so with the sets Yi and Y as before we find that |Yi| = 1 for all

i, so |Y | = r.
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Using (3.5) we get

e(G) = e(Y,X \ Y ) + e(X \ Y ) + e(Y )

> 1
2(r − 1)|X \ Y |+ 1

2

∑
i

|Xi \ Y |δi + e(Y )

> 2(n− 1)

(
r

2

)
+ e(Y ) .

Since there is a Kr on Y we have e(Y ) =
(
r
2

)
and the result follows.

The upper bound construction can be generalised to any H by letting G consist of a copy

of H with each vertex of this H adjacent to all vertices in adjacent parts of H[n]. This

gives an upper bound of

exsatp(H,H[n]) 6 (2n− 1)e(H) .

In particular this shows that over graphs H on r vertices the cliques give rise to the largest

value of exsatp(H,H[n]) and also that all partite-over-saturation numbers of graphs with

at least two edges are linear.

Next we determine the partite-over-saturation number of trees.

Theorem 3.6 For any tree T on at least 3 vertices and any natural number n > 4 we

have exsatp(T, T [n]) = (|T | − 1)n.

Proof. For an upper bound construction let G be the union of n disjoint partite copies of

T .

Turning our attention to the lower bound we let L denote the set of leaves of T and call

the vertices in C = V (T ) \ L core vertices.

Now suppose G is a (T, T [n])-partite-over-saturated graph with n > 4. Let x be a vertex

of G lying in a part associated to a core vertex v ∈ C. In G the vertex x must either have

a neighbour in each adjacent part of T [n] or it must be that degG(x) > n(degT (v)− 1) >

2 degT (v). This is because if x had no neighbour in some adjacent part it must be adjacent

to all vertices in the other adjacent parts. Since degT (v) > 2 and n > 4 this means x

has at least 2 degT (v) neighbours. We let L[n] and C[n] denote the set of vertices in T [n]

that lie in parts corresponding to L and C respectively.

64



Chapter 3. Partite saturation problems

We have

e(G) =
∑

x∈C[n]

(
1
2 degG(x,C[n]) + degG(x, L[n])

)
=

1

2

∑
x∈C[n]

(
degG(x) + degG(x, L[n])

)
.

(3.6)

Let x ∈ C[n] be a vertex associated in the part associated to a vertex v ∈ C. If x is

adjacent to a vertex in each adjacent part then

degG(x) + degG(x, L[n]) > degT (v) + degT (v, L)

otherwise we also obtain

degG(x) + degG(x, L[n]) > degG(x) > 2 degT (v) > degT (v) + degT (v, L) .

Using these and (3.6), we see that

e(G) >
n

2

∑
v∈C

(
degT (v) + degT (v, L)

)
= n · e(T ) = n

(
|T | − 1

)
completing the proof.

3.6 Concluding remarks

It would be very nice to be able to determine the value of sat(Kr,Kr[n]) for r > 5. Exact

answers here would probably be very difficult though it may be possible to determine up

to an error term of o(n) or even O(1). It would be helpful to be able to determine the

following value in order to make progress on this problem.

For integers r > s > 3 let m(r, s) denote the fewest vertices an r-partite graph G can

have such that G is Ks-free but every set of s− 1 parts contains a Ks−1.

We can use m(r, r− 1) and m(r− 1, r− 1) to get upper and lower bounds respectively on

sat(Kr,Kr[n]).

For the upper bound let F ⊆ Kr[n] be a Kr−1-free graph on m(r, r − 1) vertices such

that any r− 2 parts contain a Kr−2. Create a (Kr,Kr[n])-saturated graph G ⊆ Kr[n] by

attaching all vertices of F to all vertices outside of F which lie in a different part. Then

if necessary add edges between vertices of F until the graph is (Kr,Kr[n])-saturated.

This implies that sat(Kr,Kr[n]) is less than m(r, r − 1) · (r − 1)n. Using the fact that
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m(4, 3) = 6 this shows that sat(K4,K4[n]) 6 18n which we know from Theorem 3.1 to be

close to the correct answer.

For the lower bound we prove a minimum degree condition in all (Kr,Kr[n])-saturated

graphs. If G is a (Kr,Kr[n])-saturated graph note that any vertex in G is either adja-

cent to all vertices in one part of Kr[n] or its neighbourhood induces an (r − 1)-partite

graph which is Kr−1-free but where there is a Kr−2 on any r − 2 parts. Therefore,

for n > m(r − 1, r − 1) we have δ(G) > m(r − 1, r − 1) and hence sat(Kr,Kr[n]) >

m(r − 1, r − 1) · rn/2. When r = 4 this gives the minimum degree condition of

δ(G) > m(3, 3) = 4.
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4
Size-Ramsey numbers of powers of

paths

4.1 Introduction

Given graphs G and H and a positive integer q we say that G is q-Ramsey for H, denoted

G → (H)q, if every q-colouring of the edges of G contains a monochromatic copy of H.

When q = 2, we simply write G → H. In its simplest form, the classical theorem of

Ramsey [75] states that for any H there exists an integer N such that KN → H. The

Ramsey number R(H) of a graph H is defined to be the smallest such N . Ramsey

problems have been well studied and many beautiful techniques have been developed

to estimate Ramsey numbers. The survey by Conlon, Fox and Sudakov [24] provides a

detailed summary of developments in the area.

A number of variants of the classical Ramsey problem have also been introduced and are

under active study (the survey [24] also provides a good introduction to these related prob-

lems). In particular, Erdős, Faudree, Rousseau and Schelp [35] proposed the problem of

determining the smallest number of edges in a graph G such that G→ H. More precisely,

we define the size-Ramsey number r̂(H) of a graph H as r̂(H) = min{|E(G)| : G→ H}.

Here, we are interested in problems involving estimating r̂(H).

For any graph H we have the obvious bound r̂(H) 6
(
R(H)

2

)
. A result due to Chvátal

(see, e.g., [35]) implies that this is the right value for the size-Ramsey number of complete

graphs, i.e., r̂(Kn) =
(
R(Kn)

2

)
.

Considering the path Pn on n vertices, Erdős [34] asked the following question.
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Question 4.1. Is it true that

lim
n→∞

r̂(Pn)

n
=∞ and lim

n→∞

r̂(Pn)

n2
= 0?

Using a probabilistic construction, Beck [11] proved that the size-Ramsey number of paths

is linear, i.e., r̂(Pn) = O(n). Alon and Chung [7] provided an explicit construction of a

graph G with O(n) edges such that G → Pn. Recently, Dudek and Pra lat [31] gave

a simple alternative proof for this result (see also [66]). More generally, Friedman and

Pippenger [45] proved that the size-Ramsey number of bounded degree trees is linear (see

also [28, 49, 58]) and it is shown in [50] that cycles also have linear size-Ramsey numbers.

Answering a question posed by Beck [12] (negatively), who asked whether r̂(G) is linear

for all graphs G with bounded maximum degree, Rödl and Szemerédi showed that there

exists a graph H with n vertices and maximum degree 3 such that r̂(H) = Ω(n log1/60 n).

The current best upper bound for bounded degree graphs is proved in [63], where it is

shown that, for every ∆, there is a constant c such that for any graph H with n vertices

and maximum degree ∆ we have

r̂(H) 6 cn2−1/∆ log1/∆ n.

For further results on size-Ramsey numbers the reader is referred to [13, 61, 76].

Given a graph H on n vertices and an integer k > 2, the kth power Hk of H is the graph

with vertex set V (H) and all edges {u, v} such that the distance between u and v in H

is at most k. Answering a question of Conlon [22] we prove that all powers of paths have

linear size-Ramsey numbers. The following theorem is our main result.

Theorem 4.1. For any integer k > 2,

r̂(P kn ) = O(n). (4.2)

Since Ckn ⊆ P 2k
n , the following corollary follows directly from Theorem 4.1.

Corollary 1. For any integer k > 2,

r̂(Ckn) = O(n). (4.3)

4.2 Proof of Theorem 4.1

To prove Theorem 4.1, we have to show that there is a graph G with O(n) edges such

that G → P kn . The first result we need guarantees the existence of a bounded degree

graph with two useful properties.
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Lemma 4.2. For every integer k > 1 and every ε > 0 there exists a0 such that the

following holds. For any a > a0 there is a constant b such that, for any large enough n,

there is a graph H with v(H) = an and ∆(H) 6 b with the following two properties.

1. For every pair of disjoint sets S, T ⊆ V (H) with |S|, |T | > εn, we have |EH(S, T )| > 1.

2. For any family of pairwise disjoint sets A1, . . . , Ak+1 ⊆ V (H) of size at least εan each,

there is a path Pn = (x1, . . . , xn) in H with xi ∈ Aj for all i, where j ≡ i (mod k + 1).

Proof. Fix k > 1 and ε > 0. Let

a0 = 2 +
4

ε(k + 1)
, (4.4)

and suppose a > a0 is given. Let

c =
4a

ε2
(4.5)

and

b = 4ac. (4.6)

Let n be sufficiently large and G = G(2an, p) be the binomial random graph with p = c/n.

By Chernoff’s inequality, with high probability we have |E(G)| < (4a2c)n. Moreover, with

high probability G satisfies Property 1 (with H = G) by the following reason: Let X be

the number of pairs of disjoint subsets of V (G) of size εn with no edges between them.

Then, recalling (4.5), we have

E[X] 6

(
2an

εn

)2 (
1− c

n

)(εn)2

< 24an · e−cε2n = o(1).

By Markov’s inequality the probability that there exists such a pair of sets with no edges

between also tends to zero. Thus, we can fix a graph G satisfying these properties.

Now let H be a subgraph of G obtained by iteratively removing a vertex of maximum

degree until exactly an vertices remain. Then ∆(H) 6 b, as otherwise we would have

deleted more than b · an > |E(G)| edges from G during the iteration, which, in view

of (4.6), is a contradiction. Moreover, as H is an induced subgraph of G, Property 1 is

maintained.

It remains to prove that H also satisfies Property 2. To do so, we analyse a depth first

search algorithm, adapting a proof idea in [13, Lemma 4.4]. The algorithm receives as

input a graph H with v(H) = an satisfying Property 1 and a family of pairwise disjoint

setsA1, . . . , Ak+1 ⊆ V (H) with |Ai| > εan for all i. The output is a path Pn = (x1, . . . , xn)

in H with xi ∈ Aj for all i, where j ≡ i (mod k + 1).
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As it runs, the algorithm builds a path P = (x1, . . . , xr) with xi ∈ Aj for all i and j with

j ≡ i (mod k + 1). Furthermore, it maintains sets Uj and Dj ⊆ Aj for all j, with the

property that Uj , Dj , and V (P ) ∩ Aj form a partition of Aj for every j. The sets Uj

decrease as the algorithm runs, while the Dj increase. At each step if the path is currently

P = (x1, . . . , xr) we look to see if the path can be extended by adding a vertex u ∈ Ur+1

that is adjacent to xr. If such a u exists we call it xr+1 extending the path. We also remove

u (now called xr+1) from Ur+1. We then repeat the procedure with P = (x1, . . . , xr+1).

If, on the other hand, no such u ∈ Ur+1 is adjacent to xr we consider xr to be a dead end

and remove it from the path adding it to Dr. We then repeat the procedure for the path

P = (x1, . . . , xr−1). If at any stage the path is empty we simply choose a vertex from U1

to be the new start of the path.

If at any point the path consists of n vertices, we stop having achieved our aim. We also

artificially stop the algorithm if at any time there is an i such that |Di| > εn. We will

show that in a graph with Property 1 this does not happen without the path having first

had at least n vertices. Of course the algorithm will also stop if both the path and U1

are empty. This however would have meant |D1| = |A1| > εn and so the algorithm would

have already been stopped.

A useful observation is that there can never be any edges between Di and Ui+1 for any i

otherwise the path would have been extended along such an edge and the endpoint in Ai

would not have been added to Di.

Now suppose that (for the first time in the process) there is some i such that |Di| > εn.

Note that since there are no edges between Di and Ui+1 we must have |Ui+1| < εn by

Property 1. We also know that Di+1 < εn as Di was the first ‘dead end set’ to reach εn

vertices. Therefore we see that

|V (P ) ∩Ai+1| > |Ai+1 − 2εn| > (a− 2)εn >
4

k + 1
n .

Since the path wraps around the sets A1, ..., Ak+1 it intersects each set almost as often.

In particular we see that |V (P )| > (k + 1)( 4
k+1n − 1) which is greater than n when n is

large compared to k.

Remark 4.7. We remark that, in the proof above, we in fact proved that graphs that

satisfy 1 also satisfy 2.

The following definition plays an important role in our proof.

Definition 4.3 (Complete blow-up of Hk). Given a graph H and positive integers t and

k, we denote by Hk
t the graph obtained by replacing each vertex v of the kth power Hk
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of H by a complete graph with R(Kt) vertices, the cluster C(v), and by adding, for every

{u, v} ∈ E(Hk), all the edges between C(u) and C(v).

The simple fact stated below says that complete blow-ups of powers of bounded degree

graphs have a linear number of edges.

Fact 4.4. Let k, t, a and b be positive constants. If H is a graph with |V (H)| = an and

∆(H) 6 b, then |E(Hk
t )| = O(n).

Proof. Since ∆(H) 6 b, we have |E(Hk)| = O(n). Therefore, |E(Hk
t )| 6 R(Kt)

2 ·

|E(Hk)|+R(Kt)
2an = O(n).

We shall also make use of the following result in our proof.

Theorem 4.5 (Pokrovskiy [73, Theorem 1.7]). Let k > 1. Suppose that the edges of Kn

are coloured with red and blue. Then Kn can be covered by k vertex-disjoint blue paths

and a vertex-disjoint red balanced complete (k + 1)-partite graph.

The proof of Theorem 4.5 is rather complex. We remark that we do not need the full

strength of that result, in the sense that we do not need the complete (k + 1)-partite

graph to be balanced; it suffices for us to know that the vertex classes are of comparable

cardinality. Such a result can be derived easily by iterating Lemma 1.5 in [73], for which

Pokrovskiy gives a short and elegant proof (see also [72, Lemma 1.10]).

We shall also use the classical Kővári–Sós–Turán theorem [65], in the following simple

form.

Theorem 4.6. Let G be a balanced bipartite graph with t vertices in each vertex class.

If G contains no Ks,s, then G has at most 4t2−1/s edges.

To prove Theorem 4.1, we fix a graph H as in Lemma 4.2 and consider its kth power Hk.

We then consider, for a suitably large integer t, the complete blow-up Hk
t (see Defini-

tion 4.3). We then show that

Hk
t → P kn . (4.8)

Let us give a brief outline of the proof of (4.8). Suppose the edges of Hk
t have been

coloured red and blue by a colouring χ. Recall that Hk
t is obtained by blowing up Hk;

in particular, the vertices v of Hk become large complete graphs C(v). By the choice of

parameters, Ramsey’s theorem tells us that each such C(v) contains a monochromatic Kt.

We suppose, without loss of generality, that at least half of the C(v) contain a blue Kt
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and let F be the subgraph of H induced by the corresponding vertices v. So, in particular,

|F | > 1
2 |H|.

We shall define an auxiliary edge-colouring χ′ of F k and then we shall show that F k → Pn.

If we find a blue Pn in F k with the colouring χ′, then we shall be able to find a blue P kn

in Hk
t . On the other hand, if no such blue path Pn exists in F k, then we shall be able to

find a red Pn in F ⊆ H (not in F k), with certain additional properties. More precisely,

such a red Pn ⊆ F ⊆ H will be found as in 2 in Lemma 4.2, with the sets Ai being the

vertex classes of a red (k+1)-partite subgraph of F k as given by Theorem 4.5, applied to a

suitable red/blue coloured complete graph (we complete F k with its auxiliary colouring χ′

to a red/blue coloured complete graph by considering non-edges of F k red). It will then

be easy to find a red P kn in Hk
t .

Proof of Theorem 4.1. Fix k > 1 and let ε = 1/3(k+ 1). Let a0 be the constant given by

an application of Lemma 4.2 with parameters k and ε. Set a = max{6k, a0} and let b be

given by Lemma 4.2 for this choice of a. Moreover, let H be a graph with |V (H)| = an

and ∆(H) 6 b be as in Lemma 4.2. Finally, put t = (64k)2k and s = 2k.

Let Hk
t be a complete blow-up of Hk, as in Definition 4.3, and let χ : E(Hk

t )→ {red,blue}

be an edge-colouring of Hk
t . We shall show that Hk

t contains a monochromatic copy of P kn

under χ. By the definition of Hk
t , any cluster C(v) contains a monochromatic copy B(v)

of Kt. Without loss of generality, the set W := {v ∈ V (H) : B(v) is blue} has cardinality

at least v(H)/2. Let F := H[W ] be the subgraph of H induced by W , and let F ′ be the

subgraph of F kt ⊆ Hk
t induced by

⋃
w∈W V (B(w)).

Given the above colouring χ, we define a colouring χ′ of F k as follows. An edge {u, v} ∈

E(F k) is coloured blue if the bipartite subgraph F ′[V (B(u)), V (B(v))] of F ′ naturally

induced by the sets V (B(u)) and V (B(v)) contains a blue Ks,s. Otherwise {u, v} is

coloured red.

Claim 4.7. Any 2-colouring of E(F k) has either a blue Pn or a red P kn .

Proof. We apply Theorem 4.5 to F k, where if an edge is not present in F k, then we

consider it to be in the red colour class. If F k contains a blue copy of Pn, then we are

done. Hence we may assume F k contains a balanced, complete (k + 1)-partite graph K

with parts A1, . . . , Ak+1 on at least v(F k)− kn > an/2− kn vertices, with no blue edges

between any two parts. As a > 6k, each one of these parts has size at least

1

k + 1
(
a

2
− k)n > εan. (4.9)

72



Chapter 4. Size-Ramsey numbers of powers of paths

By Property 2 of Lemma 4.2 applied to the collection of sets of vertices A1, . . . , Ak+1 of

F ⊆ H (specifically F and not F k), we see that F [V (K)] contains a path with n vertices

such that any consecutive k + 1 vertices are in distinct parts of K. Therefore F k[V (K)]

contains a copy of P kn in which every pair of adjacent vertices are in distinct parts of K.

By definition of K, such a copy is red.

By Claim 4.7, F k contains a blue copy of Pn or a red copy of P kn under the edge-colouring

χ′. Thus, we can split our proof into these two cases.

(Case 1 ) First suppose F k contains a blue copy (x1, . . . , xn) of Pn. Then, for every

1 6 i 6 n− 1, the bipartite graph F ′[V (B(xi)), V (B(xi+1))] contains a blue copy of Ks,s,

with, say, vertex classes Xi ⊆ V (B(xi)) and Yi+1 ⊆ V (B(xi+1)). As |Xi| = |Yi| = s = 2k

for all 2 6 i 6 n− 1, we can find sets X ′i ⊆ Xi and Y ′i ⊆ Yi such that |X ′i| = |Y ′i | = k and

X ′i ∩ Y ′i = ∅ for all 2 6 j 6 n− 1. Let X ′1 = X1 and Y ′n = Yn.

We now show that the set U :=
⋃n−1
i=1 X

′
i ∪
⋃n
i=2 Y

′
i provides us with a blue copy of P k2kn

in F ′ ⊆ Hk
t . Note first that |U | = 2k + 2k(n − 2) + 2k = 2kn. Let u1, . . . , u2kn be an

ordering of U such that, for each i, every vertex in X ′i comes before any vertex in Y ′i+1

and after every vertex in Y ′i . By the definition of the sets X ′i and Y ′i and the construction

of F ′ ⊆ F kt ⊆ Hk
t , each vertex uj is adjacent in blue to {uj′ ∈ U : 1 6 |j− j′| 6 k}. Thus,

U contains a blue copy of P k2nk, as claimed.

(Case 2 ) Now suppose F k contains a red copy P of P kn . That is, F k contains a set of

vertices {x1, . . . , xn} such that xi is adjacent in red to all xj with 1 6 |j − i| 6 k. We

shall show that, for each 1 6 i 6 n, we can pick a vertex yi ∈ V (B(xi)) so that y1, . . . , yn

define a red copy of P kn in F ′ ⊆ F kt ⊆ Hk
t . This can be done greedily, by picking the yi

one by one in order. We can also do this by applying the local lemma [37, p. 616]. We

show the latter argument.

We have to show that it is possible to pick the yi (1 6 i 6 n) in such a way that {yi, yj}

is a red edge in F ′ for every i and j with 1 6 |i − j| 6 k. Let us choose yi ∈ V (B(xi))

(1 6 i 6 n) uniformly and independently at random. Let e = {xi, xj} be an edge

in P ⊆ F k. We know that e is red. Let Ae be the event that {yi, yj} is a blue edge in F ′.

Since the edge e is red, we know that the bipartite graph F ′[V (B(xi)), V (B(xj))] contains

no blue Ks,s. Theorem 4.6 then tells us that P[Ae] 6 4t−1/s.

The events Ae are not independent, but we can define a dependency graph D for the

collection of events Ae (e ∈ E(P )) by adding an edge between Ae and Af if and only
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if e ∩ f 6= ∅. Then ∆(D) 6 4k. Given that

4∆P[Ae] 6 64kt−1/s = 1 (4.10)

for all e, the local lemma tells us that P
[⋂

e∈E(P ) Āe
]
> 0, and hence a simultaneous choice

of the yi (1 6 i 6 n) as required is possible. This completes the proof of Theorem 4.1.
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5
Independent sets, matchings and

occupancy fractions

5.1 Independent sets

Let G be a d-regular graph on n vertices. The independence polynomial of G is

PG(λ) =
∑
I∈I

λ|I|

where I is the set of all independent sets of G. Note that by convention we consider the

empty independent set to be a member of I. The hard-core model with fugacity λ on G

is a random independent set I drawn according to the distribution

Pλ[I] =
λ|I|

PG(λ)

PG(λ) is also called the partition function of the hard-core model on G.

In the hard-core model, the quantity α(G) = λ
n
P ′G(λ)

PG(λ) is the occupancy fraction: the ex-

pected fraction of vertices of G belonging to the random independent set I. In particular,

α(G) =
1

n
E
[
|I|
]

=
1

n

∑
v∈G

P[v ∈ I] =
1

n

∑
I∈I |I|λ|I|

PG(λ)
=

1

n

λP ′G(λ)

PG(λ)
. (5.1)

Note that α(G) does not denote the independence number of G.

We write Kd,d for the complete bipartite graph with d vertices in each part. If 2d divides

n, let Hd,n denote the d-regular, n-vertex graph that is the disjoint union of n/(2d) copies

of Kd,d. Kahn [56] showed that Hd,n maximises the total number of independent sets over

all d-regular, n-vertex bipartite graphs. Galvin and Tetali [47] gave a broad generalisation

of Kahn’s result to counting homomorphisms from a d-regular, bipartite G to any graph
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H. The case of H formed of two connected vertices, one with a self-loop, is that of

counting independent sets. Via a modification of H and a limiting argument, they proved

that in fact PG(λ)1/n is maximised for any λ over d-regular bipartite G by Kd,d. Zhao

[87] then removed the bipartite restriction in Galvin and Tetali’s result for independent

sets by reducing the general case to the bipartite case, in particular proving that Hd,n has

the largest number of independent sets of any d-regular graph on n vertices.

Here we prove a strengthening of the above results for independent sets.

Theorem 5.1. For all d-regular graphs G and all λ > 0, we have

α(G) 6 α(Kd,d) =
λ(1 + λ)d−1

2(1 + λ)d − 1
.

The maximum is achieved only by disjoint unions of Kd,d’s. That is, the quantity 1
n
P ′G(λ)

PG(λ)

is uniquely maximised by Hd,n.

Corollary 2. For any d-regular graph G and any λ > 0

PG(λ)1/v(G) 6 PKd,d
(λ)1/v(Kd,d) .

In particular Theorem 5.1 states that the derivative of logPG(λ)/n is maximised over

d-regular graphs for all λ by Kd,d. We next show how integrating this proves Corollary 2.

Proof of Corollary 2. Suppose G is a d-regular graph and λ > 0. Noting that α(G) =

1
v(G)

λP ′G(λ)

PG(λ) = λ
v(G)

d
dλ log(PG(λ)) we see that

1

v(G)
log(PG(λ)) =

∫ λ

0

α(G)

x
dx

6
∫ λ

0

α(Kd,d)

x
dx

=
1

v(Kd,d)
log(PKd,d

(λ)) .

The inequality comes from Theorem 5.1 and Corollary 2 then follows by exponentiating

both sides.

In particular by choosing λ = 1 this shows that when 2d divides into n the n vertex

d-regular graph with the most independent sets is Hd,n. (Note that PKd,d
(λ)1/v(Kd,d) =

PHd,n
(λ)1/v(Hd,n).)

In Section 5.8 we use Theorem 5.1 to give new upper bounds on the number of independent

sets of a given size in d-regular graphs.
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5.2 Matchings

The matching polynomial of a graph G is

MG(λ) =
∑
H∈M

λ|H|

where M is the set of all matchings of G (including the empty matching) and |H| is the

number of edges in the matching H. Just as in the hard-core model above we can define

a probability distribution over matchings:

Pλ[H] =
λ|H|

MG(λ)
.

This defines the monomer-dimer model from statistical physics [51]: dimers are edges of

the random matching H, and monomers are the unmatched vertices.

For a d-regular graph G, the edge occupancy fraction, or the dimer density, is the expected

fraction of the edges of G in such a random matching:

αM (G) =
1

e(G)
E
[
|M |

]
=

2

dn

∑
e∈G

P[e ∈ H] =
2λM ′G(λ)

dnMG(λ)
.

Our next result is an upper bound on the edge occupancy fraction of any d-regular graph:

Theorem 5.2. For all d-regular graphs G and all λ > 0, we have

αM (G) 6 αM (Kd,d) .

That is, the quantity 2
dn

M ′G(λ)

MG(λ) is maximised by Hd,n.

Corollary 3. For any d-regular graph G and any λ > 0

MG(λ)1/e(G) 6MKd,d
(λ)1/e(Kd,d) .

The proof of Corollary 3 follows from Theorem 5.2 via integration in exactly the same

way that Corollary 2 follows from Theorem 5.1. Similarly with λ = 1, this shows that

Hd,n has the greatest total number of matchings of any d-regular graph on n vertices.

In Section 5.8 we use Theorem 5.2 to give new upper bounds on the number of matchings

of a given size in d-regular graphs. Using this we prove the asymptotic upper matching

conjecture of Friedland, Krop, Lundow, and Markström [43].
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5.3 Off-diagonal Ramsey numbers

Ajtai, Komlós, and Szemerédi [1] proved that any triangle-free graph G on n vertices with

average degree d has an independent set of size at least c log d
d n for a small constant c.

Shearer [81] later improved the constant to 1, asymptotically as d → ∞, showing that

such a graph has an independent set of size at least f(d) · n where f(d) = d log d−d+1
(d−1)2

=

(1 + od(1)) log d
d . Here, and in what follows, logarithms will always be to base e.

The off-diagonal Ramsey number R(3, k) is the least integer n such that any graph on

n vertices contains either a triangle or an independent set of size k. The above re-

sult of Ajtai, Komlós, and Szemerédi and a result of Kim [59] show that R(3, k) =

Θ(k2/ log k). Shearer’s result gives the current best upper bound, showing that R(3, k) 6

(1 + o(1))k2/ log k. Independent work of Bohman and Keevash [14] and Fiz Pontiveros,

Griffiths, and Morris [42] shows that R(3, k) > (1/4 + o(1))k2/ log k. Reducing the factor

4 gap between these bounds is a major open problem in Ramsey theory.

We prove a lower bound on the average size of an independent set in a triangle-free graph

of maximum degree d, matching the asymptotic form of Shearer’s result, and in turn

giving an alternative proof of the above upper bound on R(3, k).

Theorem 5.3. Let G be a triangle-free graph on n vertices with maximum degree d. Let

I(G) be the set of all independent sets of G. Then

1

|I(G)|
∑

I∈I(G)

|I| > (1 + od(1))
log d

d
n.

Moreover, the constant ‘1’ is best possible.

This result is weaker than Shearer’s [81] in that instead of average degree d we require

maximum degree d. Our result is stronger in that we show that the average size of an

independent set from such a graph is of size at least (1+od(1)) log d
d n, while Shearer shows

the largest independent set is of at least this size (by analysing a randomised greedy

algorithm).

The proof of Theorem 5.3 is almost identical to the proof of Theorem 5.1 restricted to

triangle-free graphs. In particular both methods reduce the problem to the same optimi-

sation problem over a family of random variables. For triangle-free graphs Theorem 5.3

follows from maximising this optimisation problem whilst Theorem 5.1 comes minimising.

After sharing a draft of [27] with colleagues, we discovered that James Shearer also knew

the proof of the lower bound in Theorem 5.3 and presented a sketch of it at the SIAM

Conference on Discrete Mathematics in 1998, but never published it [80].
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To see that Theorem 5.3 directly implies the upper bound (1 + o(1))k2/ log k on R(3, k),

suppose that G is triangle free with no independent set of size k. Then G must have

maximum degree less than k. Applying Theorem 5.3 we see the independence number

is at least (1 + ok(1)) log k
k n but less than k, and so n < (1 + ok(1)) k2

log k as required. Of

course this reasoning simply uses the average size of an independent set as a lower bound

for the maximum size.

5.4 Related work

The results of Kahn [56], Galvin and Tetali [47], and Zhao [87] culminating in the fact

that PG(λ)1/n is maximised over d-regular graphs by Kd,d are based on the entropy

method, a powerful tool for the type of problems we address here. Apart from the results

mentioned above, see [74] and [46] for surveys of the method. A direct application of

the method requires the graph G to be bipartite. Zhao [88] showed that in some, but

not all applications of the method, this restriction can be avoided by using a ‘bipartite

swapping trick’. An entropy-free proof of Galvin and Tetali’s general theorem on counting

homomorphisms was recently given by Lubetzky and Zhao [68]. Our method also does not

use entropy, but in contrast to the other proofs it works directly for all d-regular graphs,

without a reduction to the bipartite case. The method deals directly with the hard-core

model instead of counting homomorphisms and seems to require more problem-specific

information than the entropy method; a question for future work is to extend the method

to more general homomorphisms.

The technique of writing the expected size of an independent set in two ways (as we do

here) was used by Alon [6] in proving lower bounds on the size of an independent set

in a graph in which all vertex neighbourhoods are r-colourable. The idea of bounding

the occupancy fraction instead of the partition function comes in part from work of Will

Perkins [71] in improving, at low densities, the bounds on matchings of a given size in

Ilinca and Kahn [52] and independent sets of a given size in Carroll, Galvin, and Tetali [20].

The use of linear programming for counting graph homomorphisms appears in Kopparty

and Rossman [64], where they use a combination of entropy and linear programming to

compute a related quantity, the homomorphism domination exponent, in chordal and

series-parallel graphs.

For matchings, Carroll, Galvin, and Tetali [20] used the entropy method to give an upper

bound of (1 + dλ)1/2 on MG(λ)1/n. It was previously conjectured (eg. [44, 46]) that

Kd,d maximises MG(λ)1/n over all d-regular graphs G. This is an implication of our
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Theorem 5.2.

5.5 Independent sets in triangle-free graphs

In this section we introduce our method by giving a unified proof of the Theorems of

Kahn and Shearer. Specifically we shall prove Theorem 5.1 under the assumption that G

is triangle-free as well as Theorem 5.3.

In what follows I will denote the random independent set drawn according to the hard-core

model with fugacity λ on an n-vertex graph G with maximum degree d. For Theorem 5.1

we require that G in fact be d-regular however most of the argument is the same and we

will just note the distinction in the one step where it appears.

We say a vertex v is occupied if v ∈ I and uncovered if none of its neighbours are in I:

N(v) ∩ I = ∅. In particular any vertex that is occupied is necessarily uncovered. Let pv

be the probability v is occupied and qv be the probability v is uncovered. The idea of

considering the qv’s appears in Kahn’s paper [56].

We will show that for every λ > 0, over the set of triangle-free d-regular graphs G, α(G)

is maximised by Kd,d. For any graph H the occupancy of H is the same as the occupancy

fraction of multiple disjoint copies of H. In this way the occupancy fraction α(G) is

maximised not just by Kd,d but also by any number of copies of Kd,d,. We will also show

that for graphs with maximum degree d and suitable choice of λ the value α(G) is at least

(1 + od(1)) log d
d n.

Letting α = α(G), we write

α =
1

n

∑
v∈G

pv

=
1

n

∑
v∈G

λ

1 + λ
qv (5.2)

=
λ

1 + λ
· 1

n

∑
v∈G

d∑
j=0

P[j neighbours of v are uncovered] · (1 + λ)−j (5.3)

=
λ

1 + λ
· E[(1 + λ)−Y ]

where Y is the random variable that counts the number of uncovered neighbours of a

uniformly chosen vertex from G, with respect to the random independent set I. Y is an

integer valued random variable bounded between 0 and d. Equation (5.2) follows since v

must be uncovered if it is to be occupied; conditioning on being uncovered, v is occupied

with probability λ
1+λ . Equation (5.3) is similar: conditioned on u1, . . . , uj all uncovered,
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where the ui’s are neighbours of v, the probability that none are occupied is (1 + λ)−j .

This is where we use triangle-freeness: we know there are no edges between the ui’s. So

we are asking how likely a vertex v is to be in the independent set conditioning on the

number of uncovered neighbours of v and averaging over all vertices in the graph.

The next step is to come up with another expression relating Y and α(G). This second

way asks how many neighbours of v we expect to be in the independent set conditioned

on the number of uncovered neighbours of v.

EY =
1

n

∑
v∈G

∑
u∼v

qu 6 d · 1 + λ

λ
α

since each u appears in the double sum at most d times as G has maximum degree d.

This gives the inequality

EY 6 d · E[(1 + λ)−Y ] . (5.4)

IfG is d-regular then the two inequalities above hold with equality. From here we no longer

consider the problem to be one of optimising over graphs but instead we are optimising

over distributions Y that take values in [0, d]. For any such distribution Y we can now

calculate α. Of course α has only been defined for graphs however we extend the definition

to distributions Y by setting α = λ
1+λ ·E[(1 +λ)−Y ]. We additionally have the constraint

that we only consider distributions Y that satisfy equation (5.4).

We now let

αmax =
λ

1 + λ
· sup

06Y 6d

{
E[(1 + λ)−Y ] : E[(1 + λ)−Y ] = 1

dEY
}

and

αmin =
λ

1 + λ
· inf

06Y 6d

{
E[(1 + λ)−Y ] : E[(1 + λ)−Y ] > 1

dEY
}

where in both cases the sup is over all distributions of integer-valued random variables Y

bounded between 0 and d.

For any λ and d there is a unique distribution Y supported only on 0 and d that satisfies

the constraint EY = d · E[(1 + λ)−Y ]. We claim that the supremum is achieved by this

distribution. The claim follows from convexity, but we defer details to the proof of a more

general statement in Section 5.6. Since the distribution Y associated to Hd,n satisfies the

constraint and is supported on 0 and d, it must maximise α. Since disjoint unions of

Kd,d’s are the only graphs whose associated distribution is supported on 0 and d, they

uniquely achieve the maximum.
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Turning to the lower bound we use Jensen’s inequality to see that

α(G) >
λ

1 + λ
inf

06Y 6d
max

{
E[(1 + λ)−Y ], 1

dEY
}

>
λ

1 + λ
inf

06Y 6d
max

{
(1 + λ)−EY , 1

dEY
}

>
λ

1 + λ
min
x∈R+

max
{

(1 + λ)−x, xd
}
.

Since x/d is increasing in x whilst (1 + λ)−x is decreasing in x the min-max is attained

when x
d = (1 + λ)−x. We can rearrange this to

x · log(1 + λ) · ex·log(1+λ) = d · log(1 + λ) ,

from which we can see that

x =
W (d · log(1 + λ))

log(1 + λ)
,

where W is the Lambert-W function; the inverse function of zez. We choose λ tending to

zero with d such that d · log(1 + λ) tends to infinity (eg λ = 1/ log(d)) and use that fact

that for y > e, W (y) > log(y) − log(log(y)) which is equal to (1 + o(1)) log(y) if y tends

to infinity. For λ tending to zero we also have 1/ log(1 + λ) = (1 + o(1))/λ. We then see

that

x > (1 + o(1)) log(d · log(1 + λ))/λ = (1 + o(1)) log(d)/λ .

Therefore

α(G) >
λ

1 + λ

x

d
> (1 + o(1))

log d

d
.

Since the occupancy fraction at this λ is at least (1 + o(1)) log d/d there must be an

independent set of G of size at least

(1 + o(1))
log d

d
n .

If G is a triangle-free graph with no independent set of size k it must have maximum

degree less than k. Therefore it has an independent set of size (1 + o(1)) log k
k |G| and so

this must also be less than k. Therefore |G| 6 (1 + o(1)) k2

log k matching the asymptotic of

Shearer’s bound on off-diagonal Ramsey numbers.

In Section 5.6 we give the full proof of Theorem 5.1. We turn to matchings and Theo-

rem 5.2 in Section 5.7 before giving new bounds on the number of independent sets and

matchings of a given size in Section 5.8.
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5.6 Independent sets in d-regular graphs

Here we show that Theorem 5.1 holds for all d-regular graphs. For a vertex v ∈ G and

an independent set I, we define the free neighbourhood of v to be the subgraph of G

induced by the neighbours of v which are not adjacent to any vertex in I \N(v). We use

the convention v /∈ N(v). The vertices in the free neighbourhood may be uncovered or

covered, but if they are covered it must be from another vertex in the free neighbourhood.

In a triangle-free graph the free neighbourhood is always a set (possibly empty) of isolated

vertices. Note that if v ∈ I, then the free neighbourhood of v is necessarily empty.

Let C be the random free neighbourhood of v when we draw I according to the hard-core

model and choose vertex v uniformly at random from G. For any graph F , let pF be

the probability that C is isomorphic to F . Also let PC = PC(λ) be the independence

polynomial of C at fugacity λ. Then we can write α in two ways:

α =
λ

1 + λ
E
[

1

PC(λ)

]
(5.5)

and

α =
λ

d
E
[
P ′C(λ)

PC(λ)

]
(5.6)

where in both equations the expectations are over the random free neighbourhood C.

Equation (5.5) follows since v itself is uncovered if and only if all vertices in its free

neighbourhood are unoccupied. Given that the free neighbourhood is isomorphic to C,

all vertices in the free neighbourhood are unoccupied with probability 1
PC(λ) . Equation

(5.6) follows by counting the expected number of occupied neighbours of v and dividing

by d: only vertices in the free neighbourhood can be occupied, and, given C, the expected

number of occupied vertices in the free neighbourhood is
λP ′C(λ)

PC(λ) .

Now let

α∗ =
λ

1 + λ
· sup

{
E
[

1

PC(λ)

]
:

d

1 + λ
· E
[

1

PC(λ)

]
= E

[
P ′C(λ)

PC(λ)

]}
(5.7)

where the sup is over all distributions of random free neighbourhoods C supported on

graphs of at most d vertices. From (5.5) and (5.6), the distribution obtained from G

satisfies the constraint above.

We claim that for any λ > 0, α∗ is achieved uniquely by a distribution supported only on

the empty graph and the graph consisting of d isolated vertices, Kd. The theorem follows

since a disjoint union of Kd,d’s is the only graph for which the free neighbourhood can only

be the empty set or Kd. To prove this claim we use the language of linear programming,

see e.g. [17].
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5.6.1 The linear program

Let pC be the probability of a given free neighbourhood C, and let Cd be the set of all

graphs on at most d vertices. Equation (5.7) defines a linear program with the decision

variables {pC}C∈Cd . We write the linear program in standard form as

α∗ = max
λ

2(1 + λ)

∑
C∈Cd

pC(aC + bC) s.t.

∑
C∈Cd

pC = 1

∑
C∈Cd

pC(aC − bC) = 0

pC > 0 ∀C ∈ Cd

where aC = 1
PC(λ) and bC =

(1+λ)P ′C(λ)

dPC(λ) . We can calculate a∅ = 1, b∅ = 0, aKd
= (1+λ)−d,

bKd
= 1. The solution p∅ = 1−(1+λ)−d

2−(1+λ)−d and pKd
= 1

2−(1+λ)−d is the unique feasible solution

supported only on ∅ and Kd, and gives the objective value λ(1+λ)d−1

2(1+λ)d−1
. Our claim is that

this is the unique maximum.

The dual linear program is

α∗ = min
λ

2(1 + λ)
Λ1 s.t.

Λ1 + Λ2(aC − bC) > aC + bC ∀C ∈ Cd

where Λ1,Λ2 are the decision variables.

Guided by the candidate solution above we set Λ1 = 2
2−(1+λ)−d , and Λ2 = 1 − Λ1. With

these values, the dual constraints corresponding to C = ∅,Kd hold with equality, and

the objective value is λ
2(1+λ)Λ1 = λ(1+λ)d−1

2(1+λ)d−1
. To finish the proof we claim that Λ1,Λ2 are

feasible for the dual program, which means showing that

Λ1 + Λ2(aC − bC) > aC + bC

for all C ∈ Cd \ {∅,Kd}. Substituting our values of Λ1,Λ2, this inequality reduces to

λP ′C(λ)

PC(λ)− 1
<
λd(1 + λ)d−1

(1 + λ)d − 1
. (5.8)

The LHS of (5.8) is the expected size of the random independent set from the hard-core

model on C conditioned on it being non-empty. The RHS is the same quantity for Kd.

Inequality (5.8) follows directly from the observation that, over all C ∈ Cd, the graph

Kd maximises the ratio of subsequent terms in the polynomial PC . Let ai =
(
d
i

)
be the
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coefficient of λi in PKd
and write PC = 1 +

∑d
i=1 biλ

i. We have (i + 1)ai+1 = (d − i)ai
and (i+ 1)bi+1 6 (d− i)bi by counting independent sets of size i+ 1.

To verify (5.8) we show that for each 1 6 k 6 d the coefficient ck of λk in the polynomial

(λP ′
Kd

)(PC − 1)− (λP ′C)(PKd
− 1) is non-negative. We have

ck =
k−1∑
i=1

iaibk−i +
k−1∑
i=1

iak−ibi

=

bk/2c∑
i=1

(k − 2i)(ak−ibi − aibk−i) .

Observe that term-by-term the above sum giving ck is non-negative by comparing the

ratio of successive coefficients in PKd
and PC . Furthermore, if PC 6= PKd

then at least

one ck must be positive, which completes the claim.

To see the optimiser is unique note that there is a unique distribution supported on ∅

and Kd satisfying the primal constraints, and fixing Λ1 = α(Kd,d) in the dual gives a

unique feasible value for Λ2, since its coefficient aC − bC takes different signs on C =

∅,Kd. Therefore this is the unique optimal solution in the dual, and since all other dual

constraints hold with strict inequality, any primal optimal solution must be supported

on ∅ and Kd. Disjoint unions of Kd,d’s are the only graphs whose distributions have this

support.

5.7 Matchings in d-regular graphs

Recall that we use the notation MG(λ) for the matching polynomial of a graph G, and

let H be a matching drawn from the monomer-dimer model at fugacity λ.

We refer to an edge as covered if an incident edge is in the random matching H. Let

e be an edge of G chosen uniformly at random, with an arbitrary left/right orientation

also chosen at random. In applying the method to matchings we introduce a subtle

change of presentation. We now define the free neighbourhood C to be the subgraph of

G containing all the incident edges to e that are not covered by edges outside of both e

and its incident edges. When considering independent sets, the free neighbourhood was

empty if the random vertex v was in the independent set. Here the presence or absence

in the matching of e or an edge adjacent to e does not affect C. Given e and C, we use

the term externally uncovered neighbour to refer to an edge of C incident to e.

The possible free neighbourhoods C are completely defined by three parameters:

L,R,K ∈ {0, 1, . . . , d − 1}, counting the number of left and right neighbouring edges
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in C with an endpoint of degree 1, and the number of triangles formed by e and C. An

example is pictured below.

e

K = 1

R = 2L = 3

Let q(i, j, k) = P[L = i, R = j,K = k], and denote the matching polynomial for such a

free neighbourhood by Mi,j,k, where we can compute

Mi,j,k(λ) = 1 + (i+ j + 2k)λ+
[
k2 + k(i+ j − 1) + ij

]
λ2 .

Conditioned on the event that the free neighbourhood of e is C, the random matching

H restricted to e and its incident edges is distributed according to the monomer-dimer

model on the graph C with the edge e added; the partition function of this model is

λ+MC(λ), with the term λ corresponding to the event that e ∈ H.

We write αM as the expected fraction of edges incident to e that are in the matching.

In order for there to be any such edges e must be unoccupied. Conditioned on the free

neighbourhood of e being C, the probability that e is unoccupied is

MC(λ)

λ+MC(λ)
,

and conditioned on C and on e being unoccupied the expected number of occupied neigh-

bours of e is
λM ′C(λ)

MC(λ)
.

As each edge in a d-regular graph is incident to exactly 2(d− 1) other edges:

αM =
2

dn

∑
e

∑
f∼e

1

2(d− 1)
P[f ∈ H]

= E
[

λM ′C(λ)

2(d− 1)(λ+MC(λ))

]
=
∑
i,j,k

q(i, j, k)
λM ′i,j,k(λ)

2(d− 1)(λ+Mi,j,k(λ))
,

where the expectation in the second line is over the random free neighbourhood C resulting

from the two-part experiment described above. If we write the expected fraction of
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occupied neighbours of e in a configuration as αM (i, j, k) = 1
2(d−1)

λM ′i,j,k
λ+Mi,j,k

, the above

expression can be written αM =
∑

i,j,k q(i, j, k)αM (i, j, k).

5.7.1 The linear program for matchings

We now introduce additional constraints before optimising αM over distributions of free

neighbourhoods. We could write multiple expressions for αM , equate them, and solve the

maximization problem as we did for independent sets. Using three expressions for αM we

were able to prove Theorem 5.2 for the case d = 3, in which the optimal distribution is

supported on only three values: q(0, 0, 0), q(1, 1, 0), q(2, 2, 0). But in general we need at

least d − 1 constraints (in addition to the constraint that the q(i, j, k)′s sum to one) as

the distribution induced by Kd,d is supported on d values.

Instead, we write, for all t, two expressions for the marginal probability that the number

of uncovered neighbours on a randomly chosen side of a random edge is equal to t. We

find the two expressions by choosing uniformly: a random edge e, a random side left or

right, and f , a random neighbouring edge of e from the given side. We first calculate the

probability that e has t uncovered neighbours on the side containing f , then we calculate

the probability that f has t uncovered neighbours on the side containing e.

Given a free neighbourhood C with L = i, R = j, and K = k, e can have 0, 1, i+k−1, or

i+k uncovered left neighbours; an edge f to the left of e can have 0, 1, i+k−2, i+k−1, i+k,

or i + k + 1 uncovered right neighbours (depending on whether f itself is in the free

neighbourhood C).

Let γei,j,k(t) = P[e has t uncovered left neighbours |L = i, R = j,K = k] and γfi,j,k(t) =

P[f has t uncovered right neighbours |L = i, R = j,K = k], where f is a uniformly chosen

left neighbour of e.

Claim 5.4. Let βt = 1 + tλ. Then we have

γei,j,k(t) =
1

λ+Mi,j,k

(
1t=0 · λ+ 1t=1 · [iλβj+k + kλβj+k−1] (5.9)

+ 1t=i+k · βj + 1t=i+k−1 · kλ
)

γfi,j,k(t) =
1

(d− 1)(λ+Mi,j,k)

(
1t=0 · [iλβj+k + kλβj+k−1] (5.10)

+ 1t=1 · [(d− 1)λ+ (d− 2)(iλβj+k + kλβj+k−1)]

+ 1t=i+k−2 · [(i+ k − 1)kλ] + 1t=i+k−1 · [(d− i− k)kλ+ (i+ k)jλ]

+ 1t=i+k · [(d− 1− i− k)jλ+ (i+ k)] + 1t=i+k+1 · [d− 1− i− k]
)
.
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Proof. To compute the functions γei,j,k(t) we consider the following disjoint events: 1) no

left edge and no right edge from a triangle is in the matching 2) e is in the matching 3) a left

edge is in the matching 4) no left edge is in the matching, but a right edge from a triangle is

in the matching. These events happen with probability
βj

λ+Mi,j,k
, λ
λ+Mi,j,k

,
iλβj+k+kλβj+k−1

λ+Mi,j,k
,

and kλ
λ+Mi,j,k

respectively. Under these events the number of uncovered neighbours of e is

i+ k, 0, 1, and i+ k − 1 respectively. This gives (5.9).

To compute the functions γfi,j,k(t) we refine the above events to include the possible choices

of f : f can be an edge outside the free neighbourhood with probability (d−1−i−k)/(d−1);

an edge in the free neighbourhood but not in a triangle with probability i/(d− 1); in the

free neighbourhood and in a triangle with probability k/(d − 1). If a left edge is in the

matching we choose it as f with probability 1/(d − 1), and if a right edge in a triangle

is in the matching we choose f adjacent to it with probability 1/(d− 1). Computing the

number of uncovered neighbours of f in each case gives (5.10).

We now define a linear program with constraints imposing that the two different ways

of writing the marginal probabilities are equal. The marginal probability constraint for

t = d− 1 is redundant and we omit it. To account for the equal chance that f is chosen

from the left side of e and the right side of e, we average γfi,j,k(t) and γfj,i,k(t), and γei,j,k(t)

and γej,i,k(t).

α∗M = max
∑
i,j,k

q(i, j, k)αM (i, j, k) subject to

q(i, j, k) > 0 ∀ i, j, k∑
i,j,k

q(i, j, k) = 1

∑
i,j,k

q(i, j, k)
1

2

[
γfi,j,k(t) + γfj,i,k(t)− γ

e
i,j,k(t)− γej,i,k(t)

]
= 0 ∀ t = 0, . . . , d− 2 .

Disjoint unions of copies of Kd,d are the only graphs that induce a distribution q(i, j, k)

supported on triples with i = j and k = 0. This gives us a candidate solution to the linear

program.

The dual program is

α∗M = min Λp subject to

Λp − αM (i, j, k) +
d−2∑
t=0

Λt
1

2

[
γfi,j,k(t) + γfj,i,k(t)− γ

e
i,j,k(t)− γej,i,k(t)

]
> 0 ∀ i, j, k .

To show that Kd,d is optimal, we find values for the dual variables Λ0, . . . ,Λd−2 so that

the dual constraints hold with Λp = αMKd,d
(λ). To find such values, we solve the system
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of equations generated by setting equality in the constraints corresponding to i = j and

k = 0 and solve for the variables Λt, t = 0, . . . , d− 2.

With this choice of values for the dual variables, we start by simplifying the form of

the dual constraints with a substitution coming from equality in the (i, j, k) = (0, 0, 0)

constraint. The (0, 0, 0) dual constraint has the simple form

Λ0 − Λ1 = αMKd,d
.

Moreover, observe that from the 1t=0 and 1t=1 terms in γei,j,k(t) and γfi,j,k(t), every dual

constraint contains the term[
αM (i, j, k)− λ

(λ+Mi,j,k)

]
(Λ0 − Λ1) =

[
αM (i, j, k)− λ

(λ+Mi,j,k)

]
αMKd,d

.

With this simplification, we multiply through by 2(d−1)(λ+Mi,j,k) and expand αM (i, j, k)

terms to obtain the following form of the dual constraints:

αMKd,d

[
λM ′i,j,k + 2(d− 1)Mi,j,k

]
− λM ′i,j,k (5.11)

+ Λi+k−2 · (i+ k − 1)kλ

+ Λi+k−1 · [(d− i− k)kλ+ (i+ k)jλ− (d− 1)kλ]

+ Λi+k · [(d− 1− i− k)jλ+ i+ k − (d− 1)βj ]

+ Λi+k+1 · (d− 1− i− k)

+ Λj+k−2 · (j + k − 1)kλ

+ Λj+k−1 · [(d− j − k)kλ+ (j + k)iλ− (d− 1)kλ]

+ Λj+k · [(d− 1− j − k)iλ+ j + k − (d− 1)βi]

+ Λj+k+1 · (d− 1− j − k) > 0 .

Recalling that we use βt to denote 1 + tλ the (i, i, 0) equality constraints now read

αMKd,d
βi
(
βi + iλ

d−1

)
− iλβi

d−1 + Λi−1
i2λ
d−1 − Λi

d−1−i+i2λ
d−1 + Λi+1

d−1−i
d−1 = 0 . (5.12)

With this we can write Λi+k+1 in terms of Λi+k and Λi+k−1, and similarly for Λj+k+1.

Substituting this into (5.11) and dividing by λ we derive the simplified form of the dual

constraints:

λ
[
(i− j)2 + 2k

]
(1− dαMKd,d

) (5.13)

+ Λi+k−2(i+ k − 1)k + Λi+k−1[k + (i+ k)(j − i− 2k)]

+ Λi+k(i+ k)(i+ k − j)

+ Λj+k−2(j + k − 1)k + Λj+k−1[k + (j + k)(i− j − 2k)]

+ Λj+k(j + k)(j + k − i) > 0 .
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Write L(i, j, k) for the LHS of this inequality.

The marginal constraint for t = d−1 was omitted, but we nonetheless introduce Λd−1 := 0

in order to simplify the presentation of the argument. The (d − 1, d − 1, 0) equality

constraint gives Λd−2 directly:

Λd−2 =
1

(d− 1)λ

[
λ+ (d− 1)λ2 − αMKd,d

βd−1βd

]
.

With Λd−1, Λd−2, and the recurrence relation (5.12) the dual variables are fully deter-

mined. We do not give a closed-form expression for Λt as the values are used in an

induction below. Using Λd−1, Λd−2, and (5.12) suffices for the proof.

We now reduce the problem of showing that the dual constraints (5.13) corresponding to

triples (i, j, k) with k > 0 or i 6= j hold with strict inequality to showing that a particular

function is increasing. We go on to prove this fact in Claims 5.5 and 5.6.

Putting k = 0 into (5.13) gives:

L(i, j, 0)

(j − i)
= λ(j − i)(1− dαMKd,d

) + iΛi−1 − iΛi − jΛj−1 + jΛj

= Fd(j)− Fd(i)

where

Fd(t) := t
[
λ(1− dαMKd,d

) + Λt − Λt−1

]
. (5.14)

From (5.13) we obtain

L(i− 1, j − 1, k + 1)− L(i, j, k) = Fd(i+ k)− Fd(i+ k − 1) + Fd(j + k)− Fd(j + k − 1).

Therefore if Fd(t) is strictly increasing, we have L(i, j, 0) > 0 for i 6= j, and L(i − 1, j −

1, k + 1) > L(i, j, k) > · · · > L(i+ k, j + k, 0) > 0.

We first find an explicit expression for Fd(t). Recall that we write MKt,t for the matching

polynomial of the graph Kt,t.

Claim 5.5. For all d > 2 and 1 6 t 6 d− 1,

Fd(t) =
t(d− 1)

MKd,d

d−2∑
`=t−1

(d− 1− t)!
(`+ 1− t)!

λd−`MK`,`
. (5.15)

Proof. We will use the following two facts:

MKd,d
− β2d−1MKd−1,d−1

+ (d− 1)2λ2MKd−2,d−2
= 0 (5.16)

αMKd,d
=
λMKd−1,d−1

MKd,d

. (5.17)
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The first is a Laguerre polynomial identity, verifiable by hand; the second is a short

calculation. The equality dual constraint (5.12) implies:

(d− 1− t)Fd(t+ 1) = (t+ 1)[tλFd(t) + (d− 1)λ− (d− 1)αMKd,d
βd+t] . (5.18)

We first show that the right hand side of (5.15) satisfies the above recurrence relation.

Using (5.17) this amounts to showing that the following expression is equal to zero for all

d > 2 and 1 6 t 6 d− 1:

Φd(t) := (d−1−t)!

(
d−2∑
`=t

λd−`MK`,`

(`− t)!
−t2

d−2∑
`=t−1

λd+1−`MK`,`

(`+ 1− t)!

)
−λ(MKd,d

−βd+tMKd−1,d−1
) .

We proceed by induction on d. Note that when d = 2, Φ2(1) is easily verified to be zero.

Note that

Φd+1(t) = λ
(

(d− t)Φd(t)−MKd+1,d+1
+ β2d+1MKd,d

− d2λ2MKd−1,d−1

)
.

By the induction hypothesis and (5.16) the result follows. To complete the proof of the

claim it suffices to show that (5.15) holds for t = d− 1. Recalling that

Λd−1 = 0

Λd−2 =
1

d− 1
+ λ−

αMKd,d

(d− 1)λ
βdβd−1 ,

substituting into (5.14), and using (5.16) and (5.17) we have

Fd(d− 1) = (d− 1)

[
λ(1− dαMKd,d

)− 1

d− 1
− λ+

αMKd,d

(d− 1)λ
βdβd−1

]

=
αMKd,d

λ
β2d−1 − 1

=
1

MKd,d

[
β2d−1MKd−1,d−1

−MKd,d

]
=

(d− 1)2λ2MKd−2,d−2

MKd,d

,

verifying (5.15) for t = d− 1.

Using Claim 5.5 we prove the following.

Claim 5.6. Fd(t) is strictly increasing as a function of t.

Proof. To prove that Fd(t) is increasing, we show that

Rd(t) :=
MKd,d

(d− 1)
· Fd(t+ 1)− Fd(t)

(d− 2− t)!

= (t+ 1)
d−2∑
`=t

λd−`

(`− t)!
MK`,`

− t(d− 1− t)
d−2∑
`=t−1

λd−`

(`+ 1− t)!
MK`,`
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is positive for each t with 1 6 t 6 d− 2. We do this by fixing t and performing induction

on d from t + 2 upwards. A useful inequality will be MKt,t > tλMKt−1,t−1 which comes

from only counting matchings of Kt,t that use a specific vertex. Iterating this inequality

we obtain

MKt,t >
t!

`!
λt−`MK`,`

for 0 6 ` 6 t− 1 . (5.19)

For the base case of our induction, d = t+ 2, we have

Rd(d− 2) = λ2
[
MKd−2,d−2

− (d− 2)λMKd−3,d−3

]
,

which by (5.19) is positive.

For the inductive step we have

Rd+1(t) = λ

[
Rd(t) +

λ

(d− 1− t)!
MKd−1,d−1

−
d−2∑
`=t−1

tλd−`

(`− t+ 1)!
MK`,`

]
,

and so it is sufficient to show

d−2∑
`=t−1

tλd−`

(`+ 1− t)!
MK`,`

<
λ

(d− 1− t)!
MKd−1,d−1

. (5.20)

We use the inequality (5.19) in each term of the sum to see that the LHS of (5.20) is less

than

d−2∑
`=t−1

t`!λ

(`+ 1− t)!(d− 1)!
MKd−1,d−1

,

and so

d−2∑
`=t−1

tλd−`

(`+ 1− t)!
MK`,`

<
d−2∑
`=t−1

t`!λ

(`+ 1− t)!(d− 1)!
MKd−1,d−1

=
λMKd−1,d−1

(d− 1− t)!
·
d−2∑
`=t−1

t`!(d− 1− t)!
(`+ 1− t)!(d− 1)!

=
λMKd−1,d−1

(d− 1− t)!
·
(
d− 1

t

)−1

·
d−2∑
`=t−1

(
`

t− 1

)
=
λMKd−1,d−1

(d− 1− t)!
.

Therefore (5.20) holds as required.

This completes the proof of dual feasibility and shows our candidate solution to the primal

program is optimal. The uniqueness of the solution follows from two facts. First, strict
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inequality in the dual constraints outside of the (i, i, 0) constraints implies, by comple-

mentary slackness, that the support of any optimal solution in the primal is contained in

the set of (i, i, 0) configurations. Second, the distribution induced by Kd,d is the unique

distribution satisfying the constraints with such a support. This follows from the fact

that Λi is uniquely determined by (5.12) where we have set the (i, i, 0) dual constraints to

hold with equality, which in turn shows that the relevant d×d submatrix of the constraint

matrix is full rank. This proves Theorem 5.2.

5.8 Independent sets and matchings of a given size

Let ik(G) be the number of independent sets of size k in a graph G, and mk(G) the

number of matchings of size k. Kahn [56] conjectured that ik(G) is maximised over d-

regular, n-vertex graphs by Hd,n for all k (when 2d divides n), and Friedland, Krop,

and Markström [44] conjectured the same for mk(G). Previous bounds towards these

conjectures were given in [20, 52, 71]. Here we adapt the method of Carroll, Galvin, and

Tetali (and use the above result on the matching polynomial) to give bounds for both

problems that are tight up to a multiplicative factor of 2
√
n, for all d and all k. Previous

bounds had been off by an exponential factor in n.

Theorem 5.7. For all d-regular graphs G on n vertices (where 2d divides n),

ik(G) 6 2
√
n · ik(Hd,n)

and

mk(G) 6 2
√
n ·mk(Hd,n) .

The general idea to get from the result that Hd,n maximises PG(λ) and MG(λ) among

d-regular graphs on n vertices is to use the fact that for any k ∈ {0, . . . , n/2} there

is a value of λ such that independent sets of size k are the most common size when

running the hard-core model on Hd,n. There is also a (potentially different) value of λ

such that the most common size of matching in the monomer-dimer model on Hd,n is k.

By comparing the partition functions of an arbitrary graph G with Hd,n we see that the

number of independent sets of size k in G is at most n
2 + 1 times that of Hd,n. Similarly

for matchings. The n
2 +1 factor comes from the fact that the partition functions have this

many non-zero coefficients, as there are this many possible sizes or independent set or

matching. For Theorem 5.7 we prove something slightly stronger; that for every k there

93



Chapter 5. Independent sets, matchings and occupancy fractions

is a λ such that in the hard-core model on Hd,n independent sets of size k are selected at

least a 1
2
√
n

fraction of the time. The same holds for matchings.

Lemma 5.8. For all 1 6 k 6 n/2, there exists a λ so that

ik(Hd,n)λk

PHd,n
(λ)

= PHd,n
[|I| = k] >

1

2
√
n

and a λ so that
mk(Hd,n)λk

MHd,n
(λ)

= PHd,n
[|H| = k] >

1

2
√
n
.

Proof. The distribution of the size of a random independent set I drawn from the hard-

core model on Hd,n is log-concave; that is,

PHd,n
[|I| = j]2 > PHd,n

[|I| = j + 1] · PHd,n
[|I| = j − 1]

for all 1 < j < n/2. This follows from two facts: the size distribution of the hard-core

model on Kd,d is log-concave, and the convolution of two log-concave distributions is again

log-concave. The first fact is simply the calculation(
d

j

)2

>

(
d

j − 1

)(
d

j + 1

)
.

Now choose λ so that PHd,n
[|I| = k] = PHd,n

[|I| = k + 1]. Log-concavity then implies

that PHd,n
[|I| = k] is maximal. Some explicit computations for the variance for a single

Kd,d give that the variance of |I| is at most n/8; then via Chebyshev’s inequality, with

probability at least 2/3 the size of I is one of at most 4
3

√
n values, and thus the largest

probability of a single size is greater than 1
2
√
n

.

The proof for mk(Hd,n) is the same: the variance of the size of a random matching is also

at most n/8 (see, e.g. [55]), and log-concavity of the size distribution on Kd,d is verified

via the inequality (
d

j

)4

j!2 >

(
d

j − 1

)2

(j − 1)!

(
d

j + 1

)2

(j + 1)!

Proof of Theorem 5.7. Assume for sake of contradiction that mk(G) > 2
√
n ·mk(Hd,n).

Choose λ according to Lemma 5.8. We have:

MG(λ) > mk(G)λk > 2
√
n ·mk(Hd,n)λk > MHd,n

(λ) ,

but this contradicts Theorem 5.2. The case of independent sets is identical.
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The above proof is essentially the same as the proofs in Carroll, Galvin, and Tetali [20]

with the small observation that λ can be chosen so that k is the most likely size of a

matching (or independent set) drawn from Hd,n. The factor 2
√
n in both cases can surely

be improved by using some regularity of the independent set and matchings sequence of

a general d-regular graph.

As a consequence, we prove the asymptotic upper matching conjecture of Friedland, Krop,

Lundow, and Markström [43]. Fix d and consider an infinite sequence of d-regular graphs

Gd = G1, G2, . . . where each Gn has n vertices if such a graph exists. For any % ∈ [0, 1/2],

the %-monomer entropy is

hGd(%) = sup
{kn}

lim sup
n→∞

logmkn(Gn)

n
,

where the supremum is taken over all integer sequences {kn} with kn/n→ %. Let hd(%) =

limn→∞
logmb%nc(Hd,n)

n , where the limit is take over the sequences of integers divisible by

2d. Then the conjecture states that for all Gd and all % ∈ [0, 1/2], hGd(%) 6 hd(%).

To prove this, first assume % > 0 since for % = 0 the result is trivially true. Assume for

the sake of contradiction that lim sup
logmkn (Gn)

n > hd(%) + ε for some ε > 0. Take N0

large enough that for all n1 > N0, divisible by 2d,
logmb%n1c(Hd,n1

)

n1
< hd(%) + ε/2. Now

take some n > N0 with
logmkn (Gn)

n > hd(%) + ε, and let n1 = 2d · dn/(2d)e. Choose λ

so that mb%n1c(Hd,n1) > 1
2
√
n1
MHd,n1

(λ). Note that since % > 0, such λ is bounded away

from 0 as n1 →∞. Then we have

logMGn(λ)

n
>

logmkn(Gn)λkn

n
>
kn
n

log λ+ hd(%) + ε

= % log λ+ hd(%) + ε+ o(1) as n→∞

and

logMKd,d
(λ)

2d
=

logMHd,n1
(λ)

n1
<

log
(
2
√
n1 ·mb%n1c(Hd,n1)λb%n1c

)
n1

<
log(2

√
n1)

n1
+
b%n1c
n1

log λ+ hd(%) + ε/2

= % log λ+ hd(%) + ε/2 + o(1) ,

but this contradicts Theorem 5.2. With the same proof, the analogous statement for

independent set entropy holds.
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