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Abstract 

Ambrosia species represent one of the most problematic groups of invasive weeds around the 

world. The ease they are introduced and spread in new countries, their generalist ecological 

requirements and functional traits facilitate their invasion and subsequent naturalization in new 

areas. All of these aspects contribute to increasing their global social and economic impact, 

which is mostly related to pollen allergy. Here we analyse available scientific publications about 

Ambrosia artemisiifolia, A. psilostachya, A. tenuifolia and A. trifida, with the aim of defining 

the current level of knowledge and summarizing important data that is currently scattered 

throughout the literature. Specifically, we analysed the following: (1) their current global 

distribution and current stage of invasion; (2) traits and requirements promoting their 

introduction, reproductive success and adaptation to climate and environment in the non-native 

range; as well as (3) current knowledge about allergens and elements increasing their impact.  

 

Key words: Ambrosia artemisiifolia, A. psilostachya, A. tenuifolia, A. trifida, invasive alien 

plants, pollen allergy. 
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I. Introduction 

There are over 40 species in the genus Ambrosia L. (Asteraceae) (Rich, 1994; Makra et al., 

2015; www.theplantlist.org), most of which are native to the Americas. Over the last 200 years, 

human impacts on land use (i.e. urbanization, the intensification of farming practices and 

increased transportation networks) have had serious effects on the distribution and ecology of 

several Ambrosia species. In particular, the introduction of the following species in non-native 

continents: A. artemisiifolia L. (common or short ragweed), A. trifida L. (giant ragweed), A. 

tenuifolia Spreng. (slender or slim-leaf burr ragweed) and A. psilostachya DC. (Western or 

perennial ragweed).  

These Ambrosia (ragweed) species have been introduced into new countries since the 

19th century, especially A. artemisiifolia which has quickly become an invasive species (Smith 

et al. (2013) and references therein) and is presently a species of concern for public health in 

both its native and invasive ranges because of its highly allergenic pollen. In North America, 

Ambrosia pollen is the second most important cause of seasonal allergic rhinitis and asthma, 

affecting more than 15 million people (about 20-25% of the United States population), with a 

prevalence of about 45% in atopic individuals (Wopfner et al., 2005; Kats and Carey 2014). In 

Europe, Ambrosia has become a serious problem in the past decades, contributing to an evident 

increase in respiratory allergic reactions in areas where it is distributed (D’Amato, 1992; 

D’Amato, 2007). It is therefore recognized globally that Ambrosia species represent one of the 

most problematic groups of invasive weeds.  

Biological invasions can be represented as a chronological series of decisive stages that 

can allow or halt the entry and establishment of an organism in a new range (Blackburn et al., 

2011; Richardson and Pysek, 2012). A non-native organism needs to overcome geographical, 

environmental and reproductive barriers to establish in a new area, and some factors and traits 
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can be more meaningful than others in predicting or explaining its success or failure during the 

process of introduction, establishment and spread (Van Kleunen et al., 2015). Expressing the 

invasion process formulaically as "introduction - naturalization - invasion continuum", 

Richardson and Pysek (2012) stressed the importance of focusing on "naturalization", which is 

the fundamental preliminary step before invasion. According to their review, this 

"naturalization" is understudied, but its predictors/mediators can be more robust than those 

formulated for the invasion phase as they depend on factors less unpredictable and highly 

context-dependent. 

On this basis, our review examines the main predictors of introduction-naturalization of 

the most widespread Ambrosia species at a global level, considering the environmental 

requirements and traits discussed and reported in scientific literature. After starting with a brief 

description of the taxa considered, this review then follows the logical sequence of the 

continuum in order to examine factors and traits involved in overcoming: 

− Geographical barriers. Mediators of the introduction of species into new areas: native 

extent of occurrence, pathways of introduction and their effectiveness in terms of space 

(extent of the invasive range) and time (protraction of invasion). 

− Environmental barriers. Predictors of the likelihood of persistence of Ambrosia species: 

environmental and climatic (broad-scale) matching between native and invasive range, 

requirements and tolerance to the main environmental abiotic factors (temperature, soil, 

light) in sensitive phases of the life cycle, resilience (strategies) to disturbances and 

competition. 

− Reproductive and dispersal barriers. Predictors of successful propagation and spread 

of species, such as: specific pollinators, reproduction and dispersal strategies, propagule 

pressure. 
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The review ends with an overview of the allergenic impact of ragweed and how environmental 

factors and plant traits influence the magnitude of pollinosis.  

II. Literature screening 

Google Scholar, Web of Science and Scopus databases were consulted to identify scientific 

literature about the Ambrosia genus. However, given the availability of interesting information 

also in additional web repositories, technical reports and online databases (national/regional 

floras, CABI, IUCN, EPPO, DAISIE, HEAR) were examined.  

 

III. Species considered and their description 

The Ambrosia species considered in this review are presently introduced in more than ten 

countries:  A. artemisiifolia, A. trifida, A. psilostachya and A. tenuifolia. All taxa are herbaceous 

or slightly suffruticose species. Ambrosia artemisiifolia and A. trifida are annual plants, while 

A. psilostachya and A. tenuifolia are perennials. Besides the presence of different belowground 

organs, diagnostic elements are mainly leaves, whose shape and clefts, as well as the presence 

of petioles, are useful in identifying different species. Leaves are variously pubescent or 

glaborous. They are monoic species with inflorescences of unisexual heads. All taxa produce 

1-seeded cypselae and its size and coat ornaments may differ: A. trifida produces the biggest 

seeds and, among others species, spines may differ in number and bluntness.  

A. trifida is an easily identifiable taxon, whose height (up to 4 m) and shape of leaves 

are unmistakable. However, the determination of other taxa can often be hard owing to a high 

variability in leaf or seed shape. Furthermore, the taxonomy is complicated by the possible 

presence of hybrids between A. artemisiifolia and A. psilostachya (A. x intergradiens; Wagner 

and Beals, 1958) and A. artemisiifolia and A. trifida (Ambrosia × helenae; Wagner, 1958; 

Strother, 2006). 
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Recently, the SMARTER project (COST Action FA1203) brought together a European team 

of botanists from different countries who reviewed the discriminating characters among species 

to provide a proper key of identification; as the most recent and reliable source, their findings 

relevant for this section are summarized in Table 1 and they are also available at 

http://internationalragweedsociety.org/ 

 

IV. Geographical barriers 

Geographical barriers are the first obstacle an organism has to overcome before reaching a new 

range (Richardson et al., 2000; Blackburn et al., 2011). All the taxa considered here are native 

to the Americas, where the highest number of species of the genus have occurred: the genus 

appears to have originated and diversified from arid and semi-arid regions in Southwestern 

North America (Payne, 1970; Gerber et al., 2011).  

From the current distribution of ragweed, it is clear that these species have often 

successfully crossed the natural borders of their broad native ranges (Fig. 1). Pathways of 

introduction are linked to involuntary human actions and the flux of propagules has been in 

operation for at least a century. Here the pathways of introduction from native to invasive ranges 

are explained and the present global distribution is discussed, starting from a description of the 

native environments of the single species.  

A. Native range 

Ambrosia artemisiifolia is native to North America and is presently widespread in the United 

States and Canada except for Yukon and Nunavut (Strother, 2006; Essl et al., 2015). In its 

native area, it was first recorded before 1838 in the United States (Kazinczi et al., 2008) and in 

1822 in Canada (Bassett and Crompton, 1975; Mitich, 1996; Lavoie et al., 2007). It is, however, 

difficult to understand its primitive range of distribution because its spread has been human-

mediated for a long time (McAndrews, 1988). According to Basset and Crompton (1982) the 
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species spread widely with the increase of settlements of white men in North America. As a 

consequence of this, and due to taxonomic disagreements, there are several incongruities among 

floras about the native or introduced status of A. artemisiifolia in a number of countries, above 

all regarding Central and South America (Fig. 1). 

Like A. artemisiifolia, A. trifida is native to North America. According to Bazzaz 

(1979), it was found in repeatedly disturbed ground only in the Midwestern and Eastern United 

States. However, based on more recent sources, A. trifida occurs in a wider range, covering 

almost all the USA (except for Nevada) and Canada (except for the Northwest Territories, 

Nunavut, and Yukon (Strother, 2006); it moved into Canada from the South, following the 

retreat of the last glacial ice (Fig. 1) (Bassett and Crompton, 1982).  

Ambrosia psilostachya is also native to Western North America. As with A. trifida, it 

migrated to Canada after the glacial retreat, colonizing the Eastern Canada, where it has been 

present for a considerable time (Fig. 1) (Mitich, 1996). Bovey (1966) confirmed that A. 

psilostachya is widely distributed from California, Texas, Mexico, Idaho and Saskatchewan 

eastward to Illinois and Louisiana, on pasture land in Nebraska but especially in the Rocky 

Mountain States (Bovey, 1966). According to Strother (2006), its native range in the United 

States includes almost all States (except for Maryland, Delaware, and New Jersey) and the 

Southern part of Canada (from Columbia to Nova Scotia and Newfoundland).  

In contrast to the other three species, A. tenuifolia is native to temperate South American 

countries, particularly Brazil, Paraguay, Uruguay, Argentina, and probably Perù (Fig. 1) 

(Randall, 2012). 

 

B. From native to invasive range: pathways of introduction 

Due to their ethnobotanical value, Ambrosia spp. have been used in traditional medicine since 

ancient times. In North and Central America, A. artemisiifolia, A. psilostachya and A. trifida 

were medicinal plants for Native Americans (Chamberlin, 1911; Shemluck, 1982; Mamedov et 
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al., 2015) and today some of them are still used (i.e. A. psilostachya, see Gioanetto et al., 2010). 

Moreover, A. trifida was domesticated by Indigenous North Americans, who collected and 

planted seeds mainly for alimentary purposes (Simon, 2009; Jurney, 2012), In South America, 

predominantly in the Southern Cone, A. tenuifolia has also been a traditional medicinal plant 

(Mongelli et al., 1996; Del Vitto, 1997; Trillo et al., 2014). Thus, owing to the long-lasting 

utilization of ragweed in traditional medicine and uses, it is likely that European colonizers 

carried seeds to their countries by growing plants in botanical gardens (Essl. et al., 2015). 

However, the scientific or ethnobotanical interest was probably not the main root of 

introduction for these species, as the amounts of seeds or plants moved were small. Ragweed 

plants are not suitable for flower market trading or collection, and so it is likely that their 

massive expansion followed involuntary human pathways. Today, owing to the frequency and 

abundance of ragweeds in anthropic environments in their native range, it is widely accepted 

that seeds and/or propagules of plants have been unintentionally transported outside the 

Americas by human activities along trade routes.  

The introduction of A. artemisiifolia into different parts of the world has been ascribed 

to contaminated seed lots of grain, vegetables (e.g. potatoes), seed for forage or oil-seeds (e.g. 

sunflower (Genton et al., 2005; Chauvel et al., 2006; Smith et al., 2013; Essl et al., 2015) and 

also in bird food (Brandes and Nitzsche, 2006; Frick et al., 2011), fodder, ship ballasts, and 

military movements (Kazinczi et al., 2008; Gaudeul et al., 2011). During the 20th century, 

particularly during the World Wars, A. artemisiifolia was introduced into Europe principally 

through agricultural products from several North American sources. Based on molecular 

studies, repeated introductions occurred during the invasion in different parts of the new range 

(Genton et al., 2005; Kiss and Béres, 2006; Gaudeul et al., 2011; Hodgins and Rieseberg, 2011; 

Smith et al., 2013; Ciappetta et al., 2016).  

The seeds of A. artemisiifolia were not the only ragweed species to follow such routes. 

Frick et al. (2011) showed that Ambrosia sp. seeds, including A. artemisiifolia as well as other 
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ragweed species, occur in 21 to 75% of the bird feed products available on the German, 

Hungarian and Danish markets. For instance, A. trifida was introduced by imports of 

commercial grain and oil-seed, e.g. between North America and European countries, which 

repeatedly ensured the reinforcement of populations into new areas (Follak et al., 2013). 

Military movements during World War II were also vectors of introduction for A. trifida in 

several sites in Northern Italy (Ardenghi and Polani, 2016).  

The mechanism of introduction into the invasive range of A. psilostachya and A. 

tenuifolia was likely the same as those mentioned previously (Makra et al., 2015). Data from 

Moskalenko (2001) and CABI (2017) revealed that Russia cereals coming from Canada were 

contaminated by seeds of A. psilostachya. Verloove (2016b) ascribed the arrival of A. 

psilostachya in Belgium to the American forces during the First World War and Parsons and 

Cuthbertson (2001) underlined the contribution of United States military movements during 

World War II to the spread of A. psilostachya in Australia and other parts of the world. These 

latter assumptions were mainly based on the fact that the species was unknown before the 

arrival of US troops. On the other hand, A. tenuifolia, was mentioned (Nelson, 1917) as a 

"ballast-plant", a species involuntary transported in solid sailing ballasts (currently replaced by 

water ballasts) and then released in new countries during the de-ballasting phase. This pathway 

was inferred by the author after the finding of A. tenuifolia and other non-native species in 

dumping areas near harbours in Oregon; nevertheless, this route is also plausible if past 

transoceanic travels to Europe are considered (Thellung, 1912). In any case, at present, the 

pathways of introduction of A. psilostachya and A. tenuifolia are of less certain than those of A. 

artemisiifolia, given the few studies available. Moreover, considering that the species have 

different dispersal strategies, additional vectors should be taken into consideration. Specifically, 

the reproduction strategy of A. psilostachya is mainly vegetative and the amount of seeds 

produced is quite small. Thus, the role of alternative propagules (i.e. rhizomes) and different 
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vectors in the global spread of the taxon should be considered in defining reliable pathways of 

introduction.  

 

C. Global distribution: current status and invasion history 

Vectors for the spread of ragweed work in very effective ways. The percentage of countries 

where the species are native or alien and their status (casual, naturalized or invasive) are shown 

in Fig. 2. Fig. 2 was developed according to the database reported in Table 2.  

At the moment three species out of four (A. artemisiifolia, A. psilostachya, A. tenuifolia) are 

present in every continent and the fourth (A. trifida) has colonized all continents except for 

Africa and Oceania. In its non-native range, A. artemisiifolia occurs in eighty countries 

(including those where its native status is uncertain) and it is classified as invasive in 32% of 

them. Ambrosia psilostachya is alien in almost fourty countries, but, although it is naturalized 

in at least fourteen countries representing the 36% of its non-native range, only in seven (19%) 

does it show invasive behaviour. Also A. trifida has colonized almost fourty countries, but it is 

included among invasive plants only in three of these (one doubtful), representing 7% of the 

total. To date, A. tenuifolia appears not to be an invasive taxon in its non-native range, 

consisting of fewer than fifteen countries, but it is naturalized in over half of the range of 

introduction (64%).  

Without considering its cultivation in botanical gardens, which dates back to the 18th 

century, the first record of A. artemisiifolia outside its native range comes from the United 

Kingdom, where the species was recorded as casual in 1836 (Essl et al., 2015). Then, in 1854, 

it was found in the Hawaiian Islands (Wagner et al., 1990) and in the same decade it was 

recorded again in Europe, in Switzerland (Bullock et al., 2012). Later, in 1860 and 1863, it was 

found respectively in Germany (Brandes and Nitzsche, 2006) and France (Chauvel et al., 2006) 

(Western Europe). In all these countries the species is still present. The native or alien status of 

A. artemisiifolia is uncertain in many countries in the Americas. Essl et al. (2015) asserted that 
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A. artemisiifolia is surely alien to Argentina, Chile, Brazil, Bahamas and the island of 

Hispaniola. Villaseñor and Espinosa‐Garcia (2004) listed A. artemisiifolia among the alien 

species in Mexico, while for Cuban populations there are clearly uncertainties (Acevedo-

Rodrıguez and Strong, 2012). Going back to Europe, from the second half of the 19th century 

onwards, the species has rapidly spread over all the continent. Records of A. artemisiifolia in 

Northern countries are later than Germany and France: Denmark in 1865 (Bullock et al., 2012) 

and Sweden in 1866 (Anderberg, 2000a). In Eastern Europe, it appeared in 1873 in Poland 

(Tokarska-Guzik et al., 2011) and ten years later in the Czech Republic (Bullock et al., 2012). 

In Southern Europe the first signs of introduction probably occurred 1879 in Croatia (Galzina 

et al., 2010) and then in Italy (1902; Gentili et al., 2016). Newly colonized countries have 

continued to be recorded also in recent times (e.g. Greece) (Greuter and Raus, 2008).  

Concerning Asia, the first record dates back to 1877 and is from Japan, where A. 

artemisiifolia was found as a casual (naturalization stage was recorded around 1925; 

https://www.nies.go.jp/biodiversity/invasive/DB/detail/80400e.html), while in China the 

species was found later (1930s) (Qin et al., 2014). The invasive behaviour of A. artemisiifolia 

was reported by Washitani (2004) as beginning in the 1960s. In Taiwan, South Korea and 

Turkey, A. artemisiifolia was found later in the 1990s, whereas in other Asian countries (e.g. 

Armenia, Kazakhstan, Iran and India) information about the introduction time is not available. 

In other parts of the world, Quézel and Santa (1963) reported the presence of A. 

artemisiifolia in Africa in Algerian flora and Lawlree (1947) asserted that the species was found 

there later than 1890. The species was recorded in other African countries more recently and, 

at the moment, it is also naturalized in Egypt (Boulos, 2002). Moreover it appears that the 

species is expanding toward Southern Africa (Botswana, South Africa, and Swaziland) 

(Setshogo, 2005; Henderson, 2007; Randall, 2012; Swaziland's Alien Plants Database at: 

http://www.sntc.org.sz/alienplants/index.asp). Skalova et al. (2015) also reported the presence 

of A. artemisiifolia in Madagascar, while Kull et al. (2012) mention only A. maritima as an 

http://www.sntc.org.sz/alienplants/index.asp
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introduced and naturalized taxon on the island. Finally, in Oceania the species officially 

appeared in 1908 in Australia, spreading rapidly only after 1940s (Parsons and Cuthbertson, 

2001), and in 1911 in New Zealand (Webb et al., 1988). 

Europe was the first continent that A. trifida, was introduction. It is recorded in the 17th 

century in botanical gardens (e.g. 1699 in the United Kingdom - see Online Atlas British and 

Irish Flora http://www.brc.ac.uk/plantatlas/index.php?q=plant/ambrosia-trifida). However, the 

oldest collection in the wild was reported from Western Europe where A. trifida was recorded 

in Belgium in 1829 and has been found with more continuity from 1896 onwards (Verloove, 

2016a). It was later collected in Germany in 1877 (Follack et al., 2013). In Northern Europe, 

the species was found first in Ireland (1894) and, in 1897, in the United Kingdom (Rich, 1994; 

Sell and Murrell, 2006), Finland (Lampinen and Lahti, 2016), Switzerland (Follak et al., 2013) 

and Latvia (Gudzinskas et al., 1993). In Southern Europe, the species was first recorded in 

South Tyrol in 1899 (Chauvel et al., 2015) and recorded in 1909 in Northwest Italy (Vignolo 

Lutati, 1935); in other countries it has been found in more recent times (1982 in Serbia and 

1983 in Spain) (Amor Morales et al., 2012; Follak et al., 2013). In Eastern Europe A. trifida 

was mentioned much later than in other parts of the continent, starting from 1960 (e.g. Czech 

Republic) (Pyšek et al., 2012) up to the 1980s and beyond.  

In comparison to A. artemisiifolia, A. trifida appeared later in Asia. In 1935 it was observed in 

China (Qin et al., 2014), and it was noted in Japan almost twenty years later (1952; Invasive 

species of Japan: https://www.nies.go.jp/biodiversity/invasive/DB/detail/80410e.html). In 

other countries in Asia, records have been mostly since 1970 (South Korea) and the following 

decades (Israel, India). In Central America, A. trifida has been introduced into Mexico 

(Villaseñor and Espinosa‐Garcia, 2004). Unlike common ragweed, giant ragweed rarely shows 

invasive behaviour (e.g. China and Japan) and it is often casual (e.g. Austria and British Isles) 

(Essl and Rabitsch, 2002; Reynolds, 2002; EPPO, 2016), which suggests that its persistence in 

some areas is only possible due to repeated introductions (Follak et al., 2013). 

http://www.brc.ac.uk/plantatlas/index.php?q=plant/ambrosia-trifida)
https://www.nies.go.jp/biodiversity/invasive/DB/detail/80410e.html)
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Ambrosia psilostachya has a wider invasive range than A. trifida, but it is not listed 

alongside giant and common ragweed as invasive species by EPPO (EPPO, 2016). The species 

occurs in all continents and is naturalized in a large number of countries, although it is not as 

aggressive as A. artemisiifolia (Table 2). In any case, it should be remembered that A. 

psilostachya has not been as deeply studied and is often confused with A. artemisiifolia or other 

taxa. For these reasons, its distribution may be affected by misidentification, and dates of 

introduction are often uncertain. On the American continent, outside its recognized native 

range, the position of A. psilostachya as an independent taxon is discussed (Pruski, 2017). On 

the Hawaiian Islands it is listed as a quarantine weed (Randall, 2012), while it is reported as 

both wild and cultivated in Guadeloupe (Hibon, 1942). In Europe, it has been found in the 

United Kingdom since the 1880s (Rich, 1994), where today it is naturalized. However, it is not 

as widespread in the UK as it is in Germany, where it appeared a few years later in 1897 

(NetPhyD: Deutschlandflora WebGIS). At the beginning of the 20th century, A. psilostachya 

was found in Hungary (Puc, 2004) and then in the Netherlands (1905; Odé and Beringen, 

2017b), where according to Van Denderen et al. (2010) it is the only well established taxon. In 

Southern Europe, it first appeared in Italy at the end of the 1920s (Vignolo Lutati, 1935). In 

France, colonization probably dates back to the same time, although this may be influenced by 

misidentification of the specimens (Hibon, 1942; Queney, 1942). New European records of the 

species have also been collected recently, since the 1980s for instance in Spain, Finland, Czech 

Republic and Greece (Anderberg, 2005; Amor Morales et al., 2012; Pyšek et al., 2012; Von 

Raab Straube and Raus, 2016). Concerning Africa, information about the arrival of the taxon is 

quite fragmented. The oldest date of collection (1916) relates to Algeria (Maire, 1928), although 

an earlier record by Battandier (1888) discusses the presence of a perennial plant growing on 

maritime sands "with Ambrosia leaves" different from A. maritima (the only ragweed identified 

in other Algerian localities, probably native to the Old World (Montagnani et al., 2017). 

Ambrosia psilostachya has also been alien to Moroccan flora since the 1990s (Tanji, 2005). In 
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Southern Africa, it is a weed of sugar cane fields in Mauritius (Macdonald et al., 2003) and it 

is naturalized in different areas (Germishuizen and Meyer, 2003; SANBI, 2015a). In Australia, 

the plant was found in 1922 (Parsons and Cuthbertson, 2001). Records from Asia are quite 

recent, from the 1990s in India (Ramachandra Prasad et al., 2013) to 2000 in Taiwan (Tseng 

and Peng, 2004), and the plant is often naturalized and shows an invasive behaviour in several 

countries (e.g. Japan and India). 

Ambrosia tenuifolia is widespread at global level, but is usually much more localized 

than the other species outside its native range. Fairly close to its native area, A. tenuifolia has 

been introduced into Louisiana (North America), Puerto Rico and Chile, where it was identified 

for the first time in 1923 (Ugarte et al., 2011; USDA - NRCS, 2017; Acevedo-Rodrıguez and 

Strong, 2012). In Europe, according to available data, the oldest record (1839) of A. tenuifolia 

is from France (Thellung, 1912). Successive records date one century later - 1935 in Italy 

(Vignolo Lutati, 1935) and 1954 in Spain (Amor Morales et al., 2012). According to Randall 

(2012), A. tenuifolia also occurs in the United Kingdom, but there is no bibliographic evidence 

of this. In Asia, the collections of A. tenuifolia are few and quite recent: in Israel in1991 (Waisel 

et al., 2008) and Turkey in 2000 (Behçet, 2004; Özhatay and Kültür, 2006). In Australia and 

New Zealand, the presence of the species has been confirmed since 1932 and 1950 (Parsons 

and Cuthbertson, 2001; Howell and Sawyer, 2006) while in Africa, the species is only present 

in South Africa (Germishuizen and Meyer, 2003; SANBI, 2015b). 

V. Environmental barriers 

In this section, the main environmental requirements and plant traits, predictor of the likelihood 

of persistence of the species in new ranges, are reported and discussed. Slatyer et al. (2013) 

found a positive relationship between niche breadth and range size, suggesting that a wide 

tolerance to abiotic conditions facilitates occupancy of a larger area, and that habitat breadth is 

a good predictor of a wide distribution. Environmental matching is important along the 
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naturalization-invasion continuum (Richardson and Pysek, 2012). Such generalist, common-

habitat colonizer, species are highly competitive and tolerant to disturbance and have great 

potential to become invasive (Volta et al., 2013). Looking at the global distribution of ragweed 

species (Fig.1), they have generally found suitable conditions to persist and spread, often 

becoming naturalised (Fig.2). Thus, overcoming environmental barriers appears to be a 

solvable issue for ragweed species.  

A. Habitat types and environmental matching 

Before describing and discussing the habitats elected by the ragweed species in both their native 

and invasive ranges (Table 3), it is necessary to point out that it is currently quite difficult to 

define the native habitat of A. artemisiifolia with any certainty, because, as already mentioned, 

its distribution has been human-mediated for such a long time (McAndrews, 1988).  

It has been suggested that A. artemisiifolia should be native to the Great Plains (Hodgins 

and Rieseberg 2011; Hodgins et al., 2013). However, both in the United States and in its 

invasive range A. artemisiifolia has rarely been found in natural habitats, such as prairies, while 

it is abundant and often invasive in ruderal ones (roadside verges, wastelands, railway 

embankments, construction sites, quarries etc.), at the edge of croplands or in arable fields and 

also on riverbanks (Bassett and Crompton, 1975; Fumanal et al., 2008a; Milakovic et al., 2014; 

Essl et al., 2015; Gentili et al., 2016). Consistent with this, floras and specialized sources 

indicate synantropic environments as the main habitats for common ragweed (Basset and 

Crompton, 1975; Smith et al. 2013). 

It is likely that common ragweed has shifted gradually from its primary habitat to ruderal 

areas and croplands, following the advance of human settlements into unexploited American 

lands, when synantropic environments became more frequent (Basset and Crompton, 1975; 

Smith et al. 2013). In support of this hypothesis, the analysis of herbarium records by Lavoie 

et al. (2007) showed that in Quebec common ragweed spread along rivers at first, and only later 

entered agricultural fields.  
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In the last thirty years in the USA (native range), A. trifida has also shown the tendency 

to colonize cultivated fields (e.g. corn, soybean and cotton), probably as local adaptation of the 

species that originally lived in riparian (riverbanks, floodplains) or non-riparian edge habitats 

near cultivated areas or railroads and wastelands (Basset and Crompton, 1982; Regnier et al., 

2016). On floodplains, where floods occasionally occur, it does not grow at the lowest elevation 

but dominates in communities located 60 cm above the water level (Menges and Waller, 1983). 

Outside of North America, A. trifida lives along rivers and generally shares the ruderal 

behaviour of A. artemisiifolia, occurring especially in cultivated fields, along railways 

(Gudzìnskas, 1993; Chauvel et al., 2015), on maritime docks (e.g. Britain) (Rich, 1994) and 

fluvial ports (e.g. along Rhine and Elbe rivers in Europe) (Chauvel et al., 2015). Nevertheless, 

in France, Follak et al. (2013) and Chauvel et al. (2015) found that A. trifida is more often 

recorded in ruderal places and along railways than in native elective riverine habitats. 

Regarding A. psilostachya and A. tenuifolia, elective habitats are more recognizable than 

the ragweed species previously described. According to Albertson (1937) A. psilostachya 

"invades the short grasses from the disturbed places along the slopes". In its native range in 

North America, A. psilostachya shares ruderal habits with A. artemisiifolia, as it is common in 

open disturbed habitats such as abandoned fields, vacant lots and along transportation corridors 

(Basset and Crompton, 1975). In contrast to A. artemisiifolia, however, it is also common in 

semi-natural/natural environments: it is a typical forb of tallgrass prairies (temperate 

grasslands) of the American Great Plains (Reece et al., 2004) and a weed in pastures and 

rangelands where it is favoured by overgrazing and fire (Baker and Guthery, 1990; Abrams, 

1988; Vermeire and Gillen, 2000; Funderburg et al., 2014). It is a sand-loving species and 

colonizes dry sand prairies on sand hills (Hart and Gleason, 1907; Hulett et al., 1988; Ebinger 

et al., 2006; Uresk, 2012). It also colonizes coastal dunes, mainly secondary dunes and 

vegetated flats behind them (Carls et al., 1991) mostly where there is a certain grade of human 

impact (e.g. vehicle passage) (Stephenson, 1999). It is also listed among halophytic plants living 
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in harsh environments such as inland saline plains (Flores-Olvera et al., 2016) and is referred 

to as a colonizer of riparian habitats, where it is considered a "mesoriparian plant", i.e. not 

typical of the wettest areas of riverbeds (Stromberg, 2013). Contrary to the other ragweed 

species, A. psilostachya also lives in the understory of non-dense woodland (e.g. Pinus 

ponderosa forests) (Bojorquez Tapia et al., 1990). There is little information in the literature 

concerning the habitats of A. psilostachya outside of its native range. However, it suggests that 

this species, as in its native range, frequently colonizes coastal areas, dunes, sandy soils usually 

exposed to human impacts (Rich, 1994; Mandrioli, 1998; Weeda, 2010; Del Vecchio et al., 

2015; Fried et al., 2015), rivers and ruderal habitats (Amor Morales et al., 2012; Ardenghi and 

Polani, 2016). In a recently colonized area of India, A. psilostachya has also been observed in 

croplands and pastures (Ramachandra Prasad et al., 2013). 

As with the congeners examined previously, in South America, A. tenuifolia is a plant 

typical of open habitats and, like A. psilostachya, it is native to grasslands traditionally 

subjected to disturbing factors that in this case are ascribable to grazing and periodic flooding 

(as the result of heavy rainfall, flat topography and poor drainage). In Argentina, it represents 

a characterizing element of the flooding Pampa grasslands, as one of the co-dominant taxa of 

one of the most widespread plant communities of the area (e.g. communities characterized by 

Piptochaetium montevidense, Ambrosia tenuifolia, Eclipta bellidioides and Mentha pulegium) 

(Burkart et al., 1990; Insausti et al., 1995; Insausti and Grimoldi, 2006). The typical community 

of A. tenuifolia usually lives in raised flat lowlands, less subjected to inundation. However, A. 

tenuifolia can also dominate communities typical of more humid conditions, localized along 

river valleys, drainage basins, and coastal salty lagoons (Burkart et al., 1990). It is also a 

characteristic element of coastal dune vegetation (Fontana, 2005; Marcomini and López, 2013). 

In Argentina, Marcomini et al. (2016) found it in stable dune systems, occurring between dunes 

where the vegetation cover is more relevant and dominated by Cortadera selloana (cortaderal 

community). As in the Pampean Plains, these environments are subjected to periodic floods, 
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although they are also subjected to drought (Marcomini et al., 2016). Furthermore, A. tenuifolia 

has been listed in Paraguay as an agricultural weed (De Egea et al., 2016). Outside its native 

range, specifically Spain, A. tenuifolia lives in habitats very similar to those colonized by A. 

psilostachya (Amor Morales et al. (2012) and in other European countries the two species can 

be found in the same sites, for instance sharing an halophytic behaviour (e.g. in some areas of 

Italy) (Mandrioli et al., 1998). Additional findings in Turkey revealed that A. tenuifolia can be 

also found in orchards and cultivated fields (tomatoes, cucumbers, wheat) and that it could 

prefer humid ruderal places (Behçet, 2004; Özhatay and Kültür, 2006).  

Overall, analysis of the spectrum of colonized environments shows that a limited shift 

of habitat types between native and invasive ranges can be observed. All species are in fact 

typical of naturally or artificially disturbed open areas, both in America and in the rest of their 

acquired range. However, all species are more frequently present in natural environments in 

their native ranges, likely representing their original habitats. It is difficult to have an idea of 

the primary environments of A. artemisiifolia, whereas A. trifida spreads from riparian habitats, 

and the perennial A. tenuifolia and A. psilostachya originated from temperate grasslands and 

colonize inland and coastal sand dunes. On the whole, it is clear that all these species spread 

gradually from their primary habitat to synanthropic environments. It follows that although the 

spreading of each of these species requires specific conditions, they are capable of quickly 

shifting their habitat in changing circumstances and taking advantage of environmental 

disturbance. Being tolerant to disturbance, these common-habitat colonizer species have a great 

potentiality as invader. They can be considered pioneer species naturally colonizing harsh 

environments and ready to spread in ruderal habitats, where conditions are maintained suitable 

mainly by human action.  
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B. Climate matching and temperature tolerance 

Climate matching is a basic requirement for persistence in a new area. According to their global 

distribution, all these species come from temperate areas (Fig.1). Although with several 

exceptions, they mainly "move" from/to warm temperate climate regions, generally avoiding 

equatorial, arid and snow climates (Fig.1). Petitpierre et al. (2012) observed a limited shift of 

climatic niche between the native and adventive range of A. artemisiifolia. Analogously, a 

limited shift also appears valid for the other ragweed species on the basis of our preliminary 

and basic comparison (Fig.1). In keeping with these observations, many studies demonstrate 

the influence of climate on ragweed germination, growth and reproduction. Regarding this, A. 

artemisiifolia has been the most widely studied species. About germination, it has been reported 

that A. artemisiifolia seeds can germinate in a wide range of temperatures; the minimum 

temperature of germination ranges from 3.4 to 3.6° C (Essl et al., 2015) while germination 

decreases up to 40°C (Bullock et al., 2012). Nevertheless, Leiblein-Wild et al. (2014) observed 

differences between native and introduced populations: in the invasive range, seeds generally 

have a larger mass and can germinate faster under a wider range of conditions. The authors 

attributed this better performance to favourable biotic and abiotic factors occurring in the 

invasive range and speculated about a possible case of Evolution in Increased Competitive 

Ability (EICA). In any case, A. artemisiifolia seeds follow a quite complicated cycle of 

primary/secondary dormancy and they need an exposure to winter temperature or stratification 

in lighting conditions to break primary dormancy (Baskin and Baskin, 1980). In sites where the 

growing season is too short for seed maturation (e.g. Northern Europe) or seasonal temperatures 

are too high for vernalization (e.g. some areas of the Mediterranean basin), the species cannot 

become naturalized and occurs just in few small ephemeral populations (Dahl et al., 1999; 

Kazinczi et al., 2008; Van Denderen et al., 2010; Makra et al., 2014; Smith et al., 2013). 

Seasonal temperature variations also play an important role for A. trifida (Davis, 1930; 

Bazzaz, 1979) and A. tenuifolia (Insausti et al., 1995), whose seeds need low temperatures to 
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germinate (primary/secondary dormancy cycle). The range of germination temperatures for A. 

trifida is wide (from 4 to 41°C, with an optimum between 10 to 24°C), but only if soil moisture 

conditions are suitable (17% to 55% soil moisture, with an optimum at 20 to 30%) (Abul-Fatih 

and Bazzaz, 1979a; Ballard et al., 1996). For A. tenuifolia, the lack of alternating temperatures 

prevents seed germination (Insausti et al., 1995). 

The climatic requirements for A. psilostachya are not clear (Basset and Crompton, 

1975). Martison et al. (2011) identified, among climatic and soil variables, mean annual 

temperature as the factor that mostly contributes to explaining the distribution of A. psilostachya 

in the United States, whereas in Europe Rasmussen et al. (2017) found that minimum 

temperature to be highly influential. The life cycle of the species in relation to seasonality in its 

native habitat (e.g. snowing, freezing winter and summer drought), indicates that the seeds of 

A. psilostachya should also be characterized by dormancy and they may need a vernalization 

phase to germinate (Baskin and Baskin, 2014). Nevertheless, the propagation of A. psilostachya 

is mainly vegetative, so if the root system can survive, environmental limits on germination are 

less important. According to Rich (1994) and Bassett and Crompton (1975), roots are generally 

cold-resistant, able to survive in the extremely cold of Canadian winters, and can continue 

growing the following spring for over 30 years. It has been supposed that independence from 

germination requirements may allow A. psilostachya to colonize those countries where A. 

artemisiifolia cannot successfully conclude its life cycle (e.g. The Netherlands; Van Denderen 

et al., 2010).  

Concerning plant development, data are available mainly for A. artemisiifolia. Cunze et 

al. (2013) estimated that it requires an accumulated temperature sum of 1400°C to produce 

mature seeds. In their report, Bullock et al. (2012) found that the maximum photosynthetic rate 

is at 20°C (halved at 30°C). Nevertheless, they also highlighted that A. artemisiifolia persists 

where the climate is hotter, deducing that high temperatures are likely to have a lesser impact 

on its performance than low temperatures. Bazzaz (1974) attributed its tolerance to high 
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temperatures to high transpiration rates, which allow a transfer of latent heat in leaves at 

temperatures below ambient temperature. Frost in late spring or early autumn can be fatal for 

seedlings and adult plants (Essl et al., 2015), although Leiblein Wild et al. (2014) observed that 

seedlings are more frost tolerant in Europe than in native countries, thus supporting the 

assumption of local adaptation. In general, Rasmussen et al. (2017) recently found that common 

and giant ragweed perform better in relatively wet conditions, while perennial ragweed in drier 

ones. Growing degree days are generally cited as the most influential climatic factor explaining 

the distribution of short - day plants A. artemisiifolia, A. trifida and A. psilostachya in Europe. 

The main climate requirements of the four ragweed species considered are summarized in Table 

3.  

 

C. Moisture and soil types tolerance 

Soil is another factor determining the colonization and successful survival of plants. Concerning 

soil pH, few studies were undertaken and the results are not totally consistent. Fumanal et al. 

(2008a) demonstrated that A. artemisiifolia can grow both on acid and alkaline soils (extreme 

values of pH KCl: 4.1–8.6), even if preferentially occupys sites with a pH range between 7 and 

8. Coherntly, Essl et al. (2015) reported that A. artemisiifolia grows best under moderately basic 

condition (pH = 8). On the other hand, Pinke et al. (2011) found the highest common ragweed 

cover at the edge of Hungarian sunflower fields when the soil pH was acid (< 5); this in 

agreement with the information reported in Hungarian literature, namely that this weed thrives 

best on acidic sandy soils (Ujvárosi, 1973; Szigetvári and Benkő, 2008). Regarding 

germination, Sang and collaborators (2011) demonstrated that A. artemisiifolia germination 

success exceeded 48% in solutions with pH values between 4 and 12, with maximum rates 

occurring in distilled water at pH 5.57. However, under laboratory conditions, germination 

occurs in a wider range of pH (Bullock et al., 2012). Silt loam and silt clay loam soils are elected 

as the optimum by Basset and Crompton (1975) and, in France, Fumanal et al. (2008a) found 
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the plant on sand to clay or silty loam, but mostly on sandy soils. Regarding soil water content, 

A. artemisiifolia can be very resilient to short-term drought (Bullock et al., 2012). Nevertheless, 

Hodgins and Rieseberg (2011) demonstrated the poor survivorship under drought conditions of 

the European populations in comparison to the American ones, probably due to the evolution 

of a life-history that has favoured a more rapid growth and reproduction than drought tolerance 

in the invasive range. Leiblein and Lösch (2011) observed a major growth of A. artemisiifolia 

in moist soil conditions, but also the capacity to survive in dry, moist and waterlogged soils 

(5%, 22% and 39% of water). In the latter situation, the plants are far smaller, but able to reach 

maturity and produce seeds, although in small quantities. In keeping with Essl et al. (2015), A. 

artemisiifolia is not typical of wet areas, but its seeds can potentially tolerate and remain viable 

in soils with high water content. Concerning salinity (Table 3), Di Tommaso (2004) showed 

that the seeds of A. artemisiifolia can also germinate at high levels of sodium chloride (5 to 

12% of germinated seed at 400 mmol L-1). However, he highlighted that the percentage of 

germination in his experiment was negatively correlated to the increase in salt, but the recovery 

in distilled water of viable non-germinated seeds was rapid. This study also suggested an 

adaptation of A. artemisiifolia to local conditions, as the seeds collected from plants living along 

roadsides showed a higher percentage of germination than those collected in cultivated fields. 

Another soil parameter that A. artemisiifolia appears to manage quite well is the presence of 

metals. Bae et al. (2016) proved that under metal stresses (Zn, Pb, Ni, Cd, Cu), A. artemisiifolia 

performs better in germination and seedling growth in comparison with native flora. This 

experiment simulated roadside conditions and delineated a potential empty niche where the 

species would have almost no competitors. 

Information about soil requirements for the other ragweed species is not as exhaustive as for A. 

artemisiifolia, although it is possible to understand several differences by reviewing available 

data. Ambrosia trifida is typical of more mesophytic conditions than A. artemisiifolia (Abul-

Fatih and Bazzaz, 1979a; Basset and Crompton, 1982), consistent with its native habitat (e.g. 
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floodplains temporarily including presence of standing water; Menges and Waller, 1983). 

Wortman et al. (2012) and Follak et al. (2013) showed how the distribution of A. trifida is more 

closely related to the seasonality of precipitation and summer precipitation than other variables 

such as land use and landscape structure. Low rainfall is a limiting factor in its native range 

(Basset and Crompton, 1982); germination occurs in a wide range of soil moisture with an 

optimum of 20-33% (Abul-Fatih and Bazzaz, 1979a). Nonetheless, Schutte et al. (2008a) found 

that giant ragweed seedling emergence is insensitive to dry conditions of the top layers of soil 

(1 cm of soil) and that emergence usually occurs during relatively dry periods. Soil texture is 

not specified, but based on habitat (floodplains, drainage ditches, open stream banks), it can be 

deduced that A. trifida colonizes incoherent soils; in cultivated fields, it is usually found in low 

silty substratum (Basset and Crompton, 1982). There are no data regarding preferences of soil 

pH and salinity tolerance, while Cui et al. (2007) showed that A. trifida can live where the 

concentration of metals (Pb, Zn, Cu, Cd) is quite high and can be considered a good accumulator 

at root level. 

Concerning A. psilostachya, as previously stated, it is a sand-loving species and prefers 

well drained, alkaline soils (Basset and Crompton, 1975). It lives in soils characterized by high 

salinity both in the native and invasive ranges, although salt can strongly limit the growth of 

plants (Salzman, 1985). Salzman and Parker (1985) experimentally demonstrated that the wide 

root system can balance stress through the connection between ramets; taking advantage of 

local salinity variations, ramets living in lower salinity conditions contribute to the survival of 

those living in high salinity conditions. This physiological integration (exchange of resources 

among connected ramets) helps A. psilostachya persist in stressful conditions. It boosts its 

efficiency of colonization and habitat exploration, thus promoting a greater dispersal ability 

(through rhizomes) in adverse conditions, to increase the probability of finding favourable 

microsites (Salzman, 1985). Furthermore, A. psilostachya persists even when high 

concentrations of metals in soil are lethal for other plants (e.g. Zn, Cu, Mn, etc.) (Basset and 
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Crompton, 1975). The successful survival of A. psilostachya in metal-rich soils appears to be 

positively mediated by mycorrhizal symbiosis (Rivera-Becerril et al., 2013). Habitats colonized 

by Western ragweed are typically subjected to seasonal drought. It is a xeric adapted species 

(Corbett and Anderson, 2006), with a very long root able to draw water from deep sources and 

persist without desiccating at more humid deep soil levels (1.83 m in depth according to 

Stromberg, 2013). In the grasslands of the Nebraska Sandhills, A. psilostachya is relatively 

stable through drought (and grazing), while other resistant perennial grasses are damaged 

(Reece et al., 2004; Stubbendieck and Tunnell, 2008). Although severe events leading to a 

serious desiccation of rhizome (- 60% of weight), can have negative effects on shoot emergence 

(Karnkowsky, 2001). Regarding tolerance to waterlogged conditions, A. psilostachya prefers 

drained soils, but it lives in the riparian habitat and according to Stromberg (2013) it is a 

mesoriparian species. Finally, from data by Towne (2000), who monitored the impact of large 

ungulate carcasses (e.g. bison, cattle and deer) on grassland dynamics, it can be argued that A. 

psilostachya dominates in nutrient-rich soils and easily tolerates high levels of organic 

compounds. 

Information about soil preferences of A. tenuifoilia is quite dispersed. It prefers fertile, 

well aerated (Insausti and Soriano, 1987), not very deep hydro halomorphic soils (Burkart et 

al., 1990; Anton et al., 2012). Soil water content can be determinant in the life cycle of the 

plant. Ambrosia tenuifolia co-/dominates plant communities frequently exposed to floods of 

varying intensity and duration, usually brief (1-2 months), of reduced magnitude (water cover 

does not exceed the depth of 7 cm in spring), with only occasionally prolonged events with 

heavy impact occurring (water cover 10–30 cm deep for 3–5 months) (Insausti and Grimoldi, 

2006). Insausti and Soriano (1987) observed that A. tenuifolia frequently grows on anthills, and 

argued that those sites are suitable as they are not affected by prolonged waterlogged soil 

conditions and the subsequent anoxia is not tolerated by roots for more than 1-2 months 

(Insausti and Grimoldi, 2006). On the other hand, seeds can tolerate immersion in water and 
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low temperature even for long periods, without negative effects on dormancy release (Insausti 

et al., 1995). Resilience to drought has not been specifically investigated but a certain degree 

of tolerance can be inferred as environments where A. tenuifolia lives are involved in periods 

of drought, both on the Pampean Plains (summer drought) and coastal areas (Marcomini et al., 

2016). A summary of the aforementioned soil requirements is shown in Table 3.  

 

D. Light requirements and tolerance 

The tolerance to light/shade has been briefly discussed in the description of habitats and the 

main requirements for ragweed species are reported in Table 3. In general, ragweed species are 

pioneer plants living in open sunny environments. However, based on habitat preferences, 

tolerance of moderate shade has been shown for A. psilostachya, and Essl et al. (2015) affirmed 

that A. artemisiifolia is also medium shade-tolerant. Generally, shade suppresses A. 

artemisiifolia (Bullock et al., 2012) and the lack of adequate light intensity strongly contributes 

to a progressive decrease in plant performance and recruitment (Gentili et al., 2015; 2017). 

Conversely, A. artemisiifolia, both at mature and seedling stage, is extremely tolerant to high 

light intensities, which are characteristic of open environments (Bazzaz, 1974). Ambrosia 

trifida is not only tolerant to high light intensities but Menges and Waller (1983) indicated it as 

a high light specialist or light-loving species. The authors distinguished this species from the 

low light specialists and light generalist herbs in floodplain communities; the early emergence, 

development of seedlings and the great growth of plants would indicate that A. trifida is strongly 

projected to light exploitation. However, several studies show that the species is tolerant also 

to shady conditions likely to occur along both the natural vegetation dynamic and cultivated 

fields. It appears that A. trifida can allocate resources differently, based on light situations 

(Hartnett et al., 1987; Abul-Fatih et al., 1979; Webster et al., 1994; Jurik, 1991).  

Although a multi-factorial process, A. artemisiifolia germination is also light-induced. For 

instance, in this species the secondary dormancy (Baskin and Baskin, 1980; 1985) is induced 
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by the lack of light in combination with low temperature fluctuations, high CO2 concentration 

in the soil and hot dry summer periods (Bazzaz, 1979; Essl et al., 2015). Nevertheless, in lab 

experiments, seeds germinated also in the dark in a range of temperature corresponding to late 

spring and summer (Bullock et al., 2012; Baskin and Baskin, 1980). 

Along with alternating temperatures, light and in particular the R:FR ratio also promotes 

A. tenuifolia seed germination and plant growth, which benefits from vegetation gaps (Insausti 

et al., 1995; Insausti and Grimoldi, 2006). Concerning germination, the same can probably be 

said for A. psilostachya (CABI, 2017). Conversely, light is not one of the main factors 

promoting the germination of A. trifida seeds (Davis, 1930; Schutte et al., 2012), which are 

bigger in comparison to those of the other species and have different mechanisms of quiescence 

release mediated by pericarp and/or embryo-covering structures (Harrison et al., 2007; Schutte 

et al., 2012).  

E. Plant traits involved in resistance and resilience  

To support and explain environmental requirements, changes in several plant traits have been 

highlighted as key strategies in enhancing resistance or resilience to abiotic stresses (e.g. 

dormancy, rhizome features, early emergence of seedlings, etc.). However, stress can also 

derive from unfavourable biotic interactions with parasites and predators, as well as from 

competition with the local plant community. Furthermore, on observing colonized 

environments, there is a series of potential human-mediated disturbances such as fire, grazing, 

mowing, agricultural practices and human settlement development. All these factors can affect 

the reproductive and vegetative fitness of individuals or prevent their persistence through direct 

suppression or a dramatic change in environmental parameters. Ragweed plant traits involved 

in stress resistance and resilience are analyzed and discussed below. 
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1. Resistance 

Starting from strategies and traits that enhance the resistance of individuals to natural or human 

perturbation (intending resistance as the capacity of an individual to resist the displacement of 

its biomass (Grime, 2001), it is found that morphological adaptations can avoid or limit the 

effect of several perturbations. Spines, pubescent or sclerophyllous leaves, or incorporation of 

granular minerals into plant tissues are typical defensive structures against grazing (Hanley et 

al., 2007). In a xeric habitat, waxy leaves or a particular form of plants (e.g. cushion plants) can 

prevent desiccation and damage from wind, drought or frost, while other morphological 

structures can promote the persistence of individuals in flooded and waterlogged riparian areas 

(Catford and Jansson, 2014). 

Ragweed plants (Table 4), do not show any evident morphological adaptation to 

overcome stressing factors that damage aerial parts. Only perennials (A. psilostachya, A. 

tenuifolia) have quite densely short-haired leaves that play a relatively protective role in 

avoiding desiccation; A. psilostachya may assume a prostrate habit that enhances resistance to 

several stresses. The presence of phytoliths (mineral deposits in epidermal cell walls) in aerial 

parts has been reported for A. psilostachya and A. trifida (Bozarth, 1992) and this increases 

resistance to leaf-eating invertebrates (Hanley et al., 2007).  

Rather than morphological adaptations, chemical protections, such as leaf-coating 

resins, are important in ragweeds: Ambrosia species characteristically possess glandular 

trichomes, especially on the lower leaf surfaces but also on stems, thus producing resinous 

excreta rich in secondary metabolites such as sesquiterpenes and flavonoids (Mitchell et al., 

1971; Wollenweber et al. 1987; 1995). In general, like many other Asteraceae (Heinrich et al., 

1998), Ambrosia species can biosynthesize many types of secondary metabolites (Hodgins et 

al., 2013; Wan et al., 2002; Wang et al., 2005; Kong, 2010; Sülsen et al., 2008, 2013) that 

contribute to protecting plants from abiotic and biotic perturbations (Table 4) Parts of plants 

and seeds can be included in the diet of several wild mammals, birds and insects, and due to 
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secondary metabolites ragweed species are unpalatable for cattle that only resort to eating the 

plants when there is no alternative forage (Marten and Andersen, 1975; Reece et al., 2004; 

Bullock et al., 2012). It is worth noting that many authors (Gerber et al. 2011; Essl et al., 2015; 

Goeden and Ricker, 1976) have pointed out that Ambrosia species are attacked by specialized 

parasites that affect their life cycles in their native range, rather than in their invasive range 

where the parasites are less specialized and the damage inflicted is often not relevant.  

The allelopathic effects of ragweeds on other plants are also well documented (Table 

4). Root exudates, leaf leachate and decaying leaves produce allochemical compounds that 

inhibit germination and growth of other species, both in natural and agricultural environments. 

Most studies relate to A. artemisiifolia (Rice, 1965; Bullock et al., 2012; Vidotto et al., 2013) 

and A. trifida (Wang et al., 2005; Kong et al., 2007), which have been taken into account as a 

potential bioherbicide (Kong, 2010; Molinaro et al., 2016). However, allelopathy is known also 

for A. psilostachya (Neill and Rice, 1971; Dalrymple and Rogers, 1983) and A. tenuifolia 

(Mongelli et al., 1997). 

Another important factor involved in resistance of ragweed species to stress and 

disturbance is the presence of mycorrhizal fungi (Table 4). Mycorrhiza improve plant growth 

and health by enhancing mineral nutrition and increasing tolerance to abiotic and biotic stresses 

(Lenoir et al., 2016). Ambrosia artemisiifolia is considered in obligatory symbiosis with 

mychorrizal fungi (arbuscular mychorrizal fungi, AMF) and studies have demonstrated that 

fungal colonization is positively correlated to environment disturbance (Essl et al., 2015). 

Similarly, A. psilostachya has also been found associated with mycorrhizal fungi in disturbed 

and polluted environments (Busby et al., 2011; Pendleton and Smith, 1983; Rivera-Becerril et 

al., 2013). For A. trifida, evidence of root colonization by mycorrhizal fungi are few 

(MacDougall and Glasgow, 1929; Bassett and Crompton, 1982) and no data are available for 

A. tenuifolia. Both the species live naturally in environments subjected to seasonal flooding and 
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wet areas are not suitable to mycorrhizal colonization, probably due to the lack of well-aerated 

soils (Entry et al., 2002; Escudero and Mendoza, 2005). 

The re-allocation of resources is considered a further important mechanism allowing 

ragweed plants to tolerate and respond to environmental stresses (Table 4). For instance, A. 

trifida allocates resources differently as a reaction to light variations (see above). Following 

defoliation due to herbivory attacks, A. artemisiifolia can efficiently re-allocate resources from 

root to shoot biomass and avoid evident costs for fitness (Gard et al., 2013); it can also enhance 

ramification when the stem apex has been removed (Brandes and Nitzsche, 2006). 

Interestingly, when environmental stress is lower or absent, as can occur in introduced 

ranges, alien plants can reallocate resources and thereby improve their growth and competitive 

ability. This is at the foundation of the Evolution of Increased Competitive Ability hypothesis 

(EICA) which has been associated with A. artemisiifolia in relation to changes in climate 

(Leiblein‑Wild et al., 2014), environmental conditions (Hodgins and Rieseberg, 2011) and 

parasites (Fukano and Yahara, 2012). Nevertheless, further studies have demonstrated that the 

hypothesis is not always valid for A. artemisiifolia (Genton et al., 2005; MacKay and Kotanen, 

2008).  

2. Resilience 

Traits and strategies related to resilience ensure rapid recovery from disturbance and stress and 

a return to control levels (Grime, 2001). In the case of highly disruptive natural and human-

related perturbations, species need to rely on a series of regenerative strategies to have a speedy 

and complete return to the earlier status. Attributing traits and strategies of plants to resistance 

or resilience can often be tricky, and this paragraph focuses on the main strategies involved in 

recovery from severe events that definitely lead to suppression of individuals or their aerial part 

in the case of geophytes. 



 31 

Resprouting capacity (a resistance/resilience trait) can be considered one of the main 

functional traits related to successfully overcoming fire, mowing, intensive grazing and some 

severe atmospheric events leading to suppression of the aerial parts of plants (Table 4; Keeley 

et al., 2011). Ambrosia psilostachya and A. tenuifolia live on plains traditionally subjected to 

these types of severe perturbations and are not highly affected by them (Wolfe, 1973; Menghi 

et al., 1993; Hartnett et al., 1996; Madanes et al., 2007); on the contrary, they are often favoured 

and thus show their weediness (Abrams, 1988; Hartnett et al., 1996; Vermeire and Gillen, 2000; 

Vermeire et al., 2005; Insausti and Grimoldi, 2006). This is related to their rhizome, a 

"resistance" structure that confers resilience on these species. As already underlined, the life 

strategy of A. psilostachya is mainly based on its belowground system which allows it to 

overcome adverse moments and unpredictability deriving from human action or climate: 

through the rhizome, A. psilostachya can form clones of plants occupying areas larger than 100 

m2 (Karnkowski, 2001). In suitable situations, the presence of the weed can be very massive: 

1132 kg ha-1 dry weight according to Bovey et al. (1966). It has been estimated that the 

establishment of a "competitive" root system takes one year; after the emergence of a seedling 

from one of the few mature seeds, a shoot emerges from the root during the second year and in 

only one season it can colonize an area of 2 m2 (Basset and Crompton, 1975; Mitich, 1996). 

Reece et al. (2004) demonstrated that A. psilostachya can maintain primordia for several years 

even with limited plant growth, and Wan et al. (2002) showed that clipping stimulates the 

growth of new stems. Limits to rhizome viability/resprouting derive from several climatic 

conditions and burial depth (Miziniak and Praczyk, 2002). Several authors affirm that sprouting 

from buds is possible when soil thickness is up to 5 cm (Miziniak and Praczyk, 2002; Vermeire 

et al., 2005). In comparison to A. psilostachya, the life strategy of A. tenuifolia is based not only 

on rhizome sprouting, but also on seeds as explained below. Although fewer investigations have 

been carried out on the A. tenuifolia rhizome, it is clear that resprouting from belowground buds 

permits the recolonization of vegetation gaps after disturbance (Insausti and Grimoldi, 2006), 
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thus ensuring the persistence of the species (Semmartin et al., 2010). Ambrosia tenuifolia is a 

highly productive species, 1,330 g m-2 of total biomass according to Semmartin et al., (2010) 

and it can advance quite rapidly thanks to rhizomes, with an estimated rate of 1.72- 0.2 

m2/month (Insausti and Grimoldi, 2006). As already mentioned, rhizome persistence in this 

species is limited by anaerobiotic condition. Resprouting is also important for A. artemisiifolia 

resilience: removal of stem, as can occur in the mowing or grazing regime, induces the 

resprouting of plants from buds at the base (Brandes and Nitzsche, 2006; Patracchini et al., 

2011; Milakovic and Karrer, 2016). By contrast, resprouting capacity has never been reported 

for A. trifida species. 

In addition to their reproductive capacity, seeds also play a crucial role as "survival 

structures" deputized to respond to environmental unpredictability and adversity and so confer 

resilience to species. Through dispersal, seeds can allow the species to strategically escape from 

unsuitable conditions. Moreover, seed dormancy leads to a "delayed germination" that prevents 

the germination of fresh seeds when the environmental parameters are unsuitable and promotes 

the establishment of a soil seed bank (Finch‐Savage and Leubner‐Metzger, 2006; Gioria et al., 

2016), which buffer plant populations against environmental variability and increase the time 

of (local) extinction (Thompson, 2000).  

Apart from A. psilostachya, ragweed species produce large amounts of seeds, which 

establishes conspicuous soil seed banks (Table 3). For instance, the density of seeds of A. 

artemisiifolia ranged from 4.5 to 536 units per m2 in the upper 20 cm of soil depending on the 

habitat type (Fumanal et al., 2008b). As seeds can remain viable in the soil for decades, even 

more than 40 years (Toole and Browne, 1946), they can be considered as forming long-lasting 

soil seed banks. However, it must be taken into account that burial depth is crucial for the 

viability of seeds, decreasing to 4 years on the soil surface (Essl et al., 2015). Experiments and 

observations have been conducted at a depth between 0 and 25 cm, which is considered the 

living seed bank limit (Fumanal et al., 2008b; Essl et al., 2015; Karrer et al., 2016). Fumanal 
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et al. (2008b) recorded a lower viability of seeds between 0-5 cm than at 5-15 cm. Karrer et al. 

(2016) confirmed that the deep soil condition (down to 25 cm) is more suitable for lengthening 

seed viability, but differences between seeds buried at 5 and 25 cm are not so pronounced as in 

the study by Fumanal et al. (2008b). The authors also speculated that viability is more 

influenced by seed origin and habitat than burial depth. In any case, beyond viability, 

germination of seeds is strongly influenced by burial depth: if seed germination is quite high 

on the soil surface, it decreases with increasing depth (below 8 cm), where parameters 

dramatically change and dormancy cannot be interrupted (Essl et al., 2015). Guillemin and 

Chauvel (2011) observed a decrease in germination for seeds buried from 2 to 8 cm and null 

germination between 10 and 12 cm of depth. It is likely that with the decrease of soil depth 

most seeds tend to germinate and leave a greater amount of non-viable seeds in the upper soil. 

Moreover, seed mass also appears to influence the percentage of germination, and the lightest 

seeds are more sensitive to burial (Guillemin and Chauvel 2011). On the other hand, the time 

of germination is also important as demonstrated by Ortmans et al. (2016) who showed that A. 

artemisiifolia seed traits have a minimal effect, while foliage cover and aboveground biomass 

are more relevant. 

Burial depth also has a determinant effect on seed germination and seedling emergency 

for A. trifida; germination decreases with depth after the first winter burial period 

(vernalization) (Harrison et al., 2007). According to Harrison et al. (2007), the lowest depth 

from which giant ragweed can emerge is probably between 16 and 20 cm and no seedling 

emerges beyond 20 cm of depth. Soil seed bank viability in A. trifida is lower than that observed 

for A. artemisiifolia, as the total percentage of germination strongly decreases after 4 years 

(Harrison et al., 2007), and the combination of low viability and high post-dispersal predation 

of seeds leads to a limited effectiveness of soil seed banks in this species (Harrison et al., 2001, 

2003). In any case, in suitable conditions, A. trifida enriches its soil seed bank by repeated 

dispersal of seeds year after year. Moreover, this species produces polymorphic seeds and, in 
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contrast to A. artemisiifolia, their size is relevant for their persistence in soil. Even with some 

exceptions, small seeds appear to be viable for a longer than larger ones (Schutte; 2008b). 

Nevertheless, the likelihood of the emergence of seedlings from large seeds is higher at 5 and 

10 cm of soil depth (Harrison et al., 2007).  

A viable soil seed bank also allows A. tenuifolia to be more resilient to critical phases 

such as floods. As reported above, the root system of this perennial species does not survive in 

anaerobic conditions due to prolonged water coverage, while seeds remain viable. According 

to Insausti and Grimoldi (2006), seeds are released in large quantities and they can remain 

viable for several years in soil seed banks. Unfortunately, information such as germination 

percentage and critical depth are not available for this species.  

Seed production of A. psilostachya is very low and, in some studies, the species was 

even classified as a non-seeded forb (Table 4; Grygiel et al., 2012). Moreover, studies 

performed in tallgrass prairies and coastal areas showed no seed of this species in the soil seed 

bank (McNicoll and Augspurger, 2010; Barton et al., 2016). Nevertheless, from samples of 

soils collected in North American mixed prairies and then stored in artificial conditions, Lippert 

and Hopkins (1950) observed emergence of seedlings of A. psilostachya but in very low 

numbers. Information about seed viability is very scarce but is likely to be around 3-5 years, 

independent of persistence in the soil (Barton et al., 2016). Thus, resilience strategies in A. 

psilostachya do not include soil seed banks, but the rhizome is likely to be the target organ in 

overcoming stressful conditions and disturbances. 

  

F. Competition with local plant communities 

From previous sections, it is clear that ragweed species colonize habitats quite far from 

equilibrium, characterized by the influence of several stresses and disturbances. They also occur 

in "stable" situations, but usually when the equilibrium is determined and "arrested" by 

particular conditions, such as a high concentration of salt or metal in soil. Essl et al. (2015) 
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underlined that germination and early seedling establishment are mostly related to disturbance 

and lack of competition from local communities. This would explain the rarity of plants in 

natural habitats. As pioneer species, their life strategies are shaped to harsh situations mostly in 

early successional stages of vegetation. Accordingly, almost all biological and functional traits 

of ragweeds can be related to these low evolved environments. For instance, the need of light 

intensity to break seed dormancy and the need for rather shallow and compact soils, suitable to 

the growth of seedlings from soil seed banks and resprouting from rhizomes, are all 

requirements related to poorly evolved or disturbed vegetation. The main characteristics of the 

four-ragweed species, related to their ability in competing with local plants, are compared in 

Table 4. 

Considering A. artemisiifolia, environmental conditions are only suitable for its growth 

when human action or natural events influence the natural evolution of vegetation by removing 

competitors or operating on soil components (agricultural practices, excavations, floods, etc.). 

Gentili et al. (2015) demonstrated that the plant is a weak competitor in evolved stages of 

vegetation. These authors showed that germination and recruitment, as well as plant growth, 

are mainly inhibited by the presence of perennial and/or winter annual grassland species 

characteristic of more advanced stages (Gentili et al. 2015). In keeping with this, Fenesi et al. 

(2014) reported that in a competitive regime, A. artemisiifolia seed germination is delayed and 

seedling development is restrained by the presence of heterospecific neighbours (e.g. Erigeron 

spp.). They reported that on average the cost in A. artemisiifolia biomass associated with only 

a 3-day emergence delay is very high (-97%).  

In contrast to A. artemisiifolia, A. trifida is usually a good and vigorous competitor. Its 

life strategies are mostly based on very rapid and relevant growth: early germination, followed 

by very rapid growth, allows the plant to reach a height and biomass superior to other plants. 

Accordingly, the growth of later-growing plants is strongly inhibited by the canopy shadow 

determined by its large leaves (Abul-Fatih and Bazzaz (1979b). Therefore, once giant ragweed 
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finds good conditions in which to persist, it inhibits species diversity, biomass and density of 

the local community. In its native community, A. trifida is in fact a dominant species, one that 

strongly inhibits the colonization and growth of other annual plants (Abul-Fatih and Bazzaz, 

1979b). Early emergence also ensures a timely capitalization of resources that avoid the 

competition of dominant perennials as well (Hartnett et al., 1987; Schutte et al., 2012). As A. 

trifida is one of the most problematic crop weeds in the United States, its impact on other plants 

is extremely evident as shown also by the analysis of crop yield losses (Regnier et al., 2016). 

Interestingly, in agricultural environments, but not in rarely disturbed natural successional 

areas, A. trifida has been reported as being able to modulate its emergence time to adapt to 

different, "scheduled" selective pressures (Hartnett et al., 1987; Schutte et al., 2012; Regnier et 

al. 2016). In general, environmental or human-mediated disturbance must surely contribute to 

A. trifida persistence but, contrary to A. artemisiifolia, it does not disappear when the natural 

vegetation dynamic evolves and perennials become dominant. Hartnett et al. (1987) reported 

that A. trifida can persist for years, even penetrating dense vegetation. 

Similarly, perennial ragweed species, being pioneer plants, take advantage from vegetation 

gaps and also persist in more evolved environments when suitable conditions are maintained. 

Nevertheless, unlike A. trifida, A. psilostachya is not a superior competitor of grasses under 

"normal circumstances", and is in fact present in undisturbed, healthy pastures, but in low 

quantities (Vermeire et al., 2005). Vermeire and Gillen (2000) demonstrated that its abundance 

does not affect the presence of other grasses in mixed prairies, and there is a positive correlation 

between them. However, they speculate that Western ragweed is less abundant where there are 

grasses with roots forming a dense mat in the upper soil level; in this way the vegetative 

propagation of the plant is inhibited, as upper soil roots compete with the quite superficial 

creeping rhizome of A. psilostachya. Thus, the species only endures competition with some 

plants. This is inferred by observing its allopathic effect, which only negatively affects some 

species.  
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Again, A. tenuifolia takes advantage of gaps in vegetation covers (caused by floods, 

grazing, etc.) which make light, nutrients and water more available for seed germination and 

recruitment (Insausti et al., 1995; Insausti and Grimoldi, 2006). As a result, this species is a 

good competitor in poorly evolved environments, although it usually persists in the following 

stage of vegetation succession where it can become co-dominant (see above). After disturbance, 

gaps constitute focal points where recolonization of the grassland by A. tenuifolia originates 

from seedlings, which initially have a slow growth phase. It then grows rapidly and continues 

outside the original gaps by lateral clonal expansion, thus allowing the species to occupy new 

areas. In any case, independent of the starting population’s abundance, the species multiplies 

many times the surface of colonization in the quite short time of about 4 months (Insausti and 

Grimoldi, 2006).  

VI. Reproductive and dispersal barriers 

Survival without reproduction reduces an exotic species to a casual alien taxon as it cannot 

reach the naturalization phase (Blackburn et al., 2011). In this section, reproductive and 

dispersal strategies (also human-mediated) of ragweed species are analysed. Dependence on 

specialized pollinators or particular requirements within reproduction phases (e.g. obligatory 

outcrossing) are often indicated as traits that prevent the establishment of plants in new ranges 

(Van Kleunen et al., 2015). In general, when a species does not encounter unfavourable factors 

that strongly limit reproduction, the road to establishment is much less difficult. As already 

seen, the life cycle of ragweed species includes a series of adaptations useful in avoiding 

adversity. However, the chance of easily shifting its range through reproductive structure 

dispersal can be a positive trait determinant in facing unpredictability and escaping 

unfavourable conditions (Estrada et al., 2016).  
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A. Pollination  

In ragweed species, flowers are organized in heads containing either male or female flowers. 

The pollen-producing male raceme grows at the tips of the principal stem and lateral branches; 

seed producing female heads containing one or a few pistillate flowers are sessile and situated 

in the axils of the leaves immediately below the staminate spikes (Smith et al., 2013). According 

to Smith et al. (2013), within the Asteraceae family, ragweeds possess a strongly modified 

inflorescence, highly adapted to wind pollination (Table 5). As highlighted by Franz Essl and 

coauthors (2015), A. artemisiifolia is strongly self-incompatible and has high outcrossing rates, 

both in its invasive and native ranges. This may limit its reproductive efficiency, but due to the 

large production of airborne pollen, genetic flux is also maintained between distant or isolated 

populations. Unfortunately, there is no information about the other ragweed species concerning 

this. 

B. Seed and propagule pressure 

In the literature, the term "seed" usually indicates the whole diaspore unit of ragweed, which is 

a one-seeded cypsela for the species considered. The characteristics of ragweed seeds are shown 

in Table 5. It can be observed that A. trifida produces the largest seeds (more than 6 mm long) 

with a consistent outer coat (Bassett and Crompton, 1982). The other ragweed species produce 

smaller seeds: seeds of A. tenuifolia are slightly larger, 3-5 mm long (Parsons and Cuthbertson, 

2001; Behçet, 2004), than those of A. artemisiifolia (~3.5 mm long) (Bassett and Crompton, 

1975) and A. psilostachya (3-4.5 mm long) (Table 5) (Barton et al., 2016).  

Propagule pressure of common ragweed can be very high because the species produces 

between 3,000 and 100,000 seeds per plant, depending on the size of individuals and thus on 

growth conditions (Dickerson and Sweet, 1971; Bassett and Crompton, 1975; 

https://gd.eppo.int/reporting/article-3032; Fumanal et al., 2007). Seed production is also quite 
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noteworthy for giant ragweed and varies between a few hundred and 5000 ca. units per plant, 

depending on plant density and environmental conditions (Abul-Fatih and Bazzaz, 1979a; 

Baysinger and Sims, 1991; Harrison et al., 2001; MacDonald and Kotanen, 2010). 

Nevertheless, unlike A. artemisiifolia, the potential dissemination of this species in its native 

range can be strongly reduced by a relevant post-dispersal predation by rodents and 

invertebrates (Harrison et al., 2003; Regnier et al., 2008). Moreover, the viability of its seeds 

is not very high, 50 - 66% (Goplen et al., 2016; Harrison et al., 2001).  

In contrast to common and giant ragweed which, being annual species, have seeds as 

their main dispersal units, Western and slender ragweed are perennial and show additional 

dispersal structures. Wagner and Beals (1958) observed that only 66 out of 118 flowering heads 

developed to maturity in one plant and speculated that the reproductive potential by seeds of A. 

psilostachya is six times less than that of A. artemisiifolia. Similarly, Basset and Crompton 

(1975) showed that A. psilostachya produces just one seed per flowering head, thus indicating 

that vegetative reproduction is predominant for the species. In agreement with this, the main 

dispersal structure of the species is its highly vigorous creeping root system, capable of 

sprouting from pieces of rhizome, which make this ragweed species an even harder weed to 

fight than common ragweed (Table 5). Vegetative reproduction through rhizomes is also 

relevant for A. tenuifolia, even though it produces a large number of seeds (Table 5; Insausti 

and Grimoldi, 2006). Indeed, in this species both these strategies are important for its success 

in different stages of its life, as they react to dramatic environmental events, such as floods that 

are frequent on the Pampean Plains or human pressures such as agriculture and grazing (Insausti 

and Soriano, 1987; Insausti et al., 1995; Insausti and Grimoldi, 2006; Soriano, 1982). As 

already discussed in previous sections, the rhizome of A. tenuifolia is less resistant to extreme 

conditions (i.e. anoxia due to floods) than seeds that showed a longer viability (Insausti and 

Grimoldi, 2006). Furthermore, there is no evidence of enemies in the native range that affect 

the persistence and productivity of this plant, given its toxicity or unpalatability to cattle and 
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the low dietary interest for other vertebrates such as rodents (Freire et al., 2005; Semmartin, 

2010; Ellis et al., 1998).  

C. Dispersal 

Regarding ways of dispersal relevant to local movements (medium-short-range dispersal in 

native and invasion range), ragweed seeds show no morphological structure strictly 

representing a specific dispersal vector. According to Basset and Crompton (1975), the primary 

way of dispersal of Ambrosia artemisiifolia seeds is barochory. Anemochory is often cited as a 

potential dispersal vector, but owing to the absence of suitable structures and the weight of 

seeds, wind may represent only a "facilitator" of spread rather than a driver of diffusion (Table 

5; Bullock et al., 2012). Zoochory and hydrochory (Table 5) were considered by Essl et al. 

(2015), who reviewed all vectors contributing to A. artemisiifolia diffusion. Regarding the first, 

epizoochory by bison was proven in the native range of common ragweed, and endozoochory 

was also reported as an additional plausible mechanism of dispersion (Rosas et al., 2008; 

Bullock et al., 2012). Viable seeds of common ragweed resulting from feed intake have been 

found in cattle manure both in the United States and Europe (Pleasant and Schlather, 1994; 

Vitalos and Karrer, 2008). In addition, Wright, (1941) and Vitalos and Karrer (2008) proved 

that seeds are part of the diet of some birds (e.g. sparrows, pheasants, and quails), and Essl et 

al. (2015) reported that these vectors, along with rodents, play a role in dispersal. Hydrochory 

(intended both as streams, flowing water, and as runoff), has been indicated as a way of 

dispersal in the native range of the species (Table 5; Payne, 1970). Recently, Fumanal et al. 

(2007) underlined how the polymorphism of seeds of A. artemisiifolia contributes to dispersal 

by flowing water and indicated this mechanism as fundamental in the spread of the taxon within 

France, and also as a long-distance means of diffusion.  

Compared to A. artemisiifolia and the other ragweed species considered, A. trifida 

produces the largest seeds, reaching almost 1 cm in length (Bassett and Crompton, 1982). Seed 

size and weight point to barochory as the main way of dispersal also for this species (Table 5). 
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However, Osawa et al. (2013) indicated hydrochory and zoochory as additional important 

mechanisms for A. trifida diffusion, mainly supporting the former in accordance with the shape 

and size of the seeds. Yoshikawa et al. (2013) demonstrated that owing to its weight, a giant 

ragweed seed transported by a stream settles quite rapidly when the current velocity decreases, 

thus suggesting that these seeds are transported by water flow rather than floating. Concerning 

zoochory, although giant ragweed seeds have a quite developed crown of large spines, their 

size and weight represent a limiting factor for epizoochory. Hejný and Jelík (1972) mentioned 

the presence of A. trifida seeds in wool scraps, but as an exceptional circumstance in the former 

Czechoslovakia. In addition, Verloove (2016a) reported that it is rarely seen as a wool alien in 

Belgium and Pyšek (2005) excludes the possibility that A. trifida dispersal could be associated 

to wool processing in Czech Republic. As already mentioned, owing to their palatability, 

rodents and invertebrates eat seeds (Harrison et al., 2003; 2007), but if they cached instead of 

being immediately eaten then post-dispersal predation allows an estrangement of viable seeds 

from the mother plant. An association between A. trifida and earthworms has only very recently 

been observed: in the native range of A. trifida, non-native earthworms (Lumbricus terrestris) 

cache its seeds in burrows. Beyond the benefits for the plants (reduction of fast seed predation), 

giant ragweed appears to increase dispersal opportunities through this acquired form of 

diplochory (Regnier et al., 2008, 2016; Schutte et al., 2010). However, it allows a very short-

range translocation, probably less than one meter from the mother plant, considering the homing 

capability and movements of earthworms (Nuutinen and Butt, 2005).  

Little information is available regarding A. psilostachya. However, considering that its 

seeds are slightly larger than those of A. artemisiifolia (Basset and Crompton, 1975), it is likely 

that this species also mainly disperses through barochory (Table 5). Moreover, the crown of 

rudimental spines is less developed or even absent in Western ragweed seeds compared to those 

of common ragweed, which suggests that epizoochory is probably not as important a dispersal 

mechanism in this species (Wagner and Beals, 1958). However, Amor Morales et al. (2012) 
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and Parsons and Cuthbertson (2001) cited epizoochory for A. psilostachya seed dispersal in 

Spain and Australia, respectively. Finally, although the species is not highly palatable to cattle 

or bison, endozoochory was also inferred by Rosas et al. (2008), who found a percentage of 

Ambrosia spp. seeds in dung of bison grazing in prairies where A. psilostachya was a common 

forb. In any case, although studies about the role of Western ragweed seed intake in bird diets 

have been published (Campbell-Kissock et al., 1985), clear evidence of seed dispersal by 

animals is yet to be collected, as well as other means of diffusion. For instance, CABI (2017) 

reported that in springtime A. psilostachya seed can be "transferred by water in ditches, canals 

and rivers" (hydrochory). Moreover, as discussed above, seeds are probably not the main 

dispersal unit of Western ragweed, owing to their paucity, but the role of rhizome fragmentation 

is yet to be investigated. 

Like A. psilostachya, A. tenuifolia is a perennial, but its life strategy is not mainly based 

on vegetative propagation and seed production is not low, although data on the precise quantity 

are not available. No real evidence for epizoochory is present in literature, but several sources 

stress the evidence that seeds are caught on sheep wool (http://www.environment.gov.au/cgi-

bin/biodiversity/invasive/weeds/weeddetails.pl?taxon_id=17510#). Available studies suggest 

that seeds can be dispersed by water flow without losing their viability (Insausti and Soriano, 

1982; Insausti et al., 2006). 

 

D. Human-mediated dispersal pathways (medium- and long-distance vectors) 

Trade routes and all connected elements, previously discussed as important pathways of 

introduction and global diffusion, are relevant for short- and medium-range movements (Table 

5; Ferus et al., 2015). Nevertheless, on a regional scale, further important vectors of spread 

linked to human activity stand out: movement of soils, spread of seeds through mowing or 

agricultural machinery and car and train passage (Table 5). All these vectors are associated with 

the spread of A. artemisiifolia particularly within the European area as extensively reviewed by 
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Bullock et al. (2012) and Essl et al. (2015). The presence of common ragweed in a new area, 

after the setup of a construction site, can easily be attributed to the transport and dumping of 

contaminated soils from different sites. Moreover, the abundance of common ragweed along 

railways and road networks indicates transportation corridors as one of the main drivers of 

introduction. The importance of which is even more stressed by the explanatory power of this 

variable in spatial distribution models and other studies (e.g. Dullinger et al., 2009 and Joly et 

al., 2011). However, few experimental data about the dispersion mechanism of propagules are 

available. Two studies (Vitalos and Karrer, 2009; Von der Lippe et al., 2013) tested the effect 

of vehicles on dispersion of seeds and both demonstrated that the sole car slipstream or seed 

attachment cannot completely explain a long-distance dispersal. Even the action of mowing 

machines along roads, which strongly boosts the process, does not fully explain the distance of 

dispersal (Vitalos and Karrer, 2009). As a result, the spread of A. artemisiifolia along corridors 

of transportation appears to be a multifactorial phenomenon not yet completely understood. 

Regarding the impact of agricultural machinery, it is effective at the local and more extended 

level. Karrer (2014) demonstrated that harvesters and other machines can transport several 

thousands of viable seeds, colonizing new fields or reinforcing already present metapopulations 

of common ragweed. Contaminated machines from already colonized French regions are even 

thought to be responsible for the introduction of A. artemisiifolia into some virgin Swiss areas 

(Buttenschøn et al., 2010).  

All these vectors may also be relevant for the other species of ragweeds, and especially 

for A. tenuifolia and A. psilostachya as light-seed producers (Table 5). Conversely, A. trifida 

produces large seeds and may exploit these vectors less (Table 5). The transport of viable 

rhizomes through soil movements may also be an effective vector for the diffusion of A. 

psilostachya, but unfortunately, no evidence for this is available. 
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VII. Allergenic impact and environment 

The Ambrosia genus represents a global risk to public health owing to the allergic reactions 

induced by pollen allergens in atopic subjects. In Europe, ragweed pollen affects more than 36 

million people each year and the prevalence of sensitization is growing mainly due to the plant’s 

spread (Mihajlovic, 2015; Bordas-Le Floch et al., 2015). Among all ragweed species, pollen of 

A. artemisiifolia, A. psilostachya and A. trifida have long been acknowledged as a significant 

cause of allergic disease (Ziska et al., 2011). Similarly, A. tenuifolia is reported to be severely 

allergenic in its native range and produces a huge amount of pollen (Giscafre and Ragonese, 

1942; Vaz Ferreira, 1946; Tejera and Beri, 2005; Del Vitto et al., 2015; pollenlibrary.com). 

However, more specific and up-to-date medical evidence needs to be collected to better define 

the allergenic impact of this species (Tejera and Beri, 2005; Marco and Pirovani, 2009).  

A. Pollen characteristics related to allergy 

The major source of allergenic proteins in ragweed plants is pollen. Ragweed pollen grains are 

small particles containing air chambers between the layers of the outer wall. These 

characteristics allow them to become easily airborne under favourable conditions and 

transported by wind for very long distances at a continental scale, even reaching areas not 

colonized by Ambrosia spp. plants (Smith et al, 2013; Mahmoudi, 2016; Šikoparija et al., 2013). 

It is striking that these pollen grains maintain their allergenic power over such a long distances, 

even after spending days in the atmosphere (Makra et al., 2016; Grewling et al., 2016). This 

means that exposed individuals may become sensitized to ragweed pollen allergens and develop 

symptoms even in areas where the plant is not widely distributed (Grewling et al., 2016). 

Furthermore, sub-pollen particles (SPPs) of respirable size (0.5 to 4.5 μm) contain allergens 

that can be released by A. artemisiifolia pollen after hydration (i.e. after thunderstorms). These 

particles, along with pollen fragments, can also be transported for long distances, thus 

contributing to allergen exposure even when no airborne pollen grains are identifiable. This 
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generates out-of season pollinosis in highly ragweed-sensitive subjects (Table 6) (Busse et al., 

1972; Bacsi et al., 2006; Pazmandi et al., 2012).  

 The species’ morphological characteristics are similar (Table 6) and identifying pollen 

grains to a single species by optical microscopy is not usually feasible. A few authors have 

investigated the pollen structure of ragweed species other than A. artemisiifolia. They show that 

A. psilostachya pollen grains are likely to be larger than the other species (Table 6) (Jacobson 

and Morris, 1976; Robbins et al., 1979; Wan et al., 2002) and that A. artemisiifolia pollen is 

distinguishable from that of A. trifida through the analysis of exine characters. Specifically, 

Bassett and Crompton (1982) reported that A. trifida has 60-65 spines on one-half of the grain 

surface, whereas A. artemisiifolia has 70-75 spines. No distinctive traits are reported for A. 

tenuifolia pollen. 

B. Pollen Allergens 

The allergens of the four ragweed species officially recorded by the International Union of 

Immunological Societies (IUIS) are shown in Table 7. The pectate lyase Amb a 1 is currently 

considered the most important allergenic group for the Ambrosia genus (Gadermaier et al., 

2014), although it has been identified only in A. artemisiifolia and not in the other species. 

Concerning A. artemisiifolia, ten different allergen groups are reported in the IUIS database 

and they were extensively reviewed by Gadermaier et al. (2014) and Bordas-Le Floch et al. 

(2015). Briefly, the list includes: Amb a 1 (comprising the formerly called Amb a 2, recently 

designated as Amb a 1 isoallergen 5), to which more than 95% of ragweed pollen allergic 

patients are sensitized; Amb a 3, classified as a minor allergen (sensitization prevalence of 30–

50%); Amb a 4 (defensin), to which sensitization frequencies are variable; Amb a 5 (unknown 

function) a minor allergen, affecting only 10% to 15% of ragweed pollen-allergic individuals; 

the panallergen Amb a 6 (non-specific lipid transfer protein) which is considered a minor 

allergen (sensitization prevalence of 21% among ragweed sensitized patients); Amb a 7 

(plastocyanins), another minor allergen (reaction in 15% to 20% of ragweed pollen-allergic 
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patients); Amb a 8 (profilin), highly cross-reactive with mugwort (Artemisia) profilin (Art v 4); 

Amb a 9/Amb a 10 (polcalcins), minor panallergens (reaction in 10% to 15% of ragweed pollen-

allergic patients). Finally, the list includes the very recently discovered allergen Amb a 11 

(cysteine protease), which has been classified as one of the major allergens along with Amb a 

1 for this ragweed species (Bouley et al., 2015). Additional IgE reactive pollen proteins, 

identified by trascriptomic and proteomic approaches, have been indicated as “bona fide 

allergens”, probably extending the list of A. artemisiifolia allergens (Bordas-Le Floch et al., 

2015). 

 In contrast to A. artemisiifolia, A. trifida and A. psilostachya allergens are less 

characterized. Only two (Amb t 5, Amb t 8) and one allergenic proteins (Amb p 5) have been 

identified respectively in A. trifida and A. psilostachya, and reported in IUIS and/or allergome 

databases. Amb t 5 and Amb p 5 belong to the 5 group of allergens of the Ambrosia genus and 

cross-react with Amb a 5. In A. psilostachya, two isoforms of Amb p 5, Amb p 5.0101 and Amb 

p 5.0201 have been characterized. Ghosh et al. (1994) investigated the variants of Amb p 5 

from A. psilostachya pollen and suggested that these forms are part of the natural variation 

within the A. psilostachya species, which exhibits polyploidy and can form hybrids with related 

ragweed species. Amb t 8 is a profilin, an actin binding proteins (Girodet, 2013). However, 

these data are not present in the IUIS database and only scanty information about it is available. 

A. artemisiifolia, A. trifida, and A. psilostachya pollen allergens have long been 

considered largely cross-reactive (Weber et al. 2007), and it is generally believed that one 

species is sufficient for skin testing and immunotherapy. However, in the Northern area of 

Milan (widely invaded only by A. artemisiifolia), about 50% of patients submitted to injection 

of specific immunotherapy with A. trifida showed little or no clinical response, although an 

excellent outcome was obtained if they were shifted to A. artemisiifolia specific immunotherapy 

(Asero et al., 2005). By comparing the proteome of A. artemisiifolia with those of A. trifida and 

A. psilostachya, Barton and Schomacker (2017) recently found that only A. psilostachya pollen 
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contains all five Amb a 1 isoallergens identified in A. artemisiifolia and reported in the IUIS 

database. In contrast, they found only three Amb a 1 isoallergens (Amb a 1.2, Amb a 1.4, and 

Amb a 1.5) in A. trifida, the lesser IgE reactive isoforms. Although more specific analyses are 

needed to characterize the allergenic profile of these species, this information suggests that A. 

artemisiifolia is more similar to A. psilostachya than to A. trifida, thus explaining the results 

reported by Asero and collaborators (2005). The allergenicity of A. tenuifolia is still poorly 

known (no allergens are reported in allergen databases), but it shows little cross-reactivity with 

the other Ambrosia species (Girodet, 2013). 

 

C. Allergenic impact and environment 

Regarding quantities of pollen, ragweed has the potential to release billions of pollen grains: 

for A. artemisiifolia it is well known that 1.19 ± 0.14 billion pollen grains can be released per 

plant (Fumanal et al., 2007; Smith et al., 2013). However, pollen production is closely related 

to size, growth, phenology and fitness of plants. For A. artemisiifolia, there is a positive 

correlation between dry plant biomass and reproductive success, as bigger individuals produce 

more pollen grains (Fumanal et al., 2007), although decreasing plant size is generally associated 

with increasing maleness and decreasing femaleness (Paquin and Aarssen, 2004). Biomass and 

flowering phenology can follow a latitudinal gradient (Allard, 1945; Dickerson, 1968; Leiblein 

Wild, 2014): both in Europe and North America, plants from southern populations grow larger 

and flower later than northern populations (e.g., Gudzinskas, 1993; Li et al., 2015). The time 

of flowering greatly depends on germination time and the average springtime temperature 

(April, May and June) (Kazinczi et al., 2008); for instance, it has been shown that earlier 

germination during spring leads to higher biomass allocation and higher pollen and seed 

production. Consequently, environmental conditions can alter plant fitness and result in pollen 

production change (Smith et al., 2013). It is worth noting that adaptations to newly invaded 

environments (e.g. Europe) often have a positive effect on the fitness of plants, reproduction, 
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and biomass allocation as well as influencing the length of flowering time (Hodgins and 

Rieseberg, 2011; Leiblein Wild, 2014). 

Furthermore, pollen production is influenced directly or indirectly by human practices. 

Sensitization of the population to A. artemisiifolia is constantly increasing and is probably 

correlated with the increased civilization, urbanization and pollution of the last decades 

(D’Amato, 2007; Ghiani, 2012). Several studies warn that global changes are going to worsen 

the situation in the next few decades. Effects will include changes in ragweed distribution, plant 

growth and life cycle as well as pollen allergenicity itself (e.g. Ziska and Caulfield, 2000; 

Rogers et al., 2006). Species Distribution Models (SDMs) for A. artemisiifolia predict that its 

potential distribution will increase globally (Essl et al., 2015; Chapman et al., 2016). In Europe, 

warmer summers and later autumn frosts will allow a spread of A. artemisiifolia northward and 

uphill, leading by the mid-21st century to the inclusion of northern areas (e.g. southern 

Scandinavia and the British Isles) in its climatically suitable regions, and southward a regression 

of the species’ range. Regarding the Ambrosia genus in North America, Ziska et al. (2011) 

showed an increase in recent decades (since 1995) of the duration of the ragweed (Ambrosia 

spp.) pollen season as a function of latitude (latitudinal effects are primarily associated with a 

delay in first frost of the fall season and lengthening of the frost free period). Ambrosia trifida 

in China is predicted to slightly increase its range (<1%) although it had the potential to spread 

northward (Qin et al., 2014). Recently Rasmussen et al. (2017) found that, by the year 2100, 

the distribution range of A. artemisiifolia, A. trifida and A. psilostachya will increase towards 

Northern and Eastern Europe under all climate scenarios and consequently the high allergy risk 

areas will expand in Europe. Effects of the increase in temperature influence the flowering 

season length, but also the growth of plants and pollen production. Wan et al. (2002) tested the 

effects of warming and mowing on A. psilostachya, and showed that both can increase above 

ground biomass of plants (AGB), and the ratio of ragweed AGB to total AGB. With warming, 

total pollen production increased by 84% because ragweed stems were more abundant. 
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Moreover, experimental warming significantly increased pollen diameter (13% increase). El 

Kelish et al. (2014) demonstrated that both an elevated level of CO2 and drought stress have an 

effect on A. artemisiifolia pollen allergenicity because expressed sequence tags (ESTs) 

encoding allergenic ragweed proteins increased under those conditions. Zhao et al. (2016) 

showed the direct influence of elevated NO2 on the increased allergenicity of ragweed pollen 

and Ghiani et al. (2012) demonstrated that traffic-related pollution enhanced ragweed pollen 

allergenicity, showing that pollen collected along high-traffic roads had a higher whole 

allergenicity than pollen from low-traffic roads and vegetated areas. Conversely, several studies 

have shown no effect on the content of the major ragweed allergen Amb a 1 due to high 

concentrations of ozone or extended exposure of the plant to this pollutant (Sénéchal et al., 

2015; Kanter et al., 2013).  

VIII. Conclusion 

The successful invasion of the ragweed species considered can be ascribed to a synergy of 

anthropogenic and bio-ecological factors. The globalization of commerce and changes in land 

use have dramatically favoured their spread into new areas. Firstly, the species were used as 

medicinal plants in the Americas and were transported to Europe and cultivated in botanical 

gardens. They then spread as a contaminant of crop and forage seeds, and in a wide variety of 

goods, by means of transportation, to become noxious pests. Climatic changes are predicted to 

worsen the impact of these species by increasing both their colonisation range and allergenic 

potential. Thus, the setting up of effective measures to prevent and stop their spread is essential. 

Until now, researchers have mainly focused on common ragweed, the most widespread species, 

and the results have often been automatically associated with the other three species, although 

their ecology, biology and allergenic and ecological impact can differ significantly. Although 

other ragweeds are less widespread globally than A. artemisiifolia, their impact could differ in 

terms of type and magnitude. For instance, A. psilostachya, A. tenuifolia, and A. trifida are able 
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to colonize environments different from A. artemisiifolia, thus potentially expanding their range 

of impacts as one of the most "black-listed" genera in the world. For this reason, further research 

efforts and data collection about factors that have allowed ragweed species to overcome 

geographical and environmental barriers are needed. Specifically, more in-depth research is 

necessary about: 

- The impact, biology and ecology of ragweeds other than A. artemisiifolia, which may 

represent a severe threat to local plant communities, given their ability to colonize semi-

natural habitats; 

- dispersal vectors and introduction pathways and their role in the spreading of taxa, with 

a particular focus for the rhizomatous "low-seed producer" A. psilostachya; 

- allergenic impact of ragweed species other than A. artemisiifolia; 

- taxonomy of ragweeds to clarify their distribution and relations among them; 

- competition mechanisms and strategies with local plant communities (all ragweed 

species). 

In conclusion, "for a fistful of ragweeds" a great deal of work has been done, but it is mandatory 

to remain alert and not underestimate the role of basic research in elaborating consistent 

strategies and models (e.g. SDMs) for better understanding and controlling of the ragweed 

invasion. 
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Tables 

Table 1 – Ambrosia species characteristics: morphological data allowing the identification of the four ragweeds. 

Species Ambrosia 
artemisiifolia L. 

Ambrosia trifida 
L. 

Ambrosia 
psilostachya DC. 

Ambrosia 
tenuifolia 
Spreng. 

Life form Annual Annual Perennial  Perennial  

Plant size (cm) 10 to 250 40 to 400 10 to 90 20-100 
Belowground Taproot Taproot Root sprouter  Root sprouter 

Stem 

+/- intensively 
branched, 
branches with 
wide angles 

+/- intensively 
branched  

Few branches, 
with narrow 
angles 

Few branches, 
with narrow 
angles 

Leaves 

Pinnatifid to 
bipinnate, rarely 
entire; leaf 
segments 
broadened and 
separated, rarely 
narrow; lower 
leaves with 
distinct narrow 
petiole; upper 
leaves alternate; 
long and short 
hairs mixed 

Palmate, 1 to 5 
lobes; glabrous or 
few short hairs; 
all leaves 
opposite  

Pinnatifid, rarely 
entire; leaf 
segments lineal 
and connected, 
often sharped 
towards the tip; 
+/- sessile; upper 
leaves alternate; 
dense short hairs 

Bipinnate to 
pinnatifid; leaf 
segments as 
narrow as the 
rachis, lineal, 
connected; lower 
leaves with 
distinct narrow 
petiole; upper 
leaves alternate; 
dense short hairs 

Diaspore coat 

Few hairs and 
glands; 2-5 short 
lateral spines 
with sharpened 
tips; dark brown  

Glabrous or few 
hairs; 2-4 
indistinct lateral 
spines; dark 
brown to black  

Few glands and 
short hairs; blunt, 
short lateral 
spines few or 
none; dark brown  

Short hairs and 
glands, 2-5  
lateral short blunt 
spines; olive to 
dark brown  
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Table 2 - Geography of Ambrosia (ragweed) species: distribution, time of arrival (first record in the wild), current status of ragweeds and references supporting reported data. 

Continent Country Species First record Status References 
Europe Albany Ambrosia artemisiifolia L. / Doubtful 

occurrence 
Barina et al., 2013; Barina et al., 2014 

Africa Algeria A. artemisiifolia  > 1890 Alien Casual Lawalree, 1947; Quézel and Santa, 1963; Greuter, 2006 
Africa Algeria  A. psilostachya DC. 1916 Alien Naturalized Maire, 1928; Quézel and Santa, 1963; Greuter, 2006 
America (S) Argentina A. artemisiifolia  / Species occurring Freire et al., 2008; Gerber et al., 2011; Essl et al., 2015 
America (S) Argentina A. tenuifolia Spreng. / Native Freire et al., 2008; Novara and Gutiérrez, 2010 
Asia Armenia A. artemisiifolia / Alien Naturalized Tamanyan and Fayvush, 2010; Randall, 2012 
Oceania Australia A. artemisiifolia  1908 Alien Invasive Parsons and Cuthbertson , 2001; Essl, et al., 2015 
Oceania Australia A. psilostachya  1922 Alien Invasive Parsons and Cuthbertson , 2001 
Oceania Australia A. tenuifolia 1932 Alien Naturalized Parsons and Cuthbertson , 2001 
Europe Austria A. artemisiifolia  1883 Alien Invasive Essl et al., 2009; Smith et al., 2013 
Europe Austria A. trifida L. 1948 Alien Casual Essl and Rabitsch, 2002; Follak et al., 2013 
Europe Austria A. psilostachya  / Alien Casual Essl and Rabitsch, 2002 
Asia Azerbaijan A. artemisiifolia  / Alien Invasive Greuter, 2006; Gerber et al., 2011 
America (C) Bahamas A. artemisiifolia  / Species occurring Acevedo-Rodrıguez and Strong, 2012; Essl et al., 2015 
Europe Belarus A. artemisiifolia  / Alien Naturalized Greuter, 2006 
Europe Belarus A. psilostachya  / Alien status 

unknown 
EPPO, 2016 

Europe Belarus A. trifida  / Alien Casual EPPO, 2016 
Europe Belgium A. trifida  1829 Alien Casual Verloove, 2016a 
Europe Belgium A. psilostachya  1917 Alien Naturalized Verloove, 2016b 
Europe Belgium  A. artemisiifolia  1883 Alien 

Naturalized? 
Bullock et al., 2012; Verloove, 2016c 

America (S) Bolivia A. artemisiifolia  / Alien status 
unknown 

Jørgensen et al., 2014 

America (S) Bolivia A. tenuifolia  / Native  Jørgensen et al., 2014 
Europe Bosnia 

Herzegovina 
A. artemisiifolia / Alien status 

unknown 
Kazinczi et al., 2008; Smith et al., 2008 

Africa Botswana A. artemisiifolia / Alien Naturalized Setshogo, 2005; Randall, 2012; Skarpe et al., 2014 
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America (S) Brazil A. artemisiifolia / Species occurring Mondin and Nakajima, 2015; Essl et al., 2015; Alves and Rocha, 2016  
America (S) Brazil A. tenuifolia / Native Sáenz and Gutiérrez, 2008 
Europe Bulgaria A. artemisiifolia 1975 Alien Naturalized Kazinczi et al., 2008; Bullock et al., 2012 
Europe Bulgaria A. trifida 2014 Alien status 

unknown 
Stoyanov et al., 2014 

America (S) Canada A. artemisiifolia  / Native Bassett and Crompton, 1975; Kazinczi et al., 2008  
America (N) Canada A. psilostachya  / Native Bassett and Crompton, 1975 
America (N) Canada A. trifida  / Native Bassett and Crompton, 1982 
America (S) Chile A. artemisiifolia 1959 Alien Naturalized Essl et al., 2015; Ugarte et al., 2011; Fuentes et al., 2013 
America (S) Chile A. tenuifolia  1923 Alien 

Naturalized? 
Ugarte et al., 2011 

Asia China A. artemisiifolia 1930s Alien Invasive Qin et a., 2014 
Asia China A. trifida 1935 Alien Invasive Qin et a., 2014 
Asia China A. psilostachya / Alien status 

unknown 
Chen and Hind 2011 

America (S) Colombia A. artemisiifolia  / Species occurring Gerber et al., 2011; CABI, 2017  
Europe Croatia A. artemisiifolia  1879 Alien Invasive Galzina et al., 2010; Csontos et al., 2010; Kazinczi et al., 2008  
America (C) Cuba A. artemisiifolia  < 1873 Species occurring Sauvalle Chanceaulme, 1873; Acevedo-Rodriguez and Strong, 2012 
Europe Czech 

Republic 
A. artemisiifolia  1883 Alien Invasive Kazinczi et al., 2008; Smith et al., 2008; Bullock et al., 2012 

Europe Czech 
Republic 

A. trifida  1960 Alien Casual Pyšek et al., 2012 

Europe Czech 
Republic 

 A. psilostachya 1999 Alien Casual Pyšek et al., 2012 

Europe Denmark  A. psilostachya / Alien Casual Greuter, 2006 
Europe Denmark A. trifida  / Alien Casual EPPO, 2016 
Europe Denmark  A. artemisiifolia  1865 Alien Casual Bullock et al., 2012 
America (S) Ecuador A. artemisiifolia  / Species occurring Jørgensen and León-Yánez, 1999 
America (S) Ecuador 

(Galapagos) 
A. artemisiifolia  / Alien Casual Tye, 2001; Jaramillo Díaz and Guézou, 2013.  

Africa Egypt A. artemisiifolia  2002? Alien Naturalized Greuter, 2006; Shaltout, 2004.  
Europe Estonia A. artemisiifolia  1954 Alien Casual Gudzinskas, 1993 
Europe Estonia  A. psilostachya / Alien Casual Greuter, 2006 
Europe Estonia A. trifida  / Alien Casual EPPO, 2016 
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Europe Finland A. artemisiifolia  1900<1950 Alien Naturalized Finnish Ministry of Agriculture and Forestry, 2012; Lampinen and Lahti, 
2016 

Europe Finland A. trifida  1900<1950 Alien status 
unknown 

Lampinen and Lahti, 2016 

Europe Finland  A. psilostachya 1990s Alien status 
unknown 

Lampinen and Lahti, 2016 

Europe France A. tenuifolia  1839 Alien Naturalized  Thellung 1912; Chauvel et al., 2015 
Europe France A. artemisiifolia  1863 Alien Invasive 

[Corse- Alien 
Casual] 

Chauvel et al., 2006; Csontos et al., 2010 

Europe France A. trifida  1901 Alien Naturalized  Chauvel et al., 2015 
Europe France  A. psilostachya 1931 Alien Naturalized 

(Invasive?) 
Hibon, 1942; Fried et al., 2015 

Asia Georgia A. artemisiifolia  / Alien Invasive Kikodze et al., 2010; EPPO, 2016 
Asia Georgia A. trifida  / Alien status 

unknown 
Kikodze et al., 2010 

Europe Germany A. artemisiifolia  1860 Alien Naturalized Buttler and Harms, 1999; Brandes and Nitzsche, 2006; Otto, 2006; 
Kazinczi et al., 2008; Bullock et al., 2012; Buttler, 2016. 

Europe Germany A. trifida  1877 Alien Naturalized Buttler and Harms, 1999; Follak et al., 2013; Buttler, 2016; DAISIE, 
Species Factsheet: A. trifida. available at http://www.europe-
aliens.org/speciesFactsheet.do?speciesId=21722# (Accessed in January 
2017); Deutschlandflora WebGIS. Floristische Verbreitungskarten in 
Deutschland: https://deutschlandflora.de (Accessed in January 2017) 

Europe Germany  A. psilostachya 1897 Alien Naturalized Buttler and Harms, 1999; Buttler, 2016;  Bundesamt für Naturschutz - 
Floraweb, 2017: 
http://www.floraweb.de/pflanzenarten/artenhome.xsql?suchnr=20068& 
(Accessed in January 2017); Deutschlandflora WebGIS. Floristische 
Verbreitungskarten in Deutschland: https://deutschlandflora.de (Accessed 
in January 2017) 

Europe Germany A. tenuifolia  / Alien Casual Buttler and Harms, 1999; Buttler, 2016 
Europe Greece  A. psilostachya 2016 Alien 

Naturalized? 
Von Raab-Straube and Raus, 2016 

Europe Greece A. artemisiifolia  2008? Alien status 
unknown 

Arianoutsou et al., 2010; Greuter and Raus, 2008 

America (C) Guadeloupe A. artemisiifolia  / Alien status 
unknown 

Gerber et al., 2011 

America (S) Guatemala A. artemisiifolia  / Alien status 
unknown 

Gerber et al., 2011 
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America (C) Hawaiian 
Islands 

A. artemisiifolia  1854 Alien Invasive Wagner et al., 1990; Pacific Island Ecosystems at Risk (PIER), 2013a 

America (N) Hawaiian 
Islands 

 A. psilostachya / Alien status 
unknown 

Randall, 2012; Pacific Island Ecosystems at Risk (PIER), 2013b 

America (C) Hispaniola 
(Dominican 
Republic) 

A. artemisiifolia  / Species occurring Acevedo-Rodrıguez and Strong, 2012; Essl et al., 2015 

Europe Hungary  A. psilostachya 1900 ca. Alien Invasive Puc, 2004; CABI, 2017 
Europe Hungary A. trifida  / Alien Invasive? Plank et al., 2016  
Europe Hungary  A. artemisiifolia  1922 Alien Invasive Csontos et al., 2010 
Europe Iceland A. artemisiifolia  1948 Alien Casual Wasowicz et al., 2013 
Asia India A. artemisiifolia  / Alien Invasive Khuroo et al., 2012; Kohli et al., 2012 
Asia India  A. psilostachya 1990s Alien Invasive Ramachandra Prasad et al., 2013 
Asia India A. trifida  2004-2009 Alien status 

unknown 
Kumar et al., 2009; Randall, 2012 

Asia Iran A. artemisiifolia  / Alien status 
unknown 

Gerber et al., 2011; Randall, 2012; Bararpour, 2014. 

Asia Iran  A. psilostachya / Alien status 
unknown 

Cheraghian, 2016a 

Asia Iran A. trifida  / Alien status 
unknown 

Randall, 2012; Bararpour, 2014; Cheraghian, 2016b 

Europe Ireland A. trifida  1894 Alien Casual Reynolds, 2002 
Europe Ireland A. artemisiifolia  1900 Alien Casual Rich, 1994; Reynolds, 2002; Bullock et al., 2012; Essl et al., 2015  
Asia Israel A. artemisiifolia  1925 Alien Casual Waisel et al., 2008; Yair et al., 2017 
Asia Israel A. tenuifolia  1984 Alien Naturalized Greuter and Raus, 1995; Danin, 2000; Waisel et al., 2008; Yair et al., 

2017 
 

Asia Israel A. trifida  1987 Alien Casual (still 
present?) 

Danin, 2000; Waisel et al., 2008; Danin, 2016; Yair et al., 2017 

Asia Israel  A. psilostachya 2006 ca. Alien Naturalized Yair et al., 2017 
Europe Italy A. trifida  1899 Alien Naturalized Vignolo-Lutati, 1935; Mandrioli et al., 1998; Celesti-Grapow et al., 2009; 

Chauvel et al., 2015 
Europe Italy  A. psilostachya 1927 Alien Invasive Vignolo-Lutati, 1935; Mandrioli et al., 1998; Conti et al., 2005 
Europe Italy A. tenuifolia  1935 Alien Naturalized Vignolo-Lutati, 1935; Mandrioli et al., 1998; Conti et al., 2005 
Europe Italy  A. artemisiifolia  1902 Alien Invasive Gentili et al., 2016 
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America (S) Jamaica A. artemisiifolia  / Alien status 
unknown 

Gerber et al., 2011 

Asia Japan A. artemisiifolia  1877 Alien Invasive Auld et al., 2003; Kazinczi et al., 2008; Fukano and Yahara, 2012; Essl et 
al., 2015; Invasive Species of Japan (NIES). A. artemisiifolia. Available 
at: https://www.nies.go.jp/biodiversity/invasive/DB/detail/80400e.html 
(Accessed January 2017) 

Asia Japan A. trifida  1952 Alien Invasive Auld et al., 2003 
Asia Japan   A. psilostachya / Alien Invasive Auld et al., 2003; Mito and Uesugi, 2004; Ramachandra Prasad et al., 

2013.  
Asia Kazakhstan A. artemisiifolia  / Alien status 

unknown 
Gerber et al., 2011 

Asia Kazakhstan  A. psilostachya / Alien Naturalized Von Raab-Straube and Raus, 2016. 
Asia Korean 

Peninsula 
A. trifida  1964 Alien Invasive Lee et al., 2010; Kim and Kil, 2016 

Asia Korean 
Peninsula 

A. artemisiifolia  1955 Alien Invasive Song et al., 2012; Kim and Kil, 2016. 

Europe Latvia A. trifida  1900 Alien Casual? Gudzinskas, 1993 
Europe Latvia A. artemisiifolia  1936 Alien Casual Gudzinskas, 1993 
Europe Latvia  A. psilostachya / Alien Casual DAISIE, Species Factsheet: A. coronopifolia available at 

http://www.europe-aliens.org/speciesFactsheet.do?speciesId=21701# 
(Accessed in January 2017) 

Europe Liechtenstei
n 

A. artemisiifolia  1995 Alien Casual Greuter, 2006; Waldburger and Staub 2006 

Europe Lithuania A. trifida  1987 Alien Casual  Gudzinskas, 1993 
Europe Lithuania  A. artemisiifolia  1884 Alien Casual  Gudzinskas, 1993 
Europe Luxembourg A. artemisiifolia  / Alien Naturalized Ries, 2017 
Africa Lybia A. artemisiifolia  / Doubtful 

occurrence 
Greuter, 2006 

Africa Madagascar A. artemisiifolia  / Doubtful 
occurrence 

Kull et al., 2012; Skálová et al., 2015 

America (C) Martinique A. artemisiifolia  / Alien status 
unknown 

Gerber et al., 2011 

Africa Mauritius  A. psilostachya / Alien Invasive Macdonald et al., 2003 
America (C) Mexico A. artemisiifolia  / Species occurring Villaseñor and Espinosa‐Garcia, 2004; Gerber et al., 2011. 
America (C) Mexico  A. psilostachya / Native Vibrans, 1998; Roldán & Vibrans, 2009 
America (C) Mexico A. trifida  / Species occurring Villaseñor and Espinosa‐Garcia, 2004; EPPO, 2016; CABI, 2017.  
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Europe Moldova A. artemisiifolia  1975? Alien Naturalized Greuter, 2006;Bullock et al., 2012 
Europe Moldova A. trifida  / Alien Casual EPPO, 2016 
Asia Mongolia A. trifida  / Alien status 

unknown 
EPPO, 2016 

Europe Montenegro A. artemisiifolia  ? Alien status 
unknown 

Stešević and Petrović 2010; Karrer, 2016 

Europe Montenegro  A. psilostachya / Alien status 
unknown 

Greuter, 2006 

Africa Morocco  A. psilostachya 1994 Alien status 
unknown 

Tanji, 2005  

Europe Netherlands A. artemisiifolia  1875 Alien Naturalized Van Denderen et al., 2010; Odé and Beringen, 2017a 
Europe Netherlands  A. psilostachya 1905 Alien Naturalized Van Denderen et al., 2010; Odé and Beringen, 2017b 
Europe Netherlands A. trifida  more frequent 

from 1960s  
Alien Casual Van Denderen et al., 2010; Odé and Beringen 2017c 

Oceania New 
Zealand 

A. tenuifolia  1950 Alien Casual Howell and Sawyer, 2006 

Oceania New Zeland A. artemisiifolia  1911 Alien Casual Webb et al., 1988; Essl et al., 2015  
Europe Norway A. artemisiifolia  1930 Alien Casual Fremstad and Elven 1997; Kazinczi et al., 2008 
Europe Norway  A. psilostachya / Alien Casual Greuter, 2006 
Europe Norway A. trifida  / Alien Casual Randall, 2012; EPPO, 2016; CABI, 2017; DAISIE, Species Factsheet: A. 

trifida. available at http://www.europe-
aliens.org/speciesFactsheet.do?speciesId=21722# (Accessed in January 
2017) 

America (S) Paraguay A. artemisiifolia  / Species occurring Zuloaga et al., 2008; Essl et al., 2015; CABI, 2017; Tropicos.org. 
Missouri Botanical Garden. 01 Feb 2017 
<http://www.tropicos.org/Name/2701648 

America (S) Paraguay A. tenuifolia  / Native Sáenz and Gutiérrez, 2008 
America (S) Perù A. artemisiifolia  / Species occurring Gutte, 1978; Gerber et al., 2011; Zárate et al., 2015; Tropicos.org. 

Missouri Botanical Garden. 20 Jan 2017 
<http://www.tropicos.org/Name/2701648> 

America (S) Perù A. tenuifolia  / Native Randall, 2012 
Europe Poland A. artemisiifolia  1873 Alien Naturalized Gudzinskas, 1993; Kazinczi et al., 2008; Tokarska-Guzik et al., 2011 
Europe Poland  A. psilostachya / Alien Naturalized Kazinczi et al., 2008; Tokarska-Guzik et al., 2011 
Europe Poland A. trifida  / Alien Casual Kazinczi et al., 2008; Tokarska-Guzik et al., 2011 
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Europe Portugal A. artemisiifolia  1972 Alien Invasive 
(Isle of Madeira 
Alien Casual) 

Borges et al., 2008; Amor Morales et al., 2012  

America (C) Puerto Rico  A. tenuifolia  / Alien Naturalized Liogier, 1997; Acevedo-Rodriguez and Strong, 2012; Gann et al., 2015-
2017 

Europe Romania A. artemisiifolia  1907 Alien Invasive Kazinczi et al., 2008; Csontos et al., 2010; Bullock et al., 2012; Sîrbu, 
2012 

Europe Romania A. trifida  1970-1980 Alien Naturalized Sîrbu, 2012; Stoyanov et al., 2014 
Europe Romania  A. psilostachya / Alien Naturalized Sîrbu, 2012 
Europe Russia  A. psilostachya / Alien Naturalized EPPO, 2016 
Europe Russia 

(European) 
A. artemisiifolia  1918 Alien Invasive Gudzinskas, 1993; Csontos et al., 2010; Vinogradova et al., 2010; 

Randall, 2012 
Europe Russia 

(European) 
A. trifida  / Alien Naturalized Randall, 2012; EPPO, 2016 

Europe Russia 
(European) 

 A. psilostachya / Alien Naturalized EPPO, 2016 

Europe Serbia A. artemisiifolia  1935 Alien Invasive Vrbničanin et al., 2004; Kazinczi et al., 2008; Bullock et al., 2012 
Europe Serbia A. trifida  1982 Alien Naturalized Vrbničanin et al., 2004; Follak et al., 2013; EPPO, 2016 
Europe Serbia A. tenuifolia  / Alien Naturalized Vrbničanin et al., 2004 
Europe Slovakia A. artemisiifolia  1949 Alien Invasive Medvecka et al. 2012 
Europe Slovakia A. trifida  1980 Alien Casual Medvecka et al. 2012 
Europe Slovenia A. artemisiifolia  1993 (after 

WW II?) 
Alien Invasive Kazinczi et al., 2008.; Galzina et al., 2010; Zelnik, 2012 

Europe Slovenia A. trifida  late 1980s Alien Casual Follak et al., 2013; EPPO, 2016 
Africa South Africa A. artemisiifolia  / Alien Naturalized Germishuizen and Meyer, 2003; Henderson, 2007; Essl et al., 2015 
Africa South Africa  A. psilostachya / Alien Naturalized Wells et al., 1986; Germishuizen and Meyer, 2003; Randall, 2012; 

SANBI, 2015a 
Africa South Africa A. tenuifolia  / Alien Naturalized Germishuizen and Meyer, 2003; SANBI. 2015b 
Europe Spain A. tenuifolia  1954 Alien Naturalized Amor Morales et al., 2012 
Europe Spain  A. psilostachya 1981 Alien Invasive Amor Morales et al., 2012 
Europe Spain A. artemisiifolia  1983 Alien Invasive Amor Morales et al., 2012 
Europe Spain A. trifida  1983 Alien Naturalized Amor Morales et al., 2012 
Europe Spain-

Baleares 
A. tenuifolia  2004 Alien Naturalized Fraga and García, 2004  



 79 

Africa Swaziland A. artemisiifolia  / Alien Naturalized Randall, 2012; Swaziland's Alien Plants Database. 
http://www.sntc.org.sz/alienplants/index.asp 

Europe Sweden A. trifida  1909 Alien Casual Anderberg, 2000; Gerber et al., 2011; Randall, 2012;  DAISIE, Species 
Factsheet: A. trifida. available at http://www.europe-
aliens.org/speciesFactsheet.do?speciesId=21722# (Accessed in January 
2017) 
 

Europe Sweden  A. psilostachya 1928 Alien Naturalized Dahl et al., 1999; Anderberg, 2005 
Europe Sweden  A. artemisiifolia  1866 Alien Casual Dahl et al., 1999; Anderberg, 2000; Smith et al., 2013; Smith et al., 2008;  

Dahl, 1999; Smith et al., 2013 
Europe Switzerland A. trifida  1900 Alien status 

unknown 
Follak et al., 2013; EPPO, 2016. 

Europe Switzerland  A. psilostachya / Alien status 
unknown 

Greuter, 2006; Hess et al., 2006 

Europe Switzerland  A. artemisiifolia  1850s Alien Invasive Taramarcaz et al., 2005; Kazinczi et al., 2008; Bullock et al., 2012 
Asia Taiwan A. artemisiifolia  1971 Alien Naturalized Wu et al., 2004; Wu et al., 2010; Peng, 2013  
Asia Taiwan  A. psilostachya 2000 Alien Naturalized Tseng et al., 2004; Ramachandra Prasad et al., 2012; Wu, et al., 2010; 

Chen and Hind, 2011 
Asia Turkey A. artemisiifolia  1995 Alien Invasive Byfield and Baytop 1998; Zemmer et al. 2012; Behçet 2004; Onen et al., 

2014; Arslan et al., 2015 
Asia Turkey A. tenuifolia  2000 Alien 

Naturalized? 
Behçet 2004; Özhatay and Kültür, 2006 

Europe Ukraine A. artemisiifolia  1925 Alien Invasive Smith et al., 2013; Bullock et al., 2012; EPPO, 2016. 
Europe Ukraine  A. psilostachya / Alien status 

unknown 
Greuter, 2006  

Europe Ukraine A. trifida  / Alien Casual Yavorska, 2009 
Europe United 

Kingdom 
A. artemisiifolia  1836 Alien Invasive Rich, 1994; Bullock et al., 2012; Essl et al., 2015 

Europe United 
Kingdom 

A. trifida  1897 Alien Casual Rich, 1994; Sell and Murrell, 2006; EPPO, 2016; Online Atlas British and 
Irish Flora: http://www.brc.ac.uk/plantatlas/index.php?q=plant/A.-trifida 

Europe United 
Kingdom 

 A. psilostachya 1880s Alien Naturalized Rich, 1994; Sell and Murrell, 2006; On line Atlas of the British and Irish 
Flora: http://www.brc.ac.uk/plantatlas/index.php?q=plant/A.-psilostachya 

Europe United 
Kingdom 

A. tenuifolia  / Doubtful 
occurrence 

Stace, 2010; Randall, 2012 

America (N) United 
States of 
America 

 A. psilostachya / Native Bassett and Crompton, 1975 
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America (N) United 
States of 
America 

A. tenuifolia  / Alien status 
unknown 

Liogier, 1997; USDA - NRCS, 2017 

America (N) United 
States of 
America 

A. trifida  / Native Bassett and Crompton, 1982 

America (N) United 
States of 
America 

A. artemisiifolia  / Native Bassett and Crompton, 1975 

America (S) Uruguay A. artemisiifolia  / Species occurring Tejera and Beri 2005; Zuloaga et al., 2008; Essl et al., 2015 
America (S) Uruguay A. tenuifolia  / Native Sáenz and Gutiérrez, 2008 
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Table 3 - Environmental requirements of Ambrosia species (ragweeds): main data related to colonized habitat types 
(native and invasive range), suitable climatic, soil and light conditions. Requirements of each species are highlighted 
in grey and doubtful attributions are signaled by "(?)". 

 

 

 

 

Species Ambrosia 
artemisiifolia L. 

Ambrosia trifida 
L. 

Ambrosia 
psilostachya DC. 

Ambrosia 
tenuifolia Spreng. 

Disturbed open 
habitat 

Disturbed open 
habitat 

Disturbed open 
habitat 

Disturbed open 
habitat 

Semi-natural 
grasslands 

Semi-natural 
grasslands 

Semi-natural 
grasslands 

Semi-natural 
grasslands 

Croplands Croplands Croplands Croplands 

Along transportation 
corridors 

Along 
transportation 
corridors 

Along transportation 
corridors 

Along 
transportation 
corridors 

Wastelands Wastelands Wastelands Wastelands 
Riparian habitat Riparian habitat Riparian habitat Riparian habitat 
Dunes Dunes Dunes Dunes 
Non dense wood Non dense wood Non dense wood Non dense wood 
Disturbed open 
habitat 

Disturbed open 
habitat 

Disturbed open 
habitat 

Disturbed open 
habitat 

Semi-natural 
grasslands 

Semi-natural 
grasslands 

Semi-natural 
grasslands 

Semi-natural 
grasslands 

Croplands Croplands Croplands Croplands 

Along transportation 
corridors 

Along 
transportation 
corridors 

Along transportation 
corridors 

Along 
transportation 
corridors (?) 

Wastelands Wastelands Wastelands Wastelands 

Riparian habitat Riparian habitat Riparian habitat Riparian habitat 
(?) 

Dunes Dunes Dunes Dunes 
Non dense wood Non dense wood Non dense wood Non dense wood 
Warm temperate 
climate (with 
exceptions) 

Warm temperate 
climate 

Warm temperate 
climate (with 
exceptions) 

Warm temperate 
climate  

Drought tolerant Drought tolerant Drought tolerant Drought tolerant 
Freeze tolerant Freeze tolerant Freeze tolerant Freeze tolerant 
Alkaline Alkaline? Alkaline Alkaline? 
Acid Acid Acid Acid 
Silty Silty Silty Silty 
Sandy Sandy Sandy Sandy 
Well drained/ Dry Well drained/ Dry Well drained/ Dry Well drained/ Dry 
Moist/Wet Moist/Wet Moist/Wet Moist/Wet 
Saline Saline Saline Saline 
Metal Metal Metal Metal 
Heliophylous Heliophylous Heliophylous Heliophylous 
Shady-tolerant Shady-tolerant Shady-tolerant Shady-tolerant 
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Table 4 - Life strategies of Ambrosia species (ragweeds): relevant traits contributing to strenghten resistance, 
resilience and competition of ragweeds in the wild. Traits of each species are highlighted in gray. 

Species Ambrosia 
artemisiifolia L. 

Ambrosia trifida L. Ambrosia 
psilostachya DC. 

Ambrosia tenuifolia 
Spreng. 

Morphologic 
structures 

Morphologic 
structures 

Morphologic 
structures 

Morphologic 
structures 

Chemical defence 
against stress and 
predators 

Chemical defence 
against stress and 
predators 

Chemical defence 
against stress and 
predators 

Chemical defence 
against stress and 
predators 

Allelopathy Allelopathy Allelopathy Allelopathy 

Mychorrhiza Mychorrhiza Mychorrhiza Mychorrhiza 

Reallocation biomass Reallocation biomass Reallocation biomass Reallocation biomass 

Resprouting Resprouting Resprouting Resprouting 

Rhizome Rhizome Rhizome Rhizome 

Secondary dormancy Secondary dormancy Secondary dormancy Secondary dormancy 

Soil seed bank Soil seed bank Soil seed bank Soil seed bank 

Long lasting soil 
seed bank 

Long lasting soil 
seed bank 

Long lasting soil 
seed bank 

Long lasting soil 
seed bank 

Advantages from 
vegetation gaps 

Advantages from 
vegetation gaps 

Advantages from 
vegetation gaps 

Advantages from 
vegetation gaps 

Weak competitor in 
more evolved 
vegetation stages 

Weak competitor in 
more evolved 
vegetation stages 

Weak competitor in 
more evolved 
vegetation stages 

Weak competitor in 
more evolved 
vegetation stages 

Persistence in more 
evolved vegetation 
stages  

Persistence in more 
evolved vegetation 
stages 

Persistence in more 
evolved vegetation 
stages 

Persistence in more 
evolved vegetation 
stages 
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Table 5 - Reproduction and disperasal of Ambrosia species (ragweeds): relevant data in understanding the 
reproductive and dispersal potential of ragweeds. The characteristic of each species is highlighted in grey and 
doubtful attributions are signaled by "(?)". 

 

 

 

 

 

 

Species Ambrosia 
artemisiifolia L. 

Ambrosia trifida L. Ambrosia 
psilostachya DC. 

Ambrosia tenuifolia 
Spreng. 

POLLINATION Anemophylous Anemophylous Anemophylous Anemophylous 
Sexual  Sexual  Sexual  Sexual  
Vegetative Vegetative Vegetative Vegetative 

SEED 
DIMENSION 3.5 mm long more than 6 mm long 3-4.5 mm long 3-5 mm long  

Very high Very high Very high Very high 
High High High High (?) 
Scarce Scarce Scarce Scarce 

Existing  Existing Existing Existing? 
Highly relevant Highly relevant Highly relevant Highly relevant 
No evidences No evidences No evidences No evidences 
Vernalization Vernalization Vernalization Vernalization 
Light Light Light Light 
Soil moisture   Soil moisture   Soil moisture   Soil moisture   

PRIMARY SEED 
DISPERSAL Barochory Barochory Barochory Barochory 

Anemochory Anemochory Anemochory (?) Anemochory (?) 
Epizoochory Epizoochory Epizoochory Epizoochory 

Endozoochory Endozoochory Endozoochory (?) Endozoochory 
Hydrochory Hydrochory Hydrochory Hydrochory 

Movement of soils Movement of soils 
(?) 

Movement of soils 
(?) 

Movement of soils 
(?) 

Mowing or 
agricultural 
machinery 

Mowing or 
agricultural 
machinery (?) 

Mowing or 
agricultural 
machinery (?) 

Mowing or 
agricultural 
machinery (?) 

Car and train passage Car and train passage 
(?) 

Car and train passage 
(?) 

Car and train passage 

Grain, vegetables, 
fodder, bird food and 
oil-seeds commercial 
exchanges 

Grain, vegetables, 
fodder, bird food and 
oil-seeds commercial 
exchanges 

Grain, vegetables, 
fodder, bird food and 
oil-seeds commercial 
exchanges 

Grain, vegetables, 
fodder, bird food and 
oil-seeds commercial 
exchanges 
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 Table 6 - Allergenic potential of Ambrosia species (ragweeds): relevant elements of plants contributing to determine 
and increase allergy reaction. Elements of each species are highlighted in gray. 

Species Ambrosia 
artemisiifolia L. 

Ambrosia trifida L. Ambrosia 
psilostachya DC. 

Ambrosia tenuifolia 
Spreng. 

Pollen Pollen Pollen Pollen 
Plant debris Plant debris Plant debris Plant debris 

POLLEN 
DIMENSION 

18–22 μm 19.25 μm 21 - 23 μm up to 26.4 
μm 

? 

CROSS-
REACTIVITY Amb a 5 and Amb t 5 Amb a 5 and Amb t 5 Amb a 5 and Amb p 5 poorly known 

Long-distance 
transport of pollen 

Long-distance 
transport of pollen (?) 

Long-distance 
transport of pollen (?) 

Long-distance 
transport of pollen 
(?) 

Atmospheric 
Pollution 

Atmospheric 
Pollution(?) 

Atmospheric 
Pollution (?) 

Atmospheric 
Pollution (?) 

Warming climate Warming climate Warming climate Warming climate (?) 
Disturbance Disturbance (?) Disturbance Disturbance (?) 

POLLEN GRAIN 
(from Robbins et 

al., 1979) 

   

- 
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 Table 7 - Allergens in Ambrosia species (ragweeds).:  characteristics of identified allergens of each analyzed species 
(Source: * = IUIS, ** = ExPASy). 

Allergen* 
 

Isoform* 
 

MW(SDS-
PAGE) (kDa)* Theoretical pI ** Biological 

function* 

Allergenic 
Potential (%)* 

 
Ambrosia artemisiifolia L. 

Amb a 1.0101 5.58 
Amb a 1.0201 6.63 
Amb a 1.0202 6.63 
Amb a 1.0301 5.72 
Amb a 1.0302 5.72 
Amb a 1.0303 5.79 
Amb a 1.0304 5.79 
Amb a 1.0305 5.79 
Amb a 1.0401 5.61 
Amb a 1.0402 5.22 
Amb a 1.0501 6.00 
Amb a 1.0502 5.79 

Amb a 3 Amb a 3.0101 11 6.11 Plastocyanin 51 
Amb a 4 Amb a 4.0101 30 4.88 Defense-like 

protein 
Unknown 

Amb a 5 Amb a 5.0101 5 8.19 unknown  10-20 

Amb a 6 Amb a 6.0101 10 8.93 Lipid Transfer 
protein (LTP) 

21 

Amb a 7 Amb a 7.0101 12 - Plastocyanin 15-20 

Amb a 8.0101 14 4.79 
Amb a 8.0102 

 
4.88 

Amb a 9.0101 10 4.17 
Amb a 9.0102 

 
4.15 

Amb a 10 Amb a 10.0101 18 4.25 Polcalcin-like 
protein 

10-15 

Amb a 11 Amb a 11.0101 37 kDa (natural 
purified mature 
protein), 52 kDa 
(natural purified 
zymogen) 

6.43 Cysteine protease 54 
 

Ambrosia psilostachya DC. 
Amb p 5.0101 

 
 

Amb p 5.0201 
 

 
Ambrosia trifida L. 
Amb t 5 Amb t 5.0101 5  Unknown 5 
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Figures Legend 

Figure 1 - Global distribution of Ambrosia species (ragweeds). Alien: the species is not native 
to a country. Status (invasive, naturalized, and casual) is attributed when the condition is 
confirmed at country and/or local level; “?” indicate uncertainty due to lack of confirmations. 
Alien status unknown: the species is alien to a country, but its status is indefinite. Species 
occurring: the species occurs in one country, but there are uncertainties/ inconsistencies about 
its origin (alien/native). Native: the species is not introduced from other countries; it is part of 
local flora. Doubtful occurrence: the occurrence of the species is not confirmed. 

 

Figure 2 - Status of Ambrosia species (ragweeds) at world level. Each pie chart describes the 
percentage of countries where the species is native or alien, their status and the table below the 
numbers for each category. 
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