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Abstract: This paper reports 1) the latest development and application of 

modified hyperbolic sine law for minimum creep strain rate and stress for both 

low Cr and high Cr steels, and 2) the development of creep fracture criterion 

based on cavity area fraction along grain boundary for high Cr steel. This work 

is part of the fundamental development of creep damage constitutive equations 

which were identified through a critical literature review. 

 

In the former the application of the new law results in an improved fitting; in the 

latter, a new creep fracture criterion based on cavity area fraction along grain 

boundary was derived and quantitatively calibrated using the latest detailed 

cavity nucleation and growth kinetics models for high Cr steel. Furthermore, this 

paper revealed the trend of nucleation rate coefficient with stress, and the trend 

of creep life time coefficient with stress, which provide reliable and universal 

prediction capabilities. 

 

This paper contributes to the specific knowledge on the minimum creep strain 

rate and stress function, the development of a scientific sound and novel creep 

rupture criterion based on the cavity area fraction along grain boundary for high 

Cr steel, and the provision of creep damage/life prediction tools.  

Keywords: minimum creep strain rate, creep fracture rupture, cavity area 

fraction along grain boundary, creep damage, low Cr steel, high Cr steel   

 

Nomenclatures 

𝜎                                     Applied stress 

𝜀̇                                      Creep strain rate 

𝜀�̇�𝑖𝑛                                Minimum creep strain rate  

�̇�𝑛                                   Creep cavity nucleation rate;  

𝑘𝑁                                   Cavitation constant, typically ≤1/3 

𝜀𝑓𝑢
                                   Uniaxial strain at fracture 

𝐴, 𝐵, 𝐴′, 𝐵′                     Material parameters, possibly dependent of temperature 

https://staffmail.hud.ac.uk/owa/redir.aspx?REF=q9jJYFAgp-Rx_Spr0c_xcaCVrBXkRKEED9hofs1liriAriky1nXTCAFodHRwOi8vb3JjaWQub3JnLzAwMDAtMDAwMi0wNTg1LTI4MDY.
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𝑛                                      Stress exponent  

𝑞                                      Stress exponent for minimum creep strain rate 

𝑅                                      Cavity radius  

�̇�                                     Growth rate of the cavity radius 

𝑡                                      Time 

𝑁(𝑅, 𝑡)                           The cavity size distribution function 

𝑓(𝑅)       Probability density function of cavity equivalent radius 

𝐴1, 𝐴2, 𝛼, 𝛽 , 𝛾               Material parameter may depend on stress and strain rate 

𝐽∗                                     Cavity nucleation rate 

𝐽                                      The number density of cavity 

𝑤                                     The cavity area fraction along grain boundary 

𝑤𝑓                                   Critical value of the cavity area fraction at fracture  

𝐼                                      The dimensionless factor 

𝑈′                                    Material parameter 

𝑤𝑓                                    Critical value of the cavity area fraction at fracture  

𝐶                                      Integration constant related to the cavity growth rate 

 

1. Introduction 

1.1 Stress breakdown 

In the development of high temperature materials for long term use, the 

accelerated creep test (short-term) may be used however it may be not reliable in 

predicting long time service. During high temperature service, this 

microstructure may progressively degrade, leading to unexpected consequences 

for long-term (100,000) creep performance. 

The stress breakdown phenomenon for high Cr steel received positive reports in 

past literature [1] and was praised by other research papers and reviews. 

Basically, it can be summarized as 1) there is a change of mechanisms in creep 

deformation, fracture, and the coupling between creep deformation and creep 

damage; and 2) it is understood that the nature of the cavity nucleation, growth 

and coalesce changes with the stress level, resulting in a change from a ductile to 

brittle fracture. 

 

1.2 Constitutive modelling of Creep Damage 

In an attempt to model the creep behaviour of high Cr steel, Yin et al [2] 

originally proposed a phenomenological relationship between the creep cavity 

damage and creep strain, which departed from the firm mechanism based 

relationship proposed by Dyson [3]. The relevant equations are listed below for 

further use: 

Dyson:    �̇�𝑛 =
𝑘𝑁

𝜀𝑓𝑢

𝜀̇  (1.1) 

where 𝜀𝑓𝑢
 is the unaixal strain at fracture,  𝑘𝑁 has an upper limit of ≈ 1/3; 
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Yin et al:   �̇�𝑛 = 𝐴′𝜀𝐵′
 𝜀̇ (1.2) 

where 𝐴′, 𝐵′is material constant respectively, and both  𝐴′, 𝐵′ can be functions 

of temperature, but not of stress. When 𝐵′ = 0, equation (1.1) is a special case 

of equation (1.2). 

 

Such an approach cannot be extrapolated into lower stress levels beyond the 

range it has been calibrated [4].  

 

Basirat [5] adopted Yin’s approach, but relaxed the definition of material 

constant A, by allowing there to be a function of stress;   

�̇�𝑛 = 𝐴𝜀0.9 𝜀̇ (1.3) 

the material constant 𝐴  is a function of temperature and stress. The specific 

variation of cavitation coefficient A for P91 steel is shown in Table 1 [5] and 

graphically in Fig. 1 [6].  

 

Table 1. The variation of creep cavitation coefficient A [5] 

 
 

 
Fig.1. The variation of creep cavitation coefficient A with different variations of 

stress and temperature [6] 

 

Due to the lack of a clear trend for A, it is difficult to use it in prediction with 

confidence. The current creep damage modelling for long-term service is not yet 

satisfactory. 

 

 

1.3 Challenges involved with Creep Damage modelling  
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The challenges involved with creep damage mechanics and creep damage 

modelling have been explored in a literature review [7], and are summarised 

below: 

1. Characterising and quantifying the creep cavitation and develop damage 

criterion for parent metal and weld, respectively; experimental work 

(uniaxial and multi-axial interrupted creep test) to be carried out or gathered 

under low stress; cavitation to be quantified, ideally using X-ray micro-

tomography. new damage criterion shall be developed; 

2. Quantify the microstructural evolutions and their effects on the creep 

deformation;  

3. Develop and/or apply the novel creep formulation suitable for a wider range 

of stress, and incorporate the damage criterion developed in 1);   

4. Generalising uniaxial version into three dimensional one. 

 

1.4 Aims of this paper 

This paper aims to overcome the inaccuracies involved in the process of 

modelling minimum creep strain rate and stress, and in turn develop and apply a 

more scientifically sound creep fracture criterion. 

 

2. Method and experimental data 

2.1 The development of new minimum creep strain rate and stress function 

The process for this part of work is: 1) to identify the deficiencies related to the 

existing functions, 2) to propose and apply a new mathematical function, and 3) 

to compare the predictions with experimental data in order to demonstrate and/or 

verify its capability. 

The chosen experimental data of minimum creep strain rate and stress for this 

part of work are: 

1) Creep Test One: low Cr steel (2.25Cr-1Mo steel), stress range of 60-

180MPa, temperature of 565℃ [8], according Xu [9];  

2) Creep Test Two: low Cr Steel (0.5Cr-0.5Mo-0.25V steel), stress range of 70-

180MPa, temperature of 565℃ [10], according to Xu [9]; 

3) Creep Test Three: high Cr steel, P91, stress range of 70-200MPa; 

temperature of 600℃ [11],  

 

2.2 The method of the development and application of creep fracture criterion 

based on cavity area fraction along grain boundary for high Cr steel 
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1) To derive a specific quantitative equation for cavity area fraction along grain 

boundary based on the appropriate cavity nucleation and cavity growth 

models for a high Cr steel (namely P91);  

2) To determine the material parameter 𝑈′  of cavity area fraction equation 

according to the experimental data on creep rupture time under different 

stress levels and temperature; 

3) To apply the obtained cavity nucleation model to other high Cr steels in 

order to reveal the trend of cavity nucleation rate coefficient with stress. 

 

The experimental data chosen for this part of work include: 

1) The creep rupture time for P91 [11], stress range of 70-200MPa, 

temperature of  600℃, lifetime between 971-80736 hours; temperature of 

625℃, lifetime 99-21372 hours, for the work described in step 2) of the 

above; 

2) Cavitation information (cavity number density, stress) of high Cr steel 

(CB8, 10%wt Cr) [12], stress range of 120-180MPa, temperature of 

600℃, lifetime between 2800-51406 hours, for the work described in 

step 3) of the above. 

 

3. Results 

3.1 Modified hyperbolic sine law for minimum creep strain rate and stress for 

low Cr steel 

The conventional hyperbolic sine law [3, 13] is given as: 

𝜀�̇�𝑖𝑛 = 𝐴𝑠𝑖𝑛ℎ(B𝜎 ) (3.1) 

 

The effectiveness and/or deficiency of its application to 2.25Cr-1Mo and 0.5Cr-

0.5Mo-0.25V low Cr steel is clearly demonstrated by Fig.2 [9] and Fig.3 [9], 

respectively. 
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Fig.2. Comparison of conventional hyperbolic sine law with experiment [8] for 

2.25Cr-1Mo steel [9]. 

 

 
Fig.3. Comparison of conventional hyperbolic sine law with experiment [10] for 

0.5Cr-0.5Mo-0.25V steel [9]. 

Hence, a modified hyperbolic sine law was proposed by the first author and 

applied in [9], it is given as: 

𝜀�̇�𝑖𝑛 = 𝐴𝑠𝑖𝑛ℎ(𝐵𝜎𝑞) (3.2) 

where 𝑞 is stress exponent. 

 

The modified hyperbolic sine law was successfully applied to both 0.5Cr-

0.5Mo-0.25V steel with material parameters A=4.12E-8, B=2.51E-4, and q =2 in 



 

 

7 

 

Fig.4 [9] and 2.25Cr-1Mo steel with material parameters A=5.57E-7, B=2.4E-4, 

and q=2 in Fig.5 [9]. 

 
Fig.4. Comparison of modified hyperbolic sine law with the conventional one 

and experimental data [8] of 0.5Cr-0.5Mo-0.25V steel [9]. 

 

 
Fig.5. Comparison of modified hyperbolic sine law with the conventional one 

and experimental data [10] of 2.25Cr-1Mo steel [9]. 

 

3.2 The application of the modified hyperbolic sine law to high Cr steel 

Deficiencies of conventional functions that measure the relationship between 

minimum creep strain rate and stress are demonstrated below.  
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The conventional minimum creep strain rate and stress functions were proposed 

and compiled in Table 2 [14].  

 

Table 2. The typical functions between minimum creep strain rate and stress 

[14]. 

Power law creep [Norton 

F.H.,1929][ Bailey R., 1930][15][16] 

𝜀�̇�𝑖𝑛 = 𝐴𝜎𝑛  

Linear +power law [Naumenko K., 

2007, 2009][17][18] 

𝜀�̇̇�𝑚𝑖𝑛
= 𝐴𝜎[1 + (𝐵𝜎)𝑛]   

Hyperbolic sine law [3,13] 𝜀�̇�𝑖𝑛 = 𝐴𝑠𝑖𝑛 h(B𝜎 )  

 

The specific data of minimum creep strain rate for P91 (9Cr-1Mo-V-Nb) for this 

research was taken from NIMS creep data sheet as shown in Fig.6. [11]. 

 
Fig.6. Experimental data of minimum strain rate and stress at 600℃ under 70-

200MPa for P91 steel [11]. 

 

The modelling results of conventional hyperbolic sine law with the calibrated 

material parameters of A=4.5E-8, B=5E-2 [14] and linear power law equation 

with the calibrated material parameters A=2.5E-9, B=1E-22 [14] are re-

produced and shown in Fig.7 and Fig.8. However, the modelling results of 

conventional hyperbolic sine law and linear power law do not fit well with the 

experimental data of P91 steel.  
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Fig.7. The modelling result of conventional hyperbolic sine law compared with 

experimental data of P91 steel. 

 

 
Fig.8. The modelling result of linear power law compared with experimental 

data of P91 steel. 

The modified hyperbolic sine law, 𝜀�̇�𝑖𝑛 = 𝐴𝑠𝑖𝑛ℎ(𝐵𝜎𝑞), is applied to P91 steel. 

The modelling result is shown in Fig. 9 with the calibrated material parameters of 

A=6.09867E-7, B=2.137E-4 and q =2. As can be observed, a positive agreement 

was achieved.   

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

10 100 1000

M
in

im
u

m
 s

tr
ai

n
 r

at
e

 (
1

/h
) 

Stress (MPa) 

Experiment data

Conventional hyperbolic
sine law

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

10 100 1000

M
in

im
u

m
 s

tr
ai

n
 r

at
e

 (
1

/h
) 

Stress (MPa) 

Linear and power law

Experiment data



 

 

10 

 

Fig.9. The modelling result of modified hyperbolic sine law compared with 

experimental data for P91 steel 

The comparison of the above two functions is shown in Fig.10.  

Fig. 10. The comparison between different function of minimum creep strain rate 

and applied stress for P91 steel 

 

3.3 Results: Cavity area fraction along grain boundary based creep fracture 

criterion for high Cr steel 

3.3.1 Functions for cavity area fraction and the cavity size distribution 
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A generic theory of cavity area fraction along grain boundary was proposed by 

Riedel [19], and it can be summarised as: 

If the non-station growth rate of the cavity radius, �̇�, and the nucleation rate of 

cavity, 𝐽∗, is, respectively: 

�̇� = 𝐴1𝑅−𝛽𝑡−𝛼   (3.3) 

𝐽∗ = 𝐴2𝑡𝛾    (3.4) 

where the unknown constants 𝐴1, 𝐴2, 𝛼, 𝛽 and 𝛾 are material constants. 

Then, the cavity size distribution function, 𝑁(𝑅, 𝑡), represents the number of 

voids with radii between 𝑅 and +𝑑𝑅 in the time interval 𝑡 and 𝑡 + 𝑑𝑡, is given 

as: 

𝑁(𝑅, 𝑡) =
𝐴2

𝐴1
𝑅𝛽𝑡𝛼+𝛾 (1 −

1 − 𝛼

1 + 𝛽

𝑅𝛽+1

𝐴1𝑡1−𝛼
)

(𝛼+𝛾)
(1−𝛼)

   (3.5) 

 

Finally, the cavity area fraction,  𝑤 , can be obtained, based on the above 3 

equations [16]: 

𝑤 = ∫ 𝜋 𝑅2 𝑁(𝑅, 𝑡)𝑑𝑅 (3.6) 

𝑤 = 𝐼(𝛼, 𝛽, 𝛾)𝐴2𝐴1

2
𝛽+1𝑡

𝛼+𝛾+
(1−𝛼)(𝛽+3)

𝛽+1   (3.7) 

where the dimensionless factor 𝐼 (𝛼, 𝛽, 𝛾) is definite integral: 

𝐼 = 𝜋(1 + 𝛽)(𝛽+3)/(𝛽+1) ∫ 𝑥𝛽+2

𝑈

0

[1 − (1 − 𝛼)𝑥𝛽+1](𝛼+𝛽)/(1−𝛼)𝑑𝑥 (3.8)  

 

The equation (3.5) 𝑁(𝑅, 𝑡) can be converted into the density function of cavity 

equivalent radius, f(R), and is given as [20]: 

𝑓(𝑅) = 𝐶1𝑅𝛽exp (−
𝐶2𝑅𝛽+1

1+𝛽
)  (3.9) 

To completely calibrate the cavity area fraction along grain boundary, equation 

(3.7), the material constants 𝛼, 𝛽, 𝛾, 𝐴1, 𝐴2  need to be found.   

3.3.2 Specific values of material constants 𝛼, 𝛽, 𝛾 

The physical meaning of these values has been given as: 

1) With the value of α=1, β=2, the cavity size distribution equation (3.5) 

fitted well with experiment of the equivalent diameter against number of 
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cavities [20-21], and it is well known from literature that the value of 

β=1.95±0.05 (closely to 2) is characterised by the constrained diffusional 

mechanism of void growth [19]; 

2) 𝛾 = 1  is characterised for continuum cavity nucleation with cavity 

constrained growth [19]. 

3.3.3 Further confirmation on the simulation of the value of 𝛾 = 1 

Determination and proofing of the value of γ is given in this section. The 

characteristics of the cavity size distribution equation (3.5) were discussed by 

Riedel [19], and its shape with 𝛾 = 1 is similar to that from the experiment for 

P91. Additionally, the value of 𝛾=1 is consistent with constrained diffusion 

growth and continuums nucleation [19].  

 

This section confirms 𝛾 = 1  numerically by comparing predictions with 

experimental data reported in literature [21]. It is necessary to point out that the 

actual experimental data is much denser and only a limited number was taken 

from the graph for comparison. 

Firstly, integrate equation (3.3) yields: 

1

3
𝑅3 = 𝐴1 ln 𝑡 + 𝐶  (3.10). 

Secondly, using the minimum and maximum cavity diameter of 1.2 𝜇𝑚 and 

5.7 𝜇𝑚  at 10,200h, respectively, the values of  𝐴1 , 𝐴2  and 𝐶  can be solved 

with 𝛼 = 1, 𝛽 = 2 and given the value 𝛾. 

Finally, it was found that 𝛾 is equal to 1, the theoretical modelling of 𝑓(𝑅), and 

by using the above values, it agrees with the experimental data very well as 

displayed in Fig.11. Hence, this confirms that the value of 𝛾 is 1. 
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Fig.11. Probability density function of cavity equivalent R for P91, 

experimental data from ref [21]. 

 

3.3.4 The application of the cavity area fraction along grain boundary on high Cr 

steel 

Inputting the above obtained values of 𝛼 =1,  𝛽 = 2 and γ =1 into equations 

(3.7) and (3.8), the cavity area fraction of 𝑤 is expressed as: 

𝑤 = 𝜋 ×
3

5
× 3

2
3 × 𝑈5 × 𝐴1

2/3𝐴2 × 𝑡2 (3.11) 

Thus, 

𝑤 = 𝑈′ × 𝑡2 (3.12) 

 

where 𝑈′ = 𝜋 ×
3

5
× 3

2

3 × 𝑈5 × 𝐴1
2/3𝐴2.  

 

The cavitation damage equation should be incorporated in the future 

development of creep damage constitutive equations for high chromium steel, 

due to its much sounder scientific base than the conventional phenomenological 

approach. 

 

3.3.5 The trend of creep life time coefficient 𝑈′ with stress levels 
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Rupture is assumed to occur when 𝑤  reaches its critical vale, 𝑤𝑓 , and it is 

assumed to be 𝜋 4⁄  according to [19]. Hence, 

𝑤𝑓 = 𝑈′ × 𝑡𝑓
2 (3.13).  

 

Based on creep data sheets of creep rupture time under different stress levels and 

temperature on typical ASME Grade 91(9Cr-1Mo-V-Nb) steel [15] in Table 3, 

the value of 𝑈′ was calculated as shown in Table 4.  

There is a clear trend that can be observed in Fig.12, which provides much more 

stable scientific findings that can be used to convince researchers, than 

compared to the trend displayed by the value of A in other cavitation damage 

equations (1.3) as shown in Fig.1. This potentially provides a scientifically 

sound, novel, and rather simple life time prediction method. 

 

Table 3. The value of 𝑈′ for P91 at 600℃. 

Stress (𝑀𝑃𝑎) Rupture time (h) 𝑈′(ℎ−2) 

70 80736.8 1.2 × 10−10 

100 34141 6.738 × 10−10 

110 21206.3 1.746 × 10−9 

120 12858.6 4.75 × 10−9 

140 3414.7 6.736 × 10−8 

160 971.2 8327 × 10−7 

 

Table 4. The value of 𝑈′ for P91 at 625℃. 

Stress (𝑀𝑃𝑎) Rupture time (h) 𝑈′(ℎ−2) 

90 21372.4 1.72 × 10−9 

100 9895.4 8.02 × 10−9 

120 1657.9 2.857 × 10−7 

140 99 1.142 × 10−5 
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Fig.12. The trend of the values of 𝑈′ under different stress and temperature. 

 

 

3.3.6 The variation between cavity nucleation rate coefficient 𝐴2 and stress 

The coefficient A2 in the cavity nucleation rate equation (3.4) does not change 

with time, however it might be dependent upon stress and temperature. 

With 𝛾 = 1, the equation (3.4) can be converted as: 

J =
1

2
𝐴2𝑡2 (3.14) 

where J is the number density of cavity. 

This section investigates the dependency between coefficient A2 and stress. 

Fortunately, there is another set of 3D cavity data by X-ray micro-tomography. 

The number density of cavity at failure for high Cr steel (CB8) under a range of 

stress levels (120-180 MPa) are available [12]. The relevant data was extracted 

by reading the published graph and is shown here: 

 

Table 5. The number of cavities at failure under a range of stress levels [12]. 

Stress (MPa) Lifetime (h) Number density 

of cavity 

(10−5𝜇𝑚−3) 

120 51406 1.0625 

135 29466 0.6376 

150 15316 0.475 
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165 6779 0.45 

180 2825 0.375 

 

Using the above data in Table 5, the individual value of A2 at different stress 

levels is calculated and shown in Table 6 and Fig. 13. 

 

Table 6. The relationship between the value of A2 and stress 

Stress (MPa) A2 

120 8.04139E-10 

135 1.46871E-09 

150 4.04979E-09 

165 1.95844E-08 

180 9.39776E-08 

 

 

 

Fig.13. The trend of cavity nucleation rate coefficient 𝐴2 and stress. 
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It is clear that A2 is only reduces slightly with stress, and more specifically 

only lowers if stress is below 150MPa. This is significant as the above trend 

could be used for extrapolation to lower stress. 

 

4. Discussion and Conclusion  

The key conclusions for this research include: 

1) A modified sine law for minimum creep strain rate and stress was proposed 

and used; as can be observed it works well with both low Cr and high Cr 

steels; hence it is recommended to be utilised in future creep damage 

constitutive equations for a wide range of stress situations; 

2) A specific advanced cavity area fraction along grain boundary model related 

with the cavity nucleation and growth kinetics models was 

developed/calibrated based on scientific reasoning and 3D x-ray tomography 

information for high Cr steel;  

3) The application of cavity area fraction along grain boundary model 𝑤𝑓 =

𝑈′ × 𝑡𝑓
2  gave a scientifically sound and simple creep life time prediction 

capability; furthermore, there is a clear trend between creep life coefficient 

and stress and temperature, which allows us to be much more confident in its 

application;  

4) The application of the developed/calibrated creep cavity nucleation model 

gives a scientifically sound and simple cavity nucleation rate dependence of 

stress; more so, there is a clear trend between creep cavity nucleation 

coefficient and stress, thus adding to the reliability of this model. 

Suggestions for further work include: 

1) To optimize the values for A, B and/or q by using optimization software; 

2) To couple creep deformation and novel cavitation equations in a novel 

hyperbolic sine law; 

3) To consider 𝑤𝑓 in different conditions, which in turn can model and validate 

the novel creep damage constitutive equations. 
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