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Abstract

In this paper we consider the impact of configuration of abstract argumentation
reasoners both when using a single solver and choosing combinations of frame-
work representation–solver options; and also when composing portfolios of algo-
rithms.

To exemplify the impact of the framework–solver configuration we consider
one of the most configurable solvers, namely ArgSemSAT—runner-up of the
last competition on computational models of argumentation (ICCMA-15)—for
enumerating preferred extensions. We discuss how to configure the representa-
tion of the argumentation framework in the input file and show how this coupled
framework–solver configuration can have a remarkable impact on performance.

As to the impact of configuring differently structured portfolios of abstract
argumentation solvers, we consider the solvers submitted to ICCMA-15, which
provided the community with a heterogeneous panorama of approaches for han-
dling abstract argumentation frameworks. A superficial reading of the results of
ICCMA-15 is that reduction-based systems (either SAT-based or ASP-based) are
always the most efficient. Our investigation, concerning the enumeration of stable
and preferred extensions, shows that this is not true in full generality and sug-
gests the areas where the relatively under-developed non reduction-based systems
should focus more to improve their performance. Moreover, it also highlights
that the state-of-the-art solvers are very complementary and can be successfully
combined in portfolios.

Keywords: Abstract Argumentation, Solvers for Argumentation Problems,
Automatic Configuration, Portfolios methods for Argumentation

Preprint submitted to International Journal of Approximate Reasoning October 5, 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/96772223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

An abstract argumentation framework (AF) consists of a set of arguments and
a binary attack relation between them. In [1] four semantics were introduced,
namely grounded, preferred, complete, and stable semantics: each of them leads
to a single or to multiple extensions (or possibly no extensions in the case of
stable semantics) where an extension is intuitively a set of arguments which can
“survive the conflict together.” We refer the reader to [2] for a detailed survey.
Moreover, for each semantics, several decision and enumeration problems have
been identified. In this paper we focus on the enumeration of preferred and stable
extensions because: (i) the solution to the problem of enumerating extensions
allows to easily derive the answer to the other significant problems in abstract
argumentation; (ii) the problems of enumerating preferred and stable extensions
are among the hardest in abstract argumentation.

One of the solvers that took part in ICCMA-15 was ArgSemSAT [3] which,
despite a not perfect implementation—e.g. a bug that heavily affected problems
related to stable semantics was found after the competition—performed remark-
ably well, being among the best three solvers for preferred and stable semantics
problems, and scoring overall second at a single Borda count point from the win-
ner CoQuiAAS [4].

ArgSemSAT is a rather configurable solver: it allows to select different ways
for encoding abstract argumentation problems in SAT, and it is able to exploit ex-
ternal SAT solvers. Following the common practice, we manually tuned its param-
eters on a large set of benchmarks, before submitting it to ICCMA-15; however,
the question naturally arises: is it possible to improve the chosen configuration?

We investigated whether automatic algorithm configuration systems [5, 6, 7]
can address such a question. In this work we extend [8] by (1) including a com-
prehensive description of configuration possibilities; (2) extending the considered
benchmarks with an additional, interesting, structure of argumentation frame-
works; and (3) completing the study with an elaborated post-hoc analysis. We
exploit the sequential model-based algorithm configuration method SMAC [9],
which represents the state of the art of configuration tools. SMAC uses predic-
tive models of algorithm performance [10] to guide its search for performant—
according to a chosen metric—configurations. We then experimentally evaluate
the impact of automated configuration on the performance of ArgSemSAT in
enumerating the preferred extensions, testing in particular the following two hy-
potheses:

1. Overall SMAC configuration outperforms default configuration.
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2. Argumentation framework configuration plays a significant role.

Our findings suggest that much improvement can still come from better engineer-
ing of solvers in conjunction with representation of argumentation frameworks.
This is a remarkable finding that has been proved only (and very recently) in clas-
sical planning [11]. We believe this is an important element that future organisers
of competitions should be aware of and take into serious consideration.

A second contribution of the paper is to evaluate, by means of an empirical
investigation, whether some take-home messages possibly arising from the results
of ICCMA-151 are general enough. In particular, the competition results may
suggest the following two contradicting hypotheses:

3. Reduction-based solvers [12] constantly outperforms others. Indeed, ac-
cording to the results of the competition the best solvers for enumerating
stable and preferred extensions are either SAT-based or ASP-based.

4. Solvers show complementary performance. CoQuiAAS—that scored first
among all for each semantics considered in ICCMA-15—uses a variety of
approaches.

Here, complementing our previous work [13] by including an extensive dis-
cussion on the used features, we test how general such conclusions are with a large
empirical investigation focused on enumeration of stable and preferred extensions
using the solvers submitted to ICCMA-15. By adopting different metrics, we iden-
tify avenues for improvement that we hope will be valuable for solvers’ authors
and for the argumentation community. In particular, we have hard evidence con-
tradicting a superficial reading of the results of ICCMA-15, namely that reduction-
based systems have consistently higher performance than non reduction-based.
This is not always the case, although it is the case that they have better coverage
(i.e. they are able to solve more problem instances before the established cutoff
time), and ICCMA-15 privileged coverage against speed.

Since solvers prove to be very complementary (i.e. exploiting a mixture of
techniques can be fruitful), we also consider different portfolio approaches in or-
der to highlight (relative) strengths and weaknesses of solvers. As testified by
experiences in other research areas in artificial intelligence, such as planning [14],
SAT [15], and ASP [16], portfolios and algorithm selection techniques [17] are
very useful tools for understanding the importance of solvers, evaluate the im-
provements, and effectively combine solvers for increasing overall performance.

1http://argumentationcompetition.org/2015/results.html
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Existing works in the abstract argumentation field [18, 19] either focus on algo-
rithm selection for enumerating preferred extensions, with a very small number of
solvers and of instances; or on theoretical complementariness of algorithms.

In this paper we consider the enumeration of stable and preferred extensions,
and we develop both static portfolios, i.e. generated once independently of the
specific instance at hand, and per-instance portfolios, i.e. adjusted on the basis of
the input AF. We then evaluate the following two hypotheses:

5. Static portfolios are more efficient than basic solvers. Given the comple-
mentarity between ICCMA solvers, we expect that static portfolios are more
efficient than the best ICCMA solver.

6. Per-instance portfolios are more efficient than static portfolios. This hy-
pothesis seems sensible, since per-instance portfolios exploit more infor-
mation than static ones.

As will be shown below, the analysis of portfolio techniques—and their gen-
eralisation capabilities—highlight that, by combining solvers, it is possible to in-
crease the coverage by 13% (resp. 3%) and the speed of 51% (resp. 53%) against
the best single solver for enumerating preferred (resp. stable) extensions.

The paper is organized as follows. After providing some necessary back-
ground in Section 2, we introduce the configuration problem when using the
ArgSemSAT solver in Section 3, and present the relevant experimental analysis
in Section 4. Section 5 empirically evaluates the solvers submitted to ICCMA-15.
Motivated by complementarity shown between different approaches, Section 6 in-
troduces the techniques used to combine multiple solvers into portfolios, which
are then experimentally evaluated in Section 7. Finally, Section 8 draws some
conclusions and highlights avenues for future work.

2. Dung’s Argumentation Framework

An argumentation framework [1] consists of a set of arguments and a binary
attack relation between them.2

Definition 1. An argumentation framework (AF) is a pair Γ = 〈A,R〉 where A
is a set of arguments and R ⊆A ×A . We say that b attacks a iff 〈b,a〉 ∈R, also
denoted as b→ a.

2In this paper we consider only finite sets of arguments: see [20] for a discussion on infinite
sets of arguments.
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The basic properties of conflict–freeness, acceptability, and admissibility of a
set of arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:

• a set S⊆A is a conflict–free set of Γ if @ a,b ∈ S s.t. a→ b;

• an argument a∈A is acceptable with respect to a set S⊆A of Γ if ∀b∈A
s.t. b→ a, ∃ c ∈ S s.t. c→ b;

• a set S⊆A is an admissible set of Γ if S is a conflict–free set of Γ and every
element of S is acceptable with respect to S of Γ.

An argumentation semantics σ prescribes for any AF Γ a set of extensions,
namely a set of sets of arguments satisfying the conditions dictated by σ .

Definition 3. Given an AF Γ = 〈A,R〉, a set S⊆A is a:

• complete extension of Γ iff S is an admissible set of Γ which includes all the
acceptable arguments with respect to S

• preferred extension of Γ iff S is a maximal (w.r.t. set inclusion) admissible
set of Γ;

• stable extension of Γ iff S is a conflict–free set of Γ and A \ S = {a ∈
A | b→ a and b ∈ S}.

3. Automated Configuration

After providing some background on automated configuration, this section
describes the space of configurations of AF representations, and show how they
can be combined with the parameters of ArgSemSAT and the external SAT solver
exploited in it.

3.1. Automated Configuration Techniques
Many algorithms have parameters that can be adjusted to optimise perfor-

mance (in terms of e.g., solution cost, or runtime to solve a set of instances).
Formally, this problem can be stated as follows: given a parameterised algorithm
with possible configurations C , a benchmark set Π, and a performance metric
m(c,π) that measures the performance of a configuration c ∈ C on an instance
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π ∈Π (the lower the better), find a configuration c ∈ C that minimises m over Π,
i.e., that minimises

f (c) =
1
|Π| ∑

π∈Π

m(c,π). (1)

The AI community has recently developed dedicated algorithm configuration
systems to tackle this problem [5, 6, 7]. In this work we exploit the sequential
model-based algorithm configuration method SMAC [9], which represents the
state of the art of configuration tools and, differently from other existing tools, can
handle continuous parameters. SMAC uses predictive models of algorithm perfor-
mance [10] to guide its search for good configurations. It uses previously observed
〈configuration, performance〉 pairs 〈c, f (c)〉 and supervised machine learning (in
particular, random forests [21]) to learn a function f̂ : C → R that predicts the
performance of arbitrary parameter configurations, and is used to select a good
configuration. Random forests are collections of regression trees, which are sim-
ilar to decision trees but have real values (here: CPU-time performance) rather
than class labels at their leaves. Regression trees are known to perform well for
categorical input data. Random forests share this benefit and typically yield more
accurate predictions; they also allow to quantify the uncertainty of a prediction.
The performance data to fit the predictive models are collected sequentially.

In a nutshell, after an initialisation phase, SMAC iterates the following three
steps: (1) use the performance measurements observed so far to fit a random forest
model f̂ ; (2) use f̂ to select a promising configuration c ∈ C to evaluate next,
trading off exploration of new parts of the configuration space and exploitation of
parts of the space known to perform well; and (3) run c on one or more benchmark
instances and compare its performance to the best configuration observed so far.

In order to save time in evaluating new configurations, SMAC first evaluates
them on a single training instance; additional evaluations are only carried out (us-
ing a doubling schedule) if, based on the evaluations to date, the new configuration
appears to outperform SMAC’s best known configuration. Once the same number
of runs has been evaluated for both configurations, if the new configuration still
performs better then SMAC updates its best known configuration accordingly.

SMAC is an anytime algorithm (or interruptible algorithm) that interleaves
the exploration of new configurations with additional runs of the current best con-
figuration to yield both better and more confident results over time. As all anytime
algorithms, SMAC improves performance over time, and for finite configuration
spaces it is guaranteed to converge to the optimal configuration in the limit of
infinite time.
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1 arg(a1).

2 arg(a2).

3 arg(a3).

4 att(a1 ,a3).

5 att(a2 ,a2).

6 att(a3 ,a1).

7 att(a3 ,a2).

Listing 1: ΓE described in Aspartix format.

a1 a3 a2

Figure 1: The AF ΓE .

3.2. Configuration of Abstract Argumentation Frameworks
The description of an abstract argumentation framework consists in listing all

the arguments and all the attacks of the framework. Currently, three main formats
for describing frameworks are used: Trivial Graph Format, Aspartix Format and
the CNF Format. Here we focus on the most used one, the Aspartix Format [22].

As a running example, let us consider the framework ΓE = 〈AE ,RE〉 where
AE = {a1,a2,a3} and RE = {(a1,a3),(a2,a2),(a3,a1),(a3,a2)}: Figure 1 de-
picts ΓE . A valid description of ΓE in the Aspartix Format is provided in Listing
1.

Here, we are investigating a particular aspect of the abstract argumentation
frameworks description: in which order should arguments and attacks be listed so
as to maximize the performance of a solver?

Since this configuration of the input file should be performed online to lead to
improvements of the overall system, we are interested only in order criteria based
on information about the AF that can be quickly obtained.

In particular, we considered the possibility to list arguments ordered according
to the following five criteria: (1) the number of attacks received; (2) the number
of attacks to other arguments; (3) the involvement in a self-attack; (4) the differ-
ence between the number of received attacks and the number of attacks to other
arguments; and (5) being an argument in a mutual attack. For each of the five
mentioned criteria, arguments can be listed following a direct or inverse order.

To order the list of attacks, these five criteria can be applied either to the at-
tacking or to the attacked argument. For instance, let us consider ΓE (Fig. 1)
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1 arg(a2).

2 arg(a3).

3 arg(a1).

4 att(a2 ,a2).

5 att(a3 ,a2).

6 att(a3 ,a1).

7 att(a1 ,a3).

Listing 2: ΓE described in Aspartix format, with the list of arguments according to the number of received attacks and,
subsequently, the number of outgoing attacks; and the list of attacks ordered prioritising self-attacks and, subsequently, the
number of outgoing attacks.

again. We may be interested in ordering its arguments according to the number
of received attacks, breaking ties by considering the number of outgoing attacks
from each argument; and in ordering the list of attacks by prioritising self-attacks
and breaking ties according to the number of outgoing attacks of the attacking
arguments (Listing 2).

There are different ways for encoding the degrees of freedom in AF descrip-
tions as parameters, mainly because orders are not natively supported by general
configuration techniques. Following [11], we generate 10 continuous parameters,
which correspond to the aforementioned possible orderings of arguments and at-
tacks in frameworks. Each continuous parameter has associated a real value in the
interval [−1.0,+1.0]. A negative value for a criterion indicates that inverse order-
ing is used, while the absolute value represents the weight or precedence given to
an ordering criterion: the criterion corresponding to the parameter with the high-
est absolute value is considered first in the ordering. Ties of such an ordering are
then broken by referring to the criterion associated to the next parameter of high
absolute value. In the case of two criteria having exactly the same absolute value,
they are applied according to their alphabetical ordering.

As to ordering the list of attacks, since a criterion can be applied either on the
attacking or the attacked argument, an additional categorical selector determines
how continuous parameters are exploited for attacks. In particular, the selector
allows to decide among 6 alternatives. The first 4 alternatives exploit the 5 contin-
uous parameters for arguments, i.e. applying the same ordering (resp. the inverse
ordering) used for listing the arguments to the first argument (resp. the second
argument) of the pair of attacks, hence the four alternatives. The other 2 alterna-
tives allows to order the list of attacks independently from the choice of criteria
for ordering the list of arguments, i.e. on the basis of additional 5 continuous
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parameters for attacks applied on the first or second argument of the attack pair
(hence the two additional alternatives). For further details, please see Appendix
A.

Summing up, the configuration space is C = [−1.0,+1.0]10 ∗ 6, where 6 are
the possible values of the categorical parameter describing the order of the list of
attacks.

In order to automatically re-order an argumentation framework according to
the specified configuration, we developed a wrapper in Python. On the AFs con-
sidered in our experimental analysis, composed by hundreds of arguments and
few hundreds of thousands of attacks, the re-ordering of the Aspartix format de-
scription takes less than 1 CPU-time second.

3.3. Joint AF-Solver Configuration
As mentioned in the introduction, we consider ArgSemSAT [23]—the runner-

up of ICCMA 2015—as a case study for investigating the synergies of re-ordering
a given argumentation framework and of selecting the most appropriate solver’s
parameters. To this purpose, we focus on the enumeration of preferred extensions.

ArgSemSAT is a SAT-based solver which, among other tasks, enumerates
stable and preferred extensions performing a search in the space of complete ex-
tensions. In particular, the constraints corresponding to complete extensions are
encoded into a propositional formula in conjunctive normal form, and an external
SAT solver is called to identify a model of this formula, which is directly asso-
ciated to a complete extension. In this work we exploit the Glucose SAT solver
[24], which showed very good performance in recent SAT competitions.

On the one hand, ArgSemSAT exposes a single—critical—parameter which
allows to select the specific encoding for translating the constraints corresponding
to complete extensions into a propositional formula, with remarkable impact on its
size and structure, and on the CPU-time required to enumerate all the extensions.
On the other hand, Glucose SAT solver has a large number of parameters that can
be tuned and controlled for modifying its behaviour, from decay level of variables
and clauses, to the number of restarts. Configuring ArgSemSAT together with
Glucose requires to tune 20 parameters (2 categorical and 18 continuous). Please
see the full list of parameters, including default value and valid value range, in
Appendix B.

In order to maximise the impact of automated configuration on solvers’ per-
formance and thus exploiting unforeseen synergies between solver behaviour and
specific knowledge descriptions, we use SMAC for configuring at the same time
the AF description and the configuration of ArgSemSAT. Taking into account the
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11 parameters that determine the configuration of the input framework, the total
number of configurable parameters is 31, i.e. 3 categorical and 28 continuous.

4. Experimental Analysis of Automated Configuration

Our experimental analysis aims to evaluate the impact that AFs configuration
and algorithm configuration, as described in previous sections, has on the state-
of-the-art solver ArgSemSAT.

4.1. Settings
We randomly generated 10,000 AFs, divided into 5 sets of 2,000 AFs each.

Three of such sets include only frameworks based on three corresponding graph
models, i.e. Barabasi-Albert [25], Erdös-Rényi [26] and Watts-Strogatz [27]. A
fourth set includes graphs featuring a large number of stable extensions—and
clearly of preferred extensions as well—hereinafter named StableM (Figure 2d).3

The fifth set includes mixed-structured AFs generated by considering graphs of all
the mentioned models: we refer to this set as “General.” With the aim of providing
a set that allows to easily measure the impact of the configuration process, the AFs
of the General set have been selected by considering the performance of the de-
fault configuration: approximately 60% of the selected instances are successfully
analysed.

Erdös-Rényi graphs [26] are generated by randomly selecting attacks between
arguments according to a uniform distribution (Figure 2b). On the other hand,
Watts and Strogatz [27] show that many biological, technological and social net-
works are neither completely regular nor completely random, but something in the
between. They thus explore simple models of networks that can be tuned through
this middle ground: regular networks rewired to introduce increasing amounts of
disorder. These systems can be highly clustered, like regular lattices, yet have
small characteristic path lengths, like random graphs, and they are named small-
world networks by analogy with the small-world phenomenon (Figure 2c). Fi-
nally, as discussed by Barabasi and Albert [25], a common property of many large
networks is that the node connectivities follow a scale-free power-law distribution.
This is generally the case when: (i) networks expand continuously by the addition
of new nodes, and (ii) new nodes attach preferentially to sites that are already well

3Frameworks of the Barabasi-Albert, Erdös-Rényi, Watts-Strogatz, and StableM sets are avail-
able at: http://helios.hud.ac.uk/scommv/storage/AFs.zip
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Figure 2: Examples of randomly generated graph structures
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connected (Figure 2a). The AFs have been generated by using an improved ver-
sion of AFBenchGen [28], while the StableM set has been generated using the code
provided in Probo [29] by the organisers of ICCMA-15.4 It is worth to emphasise
that Watts-Strogatz and Barabasi-Albert produce undirected graphs. Each edge
of the undirected graph is then associated with a direction following a probability
distribution, that can be provided as input to AFBenchGen.

In order to identify challenging frameworks—i.e., neither trivial nor too com-
plex to be successfully analysed in the given CPU-time— we followed the pro-
tocol suggested in [30] which leads to the selection of AFs with a number of
arguments between 250 and 650, and number of attacks between (approximately)
400 and 180,000.

Each set of AFs has been split into a training set (1,800 AFs) and a testing set
(200 AFs) in order to obtain an unbiased estimate of generalisation performance
to previously unseen AFs from the same distribution.

Configuration was done using SMAC version 2.10. The performance metric
we optimised is the Penalized Average Runtime with a penalty equal to ten times
the cutoff time (PAR10). This metric trades off coverage and runtime for success-
fully analysed AFs: runs that do not solve the given problem get ten times the
cutoff time, other runs get the actual runtime. The PAR10 score of a solver on a
set of AFs is the average of the associated scores.

The Wilcoxon sign-rank test [31] is used for comparing performance in terms
of PAR10. It exploits the T-distribution which, given a sufficiently large number
of samples, is an approximation of a normal distribution, and it is characterised by
the z-value and the p-value. The higher the z-value, the more significant the differ-
ence of the performance of the compared systems is. The p-value indicates the re-
quired level of significance of the performance gap. In our analysis we considered
that the null-hypothesis, i.e. the performance of compared solvers is statistically
similar, is accepted when p-value > 0.05. Otherwise, the null-hypothesis is re-
jected, and therefore the compared systems’ performance is statistically different.
For the purposes of this analysis, the Wilcoxon sign-rank test is appropriate be-
cause it does not require any knowledge about the sample distribution, and makes
no assumption about the distribution.

Experiments were performed on Dual Xeon X5660-2.80GHz with 48GB DDR3
RAM. Each configuration run (i.e. training and testing on one of the 5 sets of 2000
AFs) was limited to a single core, and was given an overall runtime of 5 days and

4http://argumentationcompetition.org/2015/results.html
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4 GB of RAM, for ensuring re-usability of results also on less equipped machines.
The cutoff time for enumerating the preferred extensions of a single AF was 500
seconds.

In the following, also coverage and the International Planning Competition
(IPC) score are used for comparing different configurations performance. Cov-
erage corresponds to the percentage of the AFs that are correctly solved below
the cutoff time. As to IPC score, for a solver S and a problem p, Score(S , p)
is 0 if p is unsolved, and 1/(1+ log10(Tp(S )/T ∗p )) otherwise (where Tp(S ) is
the amount of time required by the solver with the configuration S to solve the
enumeration problem p, and T ∗p is the minimum amount of time required by any
compared system). The IPC score on a set of instances is given by the sum of the
scores achieved on each considered instance. It is worth noting that the IPC score
is designed to highlight the fastest option and heavily penalise the others, even if
their performance is not very dissimilar. Instead PAR10 is highly dependent on
the coverage, but it does not heavily penalise slower systems. Since the IPC score
depends on the set of systems compared, in the following we will consider the set
including the default configuration and the one identified by SMAC.

4.2. Hypothesis 1: Overall SMAC Configuration Outperforms Default Configu-
ration

Table 1 compares the performance of ArgSemSAT using the default configu-
ration (cf. Appendix B), and the specific joint configuration of AF description and
ArgSemSAT, obtained by running SMAC. Remarkably, the joint configuration
of AF description and ArgSemSAT leads to a general performance improvement.
In particular, on the Barabasi-Albert, StableM, and General sets the performance
of the configured system are statistically significantly better than the performance
achieved by using the default configuration, according to the Wilcoxon test. The
significant performance improvement achieved on the General set is of particular
interest: it indicates that it is possible to identify a configuration able to improve
the performance across differently-structured graphs. In other words, this is an
indication that the default configuration of the solver, that was considered as the
best possible configuration for solving any general AF, can be improved.

Conversely, the configuration process does not significantly improve the de-
fault performance on the Watts-Strogatz set. According to the Wilcoxon test, per-
formance of default and tuned configurations are statistically undistinguishable
even though IPC score show slight improvements. This is possibly due to the fact
that the default configuration is already showing very good performance. In that
scenario, it may be the case that only small portions of the configuration space lead

13



Set Configuration IPC Score PAR10 Coverage

Barabasi-Albert Default 78.0 1921.0 62.0
Configured 125.2 1863.1 63.0

Erdös-Rényi Default 56.8 3426.5 32.0
Configured 60.4 3329.2 34.0

StableM Default 90.8 2188.1 57.0
Configured 125.7 1892.9 63.0

Watts-Strogatz Default 116.6 1967.3 61.0
Configured 118.1 1967.9 61.0

General Default 110.0 1665.4 68.0
Configured 143.0 1376.8 73.5

Table 1: Comparison between the default and tuned configuration, in terms of IPC score, PAR10,
and coverage (percentage), on the considered AFs sets. In bold the best results.

to a significant performance improvement over the default configuration. Given
the limited CPU-time made available to the configuration process, SMAC did not
identify such portions of the vast configuration space.

Finally, the results on the Erdös-Rényi set deserves a more detailed discus-
sion. On the one hand, the Wilcoxon test indicates that there is not a statistically
significant performance improvement. On the other hand, AFs from the Erdös-
Rényi set are extremely hard for ArgSemSAT, as testified by the coverage values.
Moreover, those that can be solved are usually solved quickly, i.e. in few CPU-
time seconds. This makes the evaluation of configurations’ performance, and the
exploration of the space of configurations, hard and slow. Despite such issues,
SMAC was able to identify a configuration that is able to improve the perfor-
mance both in terms of runtime (better IPC score) and coverage. Overall, this is a
remarkable result, that shows the ability of automated configuration in improving
performance also in unfavourable cases.

4.3. Hypothesis 2: Argumentation Framework Configuration Plays a Significant
Role

In order to shed some light on the usefulness of algorithm and AF tuning, we
assessed the importance of parameters in the considered graph-specific configu-
rations. We used fANOVA [32], a recently-released tool for assessing parameter
importance after each configuration. fANOVA exploits predictive models of the
performance of each configuration for assessing the importance of each parame-
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Set 1st 2nd 3rd

Barabasi-Albert S-ExtEnc (011111) G-firstReduceDB (1528) G-cla-decay (0.32)
Erdös-Rényi F-autoFirst (-1.00) G-rnd-freq (0.00) G-K (0.26)
StableM G-var-decay (0.98) G-firstReduceDB (2000) G-incReduceDB (267)
Watts-Strogatz S-ExtEnc (101010) G-Grow (0) G-rnd-freq (0.08)
General S-ExtEnc (101010) G-R (2.09) G-cla-decay (0.99)

Table 2: Most important single parameters (configured value) for SMAC runs on the considered
AF sets. F-, S- and G- stand for, respectively, Framework, ArgSemSAT and Glucose parameters.

ter, regardless of the value of the others, and the interaction between parameters’
values. Table 2 shows the three most important parameters for each configuration.
Unsurprisingly, the encoding used by ArgSemSAT for generating the SAT for-
mulae is usually the most important parameter (see Appendix B). Default value
of this parameter is 101010, proven to be the best choice for AFs belonging to
Watts-Strogatz and General sets, but not for AFs in the Barabasi-Albert set. After
that, the parameters that control the behaviour of Glucose are those with the high-
est impact on performance, notably: decay value of clauses and size of the DB of
learnt clauses are among the aspects with the strongest impact on the performance
of ArgSemSAT.

One parameter used for controlling the AF description has a significant im-
pact on performance on AFs belonging to the Erdös-Rényi set, according to the
fANOVA tool. This is the parameter that orders arguments according to the pres-
ence of self-attacks. However, AFBenchGen does not allow the generation of any
self-attacking argument for Erdös-Rényi AFs. Interestingly, due to the way in
which the configurator has been implemented, setting the autoFirst parameter
value to −1.0, when no self-attacking arguments are included, leads to listing the
arguments in a complete inverse order than the one provided by the generator.
This result suggests that AFBenchGen orders the arguments in a peculiar way, that
has a detrimental impact on the solver’s performance.

However, the interaction of parameters controlling the shape of AFs with
reasoning-related parameters do have a remarkable impact, i.e. the best perfor-
mance depends on two or more parameters. Parameters used for controlling the
order of arguments have strong interactions with the parameter that controls the
encoding of ArgSemSAT, as well as with parameters of Glucose controlling the
number and type of clauses learnt. Figure 3 (coloured) shows the average PAR10
performance of ArgSemSAT on the Barabasi-Albert set as a function of two in-
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Figure 3: (Coloured) The average PAR10 performance of ArgSemSAT on the Barabasi-Albert
set, as a function of the ordering of arguments according to the fact that they attack each other
(args eachOther) and of number of clauses stored by Glucose during the search. Lower PAR10
values correspond to better performance.

teracting parameters. args eachOther is used for listing earlier in the AF de-
scription arguments that are attacking each other, the other parameter is used for
controlling the number of Glucose learnt clauses, according to their heuristic LBD
(Literal Block Distance) evaluation. Figure 3 shows that, in order to achieve bet-
ter performance in terms of PAR10, both arguments have to be taken into account.
Specifically, arguments attacking each other should be listed very late (−1.0 value
of the parameter) or very early (+1.0 value) and either few or many clauses should
be kept (respectively, low and high value of Glucose parameter). The peculiar
shape of the impact figure is probably due to the way in which the parameter for
ordering the arguments works: the same value can result in an ascending (positive)
or descending (negative) order, according to the sign.

Parameters that control the order in which arguments are listed tend to have a
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stronger impact on overall performance—either singularly (Table 2) or as a result
of their interaction with other parameters (Fig. 3)—than parameters controlling
the order in which attacks are listed. At a first sight, this may be seen as counter-
intuitive, since the number of attacks in a typical benchmark AF is significantly
higher than the number of arguments. However, this difference can be due to the
data structure used by ArgSemSAT. The set of arguments of the AF is stored in
a list which is populated according to the order in which the arguments are listed
in the input file. Each argument has an associated data structure with pointers
to two other lists of arguments: one for the attacked arguments; and one for the
arguments that attack it. Then the list representing the set of arguments of the
AF is navigated several times when creating CNFs to be evaluated by the SAT
solver. Let us also reiterate here that we considered the problem of enumerating
preferred extensions which requires iterative calls to a SAT solver with significant
manipulations [33]. These results suggest that not only the encoding of complete
labellings in CNF, but also the order of clauses have a remarkable impact on the
performance.

4.4. Post-Hoc Analysis: Robustness of SMAC Configuration
We can identify three typologies of argumentation frameworks from the sets

we used in our experimentation:

T1: frameworks generated obeying extension properties: StableM;

T2: frameworks generated obeying graph-theoretical properties: Barabasi-Albert,
Erdös-Rényi, and Watts-Strogatz;

T3: a mixture of all of those: General.

In this section we investigate, as a post-hoc analysis, the robustness of the
found configurations. We therefore proceed with two post-hoc analyses, one intra-
typology (e.g. comparing the configurations within the same typology set); and the
other inter-typology. For the latter, we are in particular interested in understanding
the generality of the results, i.e. whether the General set of AFs carries enough
information to support the claim that its best configuration can be directly applied
to frameworks belonging to different typologies.

4.4.1. Intra-Typology Post-Hoc Analysis
Since both T1 and T3 have one member each only, these cases are already

discussed in Table 1. Let us then focus on T2, namely the set of frameworks
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Test Set Training Set IPC Score PAR10 Coverage
Barabasi-Albert Barabasi-Albert 119.5 1836.1 63.0

Erdös-Rényi 92.4 1870.1 63.0
Watts-Strogatz 116.5 1795.9 64.5

Erdös-Rényi Barabasi-Albert 7.1 4569.4 9.0
Erdös-Rényi 60.5 3329.2 34.0
Watts-Strogatz 55.1 3430.8 32.0

Watts-Strogatz Barabasi-Albert 36.9 2581.2 49.0
Erdös-Rényi 108.3 1922.1 62.0
Watts-Strogatz 119.3 1968.0 61.0

Table 3: Intra-T2-typology post-hoc analysis on the generalisability of the configuration obtained
training on frameworks belonging to the T2 typology. IPC Score is evaluated by considering all the
configurations on each single test set: therefore, IPC scores cannot be directly compared between
different test sets. In bold the best results, with respect to each specific test set.

generated obeying graph-theoretical properties, such as Barabasi-Albert, Erdös-
Rényi, and Watts-Strogatz.

Table 3 shows the results of this comparison within the T2 typology of ar-
gumentation frameworks. Leaving apart the configuration derived from Barabasi-
Albert training AFs, the configurations derived from Erdös-Rényi and Watts-Strogatz
AFs exhibit performance on differently structured testing sets that are similar to
performance on AFs with the same structure. This possibly indicates that there
are some parameters’ values that can boost performance on differently-structured
AFs.

On the other hand, the configuration derived from Barabasi-Albert training
does not generalise well on differently-structured AFs. Such a behaviour is pos-
sibly due to some parameter’s value that helps increasing the performance on the
Barabasi-Albert test set, but has a detrimental effect on different graph structures.
For instance, among considered structures, Barabasi-Albert is the only set of AFs
with a large number of preferred extensions (several tens) per AF.

Finally, it is worth noticing that only in the case of testing on Erdös-Rényi
frameworks the configuration derived from a training over frameworks structured
as the testing ones provides consistently the best performance. In the case of
Barabasi-Albert and Watts-Strogatz frameworks, depending on the chosen met-
ric there are two different “optimal” configurations. In the case of testing on
Barabasi-Albert frameworks, the best configuration according to PAR10 (and, un-
surprisingly the coverage as well) is training on Watts-Strogatz frameworks; ac-
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Test Set Training Set IPC Score PAR10 Coverage
StableM General 100.2 2018.4 60.5

StableM 125.3 1892.9 63.0
Barabasi-Albert General 87.7 1917.6 62.0

Barabasi-Albert 119.8 1863.1 63.0
Watts-Strogatz 116.6 1795.9 64.5

Erdös-Rényi General 61.6 3301.6 34.5
Erdös-Rényi 61.6 3329.2 34.0

Watts-Strogatz General 113.5 1966.5 61.0
Erdös-Rényi 105.3 1922.1 62.0
Watts-Strogatz 115.5 1968.0 61.0

Table 4: Inter-typology post-hoc analysis on the generalisability of the configuration obtained
training on General set compared to the best configuration identified in the intra-typology post-
hoc analysis, cf. Tables 1 and 3. In case from Table 3 is not possible to identify a single clear
winner, we considered all the winner “candidates.”

cording to IPC is training on Barabasi-Albert frameworks. In the case of testing
on Watts-Strogatz frameworks instead for PAR10 and coverage it is better to train
over Erdös-Rényi frameworks, but not for IPC, for which it is better to train over
Watts-Strogatz frameworks. This is due to the fact that PAR10 is highly coupled
with the coverage measurement.

4.4.2. Inter-Typology Post-Hoc Analysis
Table 4 shows the results of the inter-typology post-hoc analysis aimed at iden-

tifying the degree of generalisibility of configurations obtained on the General
training set on testing sets belonging to homogeneous typologies.

As to the inter-typology analysis with T1, namely frameworks generated obey-
ing to argumentation properties (i.e. StableM), Table 4 seems to be fairly conclu-
sive that the configuration obtained using General as training set is not competitive
against the one obtained training over StableM. This is also due to the fact that the
General set is not perfectly balanced, as only one fourth of its frameworks be-
longs to the T1 typology, versus three fourth of frameworks belonging to the T2
typology.

As to the inter-typology analysis with T2, the configuration identified by train-
ing on the General set is usually able to obtain performance that are close to—or
even better than—those of the specific configuration, on each considered test set.
This seems to support the hypothesis that there are some parameters’ values that
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Set Configuration IPC Score PAR10 Coverage

General Default 113.4 1866.0 63.5
Configured 144.4 1204.5 77.0

Table 5: Comparison between the default and tuned configuration, in terms of IPC score, PAR10,
and coverage (percentage), on the considered AFs sets for ArgSemSAT exploiting MiniSAT. In
bold the best results.

can help improving the general performance. Remarkably, results presented in Ta-
ble 4 highlight a potential limit of the configuration approach. As previously ob-
served, AFs from the Erdös-Rényi set are extremely challenging for ArgSemSAT;
this is true for both training and testing instances. It is therefore reasonable to as-
sume that the configuration approach did not assess a large number of configura-
tions due to the frequent timeouts of the solver and to the limited overall CPU-time
available for the learning process. This may result—as it is the case for the Gen-
eral configuration on the Erdös-Rényi test set—in having other configurations,
optimised by successfully analysing a much larger number of training instances,
that performs better on the specific test set.

4.5. Post-Hoc Analysis: Joint Configuration and a Different SAT Solver
In this section we show how the configuration process leads to a significant

performance improvement, in line with the results shown in Section 4.4, even
when ArgSemSAT uses MiniSAT instead of Glucose as SAT solver. We con-
sidered MiniSAT [34], given its wide availability, and the fact that it is com-
monly used as a framework for developing SAT solvers. As training and testing
benchmarks, we focused on the General set, which has been shown to provide
a good training set for configurations that generally increase the performance of
ArgSemSAT.

Table 5 compares the performance of ArgSemSAT using MiniSAT with the
default configuration, and the specific joint configuration of AF description and
MiniSAT, obtained by running SMAC on the General benchmark set. This sug-
gests that the joint configuration plays a significant role in the increase of perfor-
mance.

The analysis of parameters’ importance for the obtained configuration, per-
formed using the fANOVA tool, confirmed that—beside parameters controlling
the internal behaviour of the solver—parameters used for controlling the AF de-
scription play a significant role. In particular, the value of the args eachOther
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parameter—used for listing earlier in the AF description arguments that are at-
tacking each other—can improve ArgSemSAT’s performance by 4%. This pa-
rameter plays a significant role also on the performance of ArgSemSAT run-
ning with the Glucose SAT solver. Moreover, fANOVA identified parameters
args ingoingFirst and args differenceFirst—used respectively for list-
ing first the arguments that show a high number of incoming attacks and the argu-
ments with a high difference between incoming and outgoing attacks—as having
a noticeable impact on the overall performance.

5. Experimental Analysis of ICCMA-15 Solvers

For this experimental analysis we reused the same benchmark frameworks
described in Section 4.1, extracting from them 2,000 AFs based on four different
graph models: Barabasi-Albert [25], Erdös-Rényi [26], Watts-Strogatz [27] and
graphs featuring a large number of stable extensions (StableM).5

The set of AFs has been divided into training and testing sets. For each graph
model, we randomly selected 200 AFs for training, and the remaining 300 for
testing. Therefore, out of the 2,000 AFs generated, 800 have been used for training
purposes, while the remaining 1,200 have been used for testing and comparing the
performance of trained approaches.

We considered all the solvers that took part in the EE-PR and EE-ST tracks
of ICCMA-15 [35], respectively 15 and 11 systems. For the sake of clarity and
conciseness, we removed from the analysis single solvers that did not correctly
solve at least one AF within cutoff time or which were always outperformed by
another solver. The interested reader is referred to [36] for detailed descriptions of
the solvers. Hereinafter, we will refer to such systems as basic solvers, regardless
of the approach they exploit for solving argumentation-related problems (this is
to distinguish them from portfolios of algorithms, described in the next sections,
which use basic solvers as components).

Experiments have been run on a cluster with computing nodes equipped with
2.5 Ghz Intel Core 2 Quad Processors, 4 GB of RAM and Linux operating system.
A cutoff of 600 seconds was imposed to compute the extensions—either preferred
or stable—for each AF. For each solver we recorded the overall result: success (if
it solved the considered problem), crashed, timed-out or ran out of memory.

In ICCMA, solvers have been evaluated by considering only coverage (and

5Frameworks are available at: http://helios.hud.ac.uk/scommv/storage/AFs.zip
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in case of ties the overall runtime on solved instances). Here we also evaluate
solvers’ performance by considering the PAR10 score.

5.1. Hypothesis 3: Reduction-based Solvers Constantly Outperform Others
Table 6 shows the results of this analysis in terms of coverage, PAR10 scores,

and number of instances on which a given solver has been the fastest. We consid-
ered runtimes below 1 CPU-time second as equally fast.

Each basic solver for the EE-PR problem has at least one instance (i.e. one
AF) on which it is the fastest (cf. F.t). We note that, when considering perfor-
mance achieved on the whole testing set (All) by solvers, there can be a signifi-
cant discrepancy between results shown in the coverage and fastest columns. One
would expect that the higher the coverage, the larger the possibility of a solver to
be the fastest. Interestingly, we observed that some of the solvers with low cov-
erage tend to be fast on the (few) instances they are able to analyse. For instance,
ArgTools (a non reduction-based system) achieves low overall coverage, but it
is the best solver for handling AFs of the Erdös-Rényi set. This contradicts the
hypothesis—endorsed by a superficial reading of the results of ICCMA-15—that
reduction-based systems constantly outperform others.

The best basic solver for solving the EE-PR problem on the StableM set of
AFs is Cegartix, which is able to solve 77.0% of the instances. This is ap-
proximately 10% more than the coverage of the second best solver on such set,
ASPARTIX-D. The prefMaxSAT solver has shown the best performance on the
Watts-Strogatz AFs. From an (empirical) complexity perspective, we observe that
the set with the lowest average coverage is the Barabasi-Albert set of AFs. This
is possibly due to the very large number (up to few thousands, in some cases) of
preferred extensions of such testing frameworks. In this set GRIS is able to obtain
a very good coverage and a very low PAR10, probably because it exploits a de-
composition of the AF into strongly connected components [37]. Conversely, the
Erdös-Rényi set is the less complex for the considered basic solvers when solving
the EE-PR problem. Moreover we can derive that even though there is usually a
basic solver with best coverage performance on each testing set, such solver is not
always the fastest (see the column F.t).

As for the EE-ST problem, the results in Table 6 show another interesting
scenario. ArgTools is able to achieve the best PAR10 and coverage performance
on two of the four considered sets, namely StableM and Watts-Strogatz. The best
PAR10 score on the Erdös-Rényi set is obtained by LabSATSolver but four of
the considered basic solvers successfully analyse each of the 300 AFs in such a
set. The winner of the EE-ST track of ICCMA-15, ASPARTIX-D, has been the
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EE-PR
All Barabasi-Albert Erdös-Rényi StableM Watts-Strogatz

Solver PAR10 Cov. F.t PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov.

Cegartix 1350.4 79.1 229 1662.6 74.2 1266.6 81.0 1439.2 77.0 1028.6 84.2
ArgSemSAT 1916.2 69.1 35 3532.3 41.9 433.7 94.2 2530.9 58.7 1171.1 81.5
LabSATSolver 2050.3 66.8 9 3430.7 43.5 261.3 96.5 2869.5 53.0 1657.5 73.9
prefMaxSAT 2057.2 66.8 273 3482.1 42.9 444.0 94.2 3625.2 40.3 697.5 89.4
DIAMOND 2417.0 61.0 1 3447.8 43.2 1366.7 79.0 2831.8 53.7 2026.0 68.0
ASPARTIX-D 2728.6 56.1 4 4101.5 32.6 3067.8 51.6 2068.8 66.7 1630.3 74.3
ASPARTIX-V 2772.2 55.2 21 3646.6 40.3 3292.6 47.1 2340.7 62.0 1772.4 71.9
CoQuiAAS 3026.4 50.5 78 3736.1 38.4 2873.4 53.5 2836.4 53.3 2645.1 57.1
ASGL 3477.3 43.2 1 4809.7 20.3 96.1 100.0 4475.4 26.0 4585.5 25.4
ConArg 3696.3 39.3 158 1128.7 81.6 2813.9 55.8 4934.6 18.3 6000.0 0.0
ArgTools 3906.2 35.2 322 3694.4 39.0 45.2 100.0 6000.0 0.0 6000.0 0.0
GRIS 4543.7 24.4 174 254.6 96.1 6000.0 0.0 6000.0 0.0 6000.0 0.0

EE-ST
All Barabasi-Albert Erdös-Rényi StableM Watts-Strogatz

Solver PAR10 Cov. F.t PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov.

ArgTools 440.7 94.5 245 1328.6 78.4 47.4 100.0 144.1 100.0 230.5 100.0
LabSATSolver 641.6 90.0 352 396.2 93.9 22.7 100.0 1497.6 76.0 684.9 90.7
ASPARTIX-D 829.7 87.1 395 412.2 93.5 1194.4 81.6 1187.2 81.0 535.0 93.0
CoQuiAAS 1477.2 76.2 372 1453.3 76.5 1485.1 76.5 1879.0 69.3 1106.5 83.3
DIAMOND 1555.4 75.2 42 2527.1 58.7 692.2 89.7 1887.2 69.7 1127.1 83.7
ArgSemSAT 1826.6 70.5 70 4019.0 33.5 408.9 94.5 1970.0 68.0 900.8 87.0
ConArg 1976.4 67.8 292 261.4 96.1 33.6 100.0 3742.1 38.3 4010.0 35.3
ASGL 2647.6 57.3 11 2737.4 56.1 85.2 100.0 3723.8 38.7 4152.8 33.7

Table 6: PAR10 score and coverage (cov.)—percentage of AFs successfully analysed—of the con-
sidered basic solvers for solving the preferred enumeration (upper table) and stable enumeration
(lower table) problems on the complete testing set (All) of 1,200 AFs, and on testing sets including
AFs generated by specific graph models. Solvers are ordered according to PAR10 on the All test-
ing set. F.t column indicates the number of times a solver has been the fastest among considered.
Best results in bold.
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fastest solver on 395 of the testing frameworks, but it did never excel in any of
the 4 considered subsets. The AFs of the StableM set are (empirically) the most
complex to solve for the considered systems, which is unsurprising if we take into
account that they have been constructed in order to obtain a large number of stable
extensions.

5.2. Hypothesis 4: Basic Solvers show Complementary Performance
Table 6 indicates that there is not a basic solver that is always the best se-

lection on the vast majority of the testing frameworks. This is evidence that the
basic solvers are substantially complementary, thus supporting the claim that a
mixture of approaches can be fruitful, and justifying the search for improvements
via portfolios.

6. Generation of Portfolios of Multiple Solvers

In this section we describe the techniques we used for combining multiple
solvers into sequential portfolios. Every approach requires as input a set of solvers,
a set of training AFs, and measures of performance of solvers on the training set.
Solvers are treated as black-boxes, and no communication is allowed between
different solvers. As in Section 4, solvers’ performance are measured in terms of
Penalised Average Runtime (PAR10) score. Although PAR10 largely emphasises
the coverage, it also gives a clear indication on runtime effective performance,
thus resulting in an interesting and useful measure.

6.1. Static Portfolios
Static portfolios—as the name suggests—are generated once, according to the

performance of the considered solvers on training instances, and never adjusted.
Static portfolios are defined by: (i) the selected solvers; (ii) the order in which
solvers will be run, and (iii) the runtime allocated to each solver.

We considered two different approaches for configuring static portfolios. A
first approach consists in static portfolios of exactly k components, called Shared-
k. Each component solver has been allocated the same amount of CPU-time,
equal to maxRuntime/k seconds. Solvers are selected and ordered according to
overall PAR10 score achieved by the resulting portfolio. We considered values of
k between 2 and 5. In fact, k = 1 would be equivalent to select the single solver
with the best PAR10 score on training instances, which is not relevant for our
investigation. For k > 5, the CPU-time assigned to each solver tends to be too
short hence drastically reducing portfolio performance.
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For our second static portfolio approach, named FDSS, we adapted the Fast
Downward Stone Soup technique [38]. We start from an empty portfolio, and it-
eratively add either a new solver component, or extend the allocated CPU-time6

of a solver already added to the portfolio, depending on what maximises the in-
crement of the PAR10 score of the portfolio. We continue until the time limit of
the portfolio has been reached, or it is not possible to further improve the PAR10
score of the portfolio on the training instances.

6.2. Per-instance Portfolios
Per-instance portfolios rely on instance features for configuring an instance-

specific portfolio. For each AF a vector of features is computed; each feature is a
real number that summarises a potentially important aspect of the considered AF.
Similar instances should have similar feature vectors, and, on this basis, portfolios
are configured using empirical performance models [10].

6.2.1. Abstract Argumentation Features
In this investigation we consider the largest set of features available for AFs

[18]. Such set includes 50 features, extracted by exploiting the representation of
AFs both as directed (loss-less) or undirected (lossy) graphs.

We are able to extract 26 features from the representation of AFs as direct
graphs. Each feature belongs to one of the following four classes: graph size (5),
degree (4), SCC (5), graph structure (5), times (7).

• Graph size features: number of vertices, number of edges, ratios vertices–
edges and inverse, and graph density (NT – non trivial).7

• Degree features (overall NT): average, standard deviation, maximum, min-
imum degree values8 across the nodes in the graph.

• SCC features (overall NT): number of SCCs, average, standard deviation,
maximum and minimum size of SCCs.

6A granularity of 5 CPU-time seconds is considered.
7We consider as trivial the extraction of features that requires less than 0.001 seconds. Such

features are, for instance, those requiring only elements count (e.g., number of edges) or easy
calculations (e.g., ratios vertices–edges). A class is called overall NT if all of its features are NT.

8The degree value of a node is the sum of its indegree and its outdegree.
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• Graph structure: presence of auto-loops, number of isolated vertices (NT),
flow hierarchy (NT) and results of test on Eulerian (NT) and aperiodic struc-
ture of the graph (NT).

• CPU-times: the needed CPU-time for extracting NT features and overall
NT classes.

The features extracted by considering the undirect graph representation of AFs
— i.e. replacing each directed attack with an undirected edge — are 24, belonging
to six classes: graph size (4), degree (4), components (5), graph structure (1),
triangles (5), times (5).

• Graph size features: number of edges, ratios vertices–edges and inverse,
and graph density (NT).

• Degree features (overall NT): average, standard deviation, maximum, min-
imum degree values across the nodes in the graph.

• Components features (overall NT): number of connected components, aver-
age, standard deviation, maximum and minimum size of connected compo-
nents.

• Graph structure: transitivity of the graph (NT).

• Triangles features (overall NT): total number of triangles in the graph and
average, standard deviation, maximum, minimum number of triangles per
vertex.

• CPU-times: the needed CPU-time for extracting NT features and overall
NT classes.

The features extraction process is usually quick (less than 2 CPU-time seconds
on average) and is done by exploiting a wrapper written in Python.

6.2.2. Classification-based approach
The classification-based (hereinafter Classify) approach exploits the technique

introduced in [18]. It trains a random decision forest classification model to per-
form algorithm selection. It classifies a given AF into a single category which cor-
responds to the single solver predicted to be the fastest. The difference between
solvers’ performance is ignored: all the available CPU-time is then allocated to
the selected solver.
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6.2.3. Regression-based approaches
For regression-based approaches, deciding which solver to execute and its run-

time depends on the empirical hardness models learned from the available training
data, in particular a M5-Rules [39] model generated for each solver. When exe-
cuted on a fresh AF, the predictive model estimates the CPU-time required by
each solver to successfully terminate.

We exploit the regression-based model in two different ways. First, for per-
forming algorithm selection (hereinafter 1-Regression): given the predicted run-
time of each solver, the solver predicted to be the fastest is selected and it is
allocated all the available CPU-time. However, such use of the model does not
fully exploit the available predicted runtimes. Therefore, we designed a differ-
ent way for using the regression-based approach, referred to as M-regression. As
in 1-Regression, we initially select the solver predicted to be the fastest, but we
allocate only its predicted CPU-time (increased by 10% in order to mitigate the
impact of negligible prediction mistakes). If the selected solver is not able to suc-
cessfully analyse the given AF in the allocated time, it is stopped and no longer
available to be selected, and the process iterates by selecting a different solver.
The M-regression approach stops when either a solver has successfully analysed
the AF, or the runtime budget has been exhausted.

With regards to existing well-known portfolio-based solver approaches, it is
worthy to remark that SATZilla [15] is a regression-based approach similar to
the 1-regression we introduced. However, since it was developed for competition
purposes, SATZilla also exploits pre and backup solvers. These are undoubtedly
useful for improving coverage, but not when the main point is to evaluate to which
extent solvers composition/selection can improve results, as in our investigation.

7. Experimental Analysis of Portfolios

First of all, we generated the Virtual Best Solver (VBS) as the (virtual) ora-
cle which always select the best solver (as to PAR10) for the given problem and
instance (i.e. argumentation framework). This provides the upper bound of per-
formance achievable by combining considered solvers.

As to static solvers, for the preferred semantics the basic solvers included in
the Shared-5 portfolio, ordered following their execution order, are: Cegartix,
ArgSemSAT, prefMaxSAT, LabSATSolver and DIAMOND. Smaller static
portfolios include subsets of those 5 solvers, not necessarily in that order. FDSS
static portfolio includes ArgSemSAT and GRIS, only.
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For the stable semantics, the solvers included in the Shared-5 portfolio, or-
dered following their execution order, are: LabSATSolver, ArgTools,
ASPARTIX-D, CoQuiAAS and DIAMOND. Smaller portfolios include subsets
of the listed solvers, not necessarily in that order. The FDSS portfolio includes
LabSATSolver and ASPARTIX-D.

As to per-instance portfolios, we generated the three per-instance (per-problem)
portfolios that exploit predictive models in order to map the features of the given
AF to a solver selection or combination: Classify, 1-Regression, and M-Regression.

We trained all the portfolio approaches using our training set of 800 AFs, 200
AFs from each set. The runtime cutoff once again was 600 CPU-time seconds.
Table 7 shows the coverage and PAR10 scores of all portfolios, basic solvers and
the VBS on the testing frameworks.

7.1. Hypothesis 5: Static Portfolios are more Efficient than Basic Solvers
Results for the static portfolios vary between stable and preferred semantics.

When dealing with the EE-PR problem, the FDSS approach is the only technique
which is able to outperfom the best basic solver. Shared-2 and Shared-3 achieve
performance close to those of the best basic solver, while Shared-4 and Shared-5
are undistinguishable from average basic solvers. FDSS portfolio performs better
than Shared-k static portfolios because it includes GRIS. ArgSemSAT has good
coverage, and GRIS excels on the Barabasi-Albert set (Table 6), while Shared-k
portfolios do not include any solver able to efficiently solve the EE-PR problem
on the Barabasi-Albert set.

Conversely, the right part of Table 7 shows that on the EE-ST problem, both
Shared-2 and Shared-3 are able to achieve better performance than any basic
solver, and the FDSS portfolio. Shared portfolios performance are boosted by
the inclusion of ArgTools, which is able to achieve the best performance on three
of the considered benchmark set structures, and CoQuiAAS—that is the second
best basic solver in terms of number of AFs quickly analysed. Moreover, the
EE-ST problems are usually quickly solved by the basic solvers, therefore 2 or
3 solvers can be easily executed within the 600 CPU-time seconds limit. When
more than three solvers are combined by the Shared approach—i.e. the CPU-time
allocated to each basic solver is less than 200 seconds—performance drops.

7.2. Hypothesis 6: Per-Instance Portfolios are more Efficient than Static Portfo-
lios

When considering per-instance portfolios, Table 7 indicates that they are all
able to outperfom the best basic solver on the considered testing frameworks. This
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EE-PR EE-ST

System Cov. PAR10 System Cov. PAR10

VBS 91.4 562.9 VBS 100.0 39.3
Classify 89.7 665.2 1-Regression 97.4 206.9
1-Regression 88.6 734.7 Classify 97.1 217.5
M-Regression 82.8 1068.3 Shared-2 97.7 262.3
FDSS 80.0 1311.4 M-Regression 94.7 378.4
Cegartix 79.1 1350.4 Shared-3 94.0 420.1
Shared-2 73.2 1678.0 ArgTools 94.5 440.7
Shared-3 69.4 1892.0 LabSATSolver 90.0 641.6
ArgSemSAT 69.1 1916.2 FDSS 89.4 677.4
LabSATSolver 66.8 2050.3 ASPARTIX-D 87.1 829.7
prefMaxSAT 66.8 2057.2 Shared-5 86.3 867.4
Shared-4 65.7 2105.5 Shared-4 86.0 873.8
Shared-5 63.3 2240.3 CoQuiAAS 76.2 1477.2
DIAMOND 61.0 2417.0 DIAMOND 75.2 1555.4
ASPARTIX-D 56.1 2728.6 ArgSemSAT 70.5 1826.6
ASPARTIX-V 55.2 2772.2 ConArg 67.8 1976.4
CoQuiAAS 50.5 3026.4 ASGL 57.3 2647.6
ASGL 43.2 3477.3
ConArg 39.3 3696.3
ArgTools 35.2 3906.2
GRIS 24.4 4543.7

Table 7: Coverage (Cov.) and PAR10 of the systems considered in this study for solving the EE-
PR problem (left part) and the EE-ST problem (right part) on the complete set of 1,200 testing
AFs. VBS indicates the performance of the virtual best solver. Systems are ordered according to
PAR10.
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EE-PR EE-ST

System Class. M-Reg. Class. M-Reg.

ArgSemSAT 0 253 0 212
ArgTools 311 305 138 428
ASGL 6 36 0 35
ASPARTIX-D 2 80 305 409
ASPARTIX-V 1 99
Cegartix 221 403
ConArg 157 122 231 337
CoQuiAAS 43 44 288 193
DIAMOND 0 65 33 138
GRIS 153 278
LabSATSolver 13 208 228 548
prefMaxSAT 297 301

Table 8: Number of times each solver has been selected by the Classify (Class.) or M-Regression
(M-Reg.) approaches for solving EE-PR (left part) and EE-ST (right part) problems on the testing
frameworks. Basic solvers are alphabetically ordered. Highest numbers in bold. Empty cells
indicate that the corresponding solver is not able to handle the considered problem.
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comes as no surprise, since per-instance approaches should be able to select the
most promising—ideally, the fastest—algorithm for solving the considered prob-
lem on the given AF. For both EE-PR and EE-ST problems, the performances of
Classify and 1-Regression are very similar, but the M-Regression approach perfor-
mance is always worse. Such results indicate that: (i) the 50 features considered
are informative for both EE-PR and EE-ST problems, and allow to effectively se-
lect solvers; (ii) classification and regression predictive models have similar per-
formance when used for selecting a single solver to run; and (iii) the regression
predictive model tends to underestimate the CPU-time needed by algorithms for
solving the considered problem on the given AF.

Table 8 shows the number of times each basic solver has been executed by
either the Classify or the M-Regression portfolio. 1-Regression executed solvers
are not shown, because they are a subset of the M-regression selections. Table
8 shows some remarkable differences in the algorithm selected by the classifica-
tion and regression approaches, and also those included in the static portfolios.
For instance, Classify never selects ArgSemSAT, while it is largely exploited by
M-regression, and included in static portfolios generated for solving EE-PR prob-
lems. This is because ArgSemSAT, and a few other basic solvers, has rarely
been the fastest: therefore the classification approach—which only focuses on the
fastest solver—ignores its performance. On the contrary, solvers like ArgTools
(EE-PR) and ASPARTIX-D (EE-ST) are usually the fastest, and are often se-
lected by both Classify and M-Regression approaches.

Finally, by looking at Table 7, it can be noted that the largest performance im-
provement can be achieved when exploiting portfolio approaches for solving the
problem of enumerating preferred extensions of an AF: the use of portfolio-based
techniques allows to solve up to 10.6% more instances than the best basic solver,
Cegartix. Such margin is reduced to 2.9% when solving the EE-ST problem. This
is due to the higher computational complexity of the EE-PR problem, and to the
higher complementarity between basic solvers able to handle the EE-PR problem.

7.3. Post-Hoc Analysis: Generalisation of Performance
To assess the ability of our portfolios on testing instances that are dissimilar

from instances used for training we generated four different new training sets as
follows: starting from the original training set composed by 800 AFs, we removed
all the frameworks corresponding to one set at a time, and randomly oversampled
frameworks from the remaining three sets—in order to have again approximately
800 frameworks for training. We then tested our portfolios on the complete testing
set of 1,200 AFs, so that performance can be compared with those of portfolios
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EE-PR
Barabasi-Albert Erdös-Rényi StableM Watts-Strogatz

System Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10

Classify 78.9 1321.4 88.6 745.0 74.4 1574.3 89.5 677.8
1-Regression 76.3 1479.0 63.0 2255.2 76.5 1453.9 83.0 1079.9
M-Regression 70.4 1828.4 67.3 2039.7 77.0 1434.7 79.6 1267.6
FDSS 69.1 1916.2 80.9 1245.5 79.1 1341.9 78.6 1380.0
Shared-2 73.2 1678.0 73.2 1678.0 74.2 1620.4 73.2 1678.0
Shared-3 69.4 1892.0 67.3 2007.9 69.5 1896.7 69.4 1892.0
Shared-4 65.7 2106.2 65.7 2101.1 65.7 2108.1 65.7 2103.9
Shared-5 63.3 2240.9 63.4 2235.8 63.3 2242.9 63.3 2242.9

EE-ST
Barabasi-Albert Erdös-Rényi StableM Watts-Strogatz

System Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10

1-Regression 88.6 756.9 92.6 508.7 98.6 149.9 81.6 1153.0
Classify 93.0 470.4 92.4 519.6 91.2 575.6 93.4 439.3
Shared-2 97.7 262.3 97.3 285.2 97.7 220.9 97.7 262.3
M-Regression 96.2 297.4 96.4 282.2 95.6 334.9 90.3 636.5
Shared-3 94.0 420.1 94.0 435.5 94.0 420.1 94.0 476.6
FDSS 89.4 677.4 87.1 829.7 89.4 677.4 88.7 714.7
Shared-4 85.9 878.2 86.0 887.5 86.0 873.8 86.8 833.8
Shared-5 86.3 867.4 86.3 870.8 86.3 862.3 84.3 973.4

Table 9: Coverage (Cov.) and PAR10 of the systems considered in this study on the complete
testing set, when trained on a training set not containing AFs of that structure (leave-one-set-out
scenario). Systems are ordered according to results shown in Table 7. Best results in bold.
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trained on the original set (Table 7). This can be seen as a leave-one-out scenario.
The results of such generalisation analysis are shown in Table 9.

Unsurprisingly, static portfolios—particularly Shared-k—show the best gener-
alisation performance: their behaviour does not change much with the new train-
ing sets. On the other hand, per-instance approaches do not show good general-
isation capabilities: their performance varies significantly when the training set
is not fully representative of the testing instances. This is true for both EE-PR
and EE-ST problems, despite the fact that gaps are smaller in the EE-ST case,
although it is true that also the performance of basic solvers on EE-ST tends to be
closer.

Remarkably, Classify (covering up to 89.7%, cf. Table 7) is very sensible
to the absence of Barabasi-Albert (−10.8%, cf. Table 9) or StableM (−15.3%,
cf. Table 9) frameworks from the training set for EE-PR, while regression-based
approaches show scarse generalisation abilities when the Erdös-Rényi frameworks
are removed from the training set. On the contrary, Classify is very generalisable
on the EE-ST set, and the 1-Regression method is very sensitive when Watts-
Strogatz AFs are removed. M-Regression is more generalisable than 1-Regression
when dealing with the EE-ST problem: this indicates that when testing instances
are dissimilar from training ones, the exploitation of more than one solver can be
fruitful.

8. Conclusion

We evaluated the impact of configuration of abstract argumentation solvers
both at the level of AF-solver configuration, and at the level of combining solvers
into portfolios, thus testing six experimental hypotheses.

We, indeed, extended the evaluation first proposed in [8] of an approach for
the joint automatic configuration of AF descriptions and argumentation solvers.
Specifically, we designed a method to automatically order the list of arguments
and the list of attacks in argumentation frameworks by tuning 11 parameters, con-
sidering as a test-case the widely used Aspartix format. We focused our investiga-
tion on ArgSemSAT—runner-up of the ICCMA 2015—using Glucose as a SAT
solver: they export together a further set of 20 parameters.

We demonstrate: (i) that joint AF-solver configuration has a statistically sig-
nificant impact on the performance of ArgSemSAT; (ii) the synergies between
AFs configuration and SAT solvers behaviour. We also open new, exciting possi-
bilities in the area of learning for improving performance of abstract argumenta-
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tion solvers. We believe this work would be particularly beneficial for the partici-
pants of the forthcoming competition ICCMA 2017 [40].9

We also exploit the ICCMA-15 legacy by combining state-of-the-art solvers,
able to handle EE-PR and EE-ST problems, using portfolio-based techniques. In
particular, we tested static and per-instance portfolios, exploiting the largest avail-
able set of argumentation features [18].

The results of our extensive empirical analysis showed that: (i) the claim that
reduction-based solvers always outperform non reduction-based systems—a pos-
sible superficial reading of the results of ICCMA-15—is not always the case; (ii)
the solvers at the state of the art show a high level of complementarity (specially
those able to deal with EE-PR problems), thus they are suitable to be combined
in portfolios; (iii) portfolio systems generally outperform basic solvers; (iv) if the
training instances are representative of testing AFs, the existing set of features
is informative for selecting most suitable solvers; (v) classification-based portfo-
lios show good generalisation performance; (vi) static portfolios are usually the
approaches which are less sensitive to different training sets.

We see several avenues for future work. We plan to evaluate the proposed
joint AF-solver configuration approach on different solvers and on different se-
mantics. Moreover, we are interested in exploiting the configuration approach
for combining different argumentation and SAT solvers into portfolios. Finally,
we are considering investigating the presence of AF configurations that are able
to improve—on average—the performance of all the existing state-of-the-art ar-
gumentation solvers. This would provide powerful guidelines for the encod-
ing of frameworks as well as explaining the connections between AF config-
urations and overall performance. We are also interested in further investigat-
ing the generalisation capabilities of portfolios performance by considering sig-
nificantly differently-structured AFs, including complex frameworks generated
by real-world scenarios. We will also extend the portfolio methods considering
SATZilla [15] like approaches, or more sophisticated model-based techniques.
Finally, given the significant results obtained for the extension enumeration prob-
lem, a natural future work is to test portfolio methods also in other argumentation
problems, e.g. credulous and skeptical acceptance of a single argument.

9http://www.dbai.tuwien.ac.at/iccma17/
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Appendix A. Configuration Parameters for Argumentation Frameworks

Parameter Domain Default

args ingoingFirst [-1.0,1.0] 0
args outgoingFirst [-1.0,1.0] 0.2
args autoFirst [-1.0,1.0] -1
args eachOther [-1.0,1.0] -1
args differenceFirst [-1.0,1.0] -1
atts ingoingFirst [-1.0,1.0] 0
atts outgoingFirst [-1.0,1.0] 0
atts autoFirst [-1.0,1.0] 0.2
atts eachOther [-1.0,1.0] 0
atts differenceFirst [-1.0,1.0] 0
atts orders {0,1,2,3,4,5} 0

Regarding atts orders:

0: Same ordering applied to the first argument of the attack pair;

1: Same ordering applied to the second argument of the attack pair;

2: Inverse ordering applied to the first argument of the attack pair;

3: Inverse ordering applied to the second argument of the attack pair;

4: Attack-specific ordering applied to the first argument of the attack pair;

5: Attack-specific ordering applied to the second argument of the attack pair;
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Appendix B. Configuration Parameters for ArgSemSAT

Parameter Domain Default

SOLVER-ExtEnc {001111,010101,010111,
011101,011111,101010,
101011,101110,101111,
110011,110101,110111,
111010,111011,111100,
111101,111110,111111}

101010

GLUCOSE-gc-frac [0.0, 500.0] 0.2
GLUCOSE-rnd-freq [0.0, 1.0] 0.0
GLUCOSE-cla-decay [0.0, 1.0] 0.999
GLUCOSE-max-var-decay [0.0, 1.0] 0.95
GLUCOSE-var-decay [0.0, 1.0] 0.8
GLUCOSE-phase-saving 0,1,2 2
GLUCOSE-ccmin-mode 0,1,2 2
GLUCOSE-K [0.0, 1.0] 0.8
GLUCOSE-R [1.0, 5.0] 1.4
GLUCOSE-szTrailQueue [10,10000] (int) 5000
GLUCOSE-szLBDQueue [10,10000] (int) 50
GLUCOSE-simp-gc-frac [0.0, 5000.0] 0.5
GLUCOSE-sub-lim [-1,10000] (int) 20
GLUCOSE-cl-lim [-1,10000] (int) 1000
GLUCOSE-grow [-10000,10000] (int) 0
GLUCOSE-incReduceDB [0,10000] (int) 300
GLUCOSE-firstReduceDB [0,10000] (int) 2000
GLUCOSE-specialIncReduceDB [0,10000] (int) 1000
GLUCOSE-minLBDFrozenClause [0,10000] (int) 30

For a detailed description of GLUCOSE parameters, the interested reader is
referred to [24], and the GLUCOSE’s website.10

To explain the parameter SOLVER-ExtEnc, let us recall that each extension
S implicitly defines a three-valued labelling of arguments, as follows: an argu-
ment a is labelled in iff a ∈ S, is labelled out iff ∃ b ∈ S s.t. b→ a, is labelled
undec if neither of the above conditions holds. In the light of this correspon-
dence, argumentation semantics can equivalently be defined in terms of labellings

10http://www.labri.fr/perso/lsimon/glucose/

40



rather than of extensions (see [41, 42]). In particular, the notion of complete la-
belling [43, 42] provides an equivalent characterization of complete semantics, in
the sense that each complete labelling corresponds to a complete extension and
vice versa. Complete labellings can be (redundantly) defined as follows.

Definition 4. Let 〈A,R〉 be an argumentation framework. A total function L ab :
A 7→ {in,out,undec} is a complete labelling iff it satisfies the following condi-
tions for any a ∈A :

• L ab(a) = in⇔∀b ∈ a−L ab(b) = out;

• L ab(a) = out⇔∃b ∈ a− : L ab(b) = in;

• L ab(a) = undec⇔∀b ∈ a−L ab(b) 6= in∧∃c ∈ a− : L ab(c) = undec;

In [33] it is proved that the requirement of Definition 4 can equivalently be
expressed in different ways, corresponding to the conjunction of different specific
subsets of the 6 terms C→in, C←in, C→out, C←out, C→undec, C←undec, where

• C→in ≡ (L ab(a) = in⇒∀b ∈ a−L ab(b) = out);

• C←in ≡ (L ab(a) = in⇐∀b ∈ a−L ab(b) = out);

• C→out ≡ (L ab(a) = out⇒∃b ∈ a− : L ab(b) = in);

• C←out ≡ (L ab(a) = out⇐∃b ∈ a− : L ab(b) = in);

• C→undec≡ (L ab(a)= undec⇒∀b∈ a−L ab(b) 6= in∧∃c∈ a− : L ab(c)=
undec);

• C←undec≡ (L ab(a)= undec⇐∀b∈ a−L ab(b) 6= in∧∃c∈ a− : L ab(c)=
undec).

The parameter SOLVER-ExtEnc considers a sequence of six binary numbers
whose position is in one-to-one correspondence with the sequence: C→in, C←in, C→out,
C←out, C→undec, C←undec. For instance, SOLVER-ExtEnc=101010 is equivalent to se-
lect the encoding C→in∧C→out∧C→undec.
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