
University of Huddersfield Repository

Capitanelli, Alessio, Maratea, Marco, Matrogiovanni, Fulvio and Vallati, Mauro

Automated Planning Techniques for Robot Manipulation Tasks Involving Articulated Objects

Original Citation

Capitanelli, Alessio, Maratea, Marco, Matrogiovanni, Fulvio and Vallati, Mauro (2017) Automated
Planning Techniques for Robot Manipulation Tasks Involving Articulated Objects. In: Proceedings
of the The 16th International Conference of the Italian Association for Artificial Intelligence (AI*IA
2017). Lecture Notes in Computer Science . Springer, pp. 483497. ISBN 9783319701684

This version is available at http://eprints.hud.ac.uk/id/eprint/33083/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/96771648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automated Planning Techniques for Robot
Manipulation Tasks Involving Articulated Objects

Alessio Capitanelli1, Marco Maratea1, Fulvio Mastrogiovanni1, and Mauro Vallati2

1 DIBRIS, Univ. degli Studi di Genova, Viale F. Causa 15, 16145 Genova, Italy
name.surname@unige.it

2 University of Huddershield, West Yorkshire, HD1 3DH, United Kingdom.
M.Vallati@hud.ac.uk

Abstract. The goal-oriented manipulation of articulated objects plays an impor-
tant role in real-world robot tasks. Current approaches typically pose a number
of simplifying assumptions to reason upon how to obtain an articulated object’s
goal configuration, and exploit ad hoc algorithms. The consequence is two-fold:
firstly, it is difficult to generalise obtained solutions (in terms of actions a robot
can execute) to different target object’s configurations and, in a broad sense, to
different object’s physical characteristics; secondly, the representation and the
reasoning layers are tightly coupled and inter-dependent.
In this paper we investigate the use of automated planning techniques for deal-
ing with articulated objects manipulation tasks. Such techniques allow for a clear
separation between knowledge and reasoning, as advocated in Knowledge Engi-
neering. We introduce two PDDL formulations of the task, which rely on con-
ceptually different representations of the orientation of the objects. Experiments
involving several planners and increasing size objects demonstrate the effective-
ness of the proposed models, and confirm its exploitability when embedded in a
real-world robot software architecture.

1 Introduction

The manipulation of non rigid objects, including articulated or flexible objects, such as
strings, ropes or cables, is one of the most complex tasks in Robotics [20, 11]. Apart
from issues related to grasping and dexterity, and differently from rigid objects, the
configuration of an articulated or flexible object (i.e., the set of relative poses of its
constituent parts) varies due to the relative position of its constituent parts with respect
to each other. This induces a representation problem for such objects, which, on the one
hand, is tightly connected with robot perception capabilities and their accuracy, and
on the other hand impacts on processes reasoning about configuration changes and the
associated robot manipulation actions.

In the literature about the manipulation of non rigid objects, this problem did not
receive sufficient attention, nor a principled formalisation is available. Indeed, it is pos-
sible to find examples in which robots exhibit the capability of manipulating ropes [25],
tying or untying knots [19] and operating on mobile parts of the environment, such as
handles of different shapes [5], home furniture [12] or valves in search and rescue set-
tings [17]. However, in all these cases, manipulation actions are directly grounded on

perceptual cues, such as the peculiar geometry of the object to deal with [1], assumed
to be easy to identify in a robust way, or based on a priori known or learned informa-
tion about the object to manipulate, e.g., its stiffness or other physical features [7, 6].
As a result, every time either the element that has to be manipulated or the manipulator
changes, a new reasoner has to be developed from scratch.

A structured approach to perception, representation and reasoning, as well as execu-
tion, seems beneficial: on the one hand, we can decouple perception and representation
issues, thus not being tied to specific perception approaches or ad hoc solutions; on the
other hand, domain knowledge and reasoning logic can be separated, with the advan-
tages of an increased maintainability, and the possibility to interchange reasoners and
models in a modular way.

In this paper, we investigate the use of automated planning techniques for manip-
ulation tasks involving articulated objects. Such techniques assume an abstract model
of the object to manipulate, a clear separation between knowledge representation and
reasoning, and the use of standard languages, such as PDDL [16], and widely available
domain-independent planners. Language standard and planners’ efficiency have been
fostered by the International Planning Competition series (see, e.g., [22]). Our contri-
bution is at the problem formalisation and modelling levels. It should be noted that
the representation of an articulated object can be modelled using two alternative ap-
proaches, which differ on how link orientations are expressed: relative, with respect to
each other (e.g., any link with respect to the previous one, assuming an ordering among
links), or absolute, with respect to an external, possibly robot-centered, reference frame.
In this context, it is evident that we are not trying to generate joint trajectories to achieve
a desired object configuration, but rather determine a series of model-defined actions to-
wards such goal. Roboticists are familiar with numerical methods and motion control
strategies for articulated structures, what the planner should provide is a series of inter-
mediate reference joint states to be fed to those lower level systems.

From a robotics perspective, a relative representation is very sensitive to perception
issues: small perception errors in link orientations can lead to dramatically huge errors
in the estimate of the object’s configuration, since it is necessary to compute forward
all the robot-centred orientations to support manipulation actions: this seems to suggest
that an absolute representation would be preferable, but also the efficiency of planners
on the related formulations must be taken into account.

In this respect, starting from the relative and absolute representations of link orien-
tations, we propose two planning models: the first, which we refer to as basic, assumes
pairwise relative link orientations and primary features of PDDL; the second, which is
termed conditional, treats orientations as absolute and employs also conditional state-
ments. Experiments have been performed using an architecture integrating a modified
ROSPlan framework [4] on a dual-arm robot manipulator. They show that our approach
(i) efficiently solves tasks with a realistic size, in terms of number of links constitut-
ing the object and the resolution of their orientations, and (ii) scales in a satisfactory
way with increasingly more complex problems, which is of particular relevance since it
provides a challenging benchmark for the planning community, and can be seen as an
important step toward the manipulation of flexible objects.

Fig. 1. The reference robotic framework.

The paper is structured as follows. Section 2 provides the reader with needed pre-
liminaries about our scenario and automated planning, whereas Section 3 introduces
the problem statement. Then, Section 4 presents the two models, whose evaluation with
automated planners is shown in Section 5. Conclusions follow.

2 Background

In this section we provide the necessary background on the reference scenario, and on
automated planning.

2.1 The Reference Scenario

The tabletop scenario we consider involves a Baxter dual-arm robot manipulator from
Rethink Robotics (see Figure 1). Each arm has 7 degrees of freedom and is equipped
with a standard gripper. An RGB-D device located on the Baxter’s head and pointing
downward is used to perceive the robot’s frontal workspace. The workspace is consti-
tuted by a table, on which articulated objects can be manipulated by rotating its consti-
tuting parts. Given our reference scenario, the granularity of rotations can not be small.
We employ wooden objects, which have been purposely hand crafted to minimise per-
ceptual errors: the first has three 40 cm long links (and two loose joints), whereas the
second has seven 20 cm long links (and six stiff joint). On the second object we fixed a
QR tag to each link, in order to quickly determine its orientation.

A software architecture has been developed, based on the well known ROS frame-
work and integrating ROSPlan, which allows sensory-based knowledge representation,
action planning and execution via a number of nested control loops. A point cloud or
link poses (determined using QR tags) are obtained either continuously or on demand
from the RGB-D device. Perception data are processed in order to obtain a model-
based representation of the scene [3], for instance the configuration of an articulated

object, which is maintained within an OWL-based ontology [13]. The ontology is up-
dated whenever a new perception is available. In order to obtain a new object’s goal
configuration, the information within the ontology can be accessed by a planner, which
can extract information to build the initial state of the planning problem. Since the plan-
ner is treated as a ROS service, any suitable planner can be used as long as it adheres
to a well-defined communication interface. If a plan is found, each manipulation ac-
tion therein is executed. After each execution a new perception is obtained, whereas the
scene representation in the ontology is updated, and compared with the expected effects
of the action: if they are compatible, the execution continues, otherwise re-planning oc-
curs. The execution continues until the final state of the plan is reached, or aborted as
per designer’s instructions.

2.2 Automated Planning

Automated planning, and specifically classical planning, deals with finding a (partially
or totally ordered) sequence of actions, which modify a static, deterministic and fully
observable environment from an initial state to a desired goal state [9].

In classical planning, the environment is represented as an appropriate set P of |P |
First Order Logic predicates, p1, . . . , p|P |, whereas states s1, . . . , s|S| are defined as
appropriate sets of ground predicates p̄1, . . . , p̄|P̄ |.
An operator o =

(
name(o), pre(o), eff−(o), eff+(o)

)
is defined such that name(o) =

o name(x1, . . . , xK), where o name is a unique operator name and x1, . . . , xK are
its K arguments, pre(o) is the set of predicates Ppre representing the operator’s pre-
conditions, whereas eff−(o) and eff+(o) are, respectively, the sets of predicates
Peff− and Peff+ representing the operator’s negative and positive effects. As a con-
sequence, actions a1, . . . , a|A| are ground instances of planning operators. An action
a =

(
pre(a), eff−(a), eff+(a)

)
is applicable in a state s if and only if pre(a) ⊆ s.

If allowed, the application of a in s results in a new state such that
(
s \ eff−(a)

)
∪

eff+(a).
A planning domain D is specified via sets of predicates PD and operators OD, such

that D = (PD, OD). A planning problem P is specified via a planning domain D, an
initial state si and set of goal atoms P̄ (both made up of ground predicates), such that
P =

(
D, si, P̄

)
. A solution plan S is a sequence of I actions a1, . . . , aI such that,

starting from the initial state si, a consecutive application of the actions in the plan
results in a final state sf that satisfies the goal P̄ .

3 Problem Statement

In general terms, the problem we consider in this paper can be stated as follows: given
an articulated object, determine a solution plan that modifies the initial object’s con-
figuration to a specified goal configuration, where the solution plan is made up of a
number of manipulation actions to be executed by a robot. In order to better specify the
boundaries of the problem we consider, let us pose the following assumptions:

Fig. 2. An example of rotation: l3 rotates around j3 of an angle δ while l2 is kept still, which
induces l4 to rotate.

1. We consider articulated objects as simplified models for fully flexible objects. These
can be modelled as articulated objects with a huge number of links and joints. This
assumption is widely accepted [25].

2. We do not consider the effects of gravity on the object being manipulated, nor
those of any external force but manipulation actions. For this reason, the object is
considered as laying on a horizontal plane (large enough to accommodate it). As a
consequence, we consider articulated objects which lay strictly on the plane.

3. We assume sensing and representation to be decoupled, the latter assuming per-
fect sensing. On the basis of the features extracted from sensing data, this leads to
different problem formulations.

4. The object can be easily manipulated by standard Baxter’s grippers. The specific
object we use has been purposely manufactured to that aim, and therefore we do
not consider issues related to grasping or dexterity.

More formally, an articulated object α is defined as an ordered set L of |L| links and
an ordered set J of |J | joints, such that α = (L,J). Each link l is characterised by a
length λl and an orientation θl on the plane, whose meaning depends on the considered
planning model, namely basic or conditional. Therefore, a configuration Cα is a |Lα|-
ple such that

(
θl1 , . . . , θl|L|

)
, i.e., the orientations of all the links. Obviously enough,

since L and J are ordered sets, links and joints are pairwise correlated, such that a link
ll is bounded upstream by jl and downstream by jl+1, apart from l|L|.

Configurations change as a consequence of manipulation actions. In our case, we
only consider rotations of a given link ll around the corresponding joints jl or jl+1. If
we refer to δ as the granularity associated with variations in orientations, then a ma-
nipulation action a operating on a link ll can either increase or decrease its orientation
θl by δ, with respect to an axis perpendicular to the horizontal plane. In doing so, and
given the stiffness of α, the robot needs the use of two grippers: the first is used to keep
the upstream (resp. downstream) ll−1 (resp. ll+1) link still, which is a non modelled
action in the solution plan (nonetheless executed by the robot when needed), whereas
the second is used to rotate ll around jl (resp. jl+1).

An example can be found in Figure 2, where a 4-link, 4-joint articulated object is
shown. The initial state si corresponds to link poses in black, whereas in the final state
sf links l3 and l4 must be rotated by δ, i.e., l3 must rotate around j3. The expected

sequence of manipulation actions includes: grasping and keeping l2 still, grasping l3,
rotating l3 counter clockwise around j3 of about δ, releasing l3 and releasing l2. How-
ever, the first action, which is a necessary prerequisite for the rotation to occur, need not
to be explicitly modelled, but can be delegated to the robot action execution system.

4 Proposed Formulations

In order to tackle the problem introduced above, and to evaluate the two possible seman-
tics associated with link orientations, we designed two PDDL formulations, which ex-
ploit different sets of language features. The basic formulation employs the :STRIPS
subset of PDDL, extended with equalities and negative-preconditions,
whereas the conditional version requires also the use of conditional-effects.
Notably, the precision limits of most manipulators requires the granularity discretisation
of angular movements, hence there is no practical necessity for continuous or hybrid
planning models. Therefore, PDDL provides an appropriate level of abstraction.

On the one hand, in the basic formulation, given a link ll, its orientation θl must be
considered as being relative, for instance, to the orientation of the upstream link ll−1.
From a planning perspective, each manipulation action changing θl does not affect any
other upstream or downstream link orientations, since all of them are relative to each
other, and therefore the planning process is computationally less demanding. However,
since manipulation actions are expected to be based on link orientations grounded with
respect to a robot-centred reference frame, i.e., absolute in terms of pairwise link orien-
tations, a conversion must be performed, which may be greatly affected by perceptual
noise, therefore leading to inaccurate or even inconsistent representations. On the other
hand, in the conditional formulation, θl is considered as absolute, and therefore it can
be associated directly with robot actions. Unfortunately, this means that each manipula-
tion action changing θl does affect numerically all other upstream or downstream link
orientations, depending on which side of the object is kept still, in the representation,
which must be kept track of using conditional effects in the planning domain.

It is noteworthy that the use of advanced PDDL features, such as conditional effects,
may allow for a more accurate representation of the domain but, at the same time, it may
reduce the number of planners able to reason on the model.

4.1 Basic Formulation

As described in Section 3, an articulated object α is represented using two ordered sets
of joints and links. We use a connected predicate to describe the sequence of links in
terms of binary relationships involving a joint jl+1 and a link ll, which induces a pair-
wise connection between two links, namely ll itself and ll+1, since they share the same
joint jl+1. We assume that each joint jl is associated with an angle θj , which ranges
between 0 and 359 deg, through the predicate angle-joint. Obviously enough, in
such a range it holds that θj = θl+1 − θl. As we anticipated, this formulation assumes
that link orientations are expressed as pairwise relative to each other. This means that
the robot perception system is expected to provide the representation layer with the set
of joint angles θ1, . . . , θ|J| as primitive information, whereas the set of link orientations

(:action increase-angle
:parameters (?link1 ?link2 - link
?joint - joint ?a1 ?a2 - angle)
:precondition (and
(connected ?joint ?link1)
(connected ?joint ?link2)
(not (= ?link1 ?link2))
(angle-joint ?a1 ?joint)
(angle-before ?a1 ?a2))

:effect (and
(not (angle-joint ?a1 ?joint))
(angle-joint ?a2 ?joint)))

Fig. 3. The basic formulation of increase-angle.

θ1, . . . , θ|L| is not directly observable, but must be computed applying forward kinemat-
ics formulas to the object’s configuration Cα. As we discussed already, if noise affects
the perception of joint angles, as it typically does, the reconstruction of the object’s con-
figuration may differ from the real one, and it worsens with link lengths. This position
significantly simplifies the planning model’s complexity: from a planner’s perspective,
the modification of any link orientations does not impact on other relative joint angles,
and therefore manipulation actions can be unfolded in any order the planner deems fit.

Angles are specified using constants, which are then ordered using the angle-before
predicate. The difference between constant values is the granularity δ of the resolution
associated to modelled orientations. For example, d45 and d90 are used as constants
representing, respectively, a 45 and a 90 deg angle. Then, a predicate (angle-before
d45 d90) is used to encode the fact that d45 is the granularity step preceding d90,
i.e, in this case δ = 45 deg.

The domain model includes two planning operators, namely increase-angle
(shown in Figure 3) and decrease-angle. Intuitively, the former can be used to
increase the angle of a selected joint of a δ step, while the latter is used to decrease the
joint’s angle, by operating on the two connected links. As an example, if δ = 45 deg
and a joint angle θj = 135 deg, increase-angle would produce θj = 180 deg,
whereas decrease-angle θj = 90 deg. In the operator’s definition, ?link1 and
?link2 represent any two links ll and ll+1, ?joint is the joint jl+1 between them,
whereas ?a1 and ?a2 are the current and the obtained joint angles, respectively. If
?joint connected two different links ?link1 and ?link2, the angle ?a1 of such
joint would be increased of a δ step and become ?a2. A similar description could be
provided for decrease-angle.

A problem is defined by specifying initial and final states. The former includes the
topology of the articulated object in terms of connected predicates, and its initial
configuration using angle-joint predicates; the latter describes its goal configura-
tion using relevant angle-joint predicates.

Fig. 4. Without end point joints, the basic formulation cannot discriminate among these four
configurations.

It is noteworthy that, as shown in Figure 2, we add one seemingly unnecessary joint
to the configuration, as one of the end points of the link chain. As a matter of fact, from
a representation perspective, the use of relative angles leads to issues in discriminating
between some configurations of the articulated object. Let us consider, for instance,
the case of an articulated object made up of 3 links, namely l1, l2 and l3, which are
connected by two joints, namely j2 (connecting l1 and l2) and j3 (connecting l2 and
l3). Then, let us set both joint angles to 90 deg. If j2 and j3 were treated as relative, in
the planning process it would be impossible to distinguish between configurations Cu,
C@, Ct and CA in Figure 4. In order to deal with this drawback, the end point joint
j1 and a related “hidden” link l0 (not shown in the Figure) can be added to one of the
articulated object’s extremes. This hidden link defines an ad hoc reference frame that
allows for discriminating among configurations characterised by the same shape, but
with different orientations. Such hidden links must be added to problem definitions.

4.2 Conditional Formulation

The conditional formulation differs from the basic one in that joint angles θj originate
from link orientations expressed with respect to a unique, typically robot-centred, refer-
ence frame, and as such are absolute. Therefore, the set of link orientations θ1, . . . , θ|L|
is assumed to be directly observable by the robot perception system. However, if a ma-
nipulation action is planned, which modifies a given joint angle θj , not only the related
link orientations θl or θl+1 (depending on whether the upstream or downstream link
is kept still) must be updated, but it is necessary to propagate such changes to all the
upstream or downstream link orientations. As a consequence, such a representation in-
creases the complexity of the planning tasks but is more robust to perception errors:
in fact, perceiving independent link orientations induces an upper bound on the error
associated with their inner angle.

The connected, angle-joint and angle-before predicates are the same
as in the basic formulation, subject to the different semantics associated with joint
angles. Also in the conditional formulation two planning operators are used, namely
increase-angle (shown in Figure 5) and decrease-angle. However, with re-
spect to the basic formulation, the effects of the operator differ. In particular, the model
assumes that we can represent which joints are affected when a link is rotated around
one of its associated joints. This is done using the affected predicate, i.e., a ternary

(:action increase-angle
:parameters (?link1 ?link2 - link
?joint - joint ?a1 ?a2 - angle)
:precondition (and
(connected ?joint ?link1)
(connected ?joint ?link2)
(not (= ?link1 ?link2))
(angle-joint ?a1 ?joint)
(angle-before ?a1 ?a2))

:effect (and
(not (angle-joint ?a1 ?joint))
(angle-joint ?a2 ?joint)
(forall (?js - joint ?a3 ?a4 - angle)
(when (and
(affected ?js ?link1 ?joint)
(not (= ?js ?joint))
(angle-joint ?a3 ?js)
(angle-before ?a3 ?a4))
(and

(not (angle-joint ?a3 ?js))
(angle-joint ?a4 ?js)))))

Fig. 5. The conditional version of increase-angle.

predicate (affected ?joint1 ?link1 ?joint2), where ?link1 is the link
that is rotated, ?joint2 is the joint around which ?link1 rotates, and ?joint1
is a joint affected by this rotation. So, if ?joint1 were affected, its angle would be
changed as well in the conditional statement and, as such, it would affect other joints
via its corresponding link.

With reference to increase-angle, as in the previous case, the joint angle
?joint, located between ?link1 and ?link2, is increased by δ, according to the
angle-before predicate. If rotating ?link2 around ?joint affects ?js, the lat-
ter is updated and affects in cascade all other joints upstream or downstream.

In terms of problem definitions, it is necessary to include the list of appropriately
defined affected predicates.

5 Experimental Evaluation

The aim of this experimental evaluation is to assess the computational performance
of the basic and conditional models, and in particular whether the proposed planning-
based approach can be effective in a real-world robot software architecture. First we
discuss the experimental settings, then we show how the two planning models scale
with increasingly difficult problems (in terms of the number of joints in the articulated
object and the granularity δ associated with link orientations).

Settings. We selected 4 planners, based on their performance in the agile track of the
2014 International Planning Competition: Madagascar (Mp) [18], Probe, SIW [15], and
Yahsp3 [23]. We also included Lpg [8] due to its widespread use in real-world planning
applications. Both Yahsp3 and Lpg do not support conditional effects.

Experiments have been performed on a workstation equipped with 2.5 Ghz Intel
Core 2 Quad processors, 4 GB of RAM and the Linux operating system.

Synthetic problem instances have been randomly generated parameterised on the
number of joints j∗ (the same as the number of links) and the number of allowed orien-
tations g∗ (which induces certain granularity values), which both affect the problem’s
size. Once j∗ and g∗ are defined, a configuration C∗ is determined by normally sam-
pling, for each link, among the finite set of possible orientations induced by g∗. The
cutoff time has been set to 300 CPU-time seconds. Generated plans have been validated
using the well-known VAL tool [10], in order to check their correctness with respect to
the planning models, and also to verify the presence of flaws.

Computational Performance. In a first series of tests we analyse the sensitivity of
planning models with respect to increasing values for j∗. It is noteworthy that in the
literature there is hardly evidence of objects manipulated by robots made up of more
than four or five joints at best. However, it seems reasonable to model flexible objects as
articulated objects with a huge number of links. In that case, the higher the number of
links, the better the approximation given by the model. We generated problem instances
in which j∗ ranges between 3 to 20, fixing g∗ = 90 deg. As such, only four orientations
are possible. For each value of j∗, three instances have been generated and the results
averaged.

Unsurprisingly, the basic model is faster than the conditional model. When using
the basic model, j∗ has no significant impact on a planner running time. In all cases,
valid plans have been found in less than 1 CPU-time second. This is due to the fact
that, in the basic model, each rotation is independent, and the final state can be quickly
reached by focusing on one joint at a time. Instead, the conditional model requires
the planner to consider the impact a rotation has on other links. Moreover, the size of
the conditional problem model exponentially increases with j∗, due to the presence of
affected predicates that need to be specified.

Figure 6 shows, for the three planners able to cope with conditional effects, how the
average runtime is affected by j∗. SIW is the most negatively affected, while Mp and
Probe share a similar trend. According to the Wilcoxon test [24], the performance of
SIW is statistically significantly worse than those of Mp and Probe. Furthermore, Probe
has statistically better performance than Mp. None of the planner solved, within the 300
CPU-time seconds cutoff, any instance with j∗ greater than 15.

When assessing the quality of plans generated using the basic model, empirical ev-
idence indicates that Mp, Probe and SIW generate plans of similar length (approx. 10
actions). Yahsp3 and Lpg find plans consistently worse than those found by the above
mentioned planners: on average, LPG (Yasp3) finds plans that are 85% (25%) longer
than those found by Mp, Probe and SIW. Instead, when using the conditional model,
SIW typically provides the shortest plans on average, followed by Probe (17% longer)
and Mp (50% longer). Interestingly, when comparing the quality of plans generated
by the same planner, on the two considered models, we can identify two different be-

 0.01

 0.1

 1

 10

 100

 4 6 8 10 12 14 16

C
P
U
-
t
i
m
e

S
e
c
o
n
d
s

Number of Joints

Average Runtime

Mp
Probe
SIW

Fig. 6. Average CPU-time seconds needed by Mp, Probe, and SIW to solve instances with j∗

from 4 to 16 using the conditional model.

haviours. Mp and Probe seem to suffer the way conditional effects propagate rotations:
plans generated with the conditional model are significantly longer. An in-depth analy-
sis suggests that such planners use many actions to fix joint angles affected by previous
manipulation actions. On the contrary, SIW seems to exploit the additional information
leveraged by conditional effects, and this is reflected by shorter plans.

In a second series of tests we investigate how g∗ affects a plan’s feasibility and
size. Intuitively, a high value for g∗ (e.g., 90 deg) implies a low number of possible
orientations (e.g., 4), thus a small number of manipulation actions must be planned,
and viceversa. We generated problem instances in which j∗ is set to 5, 10, 15, or 20.
For each size, we modelled the problem with three different values for g∗, namely 90
deg, 60 deg and 30 deg, thus leading to 4, 6 and 12 possible orientations. For each value
of j∗ and g∗, three instances have been generated and the results averaged.

As expected, also in this case, the basic model allows all the planners to generate
solution plans. As in the previous case, all instances are solved in less than 1 CPU-
time second. When considering the conditional model, the observed results show that
Probe has the best scalability. SIW and Mp run out of time also for small values of j∗,
when g∗ = 30 deg. Figure 7 presents the impact of the considered values for g∗ on
the average runtime performance of Probe. It is apparent that the granularity has a very
strong impact on planning performance: on instances with the same number of joints,
the runtime can increase up to two orders of magnitude for different granularities in link
orientations.

Finally, we executed some of the plans obtained by Probe when considering objects
with j∗ of 3 and 7 and g∗ = 90 deg, on the actual Baxter manipulator shown in Figure
1, which was controlled using the ROSPlan framework [4]. All plans were successfully
executed by the robot, which was able to manipulate the object in order to provide the
required goal configuration.

 0.01

 0.1

 1

 10

 100

 5 10 15 20

C
P
U
-
t
i
m
e

S
e
c
o
n
d
s

Number of Joints

Average Runtime

Probe-90
Probe-60
Probe-30

Fig. 7. Average CPU-time seconds needed by Probe to solve instances with j∗ equal to 5, 10, 15,
or 20, and g∗ equal to 90, 60, and 30 deg, using the conditional model.

6 Conclusion

This paper presented the use of automated planning to plan for robot manipulation of
articulated objects, which is one of the most complex tasks in robotics. We introduced
two PDDL models, based either on relative or absolute representation of links orienta-
tion. The former model requires the robotic framework to be able to provide an accurate
perception of the position of the articulated object, while the latter is more robust to per-
ception errors, at the price of a higher complexity.

Our experimental analysis, which involved four state-of-the-art planning engines
and objects of different sizes, performed on synthetically generated problem instances
and by using the ROSPlan framework for controlling a Baxter manipulator, shows that:
(i) both models allow to generate plans that are executable by a typical robotics manip-
ulator; (ii) both the models allows considered planners to efficiently solve tasks with
a realistic size; and (iii) the basic model can be fruitfully exploited when very large
objects are considered, as an approximation of flexible objects. We also observed that
the conditional model can be exploited as a challenging benchmarks for testing the ca-
pabilities of planning engines: the number of conditional effects per grounded action
can be extremely large.

We see several avenues for future work. We plan to investigate how to extend the
proposed models in order to represent multi-dimensional joint movements. We are also
interested in testing the proposed approach using different manipulators, and to test
its feasibility for representing flexible –rather than articulated– objects such as ropes.
Finally, we also envisage to study knowledge processing mechanisms to possibly im-
proving the flexibility of control processes (see, e.g., [14, 2, 21]).

References

1. Berenson, D.: Manipulation of deformable objects without modelling and simulating de-
formation. In: Proceedings of the 2013 IEEE-RSJ International Conference on Intelligent
Robots and Systems (IROS 2015). Tokyo, Japan (November 2013)

2. Borgo, S., Cesta, A., Orlandini, A., Umbrico, A.: A planning-based architecture for a recon-
figurable manufacturing system. In: Coles, A.J., Coles, A., Edelkamp, S., Magazzeni, D.,
Sanner, S. (eds.) Proceedings of the Twenty-Sixth International Conference on Automated
Planning and Scheduling, ICAPS 2016. pp. 358–366. AAAI Press (2016)

3. Buoncompagni, L., Mastrogiovanni, F.: A software architecture for object perception and
semantic representation. In: Proceedings of the Second Italian Workshop on Artificial Intel-
ligence and Robotics (AIRO 2015). Ferrara, Italy (September 2015)

4. Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras, N.,
Hurtós, N., Carreras, M.: Rosplan: Planning in the robot operating system. In: Proceedings of
the Twenty-Fifth International Conference on Automated Planning and Scheduling, ICAPS.
pp. 333–341 (2015)

5. Dang, H., Allen, P.: Robot learning of everyday object manipulations via human demonstra-
tions. In: Proceedings of the 2010 IEEE-RSJ International Conference on Intelligent Robots
and Systems (IROS 2010). Taipei, Taiwan (October 2010)

6. Elbrechter, C., Haschke, R., Ritter, H.: Folding paper with anthropomorphic robot hands us-
ing real-time physics-based modeling. In: Proceedings of the 2012 IEEE-RAS International
Conference on Humanoid Robotics (HUMANOIDS 2012). Osaka, Japan (October 2012)

7. Frank, B., Schmedding, R., Stachniss, C., Teschner, M., Burgard, W.: Learning the elasticity
parameters of deformable objects with a manipulation robot. In: Proceedings of the 2010
IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS 2010). Taipei,
Taiwan (October 2010)

8. Gerevini, A.E., Saetti, A., Serina, I.: Planning through stochastic local search and temporal
action graphs in LPG. Journal of Artificial Intelligence Research 20, 239–290 (2003)

9. Ghallab, M., Nau, D., Traverso, P.: Automated planning, theory and practice. Morgan Kauf-
mann Publishers (2004)

10. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and mixed
initiative planning using PDDL. In: 16th IEEE International Conference on Tools with Arti-
ficial Intelligence (ICTAI). pp. 294–301 (2004)

11. Jimenez, P.: Survey on model-based manipulation planning of deformable objects. Robotics
and Computer-Integrated Manufacturing 28(2), 154–163 (2012)

12. Knapper, R., Layton, T., Romanishin, J., Rus, D.: Ikeabot: an autonomous multi-robot coor-
dinated furniture assembly system. In: Proceedings of the 2013 IEEE International Confer-
ence on Robotics and Automation (ICRA 2013). Karlsruhe, Germany (May 2013)

13. Krotzsch, M., Simancik, F., Horrocks, I.: A description logic primer. arXiv:1201.4089v3
(2013)

14. Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: Oro, a knowledge man-
agement platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 3548–3553. IEEE (2010)

15. Lipovetzky, N., Ramirez, M., Muise, C., Geffner, H.: Width and inference based planners:
SIW, BFS(f), and PROBE. Proceedings of the 8th International Planning Competition (IPC-
2014) (2014)

16. McDermott, D.: The 1998 AI planning systems competition. AI Magazine 21(2), 35–55
(2000)

17. Newman, W., Chong, Z.H., Du, C., Hung, R., Lee, K.H., Ma, L., Ng, T., Swetenham, C., Tjo-
eng, K., Wang, W.: Autonomous valve turning with an Atlas humanoid robot. In: Proceedings

of the 2014 IEEE-RAS International Conference on Humanoid Robotics (HUMANOIDS
2014). Madrid, Spain (November 2014)

18. Rintanen, J.: Madagascar: Scalable planning with SAT. In: Proceedings of the 8th Interna-
tional Planning Competition (IPC-2014) (2014)

19. Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through the use of
non-rigid registration. In: M. Inaba and P. Corke (Eds.) Robotics Research, Springer Tracts
in Advanced Robotics, vol. 114. Springer International Publishing, Lausanne, Switzerland
(2016)

20. Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D., Kragic, D.:
Dual arm manipulation: a survey. Robotics and Autonomous Systems 60(10), 1340–1353
(2012)

21. Tenorth, M., Beetz, M.: Representations for robot knowledge in the knowrob framework.
Artificial Intelligence 247, 151–169 (2017)

22. Vallati, M., Chrpa, L., Grzes, M., McCluskey, T., Roberts, M., Sanner, S.: The 2014 interna-
tional planning competition: Progress and trends. AI Magazine (2015)

23. Vidal, V.: Yahsp3 and yahsp3-mt in the 8th international planning competition. In: Proceed-
ings of the 8th International Planning Competition (IPC-2014) (2014)

24. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83
(1945)

25. Yamakawa, Y., Namiki, A., Ishikawa, M.: Dynamic high-speed knotting of a rope by a ma-
nipulator. International Journal of Advanced Robotic Systems 10, 1–12 (2013)

