
University of Huddersfield Repository

Jimoh, Falilat and McCluskey, T.L.

Towards The Integration of Model Predictive Control into an AI Planning Framework

Original Citation

Jimoh, Falilat and McCluskey, T.L. (2016) Towards The Integration of Model Predictive Control
into an AI Planning Framework. In: Proceedings of the 34th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG). PlanSIG, Huddersfield.

This version is available at http://eprints.hud.ac.uk/31787/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/96771213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards The Integration of Model Predictive Control into an AI Planning
Framework

Falilat Jimoh and Thomas L. McCluskey
PARK Research group

University of Huddersfield

Abstract

This paper describes a framework for a hybrid algo-
rithm that combines both AI Planning and Model Pre-
dictive Control approaches to reason with processes and
events within a domain. This effectively utilises the
strengths of search-based and model-simulation-based
methods. We explore this control approach and show
how it can be embedded into existing, modern AI Plan-
ning technology. This preserves the many advantages of
the AI Planning approach, to do with domain indepen-
dence through declarative modelling, and explicit rea-
soning, while leveraging the capability of MPC to deal
with continuous processes computation within such do-
mains. The developed technique is tested on an urban
traffic control application and the results demonstrate
the potential in utilising MPC as a heurisic to guide
planning search.

Introduction
The area of domain independent planning involves mod-
elling a system in a knowledge-based way, with declara-
tive data structures representing goals, states, resources, ac-
tions to mention a few, and creating tools that can reason
about them logically. Plans are created as output to achieve
goal conditions in a future state. As well as the flexibil-
ity of input language, a characteristic of this approach is
that the human user can understand and inspect the output
plan, to help validate the approach, and to promote a mixed-
initiative interaction with the system operators. Automated
planning and scheduling is increasingly been used to solve
real-world planning problems. Current limitations in state-
of-the-art planning algorithms present significant limitations
when trying to plan for domains which contains continuous
numeric change. Few planning engines can input models
described by continuous processes, and the computational
complexity of the planning problem can be prohibitive with-
out an appropriate planning approach or strong heuristics.

Control Engineering researchers, on the other hand, have
developed techniques to control a continuous process by the
varying of a control variable over a fixed time horizon. The
advantages of Control Engineering approaches in this area,
such as embedded in the popular “Model Predictive Con-
trol”(MPC) technique, is that they can work with dynamical
systems described as continuously changing processes, and

output controls that take into account future events. On the
other hand, these approaches are not as flexible as the AIP
& S approaches.

This work aims to inegrate Control Engineering and AI
Planning techniques by formulating plan generation algo-
rithms which combine the advantages of both approaches
into one unified approach(Jimoh 2015). The algorithms
should be able to produce readable plans to achieve goal
conditions where the dynamical system model includes con-
tinuous processes. In this paper, a hybrid approach is pre-
sented where the Model Predictive Control (MPC) approach
is used in conjunction with a traditional state-based planning
system. This allows for the effective planning of both logical
and numerical change in a problem specification.

The resulting approach, Model predictive control Ap-
proach to Continuous Planning (MACOP), is able to gen-
erate plans in domains containing actions, events and pro-
cesses; discrete, real-valued, and interval-valued fluents; and
continuous change to quantities. While there has been a
growing amount of interest in seeking to unite work in con-
trol engineering and AI hybrid planning (e.g. (Löhr et al.
2012), MACOPs novel contribution is to use the control out-
put from an MPC routine as a heuristic within an AI planner
- that is to guide forward search planning using a discretized
problem and domain model.

This paper describes an implementation of the planner
used to control the light signals in the application area of
urban traffic conntrol using a flow model of traffic. We are
targeting those applications which require a plan to be gen-
erated a priori (rather than planning in a tight plan-execution
loop), such as in Urban Traffic Control (UTC). While given
the uncertainty in the UTC area, a plan - re-planning loop
is often necessary, but there is also a requirement to vali-
date such automated strategies by inspection prior to execu-
tion (e.g the problem to be solved might be planning for a
known road closure or predicted saturated road conditions).
This paper shows the feasibility of using this kind of hybrid
approach to generate plans for such problems involving hy-
brid states. While the paper describes a domain dependent
planner, we propose that the framework could be used with
an existing planner as the basis for a domain independent
version.

Background
Predictive controls are a branch of Control Engineering that
are used in adapting and forecasting the future trend of con-
trol processes in other to manipulates it inputs for a desir-
able result in a future time. There exist different types of
predictive controls, for example, the Receding Horizon Pre-
dictive Control(RHC); the Generalised Predictive Control
(GPC) and the Model Predictive Controls (MPC). MPC is
used to predict the future behaviour of processes or out-
put of a system over a period of time in the future. This
is achieved by computing the future input variables at each
step while minimising a cost function under disparity con-
straints on the manipulated controls and controlled variable.
MPC applies only the first set of control variables on the
controlled system and repeats the previous step with new
measured numeric variables (Veselý, Rosinov, and Foltin
2010). MPC has attracted notable attention in the control of
dynamic systems and has gained an important role in pro-
cess control. It was developed in the industrial area as an al-
ternative algorithm control to the conventional Proportional
Integrate Derivative (Bennett 1993) (PID) due to it ability
to reason with the model of a system under consideration.
The MPC formulation integrates optimal control, stochastic
control, control of processes with dead time, multi-variable
control and future references when available (Camacho and
Bordons 1999). There are various MPC algorithms, these
algorithms has been constantly improved and refined to in-
crease its robustness for real time processes (Tay 2007;
Al-Gherwi, Budman, and Elkamel 2011).

Automated Planning with continuous processes allows us
to model actions, process and events as part of domain op-
erators. This extends temporal planning by considering con-
stantly changing state variables with respect to time. Auto-
mated planning in domains which are represented with rich
notations has long been a great challenge for AI (Bresina et
al. 2013). For instance, changes occurring due to fuel con-
sumption, continuous movement, or environmental condi-
tions may not be adequately modelled through instantaneous
or even durative actions; rather these require modelling as
continuously changing processes. The combination of time
dependent problems and numeric optimisation problem cre-
ate a more challenging and hard task of time-dependent met-
ric fluents.

One of the earliest works that involves planning with con-
tinuous processes includes the Zeno system (Penberthy and
Weld 1994). In this case, processes are described using dif-
ferential equations rather than as continuous update effects,
so that simultaneous equations must be consistent with one
another rather than accumulating additive effects. McDer-
motts OPTOP system (McDermott 2003) is another early
planner to handle continuous processes. A forward search
planner that avoids grounding the representation using a
unique approach to generate heuristics(relaxed plan esti-
mates of the number of actions required to achieve the Goal)
from a given state.

More recently, the syntax and semantics of a hybrid lan-
guage was brought into the PDDL family in the form of
PDDL+ (Fox and Long 2006). TM-LPSAT (Shin and Davis
2005) was built upon the earlier LPSAT (Shin and Davis

2005). It was the first planner to implement the PDDL+ Se-
mantics and in addition had the capability of handling vari-
able durative actions. This includes durative actions with
continuous effects and duration-dependent end-effects. It
uses PDDL+ semantics to compile a collection of SAT for-
mulas from a horizon bounded continuous planning prob-
lem, together with an associated set of linear metric con-
straints over numeric variables. The compiled formulation
is passed to a SAT-based arithmetic constraint solver, LP-
SAT (Audemard et al. 2002). The SAT-solver parses trig-
gered constraints to the LP-solver, if there is no solution the
horizon is increased and the process repeats, otherwise the
solution is decoded into a plan. The novelty of TM-LPSAT
lies in the compilation of the PDDL+ semantics and decod-
ing of the SAT solver into a plan, since both solvers are well-
established systems. Kongming (Li and Williams 2008; ?)is
another domain dependent continuous planner that solves a
class of control planning problems with continuous dynam-
ics. The language used is a version of PDDL2.1 extended
to enable dynamics to be encoded. It is based on the build-
ing of fact and action layers of flow tubes, using the itera-
tive plan graph structure of Graphplan algorithm (Blum and
Furst 1995). As the graph is expands, every action produces
a flow tube which contains the valid trajectories as they de-
velop over a period of time. Reachable states at any time can
be computed using the state equations of the system starting
from a feasible region, and applying actions whose precon-
ditions intersect with the feasible region. Kongming trans-
lates a planning problem into Mixed Logical-Quadratic Pro-
gram (MLQP) using the plan-graph encoding with the con-
tinuous dynamics of the system. The planners metric objec-
tives function can be defined in terms of quadratic function
of state variable. Time is discretised to support state update
within the plan - successive layers of the graph are separated
by a constant and uniform time increment.

UPMurphi is another planner that reasons with continu-
ous processes (Penna et al. 2010). It alternatively refines a
discretisation of continuous changes until the solution to the
discretised problem validates against the original problem
specification. UPMurphi starts by discretising the continu-
ous representation of the problem. Specific values within
feasible ranges are taken as actions, giving rise to several
version of each action. The current discretisation is then
used to explicitly construct and explore the state space. Plans
are constructed in the form of planning-as-model-checking
paradigm (Cimatti et al. 1997) with no heuristic to guide the
search (users can insert their own). When a plan is found,
it is validated against the original continuous model, using
the plan validator (Fox, Howey, and Long 2005). If it fails
to find a plan at one discretisation, it iterates again at a finer
grained discretisation. Successive refinements lead to ever
denser feasible regions, which might be increasingly com-
plex to construct.

COLIN (Coles et al. 2012) is a forward-chaining heuris-
tic search planner is capable of reasoning with continuous
linear numeric change. It combines forward chaining search
of FF to prune state, with the use of a Linear Program (LP)
to check the consistency of the interacting temporal and nu-
meric constraints at each state. The Temporal Relaxed Plan-

ning Graph heuristic of CRIKEY3 (Coles et al. 2008) is also
extended to support reasoning with continuous change. A
mix integer programming is used for post processes to opti-
mise the timestamps of the actions in the plan.

As the diversity of potential planning applications has in-
creased, so has the complexity of the continuous domain
knowledge. In order to circumvent this limitation, some re-
searchers are currently relaxing the complexity of the do-
main by discretising continuous change into discrete pro-
files of linear change (Piacentini et al. 2013). in a similar
vein, in Domain Predictive Control (Löhr et al. 2012), a
discrete domain model is derived from the equations gov-
erning dynamics in the application domain, and AI plan-
ning is used to generate plans (using durative planning with
PDDL 2.1). The application area is continuous (re-)planning
in “switched hybrid systems”. The idea is to start with the
dynamical equations, and generate a discrete domain model
from that; this contrasts with the work in this paper, which
assumes that we create a symbolic domain model containing
processes, events and actions, then use MPC derived from a
model of dynamical equations as a heuristic to control for-
ward search in a symbolic planning search space. While in
the DPC work the emphasis is on applications requiring real
time control, in our work we are more interested in creating
a complete readable plan before execution.

The MACOP Framework
In overview, MACOP inputs a planning domain model and
problem, and searches through a space of nodes using a best-
first heuristic to find a complete plan. A node is a point in
a search space at which search frontiers or pathways inter-
sect or branch. Operators’ preconditions are checked against
propositions and numeric fluents at each node, if one is sat-
isfied, the operator effect is applied and the new state be-
comes the current state. The model-based numeric optimi-
sation problem within the domain model is solved at spe-
cific nodes during node exploration. The search proceeds by
applying each applicable operator to the current states in a
receding horizon until a goal state is found or the node set is
empty. The following subsection gives a description of the
details of the algorithm.

MACOP Algorithm Preliminaries
This section contains definitions that are fundamental to the
design of the planner algorithm.
Definition 1 (State) A state S is a pair 〈P,R〉, where P is
the set of atomic propositions and R is an assignment of nu-
meric variables to values. A state describes what is true of
some world at a snapshot of time assuming a Closed World
Assumption on S.
Definition 2 (Initial State) An Initial State is a state 〈P,R〉
that is true at the start of some planning problem.
Definition 3 (Goal Condition) A Goal Condition is a con-
dition G = 〈Q,N〉, where Q is a set of atomic propositions,
and N is a set of conditions on numeric variables. For a goal
to be achieved in some state (P,R), Q must be contained in
P, and the values of numeric variables in R must satisfy the
conditions in N.

Definition 4 (Domain Model) A Domain Model DM, con-
sist of:

• A set of Propositions {p1, ..., pk}
• A set of numeric Functions {n1, ...,nk}
• A set of Resources {r1, ...,rk}
• A set of Actions {a1, ...,ak}
• A set of Processes {c1, ...,ck}
• A set of Events {e1, ...,ek}

The domain description language syntax and semantics
used in this implementation is similar to PDDL+ (Fox and
Long 2006). To save space, we refer the reader to the defini-
tion of PDDL+ for prelimiary definitions. The exact defini-
tions (which are at variance a little with PDDL+) are given
in Jimoh’s thesis1. The example action, process and event
definitions in Figs 1 - 3 below, taken from the flow model of
urban traffic control that we will develop later in the paper,
illustrate the idea.

Algorithm 1 Top level algorithm of MACOP
Input:
(P,R) : initial state
G: Goal Condition
DM: Domain Model
Nc : control horizon window
Np : horizon prediction window
Output: Plan.

1: ℜ := [R]; S := []; ℘ := null;
2: n := (P,ℜ,S)
3: repeat
4: Q := {n}
5: i := 1
6: ℘ := SolveMPC(n,DM,Nc,Np,℘)
7: while Q 6= {} and i≤ Nc and NoSolution(Q) do
8: n := getBest(Q,℘)
9: N := Expand(n)

10: Q := AddTo(N,Q)
11: i := i+1
12: end while
13: if Q 6= {} and NoSolution(Q) then
14: n := getBest(Q,℘)
15: end if
16: until Q = {} or SolutionFound(Q)

Top level algorithm of MACOP
The input to the planner is the initial state, goal condition
and the domain model as defined in the preliminary defini-
tions. As well as this, tied to the particular domain that the
system is being applied to, are the fixed horizon prediction
value Np (the amount of time for which the MPC compo-
nent will form a guiding plan into the future), and the value

1”A Synthesis of Automated Planning and Model Predictive
Control Techniques and its Use in Solving Urban Traffic Control
Problem”, F. Jimoh, 2016

(:action switch_to_green
:parameters [at_junction, this_phase, from_road1, to_road2]
:precondition [(intersect at_junction this_phase from_road1 to_road2)]

[(>(queueLenght (from_road1 0.0))
(<(interuptLevel (to_road2 7.0))]

:effect ([(JflowActive at_junction this_phase from_road1 to_road2)]))

Figure 1: Sample of an Action Declaration

(:process Jtraffic_flow
:parameters [at_junction, this_phase, from_road1, to_road2]
:precondition [(JflowActive at_junction

this_phase from_road1 to_road2)]
:effect ([(decrease(queueLenght (from_road1 (* #t flowrate)))

(increase(queueLenght (to_road2 (* #t flowrate)))]))

Figure 2: Sample of an Process Declaration

(:event upstreamFilled
:parameters [at_junction, from_road1, to_road2]
:precondition [(>=(queueLenght (to_road2 capacity_of_road2)))]
:effect ([(assign(queueLenght (to_road2 capacity_of_road2))

(assign(interuptLevel (to_road2 7.0))]))

Figure 3: Sample of an Event Declaration

of the control horizon window Nc (the number of nodes that
are searched between MPC prediction episodes). Both these
values are determined a priori for the domain and kinds of
problems that the planner is aimed at.

A node in the search space is made up of 3 components:
(1) a set of propositions as previously defined as the “P”
component of a state (2) a sequence of the numerical vari-
able components in the “R” component of the state, the se-
quence capturing their history over a fixed time horizon (3)
a partial plan. Lines 1-2 initialise a node. ℘ is the variable
that stores dynamic prediction values output from the MPC
process over successive horizons, and is initially set to null.

Within the outer loop Line 4-5 initialise the search space,
and in Line 6 the MPC optimization process is called. This
returns numeric values for control variables which can be
interpreted as a set of predicted actions that if executed will
lead towards the objective function.

The inner loop (Line 7 - 12) expands search within a fixed
horizon Nc. Within the loop the best open node n is chosen
and removed from Q. This choice is informed by the output
of MPC: the node which is closest to the trajectory given by
the partial plan in the current ℘ is picked. Currently, MA-
COP uses no other built-in specific heuristics based on the
goal condition. In Line 9 the node chosen for expansion is
then expanded to return a set of successor nodes, N, which
are added to the open node set. Details of the expansion al-
gorithm is given in Algorithm 2 below. After the inner loop
exits, if no solution has been found, then the best node is
chosen, extracted from Q, and used as the start node for
a new search within a new horizon. While the selection of
one node creates incompleteness in the system, it limits the

search, and uses the direction from the MPC component to
decide which the best node is to go forward with. Line 16 re-
peats the search and optimisation processes from the current
node until SolutionFound flag is true or the search cannot
find a solution (the open node set is empty).

Expanding Search Nodes
An action is an instance of an operator within the domain
model. Its preconditions could be logical, or both logical and
numeric inequalities and its effect are logical and/or numeric
updates to the current state where the action is executed. For
instance, the action ‘switch to green’ in Fig 1 has a logical
precondition that the two roads must be intersected at the
junction and must be sharing the same green phase. It also
has numeric preconditions such as the interrupt level of the
connected road must be less that interrupt level seven. The
effect of this action changes the logical state of the phase
at the junction of the two roads to be active, which subse-
quently starts a process at that junction in the next node.

Search space expansion of the current node n occurs by
applying actions that satisfy the conditions at a node, or
by time passing for a unit of time. The effect of an action
changes the state at a node, as shown in Algorithm 2. This
makes certain assumptions on the semantics of events, such
as different orders of simultaneous events make no differ-
ence.

When a process is initiated at a given node, the process
will run while its precondition holds. Whenever there is a
process in our domain representation there must always be a
corresponding event to monitor and control the process.

A grounded process within the domain runs for a period

Algorithm 2 Algorithm for Expand(n)
Input: n
Output: N

N := {}
E := {e′|e′ is an instantiation of some event e ∈ DM, and
n makes e′.pre true };
n := apply all events in E sequentially to n
O := {o′|o′ is an instantiation of some operator o ∈ DM,
and n makes o′.pre true }
for all o′ ∈ O do

n′ := apply o′ to n
N := N∪{(n′.I,n′.ℜ, [o′]++n′.S)}

end for
P := {p′|p′ is an instantiation of some process p ∈ DM,
and n makes p′.pre true }
for all p ∈ P do

n := apply p for one time unit to n
end for
N := N∪{n}

of time once it is initiated within the search node. The time is
discretised into single step counts(E.g. t = 1,2,3...tn) where
tn is the duration of simulation of the process. Processes
are started as a result of an action initiating the process or
an event triggering the start of a process. The preconditions
could be logical or numeric inequalities and their effects are
also numeric update to the current state where the process
is activated. An example of a process initialisation is the re-
sulting effect of an action “switch-to-green” (Figure 1). This
action effect could lead to a process flow of vehicles starting,
from one road link to another, at the rate of flow of traffic
through that junction for the duration of active green phase
at the junction (Figure 2). The process would continue to
run until the specified simulation time elapses or there is an
internally generated event that halts the process.

The MPC Solver: generating and using a dynamic
prediction table
Whenever the horizon control value Nc is reached, the stored
past numeric fluents in node n are used to generate a dy-
namic prediction table over the period of prediction horizon
count Np, via the SolveMPC procedure. The generated val-
ues are passed to a numeric optimisation procedure to com-
pute the best control values, ℘, for the next set of alterations
taking into considerations all the constraints in the domain.

The optimiser is a procedure which works as a planning as
satisfiability(SAT) problem solver (originally used in (Au-
demard et al. 2002; Shin and Davis 2005)). The continu-
ous variables with their corresponding constraint values are
translated at a given search node into a linear programming
problem. The best combination of inputs that satisfies the
given numeric constraint are returned to the node.

For instance, assume Nc is set to 500 node count and Np is
set to 30 seconds. The planner keeps track of the node counts
and retrieves past numeric fluents at every 500 node count. It
will use this numeric information to generate a new dynamic

prediction table of changes in numeric values over the period
of prediction horizon of 30 seconds. The generated values
will be passed to the optimiser to compute the best actions
for the subsequent search period taking into considerations
all the constraints in the domain.

How this table is generated depends on the application;
below we illustrate this with a UTC domain.

Application of MACOP to a UTC Domain
We illustrate the working of the MACOP framework with
a specific UTC application. The application is extracted
from a town center area in the United Kingdom.The do-
main model consists of both static and dynamic parts. The
static part represents the road network topology, i.e., roads,
their capacity, length and junctions connecting the roads.
The road network is represented by a directed graph, where
edges stand for road links and vertices stand for either junc-
tions, source or sink roads. Sources are roads where vehicles
enter the network, while sink road are roads where vehicles
exit the network. The dynamic part represents the length of
queues (relating to vehicle occupancy on a link) on each road
and the flowrate of vehicles on such roads. The dynamic in-
formation changes as vehicles are moving through the road
network.

For example, if a predicate (link nLSouth wDStr) is
present in some state, then in this state the road nLSouth is
linked to wDStr, thus allowing the flow of traffic from nL-
South to wDStr if all other constraints are satisfied. A UTC
Planning Problem addresses the problem of effective navi-
gation of vehicles through a given road network from source
to sink roads while optimising traffic flow. This is equated to
minimising the accumulated queues at each of the junctions
in the network.

A “store-and-forward” traffic flow model is used to for-
mulate a state space MPC system for this work. The store-
and-forward traffic flow model was proposed in 1963 by
Gazis and Potts with the desire of getting a balanced trade-
off between control accuracy and computational efforts. The
mathematical treatment of this model is covered by various
works, and recently by Guo et al (Guo, Gang, and Zhang
2014), hence we will not repeat the mathematics here but
refer the reader to that work. The method sets up:

1. a set of equations x(k) = x(k+ 1)+K which relates the
number of vehicles in a road link x at time step k, with the
number of vehicles in the same link x at step k+1, given
the effect of those flows over one unit of time. K encapsu-
lates all the effects of flows into x from other links, all the
flows out of x into other links, as well as the traffic sig-
nal condition at that step. Flow rates are estimated using
values that are obtained from historical traffic databases.
The equations gives the basic dynamical relations in the
system: they take into account all the processes affecting
link x at once (this is somewhat different to the domain
model’s process specification in Figure 2, which specifies
one flow between two road links in isolation).

2. relations capturing all the constraints in the system: the
maximum and minimum green times, the maximum num-
ber of vehicles that can occpy each link, etc.

The series of linear equations/relations making up (i) and
(ii) are then input to a linear optimiser. The variables that the
optimiser can change are the green light times, at each junc-
tion, and the objective to be optimised (minimised) is the
sum of vehicles in queues. The output is the timings over
the look-a-head period of changes to the lights in each junc-
tion, which minimises the overall occupancy. These timings
equate to actions which change the lights over the horizon
period, and hence form heuristics to the search process in
the planner.

Setup and Evaluation
The MACOP algorithm, and the embedded MPC solver, are
implemented in Netbeans Java 8.0. The domain and problem
representation (in this case the traffic domain description)
were also developed in Java syntax to ease the parser and
integration issues. The experiments were carried out on an
Intel(R) Core(TM) i7-4702MQ CPU, 2.20GHz, with 16GB
RAM.

We evaluated the performance of MACOP on the UTC
domain previously introduced: the UTC problem is a tafffic
network problem, comprising of 12 roads connected by
junctions, 2 linked roads and 3 junctions. The number of ve-
hicles on road links is meansured by the queue length. Each
junction is designed to have more than one signal stage to
test the ability of MACOP to split the green time between the
two stages at a junction based on current state of the queue
length associated to each road at the junction. The network
model also has connected roads linking other roads without
a signaled junction, in order to test the ability of MACOP to
reason with the dynamic state of those connected roads that
are not directly linked to a junction in the network.

The plans that MACOP generates contains a list of switch
actions over time representing signal changes in the junc-
tions in the region. The switch action is executed at a time
when it anticipates a better optimum green stage than the
fixed value during search space.

We evaluated the effectiveness of the embedded MPC ap-
proach in the MACOP algorithm to optimise traffic flow dur-
ing changes in traffic situation. We tested the performance
of the planner based on its ability at controlling the signaled
junctions to accommodate for the changes in traffic situa-
tion. As no benchmark set exists yet for PDDL+ problems,
we created a variation of MACOP, a version without MPC
integrated (Fixed Signal) that reasons with numerics like a
numeric planner (Hoffmann 2003).

Both instances used the same formulation of the given do-
main and problems:

Fixed The signal duration at the junctions are fixed from
the initial state to the goal state: the planner decides what
flows are turned on/off by the signals. Hence, an action
could be to switch a (fixed duration) stage from red to
green.

Controlled The signal is fully controlled by the planner. In
this case, the signal is fixed at the initial state, but the plan-
ner can change the signal duration during search space us-
ing the embedded MPC approach in MACOP to optimise

Figure 4: Run-times of MACOP with Fixed signal (right)
and controlled (left). The y-axis shows run-time in microsec-
onds (time taken to output a complete plan), the x-axis rep-
resents the size of the queue length. Thus, problems which
start with an increased queue length indicate a more con-
gested network, and hence a more complex problem.

the green phase at a junction based on traffic demands
within the network.

We constructed several problems within the UTC domain
with increasing complexities. These problems are useful for
our evaluation as it highlights the benefits of the MPC in-
tegration (controlled signal) over the numeric AI searching
(fixed signal) mechanism. Fig 4 shows the times taken by
MACOP to solve problems in our test suite.

The same time discretisation is used t = 1.0, for all prob-
lems in our UTC domain.

We investigated the speed of MACOP on different vol-
umes of traffic and bottlenecks to test the performance of
MACOP during traffic congestion. We also evaluated the
quality of plans generated by comparing the number of ac-
tions, processes and plan length in the fix signalled plan to
the controlled signalled plan. We generated several traffic
flows by increasing the percentage of queues to create heav-
ier traffic flow in the experiment.

Discussion
The results show that both fixed and controlled strategies
perform well in lesser traffic conditions (problems with less
complexities). However, there is a vast difference between
the two instances when the traffic condition becomes heav-
ier with increasing bottlenecks (i.e increasing complexities).
The planning time of the controlled instance is steady while
the performance of the fixed time strategy gets worse with
increasing problem complexities. The total number of ac-
tions and processes in the fix instance is 45% more than the
total number of actions and processes in the controlled in-
stance. Also, the plan length of the controlled instance is
less than the plan length of the fixed instance. This gives
evidence that MACOP generates quality plans. In terms of
coverage, both configurations are able to solve the problems
in the domain, but the runtime is less in the controlled in-
stance than the fixed instance. This shows the advantage of
the more informed MACOP reaching goal conditions in less

time.
The ability to create rich representations of UTC do-

main makes it easier to reason with some logical constraints
within the road network, in contrast to a classic MPC con-
troller might not be able to handle them. The MPC approach,
on the other hand, utilising domain-dependent knowledge,
helps to dynamically control the green split which the
searching mechanism might not be able to simulate. Com-
bining the two approaches this way helps to control a sig-
nalled junction while still taking care of the logical reason-
ing within the network of roads.

At the moment, the planner works offline. The genera-
tion of plans is only based on the formal description of the
environment. The state of the system at the time of execut-
ing the plan is assumed to be adequately modelled. Hence,
a change in a state prior to plan execution is not taken into
consideration. Thus, the domain model is robust enough to
take care of the gaps or differences between the conceptual
model and the real world. In a dynamic environment where
unpredictable changes are likely to occur, however, the plan-
ner will need to have constant feedback from the effect of its
actions on the domain environment. Thus, online planning
will be employed in this situation.

Conclusion
In this paper we have described a UTC dependent, but sce-
nario and configuration independent planning system called
MACOP. It supports the encoding of domains containing
continuously changing processes, events and actions. We
presented a new approach for such problems areas, integrat-
ing MPC and search space planning, by using MPC as a con-
trol heuristic for a discretised forward search space. We de-
scribed the implementation and performance of our MACOP
hybrid algorithm, when tested on a network of connected
roads. While our implementation is not yet competitive with
state of the art hybrid planners, we have used the application
to UTC to show the feasibility and promise of this partticu-
lar type of hybrid integration. Future work includes integrat-
ing state-of-the-art heuristics into the search space planning
process to improve the performance, stability and robustness
of the planner. Also, a more efficient optimiser needs to be
employed to improve the robustness to larger networks of
constraints, rather than the simple solver that was employed
in the current implementation.

References
[Al-Gherwi, Budman, and Elkamel 2011] Al-Gherwi, W.;
Budman, H.; and Elkamel, A. 2011. A robust distributed
model predictive control algorithm. Journal of Process
Control 21(8):1127–1137.

[Audemard et al. 2002] Audemard, G.; Bertoli, P.; Cimatti,
A.; Kornilowicz, A.; and Sebastiani, R. 2002. A SAT-based
approach for solving formulas over boolean and linear math-
ematical propositions. In Proc. 18th Int. Conf. on Automated
Deduction, volume 2392, 193–208. Springer-Verlag, LNAI
Series.

[Bennett 1993] Bennett, S. 1993. A History of Control Engi-

neering 1930-1955. Hitchin, Herts., UK, UK: Peter Peregri-
nus, 1st edition.

[Blum and Furst 1995] Blum, A., and Furst, M. 1995. Fast
planning through planning graph analysis. In Proceedings of
the International Joint Conference on Artificial Inteligence
(IJCAI-95).

[Bresina et al. 2013] Bresina, J. L.; Dearden, R.; Meuleau,
N.; Ramakrishnan, S.; Smith, D. E.; and Washington, R.
2013. Planning under continuous time and resource uncer-
tainty: A challenge for ai. CoRR abs/1301.0559.

[Camacho and Bordons 1999] Camacho, E., and Bordons, C.
1999. Model predictive control. London: Springer.

[Cimatti et al. 1997] Cimatti, A.; Giunchiglia, F.;
Giunchiglia, E.; and Traverso, P. 1997. Planning via
model checking: A decision procedure for r. In Steel, S.,
and Alami, R., eds., ECP, volume 1348 of Lecture Notes in
Computer Science, 130–142. Springer.

[Coles et al. 2008] Coles, A. I.; Fox, M.; Long, D.; and
Smith, A. J. 2008. Planning with problems requiring tem-
poral coordination. In Proc. 23rd AAAI Conf. on Artificial
Intelligence.

[Coles et al. 2012] Coles, A. J.; Coles, A.; Fox, M.; and
Long, D. 2012. Colin: Planning with continuous linear nu-
meric change. J. Artif. Intell. Res. (JAIR) 44:1–96.

[Fox and Long 2006] Fox, M., and Long, D. 2006. Mod-
elling mixed discrete-continuous domains for planning. J.
Art. Int. Res. (JAIR) 27:235–297.

[Fox, Howey, and Long 2005] Fox, M.; Howey, R.; and
Long, D. 2005. Validating plans in the context of processes
and exogenous events. In Veloso, M. M., and Kambhampati,
S., eds., AAAI, 1151–1156. AAAI Press / The MIT Press.

[Guo, Gang, and Zhang 2014] Guo, C.; Gang, X.; and
Zhang, M. 2014. Model predictive control implementation
and simulation for urban traffic networks. In Proceedings of
2014 IEEE International Conference on Service Operations
and Logistics, and Informatics, 334–340.

[Hoffmann 2003] Hoffmann, J. 2003. The Metric-FF Plan-
ning System: Translating “Ignoring Delete Lists” to Nu-
meric State Variables. J. Art. Int. Res. (JAIR) 20:291–341.

[Jimoh 2015] Jimoh, F. 2015. A synthesis of automated plan-
ning and model predictive control techniques and its use in
solving urban traffic control problem.

[Li and Williams 2008] Li, H., and Williams, B. 2008. Gen-
erative systems for hybrid planning based on flow tubes.
In Proc. 18th Int. Conf. on Aut. Planning and Scheduling
(ICAPS).

[Löhr et al. 2012] Löhr, J.; Eyerich, P.; Keller, T.; and Nebel,
B. 2012. A planning based framework for controlling hybrid
systems. In ICAPS.

[McDermott 2003] McDermott, D. 2003. Reasoning about
Autonomous Processes in an Estimated Regression Planner.
In Proc. 13th Int. Conf. on Aut. Planning and Scheduling
(ICAPS).

[Penberthy and Weld 1994] Penberthy, S., and Weld, D.
1994. Temporal Planning with Continuous Change. In

Proc. 12th Nat. Conf. on AI (AAAI), 1010–1015. AAAI/MIT
Press.

[Penna et al. 2010] Penna, G. D.; Intrigila, B.; Magazzeni,
D.; and Mercorio, F. 2010. A pddl+ benchmark problem:
The batch chemical plant. In ICAPS’10, 222–225.

[Piacentini et al. 2013] Piacentini, C.; Alimisis, V.; Fox, M.;
and Long, D. 2013. Combining a temporal planner with
an external solver for the power balancing problem in an
electricity network. In ICAPS.

[Shin and Davis 2005] Shin, J., and Davis, E. 2005. Pro-
cesses and Continuous Change in a SAT-based Planner. Art.
Int. (AIJ) 166:194–253.

[Tay 2007] Tay, M. 2007. Model predictive cost control.
Control Engineering 54(8):IE9.

[Veselý, Rosinov, and Foltin 2010] Veselý, V.; Rosinov, D.;
and Foltin, M. 2010. Robust model predictive control design
with input constraints. ISA Transactions 49(1):114–120.

	Introduction
	Background
	The MACOP Framework
	MACOP Algorithm Preliminaries
	Top level algorithm of MACOP
	Expanding Search Nodes
	The MPC Solver: generating and using a dynamic prediction table

	Application of MACOP to a UTC Domain
	Setup and Evaluation
	Discussion
	Conclusion

