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Highlights : 

 The signaling functions of plant 2-Cys peroxiredoxins remain elusive. 

 2-Cys PRX partners have been isolated using a non-targeted approach. 

 More than 65 potential plastidial partners have been identified in leaf extracts. 

 The approach is validated by the presence of known 2-Cys PRX partners. 

 The data provide perspectives for characterizing plant 2-Cys PRX functions. 

 

Abstract 

Peroxiredoxins are ubiquitous thiol-dependent peroxidases for which chaperone and signaling 

roles have been reported in various types of organisms in recent years. In plants, the 

peroxidase function of the two typical plastidial 2-Cys peroxiredoxins (2-Cys PRX A and B) 

has been highlighted while the other functions, particularly in ROS-dependent signaling 

pathways, are still elusive notably due to the lack of knowledge of interacting partners. Using 

an ex vivo approach based on co-immunoprecipitation of leaf extracts from Arabidopsis 

thaliana wild-type and mutant plants lacking 2-Cys PRX expression followed by mass 

spectrometry-based proteomics, 158  proteins were found associated with 2-Cys PRXs. 

Already known partners like thioredoxin-related electron donors (Chloroplastic Drought-

induced Stress Protein of 32 kDa, Atypical Cysteine Histidine-rich Thioredoxin 2) and 

enzymes involved in chlorophyll synthesis (Protochlorophyllide OxidoReductase B) or carbon 

metabolism (Fructose-1,6-BisPhosphatase) were identified, validating the relevance of the 

approach. Bioinformatic and bibliographic analyses allowed the functional classification of 

the identified proteins and revealed that more than 40% are localized in plastids. The possible 

roles of plant 2-Cys PRXs in redox signaling pathways are discussed in relation with the 

functions of the potential partners notably those involved in redox homeostasis, carbon and 

amino acid metabolisms as well as chlorophyll biosynthesis.  

 
 
Keywords: Arabidopsis thaliana; co-immunoprecipitation; peroxiredoxin; protein interaction; 

proteomics.  
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1. Introduction 

 Peroxiredoxins (PRXs) are a family of non-heme peroxidases able to reduce H2O2 and 

organic peroxides using thiols as electron donors [1]. Their catalytic activity is carried out by 

a conserved peroxidatic cysteine (CysP). Typical 2-Cys PRXs are active as a homodimer and 

possess a second conserved resolving Cys (CysR) [2]. The 2-Cys PRX catalytic cycle consists 

of CysP oxidation by peroxide, generation of a sulfenic acid form (CysP-SOH), formation of a 

disulfide bond with CysR and reduction of this bond by an electron donor related to the 

thioredoxin (TRX) family [3]. Upon pro-oxidative conditions, the sulfenic acid form in 2-Cys 

PRXs from eukaryotes can be overoxidized to sulfinic (CysP-SO2H) or sulfonic (CysP-SO3H) 

acid forms leading to inactivation of the peroxidase activity [4]. In Saccharomyces cerevisiae 

and human cells, oxidative treatment or heat shock lead to 2-Cys PRX overoxidation 

concomitant with modifications in conformation and formation of high molecular weight 

complexes. This structural modification is linked to a functional switch from peroxidase to 

chaperone activity [5, 6]. 

 Further, in yeast and animal cells, a signaling role of 2-Cys PRXs has been recently 

highlighted. 2-Cys PRXs can interact with other proteins and regulate their activity as a 

function of their redox state as shown in yeast for the Tpx1 PRX and the Pap1 transcription 

factor [7]. Currently, 18 proteins regulated by PRXs have been identified using mainly 

targeted approaches like co-immunoprecipitation, pull-down or yeast two-hybrid assays. 

These partner proteins are involved in various processes related to activation of stress-

responses and phosphorylation signaling pathways, or regulation of cellular differentiation 

and apoptosis (for review see [8]). Conversely, modulation of the 2-Cys PRX peroxidase 

activity by binding proteins has also been shown. For example, the peroxidase activity is 

inhibited by phosphorylation of the Thr89 residue in human PRX by the Cdk5-p35 kinase [9] 

or by interaction with the macrophage migration inhibitory factor (MIF) [10] while the 

interaction with cyclophilin A increases the peroxidase activity of another type of PRX in 

mammals [11].   

 In plants, typical 2-Cys PRXs have been first discovered in barley and spinach [12] 

and further characterized in Arabidopsis thaliana, where two plastidial isoforms (A and B) 

sharing 85% homology are present. These abundant proteins represent ca. 1% of the 

chloroplastic proteins [13, 14]. An Arabidopsis thaliana double mutant fully knocked-out for 

the expression of 2-Cys PRX A and 2-Cys PRX B genes has been recently characterized. This 

mutant displays reduced growth under long day conditions and is more sensitive than wild 
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type (Wt) to high light [15]. It was proposed that 2-Cys PRXs take part in an alternative 

water-water cycle able to detoxify H2O2, protecting the photosynthetic structures against 

oxidative damage upon environmental constraints [15]. Accordingly, overexpression of 2-Cys 

PRX in potato plants leads to tolerance against methyl viologen or high temperature [16]. 

 Compared to other organisms, the chaperone and signaling functions of 2-Cys PRXs 

remain poorly characterized in plants. In Chinese cabbage seedlings, 2-Cys PRX complexes 

from 60 to 200 kDa are mostly present upon optimal growth conditions while upon stress 

conditions high molecular-weight complexes (ca. 700 kDa) are observed [17]. Separation of 

these complexes by size exclusion chromatography revealed a peroxidase activity for the 

former and a chaperone activity for the latter [17]. However, we recently reported no obvious 

relationship between 2-Cys PRX overoxidation and oligomerization upon physiological 

environmental constraints [18], suggesting that the 2-Cys PRX chaperone function is not 

essential in planta. So far, few plant 2-Cys PRX partners have been identified [19, 20]. 

Affinity chromatography and co-immunoprecipitation experiments showed that the unusual 

CDSP32 (Chloroplastic Drought-induced Stress Protein of 32 kDa) TRX reduces and interacts 

with 2-Cys PRXs [21, 22]. Another TRX-related protein, NTRC (NADPH-dependent 

Thioredoxin Reductase C), efficiently reduces in vitro 2-Cys PRXs [20, 23]. FRET 

experiments confirmed this interaction in vivo in Arabidopsis protoplasts [24]. In other 

respects, Dangoor et al. [25] showed that 2-Cys PRXs oxidize an Atypical Cysteine Histidine 

rich Thioredoxin, ACHT1, and transmit a redox signal regulating the photosynthetic electron 

transport chain during the day/night transition. Moreover, the ADP-glucose 

pyrophosphorylase (AGPase) activity is also controlled via the oxidation of another ACHT-

type TRX, ACHT4, by 2-Cys PRXs [26]. Finally, plant 2-Cys PRXs have been reported to 

interact in vitro with some proteins which do not belong to the TRX superfamily: an enzyme 

involved in carbon metabolism, Fructose-1,6-BisPhosphatase (FBPase) [27], an enzyme 

involved in chlorophyll synthesis, (Protochlorophyllide OxidoReductase B, POR B) [28] and 

a cyclophilin, Cyp20-3, participating in protein folding [24, 29].  

 The analysis of 2-Cys PRX oligomerization status revealed the presence of the protein 

in complexes of various sizes in plant extracts [18]. We wondered whether these oligomers 

could be hetero-complexes formed with partner proteins as reported in other organisms [8]. 

To test this hypothesis, we developed a non-targeted approach based on co-

immunoprecipitation from leaf extracts of Arabidopsis thaliana combined with mass 

spectrometry-based proteomics. This approach led to the identification of numerous proteins 

potentially associated with plant 2-Cys PRXs.  
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2. Materials and methods 

2.1. Plant materials and growth conditions 

 Arabidopsis thaliana (cv. Col-0) plants were grown from sowing in soil under an 8-h 

photoperiod and a photon flux density of 200 µmol photons.m-2.s-1 with a temperature regime 

of 22°C/18°C (day/night) and a relative humidity of 55% during six weeks. Plants were 

alternatively watered with tap water and a Coïc-Lesaint nutritive solution [30] every two days. 

One T-DNA double mutant line for the 2-Cys PRX A and 2-Cys PRX B genes, here 

abbreviated 2cysprx produced from crossing the GK_295C05 and SALK_017213 lines was 

used [15, 18].  

 

2.2. Protein preparation and co-immunoprecipitation assays 

 Following leaf grinding in liquid nitrogen, soluble proteins were extracted under 

native conditions using phosphate buffer pH 7,4 (137 mM NaCl, 47 mM KCl, 10 mM 

Na2HPO4, 2 mM KH2PO4) containing 1 mM PMSF, but no reductant to preserve the redox 

status of protein complexes. Following vigorous shaking at 4°C for 20 min and centrifugation 

(20 min, 21,500 g, 4°C), the supernatant was stored in ice and immediately used for co-

immunoprecipitation. Protein concentration was determined using the “Protein Quantification 

BCA Assay” kit (Interchim). Co-immunoprecipitation experiments were performed using the 

Pierce® Co-Immunoprecipitation kit (Ref. 26149, Thermo Scientific) according to 

manufacturer’s recommendations. Antibodies raised against 2-Cys PRX (50 µL of crude 

serum [21]) were immobilized on 50 µL of resin beads under slow agitation at room 

temperature for 3 h 30 min. One mg of proteins from crude leaf extracts in 400 µL phosphate 

buffer was incubated with the resin under slow agitation at 4°C for 30 min. Flow-through was 

then collected by centrifugation (1 min, 1,000 g) and the resin was washed five times before 

elution using the appropriate buffers. The eluted proteins were separated by SDS-PAGE for 

either silver nitrate staining, western blot or mass spectrometry analyses.  

 

2.3.Silver nitrate staining 

 Silver nitrate staining was performed using the method developed by Heukeshoven 

and Dernick [31]. Briefly, after SDS-PAGE migration, the gel was rinsed three times in 

distilled water for 5 min and incubated to fix proteins in 50% ethanol and 10% acetic acid for 

at least 30 min, then incubated in 40% ethanol, 0.8 M sodium acetate, 0.025% (v/v) 
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glutaraldehyde and 8 µM sodium thiosulfate for 30 min. After 3 washings in distilled water, 

proteins were stained by incubating gels in 6 µM silver nitrate and 0.04% formaldehyde for 

30 min, followed by incubation for a few min in 0.24 M sodium carbonate and 0.04% (v/v) 

formaldehyde. The reaction was stopped in 43 mM Na2-EDTA and gels were conserved in 

water to take photographs. 

 

2.4.Immunoblot analysis 

 Proteins separated in SDS-PAGE gels were electro-blotted onto 0.45 µm nitrocellulose 

(Pall Corporation) to perform immunoblot analysis. The At2-Cys PRX antiserum raised 

against the recombinant purified 2-Cys PRX A [21] was used at a dilution of 1:10,000. Bound 

antibodies were detected using an anti-rabbit immunoglobulin G coupled to alkaline 

phosphatase (Sigma) at a dilution of 1:10,000. 

 

2.5.Mass spectrometry analysis, protein identification and validation 

2.5.1. Protein digestion.  

Proteins from eluates were stacked in the top of a SDS-PAGE gel (NuPAGE 4-12%, 

Invitrogen) before Coomassie blue staining (R250, Bio-Rad). Gel bands corresponding were 

manually excised and cut in pieces before being washed by 6 successive incubations of 15 

min in 25 mM NH4HCO3 containing 50% (v/v) acetonitrile. Gel pieces were then dehydrated 

in 100 % acetonitrile and incubated at 53°C with 10 mM DTT in 25 mM NH4HCO3 for 45 

min and in the dark with 55 mM iodoacétamide in 25 mM NH4HCO3 for 35 min. Alkylation 

was stopped by adding 10 mM DTT in 25 mM NH4HCO3 and mixing for 10 min. Gel pieces 

were then washed again by incubation in 25 mM NH4HCO3 before dehydration with 100% 

acetonitrile. Modified trypsin (Promega, sequencing grade) in 25 mM NH4HCO3 was added 

to the dehydrated gel pieces for an overnight incubation at 37°C. Peptides were then extracted 

from gel pieces in three 15-min sequential extraction steps in 30 µL of 50% acetonitrile, 30 

µL of 5% formic acid and finally 30 µL of 100% acetonitrile. The pooled supernatants were 

then vacuum-dried. 

2.5.2. Nano-LC-MS/MS analyses.  

The dried extracted peptides were resuspended in 5% acetonitrile and 0.1% 

trifluoroacetic acid and analysed by online nanoLC-MS/MS (Ultimate 3000, Dionex and 

LTQ-Orbitrap Velos pro, Thermo Fischer Scientific). Peptides were sampled on a 300 µm x 5 
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mm PepMap C18 precolumn and separated on a 75 µm x 250 mm C18 column (PepMap, 

Dionex). The nanoLC method consisted in a 120-min gradient ranging from 5% to 45% 

acetronitrile in 0.1% formic acid at a flow rate of 300 nL.min-1. MS and MS/MS data were 

acquired using Xcalibur (Thermo Fischer Scientific). Spray voltage and heated capillary were 

set at 1.4 kV and 200°C, respectively. Survey full-scan MS spectra (m/z = 400–1600) were 

acquired in the Orbitrap with a resolution of 60,000 after accumulation of 106 ions (maximum 

filling time: 500 ms). The twenty most intense ions from the preview survey scan delivered by 

the Orbitrap were fragmented by collision induced dissociation (collision energy 35%) in the 

LTQ after accumulation of 104 ions (maximum filling time: 100 ms). 

 2.5.3. Data analyses.  

Data were processed automatically using Mascot Daemon software (version 2.5.1, 

Matrix Science). Concomitant searches against Uniprot (Arabidopsis thaliana taxonomy, 

January 2016 version) and classical contaminant protein sequence (homemade) databases and 

the corresponding reversed databases were performed using Mascot (version 2.5). ESI-TRAP 

was chosen as the instrument, trypsin/P as the enzyme and 2 missed cleavage allowed. 

Precursor and fragment mass error tolerances were set at 10 ppm and 0.6 Da, respectively. 

Peptide modifications allowed during the search were: carbamidomethyl (C, fixes) acetyl (N-

ter, variable) and oxidation (M, variable). The Proline software was used to filter the results 

(conservation of only rank 1 peptides, peptide identification FDR < 1% as calculated on 

peptide scores by employing the reverse database strategy, minimum peptide score of 25, 

peptide length ≥ 7, and minimum of 1 specific peptide per identified protein group) before 

performing a compilation, grouping and comparison of the protein groups from the samples. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE [32] partner repository with the dataset identifier PXD003923. 

To be considered as a potential binding partner of 2-Cys PRX, a protein must be 

identified only in the Wt sample with a minimum specific spectral count of 3 or be found 

enriched at least 5 times in this sample compared to the 2cysprx control.   
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3. Results and Discussion 

3.1. Isolation of 2-Cys PRX partners 

 To identify putative partners of Arabidopsis typical 2-Cys PRXs, we developed a non-

targeted strategy based on co-immunoprecipitation. This ex vivo approach has proven to be 

valuable to isolate physiological partners of various types of plant proteins [22, 33, 34]. 

Particularly, the use of extracts from non-modified plants provides several advantages 

including the use of the endogenous non-tagged protein to trap partners. Further, we also used 

crude leaf protein extracts from 2cysprx mutant plants as a negative control. The comparison 

of the silver nitrate profiles and western blot analyses showed the absence of 2-Cys PRX in 

elution samples from 2cysprx while it was highly abundant in Wt samples, demonstrating the 

suitability of the technique to isolate potential 2-Cys PRX partners (Fig. 1). Most 

interestingly, single bands and stained areas were clearly and specifically detected in elution 

fractions from Wt samples compared to those from 2cysprx samples. 

 Mass spectrometry-based proteomic analysis of the elution fractions recovered from 

Wt and 2cysprx plants and spectral counting-based comparison (Suppl. Table 1) led to the 

identification of 158 proteins specifically present or highly enriched in Wt extracts compared 

to 2cysprx extracts (Fig.2, Suppl. Table 2). As expected, 2-Cys PRXs A and B were only 

found in Wt samples and were the most abundant proteins identified, consistent with the 

results shown in Fig. 1 and the fact that 2-Cys PRXs form dimers and homo-oligomers [3]. 

These results are in agreement with our recent report revealing that plant 2-Cys PRXs are 

present in oligomers with a size range from 40 to 160 kDa, which could be homo-oligomers 

or hetero-complexes formed with partner proteins [18]. Altogether, these data validate the 

usefulness of co-immunoprecipitation as a non-targeted approach to identify partners of 

PRXs. To our knowledge, such a strategy has not been used to trap PRX partners in extracts 

of native proteins in the plant field, and only once in other organisms to isolate PRX V 

partners in mouse kidney extracts, allowing the identification of 17 potential partners [35]. 

 

3.2. Analysis of identified partners 

 The 158 proteins found associated to 2-Cys PRXs are involved in various biological 

functions (Fig. 2 and Suppl Table 2). The main represented groups are related to antioxidant 

mechanisms, metabolisms of carbon and amino acid, and proteolysis. In this work, we chose 
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to use crude leaf extracts for co-immunoprecipitation assays, and not purified chloroplasts 

where 2-Cys PRXs are localized. Indeed, the method used here to prepare protein samples is 

rather simple and lasts ca. 40 min whereas the purification of chloroplasts on Percoll gradients 

requires much more time and several centrifugation and resuspension steps, during which 

destabilization of PRX-partner complexes might occur. However, as a consequence, 

numerous proteins found to interact with 2-Cys PRX (58%) localize outside plastids (Fig. 3). 

These interactions can be considered to be non-specific and non-relevant from a physiological 

point of view, but it is tempting to speculate that non-plastidial partners might constitute 

partners of the PRXs present in other subcellular compartments like cytosolic PRXs II and 

nuclear 1-Cys PRX. Among these non-plastidial proteins, we found 15 proteins involved in 

proteolytic mechanisms, including several subunits of the 26S proteasome. In animal cells, the 

interaction between the typical 2-Cys PRX 1 and the Omi/HtrA2 protease leads to increased 

activity of the latter [36]. In other respects, it has been suggested in mouse that the circadian 

oscillations of 2-Cys PRXs overoxidation are linked to increased degradation by the 20S 

proteasome [37]. Our results suggest that plant PRXs could also be part of proteolytic 

complexes and function in processing steps necessary for recognition and/or degradation by 

the proteasome.  

 Then, we focused our attention on the partners localized in plastids. We noticed that 

more than 40% (67) of the 158 proteins identified are localized in this compartment (Fig. 3). 

Table 1 summarizes the names, numbers of peptides and specific spectral counts obtained for 

these putative partners. Most interestingly, among these 67 proteins, we identified several 

previously characterized 2-Cys PRX partners like CDSP32, fructose-1,6-bisphosphatase and 

PORB [20, 21, 22, 24, 27, 28] or proteins for which gene expression is strongly co-regulated 

at the transcript level with that of the 2-Cys PRX A gene like the 50S ribosomal protein L21, 

and PRX Q [24]. These data confirm the relevance of the co-immunoprecipitation method 

used to identify 2-Cys PRX partners in plant leaf extracts. 

 

3.2.1. 2-Cys PRX reductants 

 Among the eleven proteins participating in redox homeostasis and found as potential 

partners of 2-Cys PRXs, one protein of the TRX family, CDSP32, known as a 2-Cys PRX 

electron donor is present. CDSP32 is an atypical plastidial TRX displaying an increased 

abundance upon environmental constraints [38]. Using CDSP32 active-site mutants and 

affinity chromatography, Broin et al. [21] reported that the TRX forms a hetero-complex with 
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the 2-Cys PRX. Moreover, co-immunoprecipitation using antibodies raised against CDSP32 

also revealed the CDSP32-2-Cys PRX interaction in potato leaf extracts [22]. Finally, the in 

vivo 2-Cys PRX redox status has been shown to depend on the presence of CDSP32 using 

various methods [18, 39]. Another atypical TRX, ACHT2, is 5-fold more abundant in Wt than 

in 2cysprx samples. Interestingly, this TRX belongs to a family, two members of which, 

ACHT1 and ACHT4, have been recently identified as plant 2-Cys PRX partners [25, 26]. 

Taken collectively, these data indicate that CDSP32 and ACHTs likely constitute 

physiological electron donors to 2-Cys PRXs.  

 Other TRXs and TRX-like proteins (TRXs y2, x, m1, m2, m4, f1, f2, z, NTRC and h3) 

have been identified in our study, but display abundances below the fixed cut-offs to decree a 

protein as a potential binding partner of 2-Cys PRXs (Supp. Table 1). Of note, most of them, 

except TRX h3, are localized in plastids suggesting that 2-Cys PRXs preferentially bind the 

TRXs located in this organelle and not the numerous TRX isoforms located in other cell 

compartments. The interaction between 2-Cys PRXs and NTRC, which has been described as 

an efficient physiological reductant [18, 40] has been reported based on FRET experiments in 

Arabidopsis protoplasts [24]. The low enrichment of NTRC in Wt samples in our study could 

result from the fact that the NTRC-2-Cys PRX complex is formed by homodimers of each 

component [20] and could be destabilized during the co-immunoprecipitation experimental 

conditions. In other respects, TRX x, which has been shown as the most efficient 2-Cys PRX 

electron donor in vitro [19], was found in Wt samples below the fixed cut-offs (Suppl. Table 

1). In line with this finding, Pulido et al. [41] suggested that this protein was not an essential 

electron donor in vivo for 2-Cys PRXs and Cerveau et al. [18] did not observe any change in 

the 2-Cys PRXs overoxidation level in an Arabidopsis trx x mutant, but substantial 

modifications in this level in Arabidopsis and potato plants deficient in NTRC or CDSP32, 

respectively. On the basis of all these data, we can thus presume that typical TRXs are less 

efficient to reduce plant 2-Cys PRXs than TRX-related proteins such as CDSP32, ACHTs and 

NTRC.  

 Finally, SRX, which catalyzes in planta the reduction of overoxidized 2-Cys PRXs 

[42], has not been identified in our study. Site-directed mutagenesis experiments on human 

SRX and 2-Cys PRXs revealed a direct interaction between the two proteins [43]. The 

absence of this partner in our work might be explained by a weak interaction between the two 

proteins or by a very low level of SRX expression in plants. Indeed, western blot analysis of 

Arabidopsis SRX needs a large amount of leaf proteins and leads to a very weak signal [18], 

likely indicating a very low abundance of the protein. This is in agreement with the available 
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data in Arabidopsis on the expression level of SRX which is much lower than that of 2-Cys 

PRX genes (Arabidopsis eFP Browser; http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi).  

 

3.2.2. Other proteins involved in the redox homeostasis maintenance 

Regarding the other partners exhibiting antioxidant functions or involved in the 

maintenance of cell redox homeostasis (Table 1), two proteins implicated in the chloroplastic 

ascorbate-glutathione cycle have been identified specifically in Wt samples: one glutathione 

S-transferase (GST), dehydroascorbate reductase 3 (DHAR3), and one glutathione reductase, 

GR2. This cycle is involved in the removing of the high H2O2 amounts produced in 

chloroplast during the light period [44]. Glutathione reductases are enzymes catalyzing the 

reduction of oxidized glutathione GSSG into reduced glutathione GSH at the expense of 

NADPH. GR2 is localized in plastids and is also essential for root growth [45]. DHAR3 is a 

monomeric GST-like protein which is active as a thiol transferase, but does not exhibit any 

glutathione conjugating activity like other GSTs [46]. In Arabidopsis thaliana, the GST 

superfamily consists of 53 genes, representing at least six classes [47]. Another plastidial 

GST, GST F8 has been identified as interacting with 2-Cys PRXs (Table 1). This GST is a 

marker of early stress/defense responses [48, 49] and belongs to the phi class, which exhibits 

glutathione conjugating and glutathione peroxidase activities [49]. It is worth mentioning that 

in human cells, the 1-Cys PRX monomeric type can form complexes with a very distinct type 

of glutathione-S-transferase (π) sharing ca. 20% homology with GSTF8 and DHAR3 [50]. 

Interestingly, we also found among the partner proteins involved in the glutathione 

metabolism the first enzyme catalyzing the synthesis of this compound, glutamate-cysteine 

ligase (GCS) (Table 1). Altogether, these data suggest the occurrence of interplays between 2-

Cys PRXs, synthesis of glutathione and detoxification mechanisms depending on this 

antioxidant compound. 

 More surprisingly, among the proteins identified as associated to 2-Cys PRXs, we 

found two isoforms of an enzyme also implicated in the detoxification of ROS, but not related 

to thiol reductases: the plastidial [Fe] and [Cu-Zn] superoxide dismutases (Table 1), which 

dismute superoxide (O2·-) to hydrogen peroxide (H2O2) [51] and are essential in the 

maintenance of plastidial redox homeostasis, due to the production of superoxide at the level 

of photosystem I. Of note, [Cu-Zn] SOD, which possesses three cysteines is also a TRX 

partner [52] and thus could be regulated by various types of redox signals. Moreover, another 

type of PRX, PRXQ, one of the four PRXs located in plastids and having antioxidant 
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functions [53], was also found in the Wt sample. These findings suggest the existence of 

interactions between the two types of PRXs or the existence of super-complexes containing 

both types of PRXs and their electron donors. Of note, both PRXs can be reduced by the 

atypical CDSP32 TRX [22]. 

The identification of eleven proteins interacting with Arabidopsis 2-Cys PRXs, 

possessing antioxidant functions and involved in the maintenance of redox homeostasis is 

consistent with the role of these peroxidases in the control of plastidial redox homeostasis 

which is a key parameter for the proper development and growth of plants [15, 54]. This 

suggests that 2-Cys PRXs likely act in concert with enzymatic actors related to the ascorbate-

glutathione cycle or enzymes like SODs that detoxify reactive oxygen species (ROS) other 

than hydrogen peroxide. 

 

3.2.3. Proteins involved in the metabolism of amino acids 

Among the eight proteins involved in the metabolism of amino acids (Table 1), we 

found two members of the 5’-adenylylsulfate reductase (APR) family. APR catalyzes the 

reduction of activated sulfate to sulfite, a key reaction in the sulfate reduction pathway leading 

to the synthesis of cysteine and methionine [55, 56]. In addition, it possesses a TRX-like C-

terminal domain [55, 57], which could interact with 2-Cys PRXs. This could lead to a thiol 

exchange between the two types of proteins and regulation of the activity of APR enzymes.  

We also found ferredoxin-dependent glutamate synthase 1 (Fd-GOGAT) in this group. In 

Arabidopsis thaliana, there are two ferredoxin- or NADH-dependent GOGAT participating in 

the assimilation of ammonium into glutamate in leaves and roots, respectively [58]. Finally, 

LL-diaminopimelate aminotransferase, which is involved in the biosynthesis of lysine in 

plants by catalyzing the interconversion of the tetrahydrodipicolinate and the LL-

diaminopimelate [59], has been also detected only in Wt samples. In Arabidopsis thaliana, 

this protein activates defense signaling mechanisms involving salicylic acid [60]. All these 

data reveal that 2-Cys PRXs are able to interact with enzymes participating in the synthesis of 

various types of amino acids. Of note, the Arabidopsis thaliana mutant knockout for the 

expression of both 2-Cys PRX A and B genes displays under high light a decreased content in 

aromatic amino acids [15]. 
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3.2.4. Proteins involved in protein folding 

Our interactomics approach allowed identifying six 2-Cys PRX partners involved in 

protein folding (Table 1). Two of them, CYP38 and CYP37, display a peptidyl-prolyl cis-

trans isomerase activity and belong to the cyclophilin (CYP) family. Interestingly, based on 

DNA-protecting assays, plastidial 2-Cys PRXs A and B have been reported to interact with 

another member of the CYP family, CYP 20-3. They have been first proposed to be reduced 

by the two cysteines of this partner [29]. In our approach CYP 20-3 was found under the fixed 

cut-off, but 4-fold more abundant in Wt than in 2cysprx samples (Suppl. Table 1). 

Muthuramalingam et al. [24] reported that CYP20-3 could promote the dissociation of 2-Cys 

PRX oligomers in vitro and consequently inhibit the chaperone function of these complexes. 

Recently, it has been proposed that this dissociation is pH-dependent and that 2-Cys PRX–

CYP20-3 complexes form a redox-dependent regulatory module in the chloroplast [61]. Most 

interestingly, it has been also shown that the addition of stromal extracts modulates in vitro 

the dissociation dynamic of these complexes [61]. This indicates that other proteins 

participate in the stability of these complexes and we can speculate that some 2-Cys PRX 

interacting proteins identified in this work fulfil such a function. In other respects, the study of 

cyp 20-3 mutants in Arabidopsis revealed that CYP20-3 functions in the repair of 

photodamaged photosystem II and in responses to oxidative stress [62, 63]. Consistently, 

another potential partner of 2-Cys PRXs, CYP38, is involved in photosystem II assembly by 

guiding the proper folding of the D1 protein [64]. These data indicate that 2-Cys PRXs, via 

interactions with CYP proteins, might participate in the maintenance of the photosynthetic 

structures under environmental constraints. 

 

3.2.5. Proteins involved in chlorophyll synthesis 

 Four proteins involved in chlorophyll synthesis have been identified (Table 1). In this 

class, we found a known 2-Cys PRX partner, protochlorophyllide reductase B (POR B). 

Enzymatic photoreduction of protochlorophyllide to chlorophyllide is the first step in 

chlorophyll biogenesis and is mediated by POR oxidoreductases [28]. Arabidopsis mutants 

deficient in NTRC, a described electron donor to plant 2-Cys PRXs, show impaired 

chlorophyll biosynthesis and accumulate intermediate products preceding the 

protochlorophyllide synthesis step [28]. Based on in vitro assays showing that 

protochlorophyllide synthesis is enhanced by the addition of the 2-Cys PRX/NTRC system, 
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Stenbaeck et al. [28] proposed that this system is important for scavenging H2O2 in etiolated 

plants and protects the machinery involved in chlorophyll biosynthesis. Two glutamate-1-

semialdehyde 2.1-aminomutases (GSAs) have been also isolated as 2-Cys PRX partners. 

These proteins are involved in the synthesis of 5-aminolevulinic acid (ALA), which is the 

universal precursor of tetrapyrrols, like chlorophyll and heme. The possible interaction of 2-

Cys PRXs with enzymes participating in chlorophyll synthesis is consistent with the lower 

leaf chlorophyll content measured in the 2cysprx mutant [15] and with the hypothesis of 

Richter and Grimm [65] who proposed that oxido-reduction mechanisms dependent on NTRC 

and 2-Cys PRXs modify the activity, folding and stability of these enzymes. 

 

3.2.6. Proteins involved in carbon metabolism 

 Five plastidial proteins interacting with 2-Cys PRXs are involved in carbon 

metabolism (Table 1). Among them, we found a known 2-Cys PRX partner in plants: 

fructose-1,6-bisphosphatase (FBPase). In pea, FBPase has been described as a key enzyme for 

CO2 assimilation and coordination of the carbon and nitrogen metabolisms [66]. In other 

respects, the native and recombinant forms of rapeseed 2-Cys PRX are able to enhance the 

FBPase activity through a mechanism distinct of that mediated by TRXs and requiring the 

formation of a disulfide bond between two Cys residues of FBPase, a third Cys residue, the 

presence of fructose-1.6-bisphosphate and Ca2+ [27]. The phosphoglucomutase (PGM) 

enzyme, only detected in Wt samples, catalyzes the reversible interconversion of glucose-1-

phosphate and glucose-6-phosphate [67]. Plastidial PGM is essential for the synthesis of 

starch in leaves during the day and for its subsequent degradation [68, 69]. Finally, we also 

isolated three components of the plastidial pyruvate dehydrogenase complex (PDC): pyruvate 

dehydrogenase E1 subunits beta-2 and alpha 3 and dihydrolipoyllysine-residue 

acetyltransferase component 5. This complex catalyzes the irreversible oxidative 

decarboxylation of pyruvate to produce Acetyl-CoA, CO2 and NADH [70, 71]. 2-Cys PRXs 

might thus be able to interact with key enzymes of carbon metabolism, which provide the 

energy required for proper growth. This is consistent with the reduced growth of the 

Arabidopsis 2cysprx mutant, even in the absence of environmental constraints [15].  
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3.2.7. Other proteins 

Ten poorly or not characterized proteins are also present in the list of partners (Table 

1). Recent data obtained for some of them provide information about their functions. It is 

notably the case of quinone oxidoreductase known under the name of alkenal/one 

oxidoreductase (AOR), an enzyme catalyzing the NADPH-dependent reduction of reactive 

carbonyls. The elimination of these carbonyls generated due to lipid peroxidation is essential 

for maintaining the cell redox homeostasis [72, 73]. The identification of this protein is 

consistent with the presumed initial participation of 2-Cys PRXs in the detoxification of lipid 

hydroperoxides [74] and the maintenance of redox homeostasis as shown above (cf. 3.2.2.). In 

this category, we also found two RubisCO accumulation factors (RAF1 and 2), which are 

chaperone proteins involved in the RubisCO biogenesis. RAF1 and RBCL co-expression in 

tobacco cells leads to an increase in photosynthesis and growth [75]. These data suggest that 

2-Cys PRXs could promote RubisCO folding and carbon assimilation by interacting with 

RAFs. 

 

4. Conclusions and Perspectives 

In the last years, the physiological roles of 2-Cys PRXs in plants have been the subject 

of much research. The recent production of a double mutant completely devoid of 2-Cys 

PRXs confirmed the crucial role of these proteins in the maintenance of cell redox 

homeostasis and most particularly in the regulation of plastidial H2O2 concentration [15]. In 

yeast and mammals, a 2-Cys PRX chaperone role has also been proposed in relation with its 

level of overoxidation and oligomerization [5, 6]. But recent data gained on plants subjected 

to physiological environmental constraints showed no substantial and related modifications 

regarding the amounts of overoxidized and oligomerized protein [18]. Of note, in other 

organisms, PRXs have been described as sensors/transmitters of redox signals to partner 

proteins. Thus, in mammals, PRX1 and 2 regulate the activity of 18 proteins as a function of 

their redox status [8]. Based on these data and on the present work, we propose that plant 2-

Cys PRXs besides their peroxidase function could fulfil important roles in various signaling 

pathways via interaction with partner proteins (Fig. 4). 

In plants, a large number, more than 500, of partners of TRXs, the 2-Cys PRXs 

electron donors, has been identified using in vitro approaches mainly based on either labelling 

of thiol groups followed by electrophoresis or on affinity chromatography using mutated 
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TRXs [52]. All these partners contain at least one Cys residue, like most of the 2-Cys PRX 

interacting proteins identified here. This could mean that 2-Cys PRXs interact with these 

partners to reduce sulfenic acid Cys forms. Most interestingly, 19 potential targets of 2-Cys 

PRXs identified in our work have also been reported as known or putative partners of plant 

TRXs. This is notably the case of proteins involved in antioxidant mechanisms ([Cu/Zn] SOD 

2, PRXQ [22, 76, 77]), chlorophyll synthesis (GSA 1 [78]), carbon metabolism (fructose-1,6-

bisphosphatase, pyruvate dehydrogenase, phosphoglucomutase [79, 80]), amino acid 

metabolism (APRs, argininosuccinate synthase [81]) and ferredoxin-related enzymes 

(GOGAT, NiR and SiR [82-84]) (Table 1). This prompts us to speculate that 2-Cys PRXs 

form super-complexes including TRXs and common partners, like fructose-1.6-

bisphosphatase, which is activated both by TRXs and 2-Cys PRXs through distinct 

mechanisms [27, 80]. In other respects, it is interesting to note that five proteins getting their 

reducing power from ferredoxin (Fd-GOGAT, SiR, FNR 1, NiR and ISPG) might interact 

with 2-Cys PRX. This opens the possibility of complex relationships and interplays between 

ferredoxin-dependent pathways, since the reduction of 2-Cys PRXs is partly catalyzed by 

plastidial TRXs, which receive electrons from the ferredoxin-TRX reductase complex (FTR) 

[85]. 

The high number of proteins interacting with 2-Cys PRXs indicates that these 

peroxidases could fulfill functions in sensing and/or transmitting redox signals in plants as 

reported in animal cells [8]. Plant 2-Cys PRXs contain a conserved threonine residue sensitive 

to phosphorylation and known to regulate the enzyme activity in mammals [86]. Of note, a 

phosphorylated form of the rice 2-Cys PRX has been isolated in response to heat shock [87]. 

But, among the putative 2-Cys PRX partners isolated here, only one kinase (adenosine kinase 

1, AK1), non-localized in plastids and non-acting on peptides, has been identified (Suppl. 

Table 1). The absence of plastidial protein kinases in our data could be due to the weak 

abundance of these signaling proteins or to a very labile link between kinases and 2-Cys 

PRXs. The occurrence of interplays between redox-signaling pathways involving 2-Cys PRXs 

and transduction pathways such as phosphorylation remains thus to be investigated in plants 

using other strategies than co-immunoprecipitation.  

The development of a strategy based on co-immunoprecipitation allowed identifying 

many potential partners of plant 2-Cys PRXs involved in various key cellular pathways 

notably related to redox homeostasis, chlorophyll synthesis, amino acids and carbon 

metabolisms. This is fully consistent with the phenotype of the 2cysprx mutant, which is 
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strongly impaired regarding these processes [15]. Moreover, we found several already well-

known plant 2-Cys PRXs partners validating the relevance of this non-targeted approach and 

giving credence to the physiological significance of our findings. For all other possible 

partner proteins, for which no relationship has been reported up to now, it will be necessary to 

determine whether this interaction with 2-Cys PRXs is direct and to validate it in vivo using 

other approaches such as yeast two-hybrid experiments or bimolecular fluorescence 

complementation. To conclude, co-immunoprecipitation seems a valuable strategy to search 

partners of 2-Cys PRXs and could be applied in other physiological contexts, for instance 

non-photosynthetic tissues, like flowers, which also display a relatively high abundance of 

these peroxidases [18].  
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Figure legends 

Figure 1: SDS-PAGE and Western analyses of the various fractions collected following 

co-immunoprecipitation of leaf extracts from Arabidopsis thaliana Wt and 2cysprx plants 

using 2-Cys PRX antibodies.  

Co-immunoprecipitation experiments were performed using soluble leaf proteins from Wt and 

2cysprx plants extracted in native conditions. Samples were separated by SDS-PAGE 

electrophoresis (10 µL per lane) for silver nitrate staining (A) or Western blot analysis (B) 

using antibodies raised against Arabidopsis 2-Cys PRXs. The arrows indicate protein bands 

specifically detected in Wt elution fractions. 

L : ladder, F : flow-through, W : washing, E : elution. 

 

 

Figure 2: Functions of the 158 proteins interacting with 2-Cys PRXs identified by co-

immunoprecipitation of leaf extracts of Arabidopsis thaliana plants using 2-Cys PRX 

antibodies and mass spectrometry.  

 

Figure 3: Subcellular localisation of the 158 proteins interacting with 2-Cys PRXs 

identified by co-immunoprecipitation of leaf extracts of Arabidopsis thaliana plants using 

2-Cys PRX antibodies and mass spectrometry  

 

Figure 4: A model for plant 2-Cys PRXs functions in various plastidial metabolic 

processes (based on [15], [18] and this work).   
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Table 1: List of plastidial proteins (67) identified by co-immunoprecipitation of 
leaf extracts of A. thaliana plants using 2-Cys PRX antibodies and mass 
spectrometry. The table shows proteins, with the number of peptides, found only in 
elution fractions from Wt plants and a specific spectral count (SSC) higher than 3 
(Specificity column) or with a SSC Wt/SSC 2cysprx ratio higher than 5 (indicated in 
the last column).  Proteins in bold are known 2-Cys PRXs partners. * and †, indicate 
TRX partners in higher plants and unicellular photosynthetic organisms, respectively.  
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Antioxidant and redox homeostasis
Q96291 At3g11630  2-Cys peroxiredoxin A * 14 86 Wt 
Q9C5R8 At5g06290  2-Cys peroxiredoxin B * 13 17 Wt 
O78310 At4g25100 Superoxide dismutase [Cu-Zn] 2 (SOD Cu-Zn) * 4 6 Wt 
P21276 At2g28190 Superoxide dismutase [Fe] 1 (SOD Fe) 4 5 Wt 
P42770 At3g54660 Glutathione reductase, chloroplastic (GR) 3 4 Wt 
Q8LE52 At5g16710 Glutathione S-transferase (DHAR3) 3 3 Wt 
Q96266 At2g47730 Glutathione S-transferase F8 (GST F8) * 3 3 Wt 
Q9C5U8 At5g63890 Histidinol dehydrogenase (HDH) 3 3 Wt 
Q9SGS4 At1g76080 Thioredoxin-like protein CDSP32 9 12 6

Q9LU86 At3g26060 Peroxiredoxin Q * 7 11 5.5

Q8LCT3 At4g29670 Thioredoxin-like 2-2 (ACHT2) 4 5 5

Amino acid metabolism  
Q93ZN9 At4g33680 LL-diaminopimelate aminotransferase (DAP-AT) 10 11 Wt 
Q9FZ47 At1g16880 ACT domain-containing protein ACR11 7 8 Wt 
P92981 At1g62180 5'-adenylylsulfate reductase 2 (APR 2) † 5 8 Wt 
Q94JQ4 At3g20390 Reactive Intermediate Deaminase A 6 7 Wt 
Q9SZX3 At4g24830 Argininosuccinate synthase (Citrulline--aspartate ligase) † 5 6 Wt 
P92980 At4g21990 5'-adenylylsulfate reductase 3 (APR 3) † 3 4 Wt 
Q9ZNZ7 At5g04140 Ferredoxin-dependent glutamate synthase 1 (Fd-GOGAT 

1) * † 35 40 5.7

Q00218 At4g33510 Phospho-2-dehydro-3-deoxyheptonate aldolase 2 5 5 5

Protein folding  
Q93WL3 At4g25670 ATP-dependent Clp protease ATP-binding subunit 

CLPT1 *   9 12 Wt 

Q9SSA5 At3g01480 Peptidyl-prolyl cis-trans isomerase CYP38  5 6 Wt 

Q9LF37 At5g15450 Chaperone protein ClpB3 4 4 Wt 
Q945Q5 At2g30695 T11J7.9 3 3 Wt 
P82869 At3g15520 Peptidyl-prolyl cis-trans isomerase CYP37 2 3 Wt 
Q8S9L5 At5g55220 Trigger factor-like protein TIG 6 6 6

Chlorophyll synthesis  
Q42522 At3g48730 Glutamate-1-semialdehyde 2,1-aminomutase 2 (GSA 2) * 10 7 Wt 
P42799 At5g63570 Glutamate-1-semialdehyde 2,1-aminomutase 1 (GSA 1) * 8 4 Wt 
Q9LR75 At1g03475 Coproporphyrinogen-III oxidase 1 (CPO-I) 4 4 Wt 
P21218 At4g27440 Protochlorophyllide reductase B (POR B) 7 10 5

Photosynthetic metabolism  
Q9S726 At3g04790 Probable ribose-5-phosphate isomerase 3 * † 5 8 Wt 
P82538 At3g55330 PsbP-like protein 1 3 3 Wt 
O03042 Atcg00490 Ribulose bisphosphate carboxylase large subunit * † 36 7 7 
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Q9FKW6 At5g66190 Ferredoxin--NADP reductase, leaf isozyme 1 14 15 5

Carbon metabolism  
P25851 At3g54050  Fructose-1,6-bisphosphatase (FBPase) * 11 14 Wt 
Q9SCY0 At5g51820  Phosphoglucomutase (PGM) † 9 10 Wt 
Q9C8P0 At4g16155 Dihydrolipoyllysine-residue acetyltransferase component 

5 of pyruvate dehydrogenase complex
6 4 Wt 

Q9C6Z3 At1g30120 Pyruvate dehydrogenase E1 component subunit beta-2 * 3 4 Wt 

O24457 At1g01090 Pyruvate dehydrogenase E1 component subunit alpha-3 

(PDH E1) * 12 12 12

Uncharacterized proteins 
Q8VY70 At1g62780 Putative uncharacterized protein 3 4 Wt 
P82658 At3g63540 Thylakoid lumenal 19 kDa protein (P19) 4 4 Wt 
Q9SR19 At3g04550 Rubisco accumulation factor 2 (RAF2) 4 4 Wt 
Q9S9M7 At1g16080 Putative uncharacterized protein 4 4 Wt 
Q9C685 At1g51100 Putative uncharacterized protein 3 3 Wt 
Q9M3C6 At3g55250 Putative calcium homeostasis regulator 3 3 Wt 

Q9ZUC1 At1g23740 Quinone oxidoreductase-like protein 7 9 9

Q9LXX5 At3g56650 PsbP domain-containing protein 6 (PPD6) 6 8 8

O80934 At2g37660 Uncharacterized protein 6 6 6

Q9LKR8 At5g28500 Rubisco accumulation factor 1 (RAF1) 3 5 5

Ribosomal proteins  
Q9LY66 At3g63490 50S ribosomal protein L1 (CL1) 6 7 Wt 
P51412 At1g35680 50S ribosomal protein L21 (CL21) * 3 4 Wt 
P42732 At5g14320 30S ribosomal protein S13 (CS13) 3 3 Wt 
Biotic and abiotic stress responses 
Q9LXC9 At5g09650 Soluble inorganic pyrophosphatase 6 3 3 Wt 
Q9M8M7 At1g80600 Acetylornithine aminotranferase * 3 3 Wt 
Q9SIF2 At2g04030 Heat shock protein 90-5 5 5 5

Assembly and repair of PSII 
O23403 At4g15510 PsbP domain-containing protein 1 (PPD1) 3 3 Wt 

Q9LR64 At1g03600 Photosystem II repair protein PSB27-H1 2 3 Wt 

Sulfur metabolism 
Q9LZ66 At5g04590 Sulfite reductase [ferredoxin] (AtSiR) * † 3 3 Wt 

P46309 At4g23100 Glutamate--cysteine ligase (GCS) 5 5 5

Lipid metabolism  
P52410 At5g46290 3-oxoacyl-[acyl-carrier-protein] synthase I (KAS1) 7 7 Wt 
Q9M1X2 At3g63170 Fatty-acid-binding protein 1 (FAP1) 4 4 Wt 
Nitrogen metabolism  
Q9ZST4 At4g01900 Nitrogen regulatory protein P-II homolog 3 4 Wt 
Q39161 At2g15620 Ferredoxin--nitrite reductase * 4 4 Wt 

Proteolysis  
Q9LJL3 At3g19170  Presequence protease 1 (PreP 1) 9 10 Wt 

Nucleotide metabolism  
P31166 At1g27450 Adenine phosphoribosyltranferase 1 3 4 Wt 

Secondary metabolism 
F4K0E8 At5g60600 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase 

(ferredoxin) (ISPG) 
4 4 Wt 

Development and cellular metabolism regulation 
Q9SZD6 At4g29060 Elongation factor Ts 9 9 9

Photorespiration  
P0DKC3 At5g36700 Phosphoglycolate phosphatase 1A 7 8 8
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