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Abstract 

 

Climate prediction over the Western Himalayas is a challenging task due to its highly variable 

altitude and orientation of orographic barriers. Surface characteristics also play vital role in the 

climate simulations and need appropriate representation in the models. In this study, two land 

surface parameterization schemes (LSPS), the Biosphere-Atmosphere Transfer Scheme (BATS) 

and the Common Land Model (CLM, version 3.5) in the regional climate model (RegCM, 

version 4) have been tested over the Himalayan region for nine distinct winter seasons (three 

years each for excess, normal and deficit) in respect of seasonal precipitation. National Center for 

Environment Prediction (NCEP)-Department of Energy (DOE) reanalysis-2 data have been used 

as initial and lateral boundary conditions for the RegCM model. In order to provide land surface 

boundary conditions in the RegCM model, geophysical parameters (10 min resolution) obtained 

from United States of Geophysical Survey were used.  

The performance of two LSPS (CLM and BATS) coupled with RegCM is evaluated 

against gridded precipitation and surface temperature data sets from the India Meteorological 

Department (IMD). It is found that the simulated surface temperature and precipitation are 

represented better in the CLM scheme than the BATS when compared with the observations. 

Further, several statistical analysis such as bias, RMSE, spatial correlation coefficient (CC) and 

skill scores like Equitable Threat Score (ETS), Probability of Detection (POD) are estimated for 

evaluating the simulations of RegCM using both the LSPS. Results indicate that the RMSE 

decreases and CC increases with the use of the CLM than the BATS scheme. The ETS and POD 

also indicate that the performance of the model is better with the CLM than the BATS in 

simulating seasonal scale precipitation. Overall the results suggest that the performance of 

RegCM coupled with the CLM scheme improves the model skill in predicting winter 

precipitation (by 15-25%) and temperature (by 10-20%) over the Western Himalaya. 

Key words: Western Himalayas; Land Surface Schemes; Regional Climate Model. 
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1. Introduction 

 

 The Western Himalayas region receives substantial amount of precipitation in the form of 

snow during winter months (December, January and February; DJF). The precipitation over this 

region shows a large inter-annual variability and is vital for several sectors such as 

agriculture/horticulture, transportation, tourism, hydropower projects and water resources and 

management. Excess precipitation over this region causes landslides/avalanches and impact 

livelihoods and infrastructure. Due to the complex orography, nonlinear interaction of land-

atmosphere process and insufficient observed datasets, seasonal-scale prediction of precipitation 

over such a heterogeneous region is one of the challenging tasks for the meteorologists. Since the 

heterogeneity of the mountain region plays dominant role in modulating the regional climate 

(Pielke et al., 1990; Dickinson, 1995), advanced land surface parameterization scheme (LSPS) in 

a model may be able to improve the prediction skill over the mountain region.  

 Henderson et al. (1993) have found in their study that more than 30% of lower boundary 

condition for the earth surface is provided through land-atmosphere interface in global climate 

models and in the case of regional climate modeling systems, this percentage can be even more. 

Since the exchange of momentum and energy between land surface and the atmosphere affects 

the prognostic variables such as surface temperature, precipitation etc., better representation of 

surface boundary conditions in a model is very important. Ding et al. (1998) have examined the 

role of different land surface processes and found that the efficiency of regional climate model 

(RCM) is increased in the simulation of precipitation when an improved land-surface 

parameterization scheme is used. A few studies on the impact of different land LSPS have been 

carried out in simulation of upper air circulation associated with precipitation (Pielke et al., 2003, 

Singh et al., 2007, Dutta et al., 2009, Kar et al., 2014, Tiwari et al., 2014) over the Indian region. 

It was found that LSPS plays a crucial role in seasonal scale simulation over the Indian region. 

However most of these studies have been conducted for the Indian summer monsoon seasons and 

so far there are no such study for the winter seasons (DJF) examining the role of different LSPS 

in a RCM over the Western Himalayan region.  

 The main objectives of the present study is to evaluate the performance of two LSPS, i.e. 

the Biosphere-Atmosphere Transfer Scheme, Dickinson et al., (1993) (hereafter referred to as 

BATS) and the Common Land Model- version 3.5, Oleson et al., (2008), (hereafter referred to as 



 

 

3 

CLM) in the Regional Climate Model (RegCM)-version 4, Pal et al., (2007) to simulate winter 

precipitation and temperature over the Western Himalayas.  

 The remainder of this paper is organized as follows. A brief description of the model used 

including simulation specifics and methodology are presented in section 2 and 3 respectively. 

Section 4 describes the results and discussion of sensitivity experiments with BATS and CLM 

schemes. Finally salient features of the study are concluded in section 5. 

 

2. Model description 

The dynamical core of the RegCM (version-4) model is similar to the hydrostatic version 

of Mesoscale Model MM5 (Grell et al., 1994). The RegCM standard model configuration 

consists of 18 vertical sigma levels in which five levels (at approximately 40, 110, 310, 730 and 

1400 m from surface) are in lower troposphere (within 1.5 km from surface, Giorgi et al., 1989). 

The radiative transfer package of the NCAR Community Climate Model version 3 (Kiehl et al., 

1996), mass flux cumulus cloud scheme of Grell (1993) with Fritch–Chappell closure (Fritch and 

Chappell, 1980) and nonlocal boundary scheme by Holtslag et al. (1999) are used in the RegCM. 

The Land-surface processes are incorporated via Biosphere-Atmosphere Transfer Scheme or 

BATS (Dickinson et al., 1993) and Community Land Model or CLM (Oleson et al., 2008) 

schemes. For this study, the model domain is from 18°N to 45°N and 60°E to 95°E. The model 

domain and the orography shown in Figure 1 covers all parts of northwest India. The model grid 

with horizontal resolution of 30 × 30 km is selected to conduct the simulation experiments. As 

can be seen from the figure, maximum height of the Himalayas represented at this resolution is 

about 5500m. Most of the sharp gradient in orography in the Himalayas gets smoothed out due to 

the resolution chosen for the model. Sinha et al (2013) have carried out a detailed study on the 

role of representation of orography in the RegCM3 simulations. A brief on model configuration 

used in this study is also given in Table 1. In this study, two sets of numerical experiments are 

carried out with different land surface models, i.e. the BATS and the CLM.  

The BATS land surface parameterization scheme is used to describe the role of soil 

moisture and vegetation in the model. It calculates the exchanges of momentum, energy, and 

water vapor associated with surface-atmosphere interaction. It has one vegetation layer, a surface 

soil layer, a snow layer and 20 vegetation types. The prognostic equations for the soil layer 

temperatures are solved by using a generalized force-restore method (Dickinson et al., 1993). The 
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CLM (Oleson et al., 2008) contains one vegetation layer with a canopy photosynthesis-

conductance model, ten unevenly spaced soil layers, five snow layers with an additional 

representation of trace snow and 24 vegetation types. In this scheme, for each layer temperature, 

ice water and liquid water are solved explicitly. CLM uses a mosaic approach for capturing land 

surface heterogeneity within a climate model at each grid cell. The main advantages of CLM over 

BATS are that in CLM there is inclusion of more number of soil layers and vegetation fraction. 

The CLM has ability to include subgrid ‘‘tiles’’ with a separate water and energy balance 

conducted for each tile. This approach in the CLM helps the representation of various surface 

parameters (for e.g. surface temperature, precipitation, fluxes etc.) in a better way compared to 

the BATS scheme, Steiner et al. (2005). A brief comparison of these two land surface 

parameterization schemes is provided in Table 2.  

 

3. Simulation specifics and verification methodology 

 Seasonal (winter season) precipitation anomalies over the Indian parts of the Western 

Himalayan region have been computed using 33 years (1975–2008) of observed precipitation 

data from the India Meteorological Department (IMD) (Rajeevan et al., 2006). For the present 

study, extreme (excess or deficit) precipitation seasons are considered on the basis of 

precipitation anomaly departure by one standard deviation or more from its mean. Therefore, 

among 33 years, there are 3 years in the category of excess precipitation (1990-91, 1994-95, 

1997-98; hereafter referred to as excess years), 3 years in the category of deficit precipitation 

(1996-97, 2000-01, 2004-05; hereafter referred to as deficit years) and 3 years in the category of 

normal precipitation (1988-89, 1993-94, 2003-04; hereafter referred to as normal years) years. In 

the present study, these years are considered to conduct the numerical experiments. Composite 

analyses have been carried out by computing the difference between excess minus normal and 

deficit minus normal precipitation years.  

 The RegCM model has been integrated from 1st November to 28 February (29 February for 

leap year) of each winter season separately. In this study, model integration output for the first 

month i.e. November is not analyzed as it is considered as the model spin up time. For each year 

(excess, deficit and normal years), the RegCM model is integrated twice with two different 

LSPS; first, coupled with BATS and then second, coupled with CLM keeping all the others 

parameters of the model the same. Initial and lateral boundary conditions (LBCs) for the model 
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integration are provided from NCEP-DOE reanalysis-2 to drive the RegCM model and the LBCs 

are updated every 6 hourly. The prescribed sea surface temperature in the model is the National 

Oceanic and Atmospheric Administration Optimum Interpolation SST (NOAA_OI_SST_V2; at 

1°×1° resolution). The geophysical parameters are from the United States of Geophysical Survey 

(USGS; at 10' resolution). The model-simulated results are validated with the IMD gridded 

(1°×1°) observed precipitation and surface air temperature (hereafter referred to as temperature) 

data sets. For comparison of model data with observation, model simulated results are 

interpolated bilinearly to the grid points of the observed data.   

     Statistical analysis such as spatial Correlation Coefficient (CC), Root Mean Square Error 

(RMSE), Probability of Detection (POD), Equitable Threat Score (ETS) etc. have been carried 

out between model and IMD data sets. Probability of Detection (POD) gives that what fraction of 

the observed “yes” events were correctly forecasted. It is defined as,  
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    where H and M are hits, misses for each category. POD ranges from 0 to 1 with POD = 1 
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    where M, H and F are  number of misses, hits and false alarms for each category, hits due to 

random chance is denoted by H  and T is the total number of events. ETS varies from −0.33 to 1 

with ETS = 0 indicating no skill and ETS = 1 indicating perfect skill in prediction. The Student's 

t-test is used for statistical significant test of anomaly correlation coefficient (CC) and the critical 

value of CC is 0.27 at 90% confidence level (CL).  

  

4. Results and discussion 

   The composite analyses of observed gridded temperature and precipitation during winter season 

for excess, deficit and normal precipitation years are presented in Figure 2. It is clearly seen from 

the figure that temperature is comparatively cooler during the excess years as compared to the 

normal and deficit years over Jammu and Kashmir. It is seen that the seasonal mean temperature 
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is warmer by 1-2 °C during the deficit years than the excess years over the Western Himalayan 

region. The range of seasonal mean precipitation during the excess years is about 4.5 to 6.5 mm 

day-1 with maximum of 6.5 mm day-1 over Jammu and Kashmir; whereas during the deficits year 

the seasonal precipitation range is about 1.5 to 2.5 mm day-1 with maximum 2.5 mm day-1 over 

the same region. Therefore, it is noticed that the excess precipitation years are comparatively 

cooler than the deficit precipitation years over the Indian part of the Western Himalayan region. 

In the following three sub-sections, the results obtained from the simulation of RegCM model 

with two different LSPS are analyzed.  

 

4.1 Spatial distribution of surface air temperature 

     The simulated seasonal average (DJF) temperature from experiments with BATS and CLM in 

RegCM for nine distinct precipitation years (three excess, three deficit and three normal) have 

been examined. It is noticed that the model is able to bring out the mean temperature distribution 

over the northwest India for the composite excess, composite deficit and composite normal years 

reasonably well when either of the land surface schemes (BATS and CLM) are used (figure not 

shown). However, the simulated temperature in terms of distribution and magnitude is better in 

the CLM experiment than the BATS when results are compared against the observed surface 

temperature data sets. 

       In order to understand the variation of seasonal average winter temperature in distinct years, 

composite differences between the excess and normal as well as the deficit and normal years are 

computed and shown in Figure 3. It is seen from the figure that the temperature is lesser in the 

observation as well as in both the RegCM simulation experiments in the excess years than the 

normal years. Figure 3 (left panel) illustrates that the RegCM model with the BATS simulates a 

warmer surface by about 1-2°C as compared to the CLM in the difference between composite 

excess and composite normal precipitation years. On the other hand, it is found that the area with 

colder temperature is more over the Western Himalaya in the CLM than the BATS. It is also 

noticed that the magnitude and distribution of temperature difference between deficit and normal 

year with the CLM scheme is better than that of the BATS when compared with the observed 

patterns figure 3 (right panel). Analysis reveals an improvement of 10-20% in the predictions of 

seasonal mean winter temperature with the use of the CLM over the BATS experiment. So, the 

result suggests that the model-simulated mean as well as variation in temperature (in terms of 
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spatial distribution and magnitude) during the nine distinct years are represented well with the 

use of the CLM than the BATS land surface scheme.   

 

4.2 Spatial distribution of precipitation 

 The response of the BATS and CLM schemes in the RegCM model is examined in terms of 

precipitation simulations in nine distinct years described earlier. Results indicate that the model is 

able to bring out the seasonal mean precipitation distribution for the composites of excess, 

composite deficit and composite normal years reasonably well with both the land surface 

schemes (figure not shown). However, the model simulated precipitation in terms of distribution 

and intensity with the use of the CLM scheme is closer to observations. To understand the 

RegCM model efficiency in simulating precipitation during nine distinct years, the seasonal mean 

(DJF) composite precipitation differences between the excess and normal as well as the deficit 

and normal years are computed. The precipitation differences are shown in Figure 4. In the 

precipitation difference between excess and composite normal years (figure 4 left panel), it is 

seen that the representation of precipitation in terms of intensity and distribution is better with the 

CLM than that with BATS scheme when compared with the observed differences. The 

precipitation differences between deficit and normal years (figure 4 right panel) are captured well 

in both the LSPS (CLM and BATS) over the northwest India, however, the variation in 

precipitation is closer to the observations with CLM scheme than the BATS scheme. The 

qualitative description of seasonal precipitation suggests that the efficiency of RegCM model is 

higher with the CLM than the BATS scheme.  

       Area average of monthly as well as seasonal composite precipitation obtained from the IMD 

observations and the RegCM (with the BATS and CLM schemes) simulations have been 

computed and shown in Figure 5. It is seen that the area-averaged precipitation is underestimated 

in both the LSPS during all the years (composite of excess, composite of deficit and composite of 

normal years respectively) at monthly as well as seasonal scale. However, the RegCM 

simulations with the CLM are closer to the observations. An improvement in precipitation 

magnitude by about 15-25% is noticed with the CLM over BATS schemes in the seasonal mean 

simulations. It may be noted that the improvement varies from year to year. During all the 

months and seasons, the efficiency of the RegCM model is higher when run with the CLM than 

the BATS; though the rate of improvement is more in the month of January than in other months.  
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Probably one of the reasons for better simulation of precipitation with the CLM may be due to 

the inclusion of more number of soil layers and better representation of vegetation cover as 

compared to the BATS as described below. 

       The vegetation cover over the region of interest as used by the two LSPS (BATS and CLM) 

is shown in Figure 6. It is seen from the diagram that vegetation cover in the RegCM-CLM 

simulations has greater spatial coverage over the Indian part of Western Himalayas than the 

RegCM-BATS. This increased vegetation cover in RegCM-CLM enhances precipitation as found 

in Zheng et al 2002. 

 Soil moisture from NCEP-DOE reanalysis-2 and RegCM simulations (with BATS/CLM 

LSPs) are shown in Figure 7, for composite of excess and normal and deficit and normal 

precipitation year. The observation shows positive soil moisture over Northern India, which is 

well brought out by both the LSPS. However, the spatial extent is less in RegCM-BATS 

simulation for the composite of excess minus normal year. In case of composite difference 

between deficit and normal precipitation year the spatial extent and intensity is closer to 

observation in the case of RegCM-CLM compared to RegCM-BATS simulation. This difference 

in model simulation is due to difference in the soil description and moisture representations 

between these two LSPS. Therefore, better representation of this soil moisture may be the reason 

of better precipitation representation in the RegCM-CLM simulation. 

 Sensible heat flux from NCEP-DOE reanalysis-2 and RegCM simulations (with 

BATS/CLM LSPS) are depicted in Figure 8, for composite of excess minus normal and deficit 

minus normal precipitation year. Composite analysis between excess minus normal precipitation 

years depicts that both the LSPS shows almost similar spatial extent of precipitation over the 

eastern parts of J&K. However over western part of J&K, the RegCM-CLM simulation produces 

more wet zones compare to RegCM-BATS combination. In the case of composite difference 

between deficit and normal precipitation year, simulations with both the land surface schemes are 

mostly similar.  

 

4.3 Statistical evaluation of precipitation  

 The performance of the RegCM model with the BATS and CLM land surface schemes 

have been evaluated by computing various statistical skill scores. Some of the important 

evaluation strategies are to estimate Root Mean Square Error (RMSE), Correlation Coefficient 
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(CC) etc. The model skill scores are estimated against observed gridded precipitation data from 

the IMD over the Indian part of the Western Himalayas. The model results are bi-linearly 

interpolated to the grid points of the IMD observed data for statistical evaluation. The RMSE and 

spatial CC are calculated for both set of runs using the CLM and BATS scheme. These are 

presented in Table 3. It is seen that the CC is statistically significant (the threshold value is 0.27 

at 90% confidence level) in the precipitation simulation with the CLM scheme during excess, 

deficit and normal precipitation years. The CC is higher with the CLM experiment (0.39, 0.35 

and 0.37 respectively) than the BATS experiment for all the years for which simulation 

experiments are carried out in this study. The RMSE values of the RegCM model are lesser when 

the CLM scheme is used than that of the BATS. This suggests that the spatial distribution of 

precipitation and its intensity is simulated better in the RegCM with the CLM than the BATS 

scheme.  

 Several other skill metrics such as probability of detection (POD), accuracy, equitable 

threat score (ETS), and bias have been estimated for the distinct precipitation years and presented 

in Table 4. When the observed precipitation is more than or equal to 1 mm/day, that day is 

considered as a wet day. It is seen from the statistical analysis that POD values are higher in the 

CLM experiment (0.75, 0.70 and 0.88 for the excess, deficit and normal years, respectively) than 

the BATS in all the three distinct years. It is found that the number of wet days simulated in the 

CLM experiment is closer to the observation. Furthermore, the accuracy of precipitation 

simulation is higher with the CLM than the BATS over the Western Himalaya. Computed model 

bias indicates that the precipitation intensity and distribution is brought out better with the CLM 

(bias is closer to 1). However, the model-simulated precipitation is underestimated with respect 

to observations with both the schemes. Table 4 indicates that the ETS is more in case of the CLM 

simulations during all the years, which indicates that the precipitation events are captured better 

with the CLM land surface scheme.  

         Thus, the statistical analysis (forecast errors and skill scores) also reveals that the RegCM 

model with the CLM parameterization scheme performs better in simulating precipitation for 

extreme years with reasonable accuracy over the Western Himalayan region as compared to 

RegCM with the BATS scheme.  
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5. Conclusion 

In the present study, we compare the two different land surface parameterization schemes 

i.e. BATS and CLM in RegCM to simulate nine distinct winter precipitation years over the 

Western Himalayas. During the winter months, a notable difference between the BATS and CLM 

experiments is observed in the simulation of temperature and precipitation amount. The 

performance of the RegCM with both LSPS is reasonable in reproducing the mean features of 

seasonal temperature and precipitation, however the skill of the model is higher with the CLM 

scheme. Furthermore, the temperature and precipitation during extreme winter seasons are also 

captured better with the CLM than the BATS scheme when compared with the observations. As 

mentioned earlier, most of the sharp gradient in orography in the Himalayas gets smoothed out 

due to the resolution chosen for the model. Similarly, the surface characteristics (soil type, soil 

wetness, vegetation cover etc) does not get properly represented in the model due to the chosen 

resolution as there is sharp gradient in these parameters over the Himalayan region. This study 

suggests that even at this resolution, the RegCM model with CLM and BATS schemes is able to 

reproduce some of the salient features of the distinct years examined. 

Forecast errors and skill scores indicate that performance of the RegCM model is better 

when the CLM scheme is used than the BATS. Further, improvements by about 10-20% in 

temperature and 15-25% in precipitation predictions are observed with the use of the CLM than 

the BATS scheme. In sum, the study indicates that the RegCM model with the CLM scheme can 

be more informative in simulating wintertime temperature and precipitation over the Western 

Himalayan region.  
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                      Table 1. Configuration of RegCM4 used in the present study 

Dynamics   Hydrostatic 

Main Prognostic Variables    u,v t,q and p 

Model domain 18˚N - 45˚N; 60˚E – 95˚E; Res.=30 km  

Map projection    Lambert Conformal Mapping 

Vertical co-ordinate    Terrain-following sigma co-ordinate  

  Total 18 sigma levels (5 levels in PBL).  

Cumulus parameterization    Grell with Fritch & Chappell closure  

Land Surface Models Biosphere-Atmosphere Transfer Scheme (BATS) &  

Community Land Model (CLM) 

Radiation parameterization  NCAR/CCM3 radiation scheme 

PBL parameterization   Holtslag 

         

 

 



 

 

18 

 

 

 Table 2. A brief comparison between two land surface parameterization schemes 

i.e.   BATS and CLM 

 

Category BATS CLM 

Land Cover/ 

Vegetation classes 

20 vegetation types 24 vegetation types  

Surface 

representation 

One vegetation layer, a surface 

soil layer, a snow layer 

One vegetation layer with a canopy 

photosynthesis-conductance model, 

ten unevenly spaced soil layers, 

five snow layers with an additional 

representation of trace snow. 

Soil temperatures 

calculation 

Uses a two-layer force-restore 

model  

Soil temperature is calculated 

explicitly by ten-layer soil model  

Treatment of 

vegetation canopy  

Treats all vegetation 

within the canopy in the same 

manner 

The canopy is divided into sunlit 

and shaded fractions as a function 

of LAI  

Calculation of 

stomatal 

conductance and 

photosynthesis rate 

No individual calculation is 

made for sunlit and shaded 

fractions. It does not compute 

photosynthetic rates. 

Stomatal conductance is calculated 

for sunlit and shaded fractions. 

Calculation of photosynthetic rates 

is done in this scheme 

Treatment of heat 

and roughness 

length 

Heat and water vapor roughness 

lengths are constant. 

Updates these values over bare soil 

and snow with values from the 

stability functions 

Albedo treatment Uses prescribed values for 

vegetation albedo for both 

short- and longwave 

components  

Uses a modified two stream 

approach that reduces the 

complexity of a full two-stream 

albedo treatment 
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          Table 3. Root mean square error (RMSE) and correlation for excess, deficit and 

                        normal precipitation year 

          Excess       Deficit       Normal 

BATS      

           3.448 

 

         1.587 

 

         2.778 

CLM  

           3.312 

 

         1.385 

 

         2.529 

BATS  

           0.359 

 

        0.313 

 

          0.351 

CLM  

           0.385 

 

         0.352 

  

          0.374 

      

 

 

 

 

 Table 4.  Skill score for excess, deficit and normal precipitation years for (>1 mm 

rainfall category) 

 

Year 

 

Land Surface    

Scheme 

 POD (1) 

  (0 to 1) 

   Accuracy (1) 

     (0 to 1)  

   Bias (1) 

 (0 to infinite) 

  ETS (1) 

(-1/3 to 1) 

  BATS    0.715      0.589      1.502     0.113 

  CLM    0.747      0.596      1.642     0.182 

  BATS    0.693      0.633      1.952     0.071 

  CLM    0.697      0.711      1.381     0.167 

  BATS    0.852      0.656      1.458       0.179 

  CLM    0.876      0.683      1.229     0.187 
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Figure 1. RegCM model domain used in the present study. 
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        Figure 2. Seasonal (DJF) average of IMD gridded temperature (in 0C) and precipitation (in mm day-1) 

for composite excess (a & d), composite deficit (b & e) and composite normal (c & f)) 

precipitation years. 
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                        Figure 3. Seasonal (DJF) average surface air temperature difference (composite excess – 

composite normal and composite deficit – composite normal precipitation year) 

obtained from observed (a & d) and RegCM4 model simulation with BATS (b & e) 

and CLM (c & f).     
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                 Figure 4. Seasonal (DJF) average precipitation difference (composite excess – composite normal 

and composite deficit – composite normal precipitation year) obtained from observed (a & 

d) and RegCM4 model simulation with BATS (b & e) and CLM (c & f).     
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     Figure 5. Monthly and seasonal average precipitation (mm day-1) from IMD gridded   

precipitation, RegCM4 model simulation with BATS and CLM for (a) composite 

excess, (b) composite deficit and (c) composite normal precipitation year. 

 

      

0	

1	

2	

3	

4	

5	

6	

				December	 						January	 				Februrary	 															DJF	

(a)	

BATS	 CLM	 IMD	

 

 

      

0	

1	

2	

3	

				December	 						January	 				Februrary	 															DJF	

(b)	

BATS	 CLM	 IMD	

 

 

      

0	

1	

2	

3	

4	

5	

				December	 						January	 				Februrary	 															DJF	

(c)	

BATS	 CLM	 IMD	

 

 



 

 

25 

                        

                            
 

  

               Figure 6.  Vegetation cover in (a) BATS and (b) CLM land surface schemes. 
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      Figure 7. Seasonal (DJF) soil moisture (kg/kg) difference (composite excess – composite 

normal and composite deficit – composite normal precipitation year) obtained 

from observed (a & d) and RegCM4 model simulation with BATS (b & e) and 

CLM (c & f).     
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      Figure 8. Seasonal (DJF) sensible heat flux (w/m2) difference (composite excess – 

composite normal and composite deficit – composite normal precipitation year) 

obtained from observed (a & d) and RegCM4 model simulation with BATS (b & 

e) and CLM (c & f).     
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