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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT? 79 

 Most of the studies to date have been focused on the interplay between FTO gene and 80 

self-reported physical activity.  81 

 However, measurement errors associated to a self-reported nature of questionnaires 82 

may have attenuated the true strength of the gene-physical activity interplay.  83 

 Limited data is available on objective measured physical activity and its interaction with 84 

the FTO gene on obesity-related markers.  85 

 86 

WHAT DOES YOUR STUDY ADD? 87 

 Our findings emphasise that physical activity may be a particularly effective way of 88 

controlling body weight in individuals with a genetic predisposition towards obesity. 89 

 The apparent effect of an active lifestyle on genetic predisposition to obesity (~4kg 90 

differences in the FTO-related effect size on body mass for inactive vs active individuals) 91 

is large enough to be clinically relevant. 92 

 93 

 94 

 95 

 96 
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ABSTRACT (words=198) 98 

Objective: To examine whether the effect of FTO loci on obesity-related traits could be 99 

modified by physical activity (PA) levels in European adults.  100 

Methods: Of 1,607 Food4Me participants randomised, 1,280 were genotyped for the FTO 101 

(rs9939609) and had available PA data. PA was measured objectively using accelerometers 102 

(TracmorD, Philips), whereas anthropometric measures (BMI, and waist circumference; WC) 103 

were self-reported via the internet.  104 

Results: FTO genotype was associated with a higher body weight (β: 1.09 kg per risk allele, 105 

[95%CI: 0.14-2.04]; P=0.024), BMI (β: 0.54 kg.m-2, [0.23-0.83]; P<0.0001) and WC (β: 1.07 cm, 106 

[0.24-1.90]; P=0.011). Moderate-equivalent PA attenuated the effect of FTO on BMI 107 

(P[interaction]=0.020). Among inactive individuals, FTO increased BMI by 1.06 kg.m-2 per allele 108 

(p=0.024) whereas the increase in BMI was substantially attenuated among active individuals 109 

(0.16 kg.m-2, p=0.388). We observed similar effects for WC (P[interaction]=0.005): the FTO risk allele 110 

increased WC by 2.72 cm per allele among inactive individuals but by only 0.49 cm in active 111 

individuals.      112 

Conclusions: PA attenuates the effect of FTO genotype on BMI and WC. This may have 113 

important public health implications because genetic susceptibility to obesity in the presence of 114 

FTO variants may be reduced by adopting a physically active lifestyle. 115 

 116 

 117 

  118 
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INTRODUCTION 119 

Changes in lifestyle, including higher energy intake and lack of physical activity (PA), have been 120 

the driving force behind the dramatic increase in obesity prevalence over the past three 121 

decades (1, 2). The prevalence of obesity has increased markedly, with 16.6% of European 122 

adults (3) and 9.3% of adults globally now having obesity (4). However, epidemiological studies 123 

show that genetic factors play an important role in the development of obesity (5), suggesting 124 

that obesity is a multifactorial condition influenced by a complex interplay between lifestyle 125 

and genetics (2, 5, 6).  126 

Recent genome wide association studies have identified single nucleotide polymorphisms 127 

(SNPs) in genes (7), including the fat mass and obesity-associated gene (FTO), that are strongly 128 

associated with the development of obesity (7, 8, 9, 10). A study of 38,759 individuals revealed 129 

that subjects homozygous for the FTO (rs9939609) risk allele weighed on average 3kg more and 130 

had 1.7-fold increased odds of being obese compared with individuals homozygous for the 131 

lower-risk allele (10). Although the evidence for an effect of FTO, or other obesity-related loci, 132 

on obesity is strong, the variance in BMI explained by genetic variants is small (2.7%) (11, 12). 133 

This is in stark contrast with earlier studies of the heritability of BMI, which was estimated to be 134 

40-70% (5, 13). Gene-lifestyle interactions may contribute to the unexplained heritability of BMI 135 

and obesity (14, 15), and numerous such interactions for many different cardio-metabolic 136 

phenotypes, including obesity anthropometrics, were recently catalogued from 386 published 137 

scientific reports (16). Much work remains to determine how robust these interactions are. Still, 138 

modulation of FTO-obesity associations by self-reported (SR) PA is one of the most replicated 139 

(16). 140 
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Although genetically predisposed individuals may be more susceptible to obesity in an 141 

obesogenic environment, with a higher risk of over-consumption as was shown in twin studies 142 

(13), there has been limited evidence of genotype-lifestyle interactions on adiposity outcomes 143 

(6, 17). Importantly, most of the studies to date have focused on the interplay between genes 144 

and self-reported (SR) PA, where measurement error in SR PA may have attenuated the true 145 

strength of the gene-PA interaction (18). To date, only very few studies have used objectively 146 

measured PA to examine the FTO-PA interaction in adults (19, 20). Therefore, in the current 147 

study, we investigated whether the effect of the FTO loci on obesity-related traits was modified 148 

by objectively measured PA in European adults from the Food4Me study.  149 

 150 

METHODS  151 

Study population 152 

The Food4Me Proof of Principle (PoP) study was a 6-month, 4-arm, internet-based, randomised 153 

controlled trial (RCT) conducted across 7 European countries (www.food4me.org) (21). 1,607 154 

participants from the following recruitment sites: University College Dublin (Ireland), 155 

Maastricht University (The Netherlands), University of Navarra (Spain), Harokopio University 156 

(Greece), University of Reading (United Kingdom, UK), National Food and Nutrition Institute 157 

(Poland), and Technical University of Munich (Germany), were randomised into the RCT. 158 

Participants recruited and randomised per country has been described elsewhere(21, 22). 159 

Participants aged ≥18 years of age were included in the study. To keep the cohort as 160 

representative as possible of the adult European population, a minimal set of exclusion criteria 161 

were applied as described elsewhere (21). 162 

http://www.food4me.org/
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 163 

Study measures 164 

Participants consented to self-report their measures via the internet and to send biological 165 

samples (Dried Blood Spot cards and buccal swabs) by post, using pre-paid, stamped addressed 166 

envelopes. To ensure that procedures were similar in all recruiting centres, standardised 167 

operating procedures were prepared for all measurements, and researchers underwent 168 

centralised training. Moreover, to enable participants to collect and report the required 169 

information and to collect, process and dispatch the biological samples correctly, participants 170 

were given printed detailed instructions, and video demonstrations of key procedures were 171 

available online. All instructions were provided in the language of the country of recruitment 172 

(21). 173 

 174 

Collection of demographic and anthropometric data  175 

An online screening questionnaire collected detailed SR information on demographic, food 176 

choices, health-related and anthropometric data. At baseline, body weight, height and waist 177 

circumference (WC) were self-measured and self-reported by participants via the internet. 178 

Participants were instructed to measure body weight after an overnight fast, without shoes and 179 

wearing light clothing using a home or commercial scale, and to measure height, barefoot, 180 

using a standardised measuring tape provided by Food4Me (21). WC was measured at the mid-181 

point between the lower rib and the iliac crest using the provided tape measure. Central 182 

obesity was defined as WC >88 cm for women and >102 cm for men. BMI was calculated from 183 

body weight and height. Adiposity status was defined using WHO criteria for BMI 184 
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(underweight<18.5 kg.m-2, normal weight ≥18.5 kg.m-2 to ≤24.9 kg.m-2, overweight ≥25.0kg.m-2 185 

to ≤29.9 kg.m-2 and obese ≥30.0 kg.m-2). SR measurements were validated in a sub-sample of 186 

the participants (n=140) and showed a high degree of reliability (23).  187 

 188 

Physical activity measures and analysis 189 

Physical activity levels (PAL) and time spent in sedentary behaviours were measured objectively 190 

using triaxial accelerometers (TracmorD, Philips Consumer Lifestyle, The Netherlands) (24). All 191 

participants were instructed to wear the accelerometer every day during waking hours, except 192 

when taking a shower, for the whole duration of the study. For the analyses reported in this 193 

paper, data collected over 2 weeks at baseline were used. Participants were instructed to 194 

upload their PA data into the study server via the internet. 195 

Data were recorded with a time sampling interval of 1 min (i.e. 1-min epochs). A day was 196 

considered valid if the volunteer had worn the TracmorD for at least 10 hours, but not longer 197 

than 18 hours. Wear time was defined as 24 hours minus non-wear time. To define non-wear 198 

time, we adapted the recommendations of Choi et al. (25) to the TracmorD. The R software 199 

version 3.1.2 was used for PA data processing.  200 

PA domains were based on application of thresholds for activity energy expenditure (AEE) and 201 

included time spent in sedentary behaviours (corresponding to <1.5 METs), light (1.5 to <3 202 

METs), moderate (3 to <6 METs), vigorous (≥6 METs) or moderate-equivalent intensity PA (26). 203 

Moderate-equivalent PA was derived using the following equation [moderate PA + (vigorous PA 204 

* 2)] (27).   205 
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Adherence to the WHO physical activity recommendations was examined by estimating the 206 

proportion of volunteers who accumulated at least 150 minutes per week of moderate PA or 75 207 

minutes of vigorous PA or an equivalent combination of moderate and vigorous PA, in bouts of 208 

at least 10 minutes (27). This translates to at least 150 minutes per week of moderate-209 

equivalent PA. Three-categorical variables were created for all PA variables. For the moderate-210 

equivalent PA variable, 150 and 300 min.week-1 of moderate-equivalent PA were used to create 211 

3 relevant categories. Similarly, for the moderate PA variable, 150 and 300 min.week-1 of 212 

moderate PA were used to create the 3 categories. For all other PA variables, categories were 213 

tertiles derived from STATA.  214 

 215 

Genotypic analyses 216 

Buccal cell samples were collected from participants at baseline using Isohelix SK-1 DNA buccal 217 

swabs and Isohelix dried-capsules and posted to each recruiting centre for shipment to LGC 218 

Genomics (Hertfordshire, United Kingdom). LGC Genomics extracted DNA and genotyped 219 

specific loci using KASPTM genotyping assays. FTO SNPs (rs9939609 and rs1121980) were 220 

genotyped and showed a high linkage disequilibrium (r2=0.96). Therefore, results for rs1121980 221 

are not reported. Accuracy of the genotyping analysis has been assessed and reported 222 

elsewhere(23). 223 

A goodness-of-fit chi-square test was performed to examine if the observed genotype counts 224 

were in Hardy-Weinberg equilibrium. Genotype frequency for the FTO rs9939609 variant did 225 

not deviate from Hardy-Weinberg equilibrium (TT=469, TA=739 and AA=264, P=0.345). 226 

 227 
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Ethics approval and participant consent 228 

The Research Ethics Committees at each University or Research Centre delivering the 229 

intervention granted ethics approval for the study. The Food4Me trial was registered as a RCT 230 

(NCT01530139) at www.clinicaltrials.gov. All participants who expressed an interest in the 231 

study were asked to sign online consent forms at two stages in the screening process. These 232 

forms were automatically directed to the local study investigators to be counter-signed and 233 

archived (21). 234 

 235 

Statistical analysis 236 

Baseline data were used for the present analyses. Results from descriptive analyses are 237 

presented as means and SD for continuous variables and as percentages for categorical 238 

variables.  239 

Robust Linear Regression analyses were used to test for associations between the main 240 

outcomes (weight, BMI and WC) and FTO genotype. FTO was coded using an additive genetic 241 

model (TT=0, AT=1, AA=2) and PA was categorized and coded as ordinal variable (0=Lower, 242 

1=Middle, 2=Higher). The interplay between PA and FTO genotype was investigated by 243 

including an interaction term in the models, with PA and FTO variables coded as specified 244 

above. For categorical outcomes (% of participants with overweight or obesity), Robust Logistic 245 

Regression was used and FTO and PA (coded as ordinal variables) were included in the model 246 

using an interaction term. Analyses were adjusted for age, sex, country, season and monitor 247 

wearing time, as appropriate. Results were deemed significant at P<0.05. Data were analysed 248 

using Stata (version 13; StataCorp. College Station, TX, USA). 249 
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 250 

RESULTS 251 

Cohort characteristics 252 

Of the 1,607 individuals randomised into the Food4Me study, data at baseline on FTO genotype 253 

and PA were available for 1,280 participants (58% were women and 97% were Caucasians). As 254 

summarised in Table 1, 30% of individuals had overweight and 16% had obesity. In addition, WC 255 

was above the healthy limit (>102 cm for males and 88 cm for females) for 23% of males and 256 

26% of females. Although 57% of men and 40% of women met the PA recommendation (≥150 257 

minutes of moderate-equivalent PA a week), 28% of the participants recorded less than 1 258 

minute of vigorous intensity PA daily. All PA variables were significantly associated with 259 

obesity–related markers (Table S5). 260 

Association of FTO genotype with obesity measures 261 

Carriage of the A allele of the FTO rs9939609 variant was associated with higher body weight 262 

[β: 1.09 kg increase per risk allele, 95%CI (0.14 to 2.04), P=0.024], BMI [β: 0.54 kg.m-2, 95%CI 263 

(0.23 to 0.83), P<0.0001], and WC [β: 1.07 cm, 95%CI (0.24 to 1.90), P=0.011] (Figure 1). 264 

Participants with the FTO risk allele (A) had significantly higher odds of having overweight (OR: 265 

1.27 (1.06 to 1.51), P=0.007) or obesity (OR: 1.41 (1.13 to 1.75); P=0.003) than individuals with 266 

the T allele, but no significant association was found for central obesity (Table 2). 267 

Interaction between FTO genotype and PA levels on adiposity 268 

We found a significant interaction between FTO genotype and category of moderate-equivalent 269 

PA on body weight, BMI and WC (Table 3 and Figure 2). The strength of the association 270 

between FTO and body weight decreased with increasing moderate-equivalent PA: the 271 
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relationship declined from 3.53 kg (95%CI: 0.93 to 6.11) per copy of the FTO risk allele in 272 

participants with lower levels of PA (<150 min.week-1) to -0.28 kg (95%CI: -1.48 to 0.91) in 273 

participants with higher levels of PA (>300 min.week-1), as shown in Table 3 and Figure 2. 274 

Similar results were found for BMI (lower PA: 1.06 kg.m-2 vs higher PA: 0.16 kg.m-2 per copy of 275 

the risk allele, P(interaction)=0.020) and WC (lower PA: 2.72 cm vs higher PA: -0.49 cm per copy of 276 

the risk allele, P(interaction)=0.005). When the relationship between FTO genotype and other PA 277 

domains (vigorous, moderate and light intensity PA) were studied, we observed significant 278 

interactions between FTO*vigorous intensity PA (Table S1 and Figure S1) and FTO*moderate 279 

intensity PA (Table S2 and Figure S2) on body weight, BMI and WC. However, no significant 280 

FTO*light intensity PA interactions were identified (Table S3 and Figure S3). Although there 281 

were no significant interactions between FTO genotype and sedentary behaviour on obesity 282 

measures (body weight, BMI and WC), these increased with increasing time spent in sedentary 283 

behaviour (Table S4 and Figure S4). The effect size of FTO on BMI and WC was 60% and 320% 284 

greater in individuals with longer, than shorter, time spent in sedentary behaviour, respectively. 285 

When additional analyses were performed and PA was included in the interaction models as a 286 

continuous variable, we saw a similar trend for the interaction effect between FTO and PA-287 

related variables but these interaction were no longer significant (P>0.05) for any of the 288 

outcomes. Additionally, no association were found between PA variables and FTO genotype 289 

(Table S6). Sensitivity analysis where participants of non-white ethnic origin (<3%) were 290 

removed from the analysis did not modify any of our findings.   291 
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Discussion  292 

Main findings 293 

Our main findings are that, on average, each additional copy of the FTO risk allele at rs9939609 294 

was associated with significant increases in body weight, BMI and WC of 1.09 kg, 0.54 kg.m-2 295 

and 1.07 cm, respectively. Consistently, each copy of the risk allele increased the odds of having 296 

overweight or obesity by 32%. Our results provide further evidence to support the interplay 297 

between genes and lifestyle. We showed that the effect sizes of the FTO associations on BMI 298 

and WC for active individuals (moderate-equivalent PA >300 min.week-1) were 85% and 118% 299 

lower, respectively, than for inactive individuals (moderate-equivalent PA <150 min.week-1). 300 

These findings emphasise the importance of PA in the prevention of obesity especially in 301 

subjects carrying the FTO risk allele.  302 

 303 

Comparison with other studies 304 

Our results are consistent with the findings of previous studies showing associations between 305 

FTO variants and obesity-related traits (10, 28, 29). Although the effect size of the FTO 306 

rs9939609 is relatively modest, it is consistent across studies conducted in Caucasian 307 

populations (10, 28, 29, 30, 31). Our FTO effect size estimates are in agreement with previous 308 

findings where each copy of the risk allele was associated with an increase in adiposity 309 

measures ranging from 0.76 to 2.4 cm for WC, and from 0.31 to 0.66 kg.m-2 for BMI, which is 310 

equivalent to ~1.3 to 2.1 kg in body weight for an individual 1.80 m tall (8, 9, 10, 28, 30). 311 

Similarly, the odds of having overweight or obesity reported in previous studies ranged from 312 

~1.19 to 1.69 per additional copy of the risk allele (8, 9, 10, 28, 29), which is in agreement with 313 
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our estimates (OR: 1.27 (1.06 to 1.51) for overweight and OR: 1.41 (1.13 to 1.75) for obesity per 314 

copy of the risk allele).   315 

Furthermore, our study suggests that an active lifestyle may attenuate the FTO genetic 316 

susceptibility to obesity (19, 20, 32, 33). A meta-analysis of cross-sectional studies, including 317 

218,166 adults (19), reported a significant FTO*PA interaction (P=0.001), where the minor A 318 

FTO allele of the rs9939609 variant increased the odds of being obese less in physically active 319 

individuals [OR: 1.22 (95%CI 1.19-1.25)] than among inactive individuals (OR: 1.30 (1.24-1.36)]. 320 

Moreover, the latter meta-analysis reported that the association of the FTO genotype with BMI 321 

and WC was attenuated in physically active individuals (0.32 kg.m-2 and 0.68 cm per copy of the 322 

risk allele, respectively) compared with inactive individuals (0.46 kg.m-2 and 1.01 cm per copy of 323 

the risk allele). Although our study showed qualitatively similar findings, we observed a bigger 324 

attenuation by PA of the effect of FTO on obesity-related traits. This quantitative difference 325 

between studies may be explained by the relative precision of PA measurements.  326 

Our results are based on objectively measured PA data whereas the earlier meta-analysis (19) 327 

used primarily SR PA data. SR PA can be subject to optimistic bias leading to PA overestimation 328 

(34). Furthermore, SR PA is prone to random error, which leads to regression dilution bias (35).  329 

This can obscure the true effect of PA on the interplay between genes and environment (36).  330 

Moreover, the use of categories of PA may provide better knowledge of the dose-response 331 

relationship between FTO genotype and PA on adiposity, which may assist in identifying the 332 

minimum amount of PA necessary to overcome the genetic effect of FTO genotype on obesity-333 

related traits. We found that the influence of the FTO risk allele on BMI was 36% and 84% lower 334 

in individuals achieving between 150-300 min.week-1 or above 300 min.week-1 of moderate 335 
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equivalent PA, respectively, than in inactive individuals (<150 min.week-1). The attenuating 336 

effect of PA on FTO related adiposity was similar when WC was used as an outcome (the FTO 337 

risk allele effect on WC was 1.5 and 6.5-fold lower for active and highly active individuals than 338 

in inactive individuals).  339 

Although previous studies have reported a significant FTO*PA interaction (20, 30, 31, 32, 33, 340 

37), most of these studies used SR PA (19). Objectively measured PA allowed us to investigate 341 

whether sedentary behaviours or other PA domains, such as light, moderate and vigorous 342 

intensity PA, modulate the effect of the FTO genotype on obesity-related traits. We identified 343 

that achieving between 10 to 90 minutes of vigorous PA per week mitigated the effect of FTO 344 

genotype on obesity measures. However, higher levels of moderate intensity PA appear to be 345 

needed (150 to 300 min.week-1) to achieve similar attenuating effects on the association 346 

between FTO genotype and obesity.  347 

The mechanism how the FTO gene may have an impact on obesity outcomes remains unclear. 348 

Recent evidence suggests that genetic variants within introns 1 and 2 of FTO may change the 349 

basic function of human adipocytes from substrate storage to fuel utilization through enhanced 350 

thermogenesis (38). Claussnitzer et al. proposed that noncoding variants in FTO influence the 351 

thermogenic capacity of beige cells, which results in phenotypic differences in BMI. They 352 

identified a large enhancer region in the FTO locus of adipocytes that has long-range control 353 

over two homeobox regulatory genes, IRX3 and IRX5, and demonstrated cell-autonomous 354 

effects of these genes by means of genetic knockdown of IRX3 and IRX5 to restore 355 

thermogenesis in adipocytes from persons at high genetic risk for obesity. In contrast, 356 

overexpression of these proteins in adipocytes from persons without this genetic risk resulted 357 
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in decreased mitochondrial function and thermogenesis (38). Some attempts have been made 358 

to explain the relationship between FTO and PA energy expenditure (39), but there is 359 

inconclusive evidence on whether this may be due to epistatic gene interactions with other 360 

genes that may control PA or dietary intake, or to gene-environment interaction (39).   361 

The strengths of our study include the objective measure of PA in a large European cohort, 362 

which is important because the identification of convincing gene-lifestyle interactions requires 363 

accurate measures of the environmental exposure (18) to make them as robust basis for public 364 

health action. Moreover, our estimate of PA allowed us to create categories of PA domains 365 

which revealed the dose-response relationship for gene-environment interaction. A potential 366 

limitation of our study is that anthropometric data were self-measured and self-reported via 367 

the internet, which may have introduced measurement error. Nonetheless, the accuracy of 368 

internet-based, self-reported anthropometric data is high (40) and this has been confirmed in 369 

our study (23). However, we cannot completely discard any confounding effect of self-reported 370 

data on our main outcomes.  Another factor that should be considered as a limitation is the lack 371 

of information on relatedness of the individuals. Additionally, when interactions between 372 

FTO and PA were assessed by fitting PA as a continuous variable in the interaction term, the 373 

trend remained similar but the interactions were no longer statistically significant (P>0.05). 374 

A larger sample size will be needed to confirm our findings using PA as a continuous 375 

variable. Furthermore, by design, we recruited individuals interested in taking part in a 376 

personalized intervention on nutrition and lifestyle, which is less representative than a 377 

European-wide survey. Nonetheless, our participants were broadly representative of the 378 

European adult population, most of whom had adequate nutrient intakes but could benefit 379 

from improved dietary choices and greater PA [41]  380 
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 381 

Implications of findings 382 

Considering the current prevalence of overweight and obesity worldwide (4), our findings are 383 

highly relevant for improving public health. They emphasise that PA may be a particularly 384 

effective way of controlling body weight in individuals with a genetic predisposition towards 385 

obesity and thus contrast with the deterministic view that genetic influences are unmodifiable. 386 

The apparent effect of an active lifestyle on genetic predisposition to obesity (~4kg differences 387 

in the FTO-related effect size on body mass for inactive vs active individuals) is large enough to 388 

be clinically relevant. Evidence of such gene–lifestyle interactions may empower and motivate 389 

individuals to adopt healthier lifestyle behaviours through knowledge that such behaviour 390 

change can be effective in preventing obesity and, therefore, risk of obesity-related non-391 

communicable diseases. Gene*environment interactions for cardio-metabolic phenotypes 392 

involve physical activity more often than any other lifestyle factor, including dietary fat intakes 393 

(16). 394 

In conclusion, despite the fact that FTO genotype is robustly associated with BMI and WC, our 395 

results show that higher PA attenuates this genetic predisposition to obesity-related traits. 396 

These finding are relevant for public health and suggest that promoting PA, particularly in those 397 

who are genetically susceptible, is an important strategy for addressing the current obesity 398 

epidemic.  399 
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Figure 1. Association between FTO rs9939609 genotype and adiposity measures.  551 

Least-squares means of genotypes were calculated by using Robust Linear Regression, with 552 

adjustment for age, sex and country. 553 

 554 
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Figure 2. Effect of the FTO rs9939609 genotype on adiposity-measures by category of 558 

moderate-equivalent physical activity.   559 

P values are for the interaction between the FTO variant and PA category; Least-squares means 560 

of different genotypes across all PA groups were calculated by using Robust Linear Regression 561 

Analysis, with adjustment for age, sex, country, monitor wear time and season. Allele frequency 562 

by PA category were (Lower: 71/158/59; Middle: 103/142/61; Upper: 231/342/113) for TT, TA 563 

and AA genotypes, respective. 564 
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Table 1.  Characteristics of Food4Me Study participants 576 

Variables Overall  Men Women 

n 1280 537 743 

Age (years) 39.9 (13.0) 41.6 (13.4) 38.7 (12.5) 

Anthropometric    

Height (m) 1.71 (0.09) 1.79 (0.07) 1.65 (0.06) 

Body weight (kg) 74.7 (15.8) 83.4 (13.5) 68.5 (14.3) 

BMI (kg.m-2) 25.5 (4.8) 26.1 (4.1) 24.9 (5.2) 

Underweight (<18.5 kg.m-2; %) 2.6 0.8 3.8 

Normal weight (≥18.5 to <25.0 kg.m-2; %) 51.3 44.7 56.0 

Overweight (≥25.0 to <30.0 kg.m-2; %) 30.3 38.4 24.6 

Obese (≥30.0 kg.m-2; %) 15.8 16.1 15.6 

Waist Circumference (cm) 85.7 (13.8) 92.7 (12.1) 80.7 (12.8) 

Central obesity* (%) 24.3 22.8 25.6 

Physical Activity     

PAL 1.73 (0.18) 1.74 (0.2) 1.72 (0.2) 

Sedentary time (min.day-1) 744.8 (76.6) 738.9 (82.3) 749.1 (71.5) 

Light PA (min.day-1) 73.9 (30.4) 74.0 (29.8) 73.9 (30.9) 

Moderate PA (min.day-1) 33.3 (20.4) 37.3 (21.1) 30.3 (19.4) 

Vigorous  PA (min.day-1) 11.8 (16.1) 16.7 (18.1) 8.17 (13.1) 

Moderate-equivalent PA (min.day-1) 56.9 (45.0) 70.9 (49.1) 46.7 (38.4) 

Moderate-equivalent PA 10min bouts (min.day-

1) 
29.2 (32.3) 36.5 (35.9) 23.8 (28.1) 

Active individuals (≥150 min.week-1 moderate-
equivalent PA in bouts; %) 

47.0 56.5 40.0 

Data presented as Mean (SD) for continuous variables and as % for categorical variables.  577 

PAL - Physical activity level. *Central obesity was defined as WC >88 cm for women and >102 578 

cm for men. 579 
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