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ABSTRACT 

Objectives . Meniscal pathology is integral to knee osteoarthritis (OA) and its progression; it 

provides a progression biomarker and a potential treatment target. MRI demonstrates large 

heterogeneity in meniscal damage; this structural complexity means measurement is 

difficult. The aim of this study was to apply novel 3D image analysis to determine which 

meniscal pathologies demonstrated most change during OA progression.    

Methods.   Knee images were selected from the progression cohort of the Osteoarthritis 

Initiative choosing participants with risk factors for medial OA progression. Medial and lateral 

menisci were manually segmented then analysed using a statistical shape model of the tibia 

as a reference surface. Responsiveness was assessed at 1 year using standardised 

response means (SRMs) for 4 constructs: meniscal volume, extrusion volume, thickness and 

tibial coverage; anatomical sub-regions of these constructs were also explored.  

Results.  Paired images from 86 participants (median age 61.5, 49% female, 56% obese) 

were included. Reliability of the novel meniscal measurements was very good (ICCs all > 

0.98). Meniscal volume and extrusion demonstrated no significant change. Moderate 

responsiveness was observed for medial meniscus thickness (SRM -0.35) and medial tibial 

coverage (SRM - 0.36). No substantial change was seen for the lateral meniscus measures. 

Sub-region analysis did not improve responsiveness; while greater change was seen in the 

posterior medial compartment, it was associated with increased variance of the change.  

Conclusions . The location of meniscal damage was consistently in the posterior medial 

region, and two measurements (thickness and tibial coverage) were most responsive. 

Meniscal measures should add to discriminatory power in OA progression assessment.  

Key words: meniscus, longitudinal change, responsiveness, magnetic resonance imaging, 

3D measures, osteoarthritis 
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INTRODUCTION  1 

The development of disease modifying osteoarthritis (OA) drugs has been a frustrating 2 

process, in part due to lack of valid and responsive biomarkers to change [1], creating a 3 

vicious cycle where large numbers of people are required for trials resulting in higher costs 4 

to pharmaceutical companies who have thus become reluctant to pursue this area [2, 3] .To 5 

date OA biomarker development has focused mainly on cartilage measures, with cartilage 6 

relatively well validated as an OA imaging biomarker [4, 5] while measures reflecting 7 

subchondral bone changes have also demonstrated their potential as imaging biomarkers [6-8 

8].  9 

Healthy menisci protect the articular cartilage from concentrations of stress and are therefore 10 

important in load distribution [9-11]; a consequence of impairment in these structures is 11 

damage to articular cartilage and may consequently lead to the development of OA 12 

[12].While the importance of the meniscus in OA initiation and progression is well 13 

appreciated [13-19], there is however a paucity of data on the detailed changes in meniscal 14 

pathology that occur during OA progression. Such information is important not only to 15 

determine if the meniscus itself could be a biomarker of progression or whether it would add 16 

responsiveness when combined with other tissue biomarkers, but is increasingly of 17 

relevance with the development of meniscal repair and replacement therapies. 18 

One of the main problems in accurately measuring meniscal pathologies has been the 19 

complex array of morphological changes that develop. A number of meniscal constructs 20 

such as volume, extrusion, thickness (or height) and tibial coverage (area of the tibia 21 

covered by meniscus) has been studied previously in OA [20-22] and nomenclature for these 22 

has been suggested [20]. The quantification of meniscal volume has been explored by 23 

segmentation of MRI images [21] and using 3D meniscal volume the effects of meniscal 24 

volume evaluated for OA and non-OA knees [23, 24].In another study, OA knees were 25 

shown to have less tibial coverage with increased meniscal body extrusion, while volume 26 
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measures did not differ from non-OA knees [23]. Evidence suggests meniscal extrusion is 27 

associated with knee pain in participants with knee OA [25] and with reduced tibial cartilage 28 

volume and increased bone marrow lesions [26], while meniscal thickness was shown to be 29 

greater in OA patients compared to controls [20, 27]. Current MRI semi-quantitative scoring 30 

[28-30] has been insightful in assessing the nature and location of meniscal pathology but 31 

may be insensitive to change as there is less scope for individuals to change by a full grade 32 

score over observation periods of 1-2 years, the feasible time for clinical studies [31].  33 

Statistical shape modelling (SSM) provides a novel method of 3D quantification of MRI, 34 

correcting for both size and shape of the subject knee. This enables accurate identification of 35 

the spatial change at the population or cohort level [6-8, 32]. This technology also accounts 36 

for measurement issues due to pose, the position and rotation of knee bones that varies 37 

from image to image and confounds change over time. The aim of this study was therefore 38 

to apply this novel 3D image analysis in a cohort typical to that included in clinical trials, to 39 

determine the spatial distribution of change, and the meniscal pathologies most associated 40 

with change during 1-year of OA progression. To ensure that the meniscal shape was 41 

recorded accurately for measurement, we used careful manual segmentation of the MR 42 

images. 43 

 44 

METHODS  45 

Participants   46 

This study used the first release (0.B.1 and 1.B.1, n=160) of the progression cohort of NIH 47 

OA initiative (OAI) database, which is available for public access at http://www.oai.ucsf.edu/. 48 

These subjects had both frequent knee symptoms (defined as “pain, aching or stiffness”) in 49 

the past 12-months and radiographic tibiofemoral-OA (defined as definite tibiofemoral 50 

osteophytes or Kellgren-Lawrence (KL) grade ≥2) in one knee. This subsample of “fast 51 

progressors” was chosen as most likely to undergo cartilage loss, as described previously 52 
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[33]. For the current study, one knee per subject was selected and where both knees fulfilled 53 

the inclusion criteria, the knee with the greater medial joint space narrowing (JSN) was 54 

selected. Inclusion criteria for this study were: evidence of medial JSN, medial JSN > lateral 55 

JSN, medial osteophytes, greater than 1º of varus mal-alignment, and availability of baseline 56 

and 12-month images. Exclusion criteria were any participants undergoing arthroscopy, 57 

meniscal surgery or ligament repair between baseline and the 12 month period of follow-up. 58 

This resulted in 86 pairs of knee images included in this analysis. 59 

MR image acquisition and quantitative analysis 60 

Images were acquired using Siemens-3T-Trio-Systems using the double-echo-in-steady-61 

state-sequence (DESS). The DESS sequence produced a 160-slice image with a high 62 

spatial-resolution and signal-to-noise ratio. This optimised morphological analysis of menisci 63 

and facilitated segmentation. The medial meniscus and lateral meniscus in the chosen knee 64 

were manually segmented by an expert segmenter at Imorphics (Manchester, UK). The 65 

segmenter had passed a segmentation training protocol, which requires a coefficient of 66 

variation lower than 3% on paired test images. The segmenter was blinded to time point but 67 

not to subject. 68 

Careful manual segmentation was done using Endpoint software (Imorphics, UK). A 69 

marching quads algorithm and quadratic smoothing converted segmented contours to 3D 70 

surfaces. Bone surfaces in the tibia were identified by automated segmentation using Active 71 

Appearance Models (AAMs) as described previously [8]. Fig 1a shows the mean shape of 72 

the menisci for this group of 86 individuals. Using AAMs returns the tibia surface as a dense 73 

set of anatomically corresponded points, which can then be used to take measurements of 74 

the menisci in a consistent manner, which corrects for patient shape and size (Figure 1b).  75 

Three dimensional images of the shape and position of the menisci relative to the tibia for 76 

each knee and time point were generated for visual review.  77 
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Four meniscus measures for volume, thickness, extrusion, and tibial coverage were 78 

calculated each for the medial and the lateral sides. Volumes were calculated using Gauss’ 79 

theorem for measuring volume in which the volume is calculated by summing the vector 80 

product of the centroid, area and normal of each surface triangle [34]. Volume measures 81 

were obtained as total volume excluding the meniscal attachments (mm3) from Figure 1b as 82 

described. Meniscal roots can be difficult to segment due to their visibility, and this measure 83 

excluded them by cutting the menisci at the boundary of the hyaline cartilage on the medial 84 

and lateral tibial plateaus. 85 

Using the corresponded points on the tibial bone (Figure 1c), meniscal thickness was 86 

obtained by subdividing the meniscus into three approximately equal segments (anterior, 87 

central, and posterior) (Figure 1d) and reported as a mean value for each region; total 88 

thickness was the mean of all points in the combined 3 regions. Figure 1g shows how 89 

thickness measures were taken using the underlying correspondence points. We also 90 

measured sub-regional measures of thickness (anterior, central and posterior), to assess 91 

whether these might be more responsive than total thickness. Tibial coverage refers to the 92 

area of cartilage-covered bone that the meniscus directly overlies; this was calculated as the 93 

area of tibia which returned a thickness measure of >0 (mm). 94 

 Extrusion of the medial meniscus was measured using a novel method by first identifying 95 

the outermost points of the tibial plateau, and fitting a spline through those points.  This line 96 

is extended into a plane in the sagittal direction, which is used to cut the meniscus (Figure 97 

1e). Volume of meniscus extruded beyond this cutting plane was calculated as extruded 98 

volume (Figure 1f). The current measurement for assessing extrusion involves drawing a 99 

vertical line at the tibial joint margin on a single coronal MRI slice and extrusion past this 100 

point is measured in millimetres [35] 101 

 102 

Reliability  103 
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An independent sample of 20 participants with no OA or mild OA was selected for a 104 

repeatability analysis of the 3D meniscus measures, using manual segmentation, with the 105 

repeat performed by the same individual blinded to subject. Intraclass correlation coefficients 106 

(ICC) were used to evaluate the intrarater reliability for each meniscal measure, while the 107 

smallest detectable difference (SDD) as well as SDD as a percentage of the baseline value 108 

were employed to assess absolute reliability. The SDD was calculated as 1.96 x √2 x SEM 109 

[36]. 110 

 111 

Statistical analysis  112 

Statistical analysis was conducted using STATA software, version 13 (College Station, TX, 113 

2013) and MedCalc for Windows, version 15.6 (MedCalc Software, Ostend, Belgium). For 114 

each meniscal measure, the mean and standard deviation (SD) of the difference at 1 year 115 

follow-up were determined.  Two measures of group level internal responsiveness, effect 116 

size (ES) and standardised response mean (SRM), were calculated to compare magnitude 117 

of change in a standardised manner, for each measure [37] . The confidence intervals for the 118 

SRMs were estimated using the bias-corrected and accelerated bootstrap methods, because 119 

in small samples the estimate of the standard deviation may be biased [38]. A paired 120 

student’s t-test compared baseline and 12-month means to evaluate whether any changes 121 

were significantly greater than zero. Graphical checks were performed to ensure statistical 122 

assumptions were met prior to performing t-tests and these were satisfactory. The 86 123 

participants were assumed to be homogenous in terms of their expected change over 1-124 

year. Based on our selected sample of 86 we retrospectively calculated that we had 80% 125 

power to detect an effect size of 0.31. 126 

Four measures as described above were assessed on the medial and lateral sides, and 127 

thickness was further evaluated using sub-regions.  To adjust for multiple comparisons (on 128 
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the 14 tests performed)  , a Bonferroni correction adjusted for mean correlation of the 129 

meniscal measures  was applied and the level of significance set at (α=0.008) [39].   130 

Lastly, exploratory analyses were performed on stratified sub-groups based on three 131 

demographic qualities important in OA: age, gender and body mass index (BMI). The strata 132 

were created based on median age (age<62 and age≥62), gender (males and females), and 133 

obesity status using WHO cut-offs (BMI≥30 and BMI<30). We also compared 134 

responsiveness between the groups that self-reported having previous arthroscopy or 135 

meniscectomy at baseline and the rest of the group.  136 

 137 

RESULTS  138 

The 86 participants had a median (IQR) age of 61.5 (52-71) with 49% being women. The 139 

mean BMI ± SD was 31.1 ± 4.60 kg/m² and median (IQR) pain score of 5.44 (2.4-6.3) as 140 

measured using the Western Ontario MacMaster Universities Osteoarthritis Index (WOMAC) 141 

scales (Table 1). The characteristics of the 74 participants that were not included in our 142 

study were very similar to our sample (age 61.0 vs 61.5 and gender 53% vs 49% 143 

respectively) see Table 1. As expected, visual review confirmed the heterogeneity of 144 

meniscal pathologies and Figure 2 demonstrates these using examples from this study.  145 

Repeatability  146 

The ICC values were very high for both medial and lateral measures, lowest for lateral 147 

extrusion (ICC 0.97, 95% CI 0.92, 0.99) and highest for medial tibial coverage (ICC 0.99, 148 

95% CI 0.97, 0.99). Low SDD values were realised in the repeatability study. The SDDs 149 

(SDD as % of baseline) on the medial side for volume, extrusion, thickness and coverage 150 

were 32.2 mm3 (1.9%); 15.7 µL (9.2%); 0.03 mm (2.6%) and 9.2 mm2 (2.3%) respectively, all 151 

very small values. Similar low SDD values were found for the lateral measures: 55.5 mm3 152 
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(3.6%) for total volume; 9.7 µL (16.2 %) extrusion; 0.03mm (2.3%) thickness and 6.1mm2 153 

(1.6%) for lateral meniscal coverage.  154 

Change in measures over 1-year  155 

Although mean medial volume decreased by 1.1% while medial extrusion showed an 156 

increase of 4.1 %, neither change was statistically significant and only that of extrusion 157 

exceeded SDD (Table 2).  Mean medial total thickness decreased by 6.1% from baseline to 158 

follow-up (p<0.001) while mean tibial coverage decreased by 4.4% (p<0.001) with both 159 

changes being greater than SDD.  On the lateral side no changes were greater than SDD 160 

except for volume and none were statistically significant. However, sub-regional analysis 161 

showed a significant increase of 2.6% for mean central thickness (p<0.001), although the 162 

amount of mean change was very small (0.05 mm) (Table 3).  163 

 A visualisation of the spatial position of change in meniscal thickness is shown in Figure 3. 164 

The posterior region of the medial meniscus showed the greatest change in thickness.  165 

Responsiveness   166 

The SRM and ES are reported in Table 2 for the four constructs investigated. Specifically in 167 

the primary analyses: the volume and extrusion measures showed no significant change 168 

(Table 2) while meniscal thickness (SRM - 0.35, 95% CI -0.55,-0.14) and tibial coverage 169 

(SRM of -0.36, 95% CI -0.58,-0.13) showed moderate responsiveness. Of the lateral 170 

measures none showed any significant change with only the regional measure of central 171 

thickness showing a small response (SRM +0.33, 95% CI 0.13, 0.51) (Table 3).  172 

Analysis of the thickness measures as sub-regions on the medial side did not improve 173 

sensitivity compared to total thickness measures, posterior thickness was similar to total 174 

thickness, central thickness was less responsive, and anterior thickness did not change.   175 

Exploratory analyses of drivers of change  176 
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The mean differences in meniscal measures after stratification for age, gender, BMI or 177 

previous arthroscopy/meniscectomy at 1-year were not substantial nor statistically significant 178 

(Table 4) while responsiveness indices (SRMs) were comparable within each stratum (SRM 179 

results not shown). To investigate ceiling effects, we divided the dataset into quartiles based 180 

on volume extruded in the medial meniscus at baseline, and assessed the amount of  181 

change in extrusion over time.  Overall, positive change over time was seen in all quartiles, 182 

with greater change in quartiles with more baseline extrusion (data not shown), suggesting 183 

that ceiling effects were not important. 184 

 185 

DISCUSSION  186 

This study is the first using SSMs to measure 3D longitudinal change in a range of meniscal 187 

pathologies in an OA cohort typical of that used in an OA clinical trial.  A major benefit of 188 

SSM technology stems from the 3D registration capability that corrects for both size and 189 

shape of knees; this may be the reason for the good repeatability shown in this study.  We 190 

found that the most responsive meniscal measure was tibial coverage which changed by 191 

4.4% (SRM -0.41) during follow up. Although most change was demonstrated in the medial 192 

posterior thickness measure (7.4% reduction in 1-year) (SRM -0.38), responsiveness in that 193 

region was similar to that of tibial coverage because the change in thickness was subject to 194 

more variation. The responsiveness of these meniscal measures compare favourably with 195 

12 month radiographic joint space width measures (SRM -0.22) and MRI cartilage thickness 196 

measures (SRM -0.32) in one study [40]. Results from a systematic review showed that 197 

studies with similar follow-up to ours (1-2 years), reported pooled SRM of 0.25 for JSW[41].   198 

The meniscal pathology demonstrating the most responsiveness to change in the 4 primary 199 

measures was medial tibial coverage (SRM -0.36). Our finding is similar to another small 200 

study employing 3D meniscal measures that also found tibial coverage to be the most 201 

responsive meniscal  measure at 2-year follow-up with a reported SRM of 0.82 [42].  A 202 
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strength of the current study is that we applied a bootstrapping method to provide confidence 203 

in our SD estimates, as estimating SD from small populations is sensitive to outliers. The 204 

responsive decrease in coverage could be as a result of diminishing tibial coverage in OA-205 

affected subjects due to meniscal destruction and radial displacement [15]. No significant 206 

changes were seen for lateral coverage which could possibly be due to our inclusion criteria 207 

of medial OA progression. Previous work has used “meniscal window” as a measure of a 208 

similar construct, which intrinsically relates the size of (shrinking) meniscus to that of the 209 

(expanding) tibia but does not correct for this tibial expansion [8] which could result in 210 

systematic over-estimation of change. Our meniscal coverage measure is not affected by 211 

tibial size.  212 

Overall, medial thickness measures decreased significantly at one-year follow-up and 213 

appeared moderately responsive compared to other measures. We found a 6% reduction at 214 

1-year follow up that was both statistically significant and in excess of measurement error. 215 

This result is consistent with findings from  a 2-year pilot study that found a significant 216 

reduction of about 4% in  meniscal height over the tibia (similar to our measure for total 217 

thickness) [42], however that study only measured thickness in one region. We have in 218 

addition evaluated changes in three sub-regions of the meniscus, some of which appear to 219 

provide promising measures of change based on their responsiveness. Similarly for 220 

thickness, in a study with 257 participants Hunter et al found a reduction in thickness on the 221 

medial side which was associated with cartilage loss [15]. Cross–sectionally thickness 222 

measures in OA knees have been found to be greater than in non-OA knees [24] and future 223 

studies could evaluate if the longitudinal changes in this measure are associated with OA 224 

progression.  While sub–regional analysis showed that most change occurred in the 225 

posterior region of the meniscus, measuring the whole meniscus thickness was more 226 

responsive (SRM -0.35) than using three separate regions. Separating the regions into 227 

smaller sub-sections offers some advantages but may be noisier (SRM -0.38), accompanied 228 

by a 7.4% change for posterior thickness. Surprisingly the lateral thickness measures 229 
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increased during follow up although not statistically significant except for the central 230 

thickness sub-region; however this was less responsive than the medial measures. 231 

We found a decrease in medial volume but an increase on the lateral side (both changes not 232 

statistically significant)...  Measurement of volume has previously yielded conflicting results 233 

with one study reporting greater lateral volume in OA knees compared to non-osteoarthritic 234 

knees [23], with no differences in medial volume, while one study from the OAI showed no 235 

differences in either compartment over time [24]. A pilot study evaluating 2-year longitudinal 236 

data [42] found a similar longitudinal decrease on the medial side to that observed in our 237 

study. Manual segmentation of volume proved difficult as damaged menisci and meniscal 238 

roots have complex shape that they can take, moreover correctly determining where the 239 

roots begin is a challenge. Variations in volume results could possibly be a result of 240 

measurement error as a result of varying techniques employed by different studies in 241 

measuring meniscal volume. Some of these studies did not report how the change scores 242 

varied with measurement noise therefore what might be perceived as a lack of sensitivity 243 

could be small changes masked by large measurement error. Segmentation of volume 244 

measures is laborious and although these different findings for volume highlight the need for 245 

further investigation, the lack of responsiveness observed in our study and the difficulty in 246 

segmentation could undermine its use as a potential tool for clinical trials. 247 

This study employed a novel way of measuring extrusion on a 3D plane which facilitated the 248 

calculation of extruded volume. Notably we found poor responsiveness for meniscal 249 

extrusion which was surprising since extrusion has previously been linked to several OA 250 

features in longitudinal and cross-sectional studies [16, 23, 43]. Meniscal extrusion 251 

measured using semi-quantitative methods has been associated with cartilage volume loss 252 

longitudinally [44, 45] and is thought to contribute to subchondral bone changes [26] but our 253 

finding suggests it may be a less responsive measure in a cohort selected for clinical trial 254 

characteristics. We used quantitative measures of meniscal extrusion that assess the entire 255 

3D meniscus and are not just confined to single slices, as in previous studies [16], and it 256 
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may be that we are measuring a somewhat different meniscal construct to that assessed by 257 

current semi-quantitative measures. Our 3D methodology may also explain why we found no 258 

substantial relationship between decreased tibial coverage and increased meniscal extrusion 259 

as has been reported previously. Bruns et al in their study using controls from the OAI 260 

reported increased meniscal extrusion that did not affect meniscal coverage which they 261 

postulated could be due to increased bulging of the peripheral meniscal margin and less 262 

radial displacement[46]. As previously established, meniscal extrusion is a combined 263 

construct of radial displacement and change in meniscal width [23, 47].  Few studies have 264 

directly evaluated the internal responsiveness of meniscal pathologies and specifically for 265 

extrusion, using 3D technology to the best of our knowledge only one other study reported 266 

such a longitudinal analysis. In their study using 3D, similarly Blocker et al also found poor 267 

responsiveness for meniscal extrusion (SRM 0.22) in the central five slices and longitudinal 268 

change was not statistically significant. However, their measure for  extrusion distance 269 

across the entire meniscus (including anterior and posterior horns ) was significantly different 270 

over a 2–year period but responsiveness still poor to moderate (SRM 0.32)[42].  271 

Extrusion is important in the development of other meniscal pathologies as it impairs load 272 

transmission [48] leading to the knee compensating by increasing tibia bone area to ensure 273 

load redistribution [49].  In this 12 month cohort, little change in meniscus extrusion was 274 

noted. Our inclusion criteria meant that we expected more extrusion on the medial side than 275 

the lateral side; in fact 65% of participants in this study had no extruded volume on the 276 

lateral side. Our methodology for identifying the outer limit of the tibia differs from other 277 

methods, in that it uses all of the 3D information from the tibia to generate a plane, outside of 278 

which is considered extrusion.  The plane is constructed using points in the shape model 279 

which may fall in areas which become osteophytic, and these may be handled differently in 280 

other measurement systems. 281 

Exploratory analyses aimed at evaluating if any drivers of change existed based on specific 282 

factors did not yield any important results, with suggestions that responsiveness varied by 283 
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weight status (obese vs non-obese using WHO cut-offs) for total thickness and that of tibial 284 

coverage varied by meniscectomy status, although both findings should be interpreted with 285 

caution in view of the sample size. Patient size has an effect on the size of the medial 286 

plateau, a point highlighted by Stone et al [50]. 287 

In terms of limitations, it should be noted this work was focussed on a cohort typical of that in 288 

clinical trials and does not necessarily reflect the meniscus natural history in a general 289 

population. We selected for medial progression only. Like most of the reported MRI meniscal 290 

studies, we used non-weight-bearing images; changes in the meniscus might be more 291 

responsive under load. We did segmentations of the DESS images, which offer the best 292 

compromise for identification of multiple OA tissues (here meniscus and bone) but may not 293 

be the optimal sequence for detecting particular meniscal pathologies. OA is a long-term 294 

disease, and 12 months is insufficient to study the long-term pathogenesis of menisci in the 295 

OA knee, and it would be useful to follow OA knees for a much longer period, especially 296 

using shape modelling to quantify any spatial change which occurs, while removing 297 

confounding by the pose of the knee.  The repeatability of the method is likely to provide an 298 

optimistic assessment of measurement precision, as only healthy menisci were used for the 299 

test-retest manual segmentation method due to resource constraints.  Based on this 300 

preliminary work, it seems likely that in the future meniscal segmentation may be fully 301 

automated using statistical models, however in this study we wanted to ensure that meniscal 302 

shape was identified as accurately as possible to avoid averaging effects. 303 

In conclusion, using modern image analysis we found that the spatial location of meniscal 304 

damage in patients at risk of medial progression was predominantly in the posterior sub 305 

region of the medial meniscus. In this 12 month OA knee cohort, medial tibial coverage and 306 

thickness were the most responsive measures of change, with change comparable to other 307 

MRI outcomes and better than radiographic JSN. However, as clearly demonstrated in 308 

Figure 1, the type of morphological pathology may vary across cohorts. Meniscal measures 309 
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should now be investigated for their ability to add discriminatory power in OA progression 310 

assessment.  311 
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Figure 1: Identification of anatomical regions and measurement 

Figure A shows the mean shape of the menisci for this group of 86 individuals. Figure B 

shows the anatomical correspondence points (blue spheres) from the tibia bone shape 

model which are used to subdivide the tibial plateaus, from which measurements are taken.  

Figure C shows the anterior (purple), central (light blue) and posterior (dark blue) regions on 

the lateral and medial tibial plateaus, selected using the correspondence points, and D 

shows the mean meniscus split into 3 regions for each meniscus.  Figure E shows the 

correspondence points identified along the outer boundary of the medial tibia. These points 

are joined into a line, and extruded into a plane in the superior direction, which cuts the 

meniscus into an inner and outer section.  F shows the extruded section. Figure G shows 

how thickness measures are taken using the underlying correspondence points on the tibia 

bone. 

Figure 2:  Variety of meniscus shapes; examples from the data set and healthy mean shape 

Menisci are shown in red, with slight transparency to visualise extrusion beyond tibial bone.  

Figure A shows the mean medial and lateral meniscus shape from a group of healthy (KL0) 

knees from the OAI for comparison with cases.  B shows a damaged medial meniscus, 

which is much thinner than the healthy meniscus, the central section is almost all extruded 

beyond the tibia.  C shows both the medial and lateral menisci deformed by a tibial 

osteophyte (red arrow, posterior medial osteophyte pushing the meniscus anteriorly; black 

arrow anterior lateral osteophyte pushing the meniscus posteriorly).  D shows both menisci 

are damaged. 

 

Figure 3:  Mean thickness of baseline and 12 month menisci, and difference map 

Left hand figures show mean thickness (height above the tibia) at baseline and 12 months, 

with the colour scale shown below the figures.  Measurements were taken as shown in 

Figure 1G.  The figure at the right shows the areas which showed significant change at each 
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model correspondence point, as described in the text.  Blue represents thinning of the 

meniscus, and red is thickening.  
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Table 1: Characteristics of 86 participants in meniscus study 
 
 Included in the study Not included in study 
Age, years, median (IQR) 61.5 (52-71) 61.0 (53-69) 

Gender, female 42 (49) 39 (53) 

Ethnicity, white 67 (78) 65 (88) 

BMI, kg/m² ,mean (SD) 31.1 (4.64) 29.4 (4.57) 

Height ,m, mean  (range) 1.7 (1.5-1.9) 1.7 (1.5-1.9) 

High school education or less 21 (24) 7 (10) 

Study knee, Right 43 (50) 35 (47) 

Arthroscopy /meniscectomy on 

study knee 

25 (29) 17 (23) 

Health care insurance 84 (98) 71 (97) 

WOMAC pain score 

,median(IQR) 

4.1 (2.4-6.3) 3.5 (2.0-6.0) 

Values are N (%) unless stated. m (metres). BMI (body mass index) IQR (interquartile range) 
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Table 2: Changes in medial meniscus measures  

Meniscal measure Baseline 12 months Change (95% CI) % change (95% CI) SRM (95% CI) ES p-value (t-test) 

Volume (mm3)         

Total volume 2527.69 2498.97 -28.72 (-108.89,51.46) -1.1 (-0.04,2.03) -0.08 (-0.27,0.13) -0.02 0.48 

Extrusion (µL)         

Extruded volume 507.26 528.12 +20.86 (-2.56,44.27) +4.1 (-0.50,8.72) +0.19 (-0.03,0.40) +0.08 0.08 

Area (mm2 )         

Tibial coverage 414.74 396.32 -18.42 (-29.33,-7.52) -4.4 (-7.07,1.81) -0.36 (-0.58,-0.13) -0.12 <0.001* 

Thickness (mm)         

Total thickness 1.14 1.07 -0.07 (-0.11,-0.03) -6.1 (-9.64,-2.64) -0.35 (-0.55,-0.14) -0.16 <0.001* 

Anterior thickness 0.40 0.41 +0.01 (-0.02,0.03) +2.5 (-5.00,7.50) +0.04 (-0.18,0.26) +0.02 0.71 

Central thickness 0.81 0.76 -0.05 (-0.10,-0.01) -6.1 (-12.35,-1.23) -0.27 (-0.47,0.04) -0.11 0.02 

Posterior thickness 2.16 2.00 -0.16 (-0.24,0.07) -7.4 (-11.11,3.24) -0.38 (-0.53,-0.21) -0.20 <0.001* 

        

ES: Effect Size. SRM: Standardised response mean. *: significant p-value when using paired student’s t-test.  
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Table 3: Changes in lateral meniscus measures  

Meniscal measure  Baseline  12 months  Change (95% CI) % change (95% CI) SRM (95% CI) ES p-value (t-test) 

Volume (mm3)         

Total volume 2131.21 2177.11 +45.90 (11.75,80.05) +2.2 (0.55,3.76) +0.29 (0.01,0.50) +0.05 0.009 

Extrusion (µL)         

Extruded volume 25.77 25.02 -0.75 (-8.44,6.93) -2.9 (-32.75,0.32) -0.02 (-0.23,0.19) -0.01 0.85 

Area (mm2 )         

Tibial coverage 507.24 513.11 +5.87 (0.69,11.06) +1.1 (0.14,2.18) +0.24 (0.03,0.44) -0.06 0.03 

Thickness (mm)         

Total thickness 1.88 1.92 +0.04 (0.01,0.06) +2.1 (0.53,3.19) +0.32 (0.12,0.50) +0.09 0.04 

Anterior thickness 1.90 1.92 +0.02 (-0.008,0.05) +1.1 (-0.42,2.63) +0.16 (-0.07,0.37) +0.05 0.15 

Central thickness 1.95 2.00 +0.05 (0.02,0.08) +2.6 (1.03,4.10) +0.33 (+0.13,0.51) +0.09 0.002* 

Posterior thickness 1.84 1.88 +0.04 (-0.004,0.09) +2.2 (-0.22,4.89) +0.19 (0.01,0.38) +0.06 0.07 

        

ES: Effect Size. SRM: Standardised response mean. *: significant p-value when using paired student’s t-test.  
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Table 4: Longitudinal change in meniscus measures after stratification 

 Total volume (mm 3) Volume Extruded (µL)  Tibial  coverage (mm 2 ) Meniscal Thickness (mm)  

Meniscectomy status      

Single meniscectomy -111.38 (-273.30,50.54) -12.67 (-57.78,32.44) -30.95 (-25.46,-1.69) -0.09 (-0.18,-0.01) 

None  +3.28 (-90.26,96.83) +33.83 (6.36,61.31) -13.57 (-56.05,-5.86) -0.06 (-0.11,-0.01) 

Difference between groups (95% CI) 114.66 (-63.45,292.77) 46.51 (-5.03,98.05) 17.38 (-6.79,41.56) 0.03 (-0.11,-0.03) 

p-value  0.20 0.08 0.16 0.60 

Age      

< median age -31.66 (-132.05,68.71) 10.90 (-18.40,40.20) -13.35 (-27.50,0.80) -0.03 (-0.08,0.01) 

> median age -25.77 (-155.10,103.57) 30.81 (-6.72,68.34) 23.50 (-40.56,-6.44) -0.11 (-0.18,-0.04) 

Difference between groups (95% CI) -5.90 (-167.22,155.43) -19.91 (-66.83,27.01) 10.15 (-11.69,32.00) 0.08 (-0.006,0.16) 

p-value  0.94 0.40 0.36 0.07 

Weight status      

Obese  -28.37 (-117.21,60.48) 21.48 (-11.90,54.87) -19.30 (-35.77,-2.88) -0.07 (-0.12,-0.02) 

Non-obese -28.97 (-153.93,95.99) 19.99 (-13.24,53.21) -17.22 (-30.66,-3.77) -0.07 (-0.14,-0.03) 

Difference between groups (95% CI) 0.60 (-162.90,164.11) -1.50 (-49.25,46.26) 2.08 (-20.17,24.32) 0.00 (-0.08,0.09) 

p-value  0.99 0.95 0.85 0.98 

Gender      

Male  -72.83 (-222.99,77.32) 15.57 (-24.71,55.86) -24.00 (-42.20,-5.81) -0.08 (-0.15,-0.01) 

Female  +17.50 (-36.31,71.31) 26.39 (1.75,51.03) -12.58 (-24.81,-0.34) -0.06 (-0.11,-0.01) 

Difference between groups (95% CI) -90.33 (-250.52,69.84) -10.82 (-57,89,36.26) -18.42 (-29.33,-7.51) -0.02 (-0.11,0.07) 

p-value  0.27 0.65 0.30 0.64 

Values are paired mean differences (95%CI) 
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