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Microfluidics with fluid walls

Edmond J. Walsh!, Alexander Feuerborn?, James H.R. Wheeler3, Ann Na Tan?, William M. Durham34,
Kevin R. Foster® 3 & Peter R. Cook® 2

Microfluidics has great potential, but the complexity of fabricating and operating devices has
limited its use. Here we describe a method — Freestyle Fluidics — that overcomes many key
limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits
with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial
forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation.
Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through
them. We drive flow through a wide range of circuits passively by manipulating surface
tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the
technology with two challenging applications — triggering an inflammatory response in
human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and
versatile alternative to traditional microfluidics.
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anipulation of small volumes of liquids is central to
M many scientific disciplines, including microbiology, cell

biology, biochemistry, and materials science. Two
popular platforms involve microtiter plates, where liquid is held
statically in wells, and microfluidic devices where liquid flows
through channels in polydimethylsiloxane (PDMS)!. While
microtiter plates are widely used, fewer microfluidic devices than
expected have been incorporated into scientific workflows?
despite the demonstrated advantages of the technology®. Various
reasons are given. Prototyping PDMS-based devices takes at least
a few days and is expensive; it also typically requires specialized
equipment, a clean room, and advanced training. Once made,
devices are usually dedicated to one application, and access to
most points in them is limited®>. Moreover, uncoated PDMS has
poor biological and chemical compatibility because it leaches
toxins and reacts with organic solvents> 4=°. Air bubbles in
conventional devices also present numerous operational chal-
lenges: they unbalance flows, damage incorporated cells” 8, and
trigger molecular aggregation at air-fluid interfaces’.

Challenges associated with PDMS-based devices are being met
using various approaches?. For example, methods have been
developed to minimize bubble-associated experimental failure!?,
while windows in walls'!'"!® can improve accessibility.
Alternatively, solid walls can be removed completely while
restricting different liquids to specific regions; this can be
achieved by creating an additional aqueous phase using local
concentrations of water-soluble polymers'> 16, or by patternin§
surfaces with hydrophilic and hydrophobic patches!!~13 19,
However, such approaches ultimately rely on constraining fluids
with solid or polymeric walls, or pre-patterning surfaces.

Here we present a fundamentally different approach — Free-
style Fluidics (FF) — for handling small volumes that does not
use solid walls or pre-patterned surfaces. FF circuits are created in
seconds in much the same way as writing freehand with a pen.
Just as any imaginable pattern can be drawn on a piece of paper,
any fluidic circuit can be created by dragging a pen emitting
liquid across an un-patterned substrate. Edges of circuits are
pinned by interfacial tension, and liquids in them are confined by
fluid walls; during flow, these walls adjust their shape above an
unchanging footprint (i.e., the area in contact with the substrate).
These circuits can be made with materials of proven bio-
compatibility — the culture media and polystyrene/glass dishes
that biologists commonly use?’. We demonstrate the platform by
carrying out a number of microfluidic operations, including
delivering drugs to human cells and triggering chemotaxis in
bacterial biofilms. The versatility of this technology suggests it
may open up a range of applications wherever small liquid
volumes are manipulated.

Results

Method for creating circuits with fluid walls. The method uses
fluid walls to pin liquids to flat un-patterned substrates. To
introduce the concept, a simple case is considered: a small drop of
tissue-culture media is printed on a polystyrene tissue-culture
dish using a syringe pump connected to a pen — a hollow
stainless-steel dispensing needle or plastic tube — which is held
by a 3-axis traverse just above the virgin substrate (Fig. 1la).
Interfacial tension holds the drop in place, and its geometry
becomes the cap of a sphere when gravity forces are negligible
(Fig. 1b). This drop has fluid walls made of air and media. The
physics governing wall shape when water is added or removed
from a drop in air have received considerable attention®!> 22
(Supplementary Fig. 1 and Supplementary Note 1). Thus, for a
given volume, the footprint depends on the equilibrium contact
angle, ;. In the case of the tissue-culture medium — RPMI — in
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air, this angle (0g,,) is ~50°. After printing the drop, slightly more
medium can be added without the footprint increasing in area,
with the exact amount being determined by the advancing con-
tact angle. But once this angle is reached, footprint area increases
(Fig. 1¢). Fluid can also be removed without change in footprint
(Fig. 1d) until the receding contact angle is reached. Here, the
receding angle is so small that at least 95% of a 5-ul drop can be
removed (and the contact angle falls to ~3°, calculated assuming
drops are shaped like caps of spheres). This process allows fab-
rication of fluidic chambers that can accept more or less liquid
without altering footprints.

To eliminate evaporation, drops are overlaid with an
immiscible fluid. This can be less dense than media like a
hydrocarbon; perhaps counter-intuitively, it can be denser like the
fluorocarbon, FC40 — a transparent, fully fluorinated liquid
(density 1.855g/ml) that is widely used in droplet-based
microfluidics. Instead of the aqueous phase rising due to
buoyancy, interfacial forces dominate and the media remains
stuck to the substrate. As the solubility of water in FC40 is <7
ppm by weight, a drop overlaid with FC40 open to air is stable for
days at room temperature. FC40 also effectively isolates different
drops from others in a dish, and from the surroundings, thereby
preventing contamination. For example, an array of drops with
and without bacteria are printed on a Petri dish; after overlaying
FC40, bacteria grow in inoculated drops, as the rest remain sterile
for 10 days on a non-sterile laboratory bench (Supplementary
Fig. 2). Overlaying FC40 provides another useful property. At
least 60% more fluid can be added to a drop before the footprint
increases in area, as FC40 increases 6 from ~50° to ~70°
(Fig. 1le). The elimination of evaporation coupled to such
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(extendable to 1,00

Fig. 1 Making circuits without solid walls. a-f Some principles. 6,
equilibrium contact angle (media in air). a, b Ejected media is held in place
by surface tension. ¢ Adding media increases the footprint, but d removing
large amounts does not. e Overlaying FC40 allows more media than in (¢)
to be added without altering the footprint because the equilibrium contact
angle of media under FC40 is greater. f Array of 1536 drops of media plus
blue dye under FC40 in a flat microtiter plate lacking wells (inset shows
magnification). The pen ejected fluid continuously as it deposited drops
(locations as in a conventional 1536-well plate). g-k Steps in printing a
simple circuit. See text. I Example circuit printed in ~40 s in air using media
mixed with blue dye in a 6-cm tissue-culture dish. It is not yet overlaid with
FC40
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isolation means that drops and arrays can be used as alternatives
to conventional wells and plates with the advantage that working
volumes are lower; aqueous liquids are simply pipetted into (and
removed from) drops through FC40 instead of air (Fig. 1f).

FF circuits are constructed much like drawing on a piece of
paper — the pen is moved as it continuously ejects media to
deposit the required pattern on the substrate. Put in another way,
if a circuit can be drawn on paper, it can be created in seconds
using FF. Figure 1g-k illustrates fabrication of a simple circuit.
The pen tip is brought close to (but not touching) the substrate, it
deposits a drop/chamber, traverses in a straight line above the
substrate to leave a trail of fluid (which becomes a conduit), and
finally stops to deposit a second drop/chamber. Complex patterns
can be printed in seconds (Fig. 11; Supplementary Movie 1). As
before, overlaying FC40 prevents evaporation. Alternatively,
circuits can be printed under FC40; then, conduits have narrower
footprints due to reduced spreading of the aqueous phase
(Supplementary Fig. 3), but these are not discussed further here.
FF circuits overlaid with FC40 are also stable for days, and
pinning lines are strong enough to survive violent agitation
(Supplementary Movie 2). These results illustrate how circuits can
be prototyped quickly using little more than a pump and 3-axis
traverse.

Passive pumping. Many existing microfluidic devices use exter-
nal pumps to drive flow; this adds complexity and cost, and limits
the number of devices that can be operated simultaneously. In
contrast, flow through FF circuits can be driven passively without
additional equipment. The principle used has been demonstrated
previously: flow rate and direction may be controlled by varying
Laplace and hydrostatic pressures>>~2°, Laplace pressure is given
by 2y/R, where y is interfacial tension, R is radius of curvature;
hydrostatic pressure is pgh, where p is density, g is gravity, and h
is height. Thus, if two differently-sized drops of the same fluid are
connected by a conduit and Laplace pressure dominates, the one
with the smaller radius of curvature harbors a larger pressure; this
drives flow from the small drop to the larger one (Fig. 2a). In
Fig. 2b and Supplementary Movie 3, different volumes of red dye
are pipetted into left-hand source drops - the smaller the source
drop, the higher the flow to the right-hand sink (see Supple-
mentary Note 1, and Tables 1 and 2 for details). During flow,
footprints do not change, although volumes above footprints do
(Supplementary Movie 4). Here, diffusional transfer to sinks can
be neglected as distances are so long and time scales so short.

Varying conduit width provides another way of controlling
flow. For example, when 18-pl drops are connected to 20-pl drops
by conduits with different widths, flow is fastest through the
widest because it has the lowest hydrodynamic resistance; flow
rates vary over two orders of magnitude (~0.3-30 ul/h) when
conduit width changes ~3-fold (Fig. 2d). With narrow conduits,
flow remains steady for hours (Fig. 2d; Supplementary Fig. 4a, b
illustrate a side view of a sink drop, and reproducibility of flows
obtained with two identical circuits).

Interplay between Laplace and hydrostatic pressures dictates
the shape of curves in Fig. 2d. If Laplace pressure were the sole
driver of flow, the rate of volume reduction would progressively
decrease with time. However, this reduction is counteracted by
the changing hydrostatic pressure of the denser overlay.
Supplementary Fig. 4c and associated text illustrate this interplay,
and Table 1 provides example geometric data for isolated drops of
different sizes (e.g., with a 3-mm overlay, a 5-pl drop at an
equilibrium contact angle of 70° has a drop height, base radius,
and base area of 1.1, 1.58 mm and 7.8 mm?, respectively). Thus
far, flow has been from the drop with the smallest footprint, but it
can be in the opposite direction if the drop with the smallest
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footprint radius has a larger radius of curvature?. This can be
achieved using a flat drop (i.e., one with a contact angle much less
than @g; Fig. 2c). Overall, flow through a circuit is simple to
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Fig. 2 Using Laplace pressure to drive flow through FF circuits. Grey arrows:
direction of flow. a Principles. In this simple circuit (plan, side views), the
left-hand drop has the smaller radius of curvature (r <R), and a pressure
difference between the drops is the main driver of flow. b A frame from
Supplementary Movie 3. Media (20 pl) was added through the 5 ml overlay
of FC40 to each sink drop; next, 10, 8, 6, 4, and 2 ul red dye were pipetted
successively into drops 6-2, and the dish photographed after ~30s.
Advection transports dye away from drops with the smaller radii of
curvature (diffusion down the conduit is negligible). Although dye was
added to drop 2 last, it reaches a sink first. € This circuit (plan, side views)
has the same footprint as that in (a), but flow is reversed because the small
flat drop has the larger radius of curvature (r;>R) and lowest pressure. d
Flow rate depends on conduit width. Four circuits were made like the one in
(a); each had an 18-pl left-hand (source) drop connected to a 20-pl sink
through a 11-mm conduit (widths indicated). Circuits were overlaid with
3-mm FC40. Time-lapse imaging (side views) show volumes of source
drops decrease over time; these volumes were determined and normalized
relative to initial ones. e Interplay between Laplace and hydrostatic
pressures. The left-hand drop has a smaller radius of curvature (and so
higher Laplace pressure) than the right-hand one (R; < R5), and is overlaid
with a greater depth of FC40 (H,> H,) and so experiences a higher
hydrostatic pressure. Both pressures combine to drive flow to the right

Table 1 Hydrostatic and Laplace pressures associated with
isolated drops

Parameter Drop volume (pul)

2.5 5 10 20
Drop height (mm) 0.88 110 1.39 1.75
Base radius (mm) 1.25 1.58 1.98 2.50
Base area (mm?) 491 7.79 12.37 19.64
Hydrostatic pressure, 38.56 34.43 29.23 22.67
FC40 (Pa)
Hydrostatic pressure, 8.59 10.82 13.63 17.7
water (Pa)
Laplace pressure (Pa) 60.13 47.73 37.88 30.07
Pressure at base of 107.28 9298 80.74 69.91

drop (Pa)

Drops have volumes specified and sit on a flat substrate (values calculated assuming a contact
angle of 70°, an interfacial tension of 40 mN/m, and an overlay of FC40 with a depth of 3 mm)
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Table 2 Geometric parameters of drops and conduits

Conduit width w (um) Parameter Drop volume (pul)
2.5 5 10 20
300 Radius of curvature, R (pm) 757 1038 1521 2586
Height of center of conduit, h (um) 15.0 10.9 7.4 4.4
Contact angle, CA (degree) n.4 83 5.7 33
Length of interface, L (pm) 302.0 3011 300.5 300.2
Cross-sectional area, CSA (pmz) 3008 2181 1483 871
600 Radius of curvature, R (pm) 757 1038 1521 2586
Center height conduit, h (um) 62.0 443 29.9 17.5
Contact angle, CA (degree) 233 16.8 1.4 6.7
Length of interface, L (um) 616.9 608.7 604.0 601.4
Cross-sectional area, A (pm?) 25,001 17,795 11,974 6989
900 Radius of curvature, R (um) 757 1038 1521 2586
Center height conduit, h (um) 148.3 102.6 68.1 39.5
Contact angle, CA (degree) 36.5 25.7 17.2 10.0
Length of interface, L (um) 963.8 930.9 913.7 904.6
Cross-sectional area, CSA (pmz) 90,856 62,200 41,038 23,711

depth of 3mm)

Conduits with varying conduit width are connected to drops of varying volume (values calculated assuming a contact angle of 70°, an interfacial tension of 40 mN/m, and an overlay of FC40 with a

generate and can be controlled flexibly without using external
pumps.

Fluid walls adapt during flow. In conventional devices, channels
have fixed cross-sections; in contrast, heights of FF conduits
adapt in response to changing pressures above unaltered foot-
prints. If the cross-sectional area along the conduit in Fig. 2e is
approximated by a segment of a circle, then its radius of curvature
specifies the Laplace pressure across the interface (Supplementary
Fig. 5). To a first approximation, curvature at each end of the
conduit (R.onduit) may be obtained by assuming pressures at bases
of source and sink drops are equal to pressures in the conduit
near inlet and outlet respectively. The pressure drop across the
conduit interface, assuming conduit height is small relative to
drop height, is (Eq. 1; see Supplementary Note 1 for details):

v _ %
Reonduit Rdrop

APijterface= - Ap (FC/water) ghdrop ( 1 )

Because conduit height decreases with local pressure, the cross-
sectional area of the conduit is predicted to decrease in the
direction of flow. Table 2 provides some examples; a conduit
(width 600 pm) connecting 5- and 10-pl drops has center-line
heights at inlet and exit (where heights are h; and h,) respectively
of ~44 and 30 pm, contact angles of ~17 and 11°, and cross-
sectional areas of ~18,000 and 12,000 pm?. As liquids are
incompressible, volumetric flow rate must be the same at each
cross-section along the conduit. Therefore, mean flow velocity
increases in the direction of flow as cross-sectional area decreases,
and - in this example - continuity dictates that it increases ~1.3-
fold from conduit inlet to exit as fluid walls change their shape
accordingly. Here, effects of gravity on conduit and drop
interfaces are ignored.

Example circuits using passive flows. Exemplary circuits carry-
ing out basic functions are now illustrated (Fig. 3); PDMS chips
performing analogous ones have been described® * . Colored
dyes are being pumped passively through these circuits, and
shapes of walls are determined by well-established principles
(Supplementary Fig. 5). For example, conduits have widths
mainly determined by pen width (and to a lesser extent by
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At equilibrium

Fig. 3 Some FF circuits carrying out different functions. Colored dyes were
pipetted manually into input drops, and they are flowing (colored arrows) to
sink drops autonomously. Insets illustrate how accurately pinning lines are
built. a Mixing 8 fluids. b Generating a stable concentration gradient across
two laminar streams after the junction (side view below). ¢ Flow focusing the
central laminar stream after the junction (side view below). d Generating a
flow-free diffusion gradient across the central conduit (inset). e Feeding
circuit after 90 s (upper) and at equilibrium (lower); dyes were pipetted into
large drops on the left, which then feed the small chambers
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ejection rate, contact angle, and pen-to-substrate distance), and
heights along the center-line are typically down to a few microns
(Table 2). Drop-like features are >4 mm wide so microliter
volumes can be manually pipetted into them easily, but they can
initially contain as little as ~100 nl. These circuits mix fluids
(Fig. 3a, Supplementary Movie 5; Supplementary Movie 6 illus-
trates gravity-driven splitting of a stream), generate chemotactic
gradients (Fig. 3b), flow-focus laminar streams (Fig. 3¢, Supple-
mentary Movie 7 and Supplementary Fig. 6 illustrates re-use of
this circuit after switching two inputs), create a diffusion-based
concentration gradient across a flow-free conduit (Fig. 3d), and
feed many chambers from large inlet ports on the left (Fig. 3e).
This collection of experiments demonstrates the versatility of the
platform.

Human cells grow normally in FF drops and circuits. These
circuits can be constructed using biocompatible liquids (ie.,
tissue-culture media), substrates (i.e., polystyrene Petri dishes/
glass slides), and overlay (FC40 is bio-inert, permeable to the vital
gases — O, and CO,, and small molecules secreted by cells and/or
added drugs are less likely to partition into this fluorinated oil
compared to a conventional hydrocarbon oil, PDMS channel, or
aqueous biphasic system). To test bio-compatibility, human
embryonic kidney (HEK) cells were plated in a drop of DMEM
plus serum on a standard tissue-culture dish, and the dish
overlaid with FC40 and mounted on a microscope in an atmo-
sphere of 5% CO,; imaging shows cells grow like their counter-
parts cultured conventionally (Fig. 4a; Supplementary Movie 8).
HEKSs also respond normally to a drug. This is illustrated using
a circuit that autonomously creates serial dilutions. This circuit is
made and operated as follows. In Fig. 4b, chambers 1, 2, and a-f
are printed as concentric sets of 3 circular conduits spaced less
than one pen-diameter apart; these fuse to form single flat
chambers with identical footprints, shapes, and pressures.
Pipetting dyes into 1 and 2 now increases pressures locally,
which drives flow into a-f; then, a fills only with red dye, f only
with blue dye, and b-e with dilutions of the two (b ends up with
the most red dye and the least blue, and e with the most blue dye
and the least red). These HEKs had been genetically-modified to
encode a GFP-reporter gene controlled by a promoter switched
on by tumor necrosis factor alpha (TNFa) — when exposed to the
cytokine, they fluoresce green. Therefore, when cells are seeded in
lettered chambers, grown in a standard CO, incubator for 18 h,
and then TNFa pipetted into 1 and medium into 2, the circuit
now serially dilutes TNFa to give the highest concentration in a,
and dilutions in b-e (f receives no TNFa). Note that advection
creates the concentration gradient, and the concentration of
TNFa changes by less than 0.5% over 24h due to subsequent
diffusion (Methods). After regrowth to allow TNF« to switch on
GFP expression, imaging reveals that cells respond in the
expected range of cytokine concentrations; GFP fluorescence is
highest in a, with intensity tailing off to background in f (Fig. 4c).
These results support the biocompatibility of our circuits, and
illustrate a circuit that serially dilutes drugs autonomously.

Flow driven by an external pump. Many microfluidic applica-
tions require stable flows persisting for days®’; this is difficult to
achieve by passive pumping because flow rates inevitably change
over time (Fig. 2b). One application - chemotaxis - requires
stable flows, and many microfluidic devices have been developed
to study it?”. Therefore, we sought to establish stable flows by
incorporating external pumps into a Y-shaped chemotaxis circuit.
After printing (Supplementary Movie 9), tips of two stainless-
steel dispensing needles - filled with blue or red dye and con-
nected to syringes mounted on one pump — were lowered through
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Fig. 4 HEKSs in drops/circuits in 6-cm plates grow as expected. a Phase-
contrast images (frames from Supplementary Movie 8) showing cells in an
FF drop increase in number. Bar: 40 um. b Circuit operation demonstrated
using dyes. Blue and red dyes were pipetted into drops 1and 2 (arrows); they
flow autonomously into chambers a-f to create serial dilutions in minutes (a
contains the highest concentration of red dye and no blue, while f contains
the highest concentration of blue dye and no red). ¢ Cells in the FF circuit
respond to TNFa. A total of 1ul HEKs (~600 cells) were plated in each
chamber a-f, grown (24 h), and TNFa (9 pl; 10 ng/ml) pipetted into drop 1
and medium (9 pl) into 2. Automatic dilution/mixing gives the highest
concentration of TNFa in a, and serial dilutions in b-¢; f receives no TNFa.
TNFa concentrations in chambers a-f were 5.1, 4.7, 3.4, 1.8, 0.8, and O ng/
ml. Cells were now incubated for 24 h to allow TNFa to induce GFP
expression. Fluorescence (upper) and bright-field images (lower) of the
centers of chambers a-f are shown. For quantitative analysis of TNFa
concentrations and fluorescence intensities, see Supplementary Fig. 7. Bar:
200 um

FC40 until they pierce an arm of the Y; the aqueous interface then
spontaneously seals around the hydrophilic needles (Fig. 5a,
Supplementary Fig. 8). On starting the pump, red and blue dyes
are injected into the circuit and flow around right-angle bends at
rates up to ~1 ml/h without changing the footprint. If air bubbles
are introduced via inlets, their buoyancy forces them to pinch off
and be lost to the atmosphere (Supplementary Movie 10). These
results confirm that external pumps can be connected simply
through self-sealing gaskets to FF circuits, fluid walls robustly
adapt to changing flows, footprints remain unchanged over 9h
(longer times can be accommodated by removing fluid from the
sink by pipette, or using a flat sink of larger diameter), and cir-
cuits can be operated like their counterparts embedded in PDMS
without problems associated with leaky seals and air bubbles.

Bacterial chemotaxis in developing biofilms. We next ascer-
tained whether previous results obtained using a conventional
PDMS-based device could be replicated using this chemotaxis
circuit. Biofilms play important roles in many human infections
and environmental processes’®. Recently, it was shown that
individual bacteria in biofilms growing on glass in PDMS can
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Fig. 5 Integrating external pumps into an FF circuit to study bacterial
chemotaxis. a Overview (40-mm glass-bottomed dish). Blue and red dyes
(or alternatives indicated) each flow (100 nl/s) from syringes driven by one
external pump through hollow needles to the sink. b Using fluorescein to
characterize the diffusion gradient across the conduit. The circuit was
placed on a confocal microscope, and TB and TB + fluorescein were
pumped (12 pl/h) through arms of the Y. An image of the region
downstream of the junction reveals fluorescent and dark laminar streams.
Inset: diffusion of fluorescein to the left generates a concentration gradient
(arrows point to highest concentrations). € Chemotaxis of P. aeruginosa
towards DMSO. The circuit was placed on an inverted microscope, bacteria
pipetted into the central conduit, TB and TB + DMSO injected into left and
right arms (each at 12 ul/h), bright-field images collected over 9 h, and
trajectories of individual bacteria in a region near the junction determined.
The cartoon (left) shows individual trajectories (cells 1T and 2 move down
and up the gradient, respectively), and the map (right) shows more
trajectories (red; collected between O and 6 h) are to the right towards high
DMSO concentrations compared to those to the left (blue). d Chemotactic
bias (number bacteria travelling up DMSO gradient divided by number
moving down). Bias > 1 indicates more cells move up gradient (grey line:
lack of chemotaxis). Inset: probability-density functions of angle from each
trajectory’s origin to final position (0-6h), with red/blue bins denoting
movement towards/away DMSO. A slight downstream bias occurs
because flow pushes bacteria. e Average speed of individual cells increases
initially before decreasing due to cell crowding caused by population
growth

sense chemical gradients and move towards nutrients®®. While
bacteria in suspension swim at tens of body lengths per second by
rotating helical flagella, on surfaces they use tiny gra})pgling hooks
— pili - to pull themselves ~1,000-fold more slowly>*—32. As time-
scales are long and gradients steep, these experiments are chal-
lenging to perform in PDMS-based devices. Air bubble formation
is particularly problematic; as bubbles travel through devices the
detach cells from surfaces, unbalance flows, and alter gradients”> %,
Our chemotaxis circuit was initially created using tryptone
broth (TB) on a glass-bottomed Petri dish; however, pinning lines

6
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were unstable. Therefore, the circuit was printed using DMEM +
10% FBS, and then washed through with excess TB; pinning lines
remained unchanged during washing, and subsequently during
the experiment. This shows a circuit can be created with one fluid
giving stable pinning lines, and operated using another. [An
alternative involves treating glass to give stable pinning in TB, but
this was less preferred because previous results had been obtained
using unmodified surfaces.]

To characterize the chemotactic gradient, the Y-shaped circuit
was mounted on a confocal microscope, and an external pump
used to create two laminar streams of TB in the central arm of the
Y - one labeled with fluorescein (used as a surrogate for a chemo-
attractant). Then, fluorescence imaging revealed a bright stream
flowing side-by-side with a dark stream (Fig. 5b), and a diffusion
gradient of dye across the conduit (Fig. 5b, inset). With slow flow,
there is time for diffusion to create a gradient ~100 um wide; with
fast flow, there is less time and the gradient is steeper
(Supplementary Fig. 8d).

For the chemotaxis experiment, pathogenic bacteria -
Pseudomonas aeruginosa — were manually pipetted into the
central arm of the Y; cells attach to glass. The two input needles
now inject TB and TB plus the chemoattractant, dimethyl
sulfoxide (DMSO); this washes away unattached cells and
diffusion between laminar streams then creates the chemotactic
gradient above the nascent biofilm. Cells on the substrate were
motile (Supplementary Movie 11). Automated tracking algo-
rithms*” were now used to extract trajectories of > 10,000 cells;
many more bacteria move towards DMSO than away from it
(Fig. 5c; compare numbers of red and blue tracks). Both
chemotactic bias and cell speed peak after a few hours and then
decline as bacteria divide, and the resulting crowding attenuates
movement (Fig. 5d, e). These results were similar to those
obtained with the PDMS-based device? (Supplementary Fig. 8e).
This indicates that FF circuits can provide analogous data to those
obtained with conventional systems more rapidly and cost-
effectively, with fewer technical drawbacks.

Discussion

We have presented a microfluidic platform - Freestyle Fluidics
(FF) - in which liquids drawn on flat un-patterned substrates are
confined by fluid walls and ceilings (Fig. 1); these walls/ceilings
change shape above the footprint when fluids flow through the
system. This platform has many advantages. First, almost any
imaginable 2D design can be printed cheaply in seconds using an
aqueous solution and plastic/glass substrates. Fabrication does
not require a dedicated microfluidics laboratory or specialized
equipment beyond a syringe pump and an automated positioning
system to drive the pen, and a laminar-flow hood if sterile circuits
are required. Second, circuits are fully accessible from above.
Consequently, micro-liter volumes can be pipetted manually into
them at any point to provide a simple interface between micro-
and nano-liter scales; smaller volumes can be pipetted into
smaller features using automatic systems. Third, fluid walls are
built accurately and reproducibly by interfacial forces (Fig. 3,
insets). Importantly, these walls are strong, pliant, and resilient
(Supplementary Movie 2); they self-heal and reform when brea-
ched. Fourth, shapes of fluid walls can be varied locally to create
differences in Laplace and hydrostatic pressure that drive fluids
passively through circuits (Fig. 2). As such pumping is simple and
scalable, it can be applied to high-throughput analyses. Flow can
even be reversed or stopped by adding/removing fluid from
selected drops to alter local pressures. Fifth, external pumps are
easily integrated into circuits if stable flows of large volumes are
required for long times; tubes connected to a pump are lowered
through FC40 until they pierce fluid walls, and then walls
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spontaneously seal around inserted tubes (Fig. 5). Sixth, the
method is biocompatible and especially useful for live-cell assays
(Figs. 4 and 5 demonstrate human cells and bacterial biofilms
growing and responding to stimuli as expected); it requires just a
bio-inert fluorocarbon and the culture media and polystyrene/
glass dishes used by biologists. Seventh, conventional circuits are
often rendered non-functional by air bubbles, but if accidentally
introduced into FF circuits, buoyancy forces them to rise to the
surface without altering footprints (Supplementary Movie 10).

As with any method, FF has limitations. First, fluids and sur-
faces must be matched to ensure pinning lines are stable. For-
tunately, suitable combinations can be screened rapidly by
placing a drop of fluid on a substrate, and then removing most of
the volume. If the pinning line does not retract, the combination
may be used; if it retracts, a circuit can be created using a liquid
known to allow fabrication and then washed through with the
one desired for operation (as in Fig. 5). Second, many existing
PDMS circuits cannot be replicated exactly, so new designs to
achieve existing functions must be developed. For example, the
fluid walls in FF circuits are curved and not straight, FF conduits
have minimum lengths and widths larger than many PDMS
channels (we typically use printing tips with diameters of hun-
dreds of microns), source drops have maximal diameters of ~5
mm (giving an upper volume of ~20 pl for a contact angle of 70°),
and pressures tolerated are lower because of the limitations
imposed by interfacial forces (Supplementary Note 1). Third,
liquids used in cell biology are often transparent, so FF circuits
are difficult to see; therefore, we often print the circuit plan on
paper, place it under the dish, and then use the plan as a guide
when manually pipetting into circuits. Fourth, circuits should
usually be horizontal during operation (achieved using a bull's-
eye spirit level).

In summary, we have developed a versatile microfluidic plat-
form for constructing and operating microfluidic devices that
uses liquid interfaces. Circuits can be prototyped quickly; they can
be made in much the same time that it takes to draw them by
hand. The simplicity and flexibility of our method is designed to
bring microfluidics to a wide range of laboratories and
applications.

Methods

General reagents and equipment. FC40 was purchased from Acota. It is bio-
inert, and not found in regulatory lists of dangerous organic chemicals (http://
www.acota.co.uk/assets/data-centre/msds/3m/3mfc40msds.pdf). If circuits are to
be kept for days, extra FC40 should be added when needed, and we give the
following data as a rough guide to the replenishment rate. The vapour pressure of
FC40 is 432 Pa at 25 °C, so FC40 evaporates relatively slowly compared to water
(vapour pressure of 3170 Pa). We find experimentally that the rate of evaporation
of FC40 at 25 °C from a 6-cm Petri dish is 90 pl per day with the lid on, and 1.55 ml
per day with the lid off. Evaporated FC40 also had no untoward effects on any of
many different cell types grown conventionally in the same incubator at the same
time over a period of 2 years. All other fluids and materials were from Sigma
Aldrich unless otherwise stated. Where indicated, aqueous drops contained water-
soluble dyes (e.g., 4 mg/ml Allura Red, 2 mg/ml toluidine blue). Circuits were
generally printed on ‘6-cm’ polystyrene tissue-culture dishes (Falcon; 60 x 15 mm
style), which have an internal diameter of 5 cm, rectangular flat polystyrene micro-
titer plates (127.7 x 85.5 mm; Nunclon from Thermo Fisher Scientific), or glass
microscope slides and coverslips. Blunt stainless-steel dispensing needles used for
pens generally had widths of 0.4-0.6 mm outer diameter.

Cells. Escherichia coli (chemically-competent TOP10 bacteria; ThermoFisher Sci-
entific) used in Supplementary Fig. 2 were inoculated directly from frozen stocks
into SOC medium (Invitrogen). A total of 50 x 1 ul drops containing bacteria were
deposited on a 60 mm-dish, interspersed by 50 x 1 ul SOC-only drops. Drops were
subsequently overlaid with FC40 and incubated as indicated.

HEK-293 reporter cells (NF-kB/293/GFP-Luc™ Transcriptional Reporter Cell
Line; System Biosciences, catalogue number TR860A-I) were grown as
recommended by the manufacturer in DMEM plus 10% FBS, and in FF drops and
circuits overlaid with FC40 in exactly the same way (i.e., in the same medium, in a
5% CO, incubator at high humidity). They encode a GFP gene under the control of
the minimal cytomegalovirus promoter downstream of four copies of the NF-«kB
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consensus transcriptional-response element. GFP expression was induced by
treating cells with varying levels of TNFa (Peprotech) for times indicated. Results
obtained in Fig. 4c were like those reported by the supplier of the cell line.

Pseudomonas aeruginosa PAO1 (Kolter collection, 7K2019%°) was used for the
chemotaxis assay (Fig. 5). Cells were grown from frozen stock overnight in 3 ml
Luria-Bertani broth (LB Lennox, 20 g/l) at 37 °C with shaking at 250 rpm. Cells
were subcultured (1:30 dilution) in TB (10 g/1 Bacto™ tryptone, Becton Dickinson
and Company) to obtain cells in exponential phase. Cells were then diluted in TB
to an optical density at 600 nm of 0.25 before being pipetted into circuits. Circuits
were incubated at 20 °C for the duration of the experiment. Results obtained in
Fig. 5c—e were like those obtained with a commercial PDMS-based microfluidic
system and PDMS-based devices fabricated in house’>.

Measurement of interfacial tension. Interfacial tensions were measured using the
pendant-drop technique and a commercial system (First Ten Angstroms 1000).
Drops were ejected from 16-30 gauge stainless-steel blunt needles using a pro-
grammable syringe pump (Harvard PhD Ultra I/W) or micro-meter syringe
(Gilmont) into a less-dense fluid in a 2 ml cuvette. The manufacturer’s software
was used to calculate the interfacial tension for each image. Before using new fluids,
the system was calibrated; the interfacial tension of filtered water/air or FC40/air
was measured and good agreement was found with established values of 72 and 16
mN/m.

Printing and operation of FF circuits. To print the simple circuit in Fig. 2a, a
blunt stainless-steel dispensing needle (outer diameter 0.5 mm) was connected via
PTEE tubing to an air-tight glass syringe which was prefilled with culture medium
(i.e., RPMI + 10% FBS) and mounted on a programmable syringe pump (Harvard
PhD Ultra I/W). [This medium was used for all circuits unless stated otherwise.]
The needle can be held vertically by an automated positioning system — a 3D
traverse system (Z-400, CNC Step, Germany) or an integrated Freestyle printer
(iotaSciences Ltd, UK). Beds of the system and printer were levelled using min-
iature bull's-eye spirit levels. The needle tip was brought to within ~100 um of the
surface of a horizontal 60-mm dish by first lowering the tip until it touched the
surface and then raising it 100 um. Next, the pump was started so the tip ejected
fluid (300 nl/s; in other cases, ejection rates varied from 100 - 2,000 nl/s depending
on the size of the needle tip) as it remained in a fixed position until a drop of
desired size is formed, moved laterally (traverse rate 30 mm/s) to leave a trail of
medium behind on the substrate (the conduit), and remains stationary to form the
second drop. At the end, the needle is retracted from the substrate, the pump
stopped, and the needle moved to the new desired location if another circuit is to
be printed. Complex circuits can either be printed using continuous flow (as in
Fig. 2b and Supplementary Movie 1), or by stopping and starting the pump, and
retracting the tip from the surface, as individual features in a circuit (and even parts
of a feature) are made. To prevent evaporation, FC40 is poured into the dish to a
sufficient height to cover the circuit. Prudence dictates that FC40 is poured next to
(and not directly on to) a circuit, but experience indicates that pinning lines are
usually strong enough to remain unchanged even when FC40 is poured directly
onto circuits (Supplementary Movie 12 illustrates addition of FC40 to a circuit, and
Supplementary Fig. 3g shows part of a circuit that was created while FC40 flowed
over it).

The array of drops in Fig. 1f (spaced as in a conventional 1,536-well plate) was
made by continuously ejecting (1,000 nl/s) medium plus blue dye from a needle
(external diameter 0.6 mm). The needle was lowered to eject the first drop (600 nl),
raised, moved laterally (traverse rate 30 mm/s), and lowered to eject the second,
and so on. As pinning lines of drops remain unaltered over a wide range of contact
angles, liquids can be added to, or removed from, a drop in the same way as a
conventional well. However, each FF drop has a smaller working volume (~0.6-1
ul), compared to the ~2-10 pl in a conventional well. FF arrays yield another
advantage if the final readout involves imaging. Contents of interest near the wall of
a conventional well can only be imaged using a microscope directly from above
because walls bring significant edge effects; in contrast, many FF drops can be
imaged simultaneously from one point of view because FC40 is optically
transparent (Fig. 1f, inset). Moreover, even more drops can be packed into the
same area by reducing drop-to-drop spacing or drop volume (e.g., geometrical
considerations indicate that ~1,855 0.1-ul drops can be packed into the standard
area even with a generous inter-drop dead space of 1-drop diameter). FF drops
with footprints of any shape (e.g., square, hexagonal) can also be printed to
maximize use of the surface.

For Fig. 3a, 5-ul drops feed a 30-pl sink, the circuit was created in a way
analogous to those in Fig. 2, and was not overlaid with FC40.

The Y-shaped circuit in Fig. 3b was made by ejecting medium (600 nl/s; 0.61-
mm needle) on to the plastic. The tip was held stationary to create a left-hand drop
(1 ul), moved to form a dog-leg channel (footprint 540-570 um wide), and held
stationary to create part of the sink drop (1 ul). An identical and reflected second
circuit was now created below the first offset by 500 pm, so the two parts of the sink
drop overlap, and ends of dog-legs run side-by-side (and merge to give a combined
width of 1030 pm). The circuit was overlaid with FC40 (depth 4 mm). To start flow,
10 pl blue dye, 10 ul red dye, and 20 pl medium were hand-pipetted into the two
left-hand drops and sink, respectively. Consequently, the sink initially contains
roughly twice the volume of left-hand drops. After the junction, both dyes diffuse
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across the laminar interface; this creates concentration gradients perpendicular to,
and in the direction of, flow.

For Fig. 3¢ and Supplementary Movie 7, the circuit was made as in Fig. 3b with
an additional section containing an input drop (the middle one on the left) and a
partial sink drop (both of 1 ul) connected by a straight channel. Final widths of
channels before and after the junction are 590-610 and 1,550 pm. To start flow, 10
ul medium, 10 pl red dye, 10 pl blue dye, and 20 pl medium were pipetted into left-
hand drops and sink, respectively. After the junction, the central laminar stream
(red) is flow-focused due its higher velocity and greater height of the conduit along
the center-line. This circuit was reused in Supplementary Fig. 6.

Figure 3d illustrates another circuit for chemotaxis, but a (diffusion-based)
concentration gradient is stably maintained across the central conduit (width 1
mm, length 1.5 mm; see inset) in the absence of flow through that conduit;
however, flow sustains a constant dye concentration at the top and bottom of this
conduit. Inspection shows that some blue dye passes down through this conduit as
red dye passes up — demonstrating that transfers result from diffusion (not
advection). The flat sink drop (diameter 6.5 mm) was made by printing a set of
concentric circles; it has a smaller footprint than left-hand source drops (diameters
3.3 mm). The circuit was drawn (0.5 mm needle; traverse rate 20 mm/s; flow rate
300 nl/s) in air on a rectangular glass coverslip for improved imaging, and not
overlaid with FC40. Conduits are 0.7 or 1 mm wide. Initially, 6.5 ul blue and red
dyes were pipetted into left-hand drops; then, fluids flow along the shortest route to
the flat sink drop on the right (volume ~1 ul); this flow ensures a (relatively)
uniform concentration of blue (or red) dye is found at the top (or bottom) of the
central conduit.

For Fig. 3e, the circuit was made in air in a flat micro-titer plate, a 0.5-mm
needle, and a flow rate of 350 nl/sec. This circuit allows feeding of culture medium
from inlet ports (the large left-hand chambers) to an array of small flat chambers
spaced as in a 384-well plate. This circuit could be used to deliver fresh medium to
each small chamber without change in footprint, and without any liquid flowing
from one small chamber to another; when flow ceases, pressure must be constant
everywhere in the circuit, and therefore each chamber must have an equal volume
if wetted areas are similar. The five input chambers (left) have circular footprints
(~3.4 mm diameter) and are connected to 5 main conduits (footprint widths ~1.1
mm). There are also 50 small flat chambers (only a maximum of 40 can be seen in
fields shown) with circular footprints (3.4 mm diameter) connected to the main
conduits through smaller feeder conduits (width ~0.6 mm). The small chambers
are spaced 4.5 mm apart. Once printed, the dish was filled with 6 ml FC40, and flow
initiated by pipetting 10 pl red or blue dye into input chambers. Then, the system
equilibrates over ~40 min. As all small chambers have the same footprints, the
requirement that the pressure is similar throughout the network at equilibrium
ensures their final volumes are the same. Consequently, of the 10 ul deposited in
each input chamber, only 3.3 ul remains at equilibrium (and each small chamber
increases in volume by ~670 nl). One image in Fig. 3e was taken 90 s after adding
red/blue dye to a large drop; equilibrium was reached after ~40 min when dyes fill
all small drops. The other image in Fig. 3e was collected after 12 h.

In Fig. 4b, c, circular chambers have footprint diameters of 4.2 mm, the center-
to-center distance between each chamber in the series b to e is 4.5 mm, conduits
from source chambers 1 and 2 are 1.1 mm wide, and those feeding lettered
chambers are 0.8 mm wide (see Supplementary Note 3 for the G-code used). The
circuit was made using a 0.5 mm hollow stainless-steel needle as it traversed (20
mm/s) emitting a total of ~3 pl medium (flow rate 100 nl/s) on to a 60-mm dish.
All chambers were identical, and each was made by printing concentric circles
which fused together to give a flat chamber. 1 ul DMEM media + 10% FBS with
cells (600 cells/ul) were pipetted manually into chambers a-f; then, the dish was
placed in a CO, incubator. After 24 h, 9 ul media + TNFx (10 ng/ml) was added to
source drop 1, and 9 pl media to source drop 2; this increases the Laplace pressure
in drops 1 and 2, and fluid is passively pumped into chambers a-f. When flow by
advection stops, pressures in all chambers are equal, so end volumes (i.e., ~3.6 pl,
determined by manually aspirating all fluid from chamber by pipette) are also equal
(assuming interfacial tension is equal at the interface). The result is a concentration
gradient of the single drug. The initial transport of TNFa from source drop to cell
chambers is by advection; once advection ceases, diffusion becomes the mass
transport mechanism. Therefore, two questions arise: how far does TNFa diffuse,
and by how much does diffusion change concentrations during the experiment? To
provide theoretical answers, we use the diffusion coefficient (D) of a typical protein
- the green fluorescent protein (molecular weight 27 kD) - in water (i.e., ~1 X 1076
cm?/s)®3, The diffusion distance, x, of this protein over 24 h () is 4.15 mm
(calculated using the established relationship x = 1/2Dt). Therefore, the green
fluorescent protein would diffuse ~4.15 mm from a chamber into a conduit in
1 day, and take ~11 days to diffuse from one chamber to another. Consequently,
there will be no diffusional transfer of proteins between cell chambers during our
experiment. However, the concentration in a chamber may change over time due to
diffusion into a conduit, and this change can be calculated using theory provided in
Supplementary Note 1. The volume of a conduit in Fig. 4b that connects cell
chambers (length 4.15 mm) is 0.03 pl, compared to a chamber volume of 3.6 pl. If
the average concentration over this diffusion length is half that in the chamber,
then only 0.4% of a protein will be lost from the chamber to the conduit in 24 h.

For Fig. 5 and Supplementary Movies 9-11, circuits were printed in air on a
Nunc Glass Base Dish (outer diameter ~40 mm; viewing-area diameter 27 mm;
Thermo Scientific) using DMEM + 10% FBS, overlaid with FC40, and two

|18:816

stainless-steel needles (0.6 mm diameter) inserted into the two inlet arms (Fig. 5a).
Circuits were then washed through with >20-fold more TB than the DMEM that
was used to construct the circuit. For Fig. 5c-e, 0.5 pl P. aeruginosa in exponential
phase were pipetted into the central arm of the Y downstream of the junction. The
two inlet tubes were loaded with either TB or 350 mM DMSO + Chicago Sky Blue
6B dye (0.03 mg/ml) in TB. This dye does not induce chemotaxis in P.
aeruginosa®®. The two inlet needles infused both liquids into the circuit (flow rate
in Fig. 5 was 12 pl/h, but flows up to 300 pl/h have also been used with this circuit
without altering pinning lines during the initial washing). Next, most fluid pumped
into the sink up to this stage was removed manually from the sink by pipetting.
Gradients of DMSO (or dye) form downstream of the junction perpendicular to the
direction of flow. Unattached cells are washed away to the sink, and remaining
attached cells were imaged for 9 h in two adjacent, non-overlapping fields of view
centered on 1186 and 1,676 um downstream of where the two streams meet.

When printing circuits under FC40 (as in Supplementary Fig. 3), the pen tip is
brought closer to the surface compared to printing in air and is typically ~50 um
away.

Imaging. Images of circuits lacking cells were collected using a zoom lens and
digital SLR camera (Olympus D7100 DSLR) connected to an epi-fluorescent
microscope (Olympus IX53; 1.25%, 4x, 10%, 25x objectives) with translation stage
and overhead illuminator (Olympus IX3 with filters) for bright-field images.

Bright-field, phase-contrast, and fluorescence images of FF drops containing
cells were collected using a camera (AxioCam MRm) attached to a microscope
equipped for live-cell imaging (Zeiss Axioskop 40; Olympus LWD A20 PL 20x
lens). For the live-cell movie of HEKs (Supplementary Movie 8), cells were plated
in a 4-ul drop (150 cells/ul) and overlaid with FC40, and grown for 24 h before
imaging began; then, images were taken every 10 min for 48 h using a Zeiss
Axiovert 200 microscope with a Photometrics Coolsnap HQ Camera. TIFF-image
files were merged using Metamorph software (Molecular Devices) and converted to
AVI-format (7 frames/s) using Image]344 The final concentrations of TNFa in
chambers a—f in Fig. 4c were determined using the fluorescence intensity of a
surrogate — fluorescein isothiocyanate isomer I (0.5 mg/ml; Sigma Aldrich). For
Supplementary Fig. 7c, and after growing cells for 24 h in TNF« in a conventional
CO, incubator, bright-field and fluorescence images of chambers a-f were captured
using a CCD camera system (Ascent A16000, Apogee Imaging Systems) attached
to the Axioskop-40 microscope (Zeiss; A20PL phase-contrast objective 0.40 160/1.2
from Olympus). Fluorescence intensity and cell area were quantified using Image].
Thus, for the cell area, bright-field images were analyzed using a customized plugin
which dilates the outline of each cell (or cells) in contact; for fluorescence, the
integrated density for the whole image was quantified. Intensities in the bar chart
represent arbitrary values of the integrated density (fluorescence)/total cell area.
For Fig. 5b and Supplementary Fig. 8d, and to quantify chemical gradients within
the circuit and how they change as a function of imposed flow rate, experiments
were performed without cells; fluorescein (0.5 mg/ml) was again injected through
one inlet, and the region below the junction imaged (where diffusion between
laminar streams creates a dye gradient) using scanning-laser confocal microscopy
(Zeiss LSM 700 confocal system, Zeiss EC Plan Neofluar 10x objective). The data
in overlapping fields of view were collected, which were then combined to generate
a single stitched image that extends the length of the channel. Parts of stitched
images are shown in Fig. 5b and Supplementary Fig. 8d. For the chemotaxis assay
(Fig. 5¢c—e), images of surface-attached P. aeruginosa were captured at a frame rate
of 1 frame/min using a Zeiss Axio Observer inverted microscope with a Zeiss Plan-
Apochromat 20x objective, Zeiss AxioCam MRm camera, and a Zeiss Definite
Focus system. The Chicago Blue dye mixed with DMSO was used to locate the
position of the gradient. However, a weak concentration of dye was intentionally
used so as not to adversely affect automated cell tracking. Subtle variations in
background of the bright-field image caused the dye concentration to appear
slightly uneven (the dye was post-processed to appear red in Supplementary
Movie 11).

Analysis of cell trajectories during chemotaxis. To characterize the chemotactic
response in Fig. 5c-e, >10,000 cell trajectories were measured using the TrackMate
plug-in for Fiji?® 3% 36, which were then post-processed using Matlab. Consistent
with its name, twitching motility in P. aeruginosa is inherently unsteady, such that
a cell’s instantaneous direction of movement is not consistent with the mean
direction that it moves over longer periods>2. Therefore, trajectories were cate-
gorized as moving up or down the DMSO gradient using their net displacement
over the entire trajectory. The number of cells moving towards larger concentra-
tions of DMSO was divided by the number of cells moving towards smaller con-
centrations to calculate the chemotactic bias, which quantifies the strength of the
response®”. Both non-motile cells and those which do not move significantly from
their initial position were eliminated from this analysis by excluding trajectories
whose net to gross-displacement ratio (NGDR3®) was <0.15. Here, NGDR is
defined as the straight-line distance between a trajectory’s beginning and end,
divided by the gross distance a cell moves over the same time period. Finally, the
angle between a trajectory’s start and end position was calculated in order to
generate the rose-plot (Fig. 5d, inset); these angles were pooled across all trajec-
tories over the first 6 h of the experiment (in which chemotaxis was most pro-
nounced), and binned into 12 equal intervals around the unit circle.
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Data availability. The data that support the findings of this study are available
from corresponding authors upon reasonable request.
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SUPPLEMENTARY INFORMATION

SUPPLEMENTARY FIGURES

Supplementary Figure 1. An aqueous drop (blue area) sitting on a flat substrate.
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Supplementary Figure 2. Using FC40 to isolate drops.

(a) Overview. A 10x10 array of 1-ul drops of growth medium was printed on a 6-cm dish, E. coli
added to every second drop, and the dish overlaid with FC40; after incubation (1 d at 37°C, and then
1 d at ~20°C), the dish was photographed.

(b) Image of some drops. Bacteria grow only in inoculated drops as the rest remain sterile. Flow
within a drop causes some bacteria to aggregate, giving cloudy and dark regions. Every second drop
contains bacteria-free medium, and these remain visibly clear (even after 10 days sitting on a
laboratory bench). Insets: phase-contrast magnifications of selected areas (granularity indicates the
presence of bacteria).
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Supplementary Figure 3. Creating simple circuits under FC40.

(a-e) Principle. (a) A pen filled with water is brought close to a substrate covered with FC40, (b)
water is ejected to deposit a drop, and (c) the pen is moved laterally to create a conduit; (d) after
stopping the pen, a second drop is deposited, and (e) the pen is withdrawn.

(f) Example circuit printed under FC40 in a 6-cm dish using tissue-culture medium containing blue
dye and a hollow stainless-steel needle (outside diameter 0.5 mm).

(g) Effects of FC40 on conduit width. A straight conduit was printed in air from left to right, and then
FC40 was added as printing continued; finally, a phase-contrast image was collected of the segment
of the conduit that was being printed as FC40 flowed over it. Conduit width falls from left to right.
This is because the pen printed in air on the left, and under FC40 on the right (which increases the
wetting angle).
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Supplementary Figure 4. Characterizing flows in circuits. Circuits are like the ones in Figure 2d (18 pl
source drops connected to 20 pl sinks through 11 mm conduits).

a. Side view of part of a conduit and sink drop.

b. Reproducibility of flow between source and sink drops. Two identical circuits were made with a
conduit that had a width of 1,100 um (3 mm FC40 overlay). Time-lapse imaging (side views) show
volumes of source drops decrease over time; these volumes were determined using images like the
one in (a). Volumes of source drops in the two circuits fall at the same rates.

c. Interplay between Laplace and hydrostatic pressures affects source-drop volume. See
Supplementary Note 2.
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Supplementary Figure 5. Interplay between Laplace and hydrostatic pressures. This Figure amplifies
Figure 2e; see also Supplementary Note 1. The left-hand drop has a smaller radius of curvature (and
so higher Laplace pressure) than the right-hand one, and is overlaid with a greater height of FC40

(and so has a higher hydrostatic pressure); here, both pressures combine to drive flow to the right
(grey arrow).



Supplementary Figure 6. Reusing a circuit. Colored arrows illustrate flows driven mainly by
differences in Laplace pressure, and insets show how well pinning lines persist.

(a) Reproduction of the image shown in Figure 3c. This circuit was used for efficient flow-focusing of
the central laminar stream after the junction.

(b) The same circuit used in (a) was reused here after pipetting red dye into the topmost left-hand
drop and medium (pink) into the middle left-hand drop — a process which was repeated until colors
were reversed.
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Supplementary Figure 7. HEK cells in an FF circuit respond normally to TNFa. This data supports
Figure 4b and c.

(a) Characterizing serial dilutions using fluorescein as a surrogate for TNFa. The circuit was printed
and operated as described in Methods except that cells were omitted and 9.5 pl 5 mM fluorescein
and 9.5 ul water were immediately added to source drops 1 and 2 instead of media + TNFa and
media. Then, after 24 h incubation at 37°C, the Petri dish was placed on a fluorescent microscope
and fluorescent intensities of chambers measured (au: arbitrary units). To relate fluorescent
intensity to fluorescein concentration in a chamber, the same circuit was made but conduits
connecting chambers contained breaks (so chamber volumes could not change), and chambers were
filled with 3.6 ul containing serial dilutions of fluorescein (starting at 5 mM). After another 24 h
incubation, fluorescence intensities were measured using the same settings as before. The linear
calibration curve relates fluorescence intensity to molar concentration of fluorescein in each
chamber (y = 0.0388x).

(b) The concentration of fluorescein in each chamber calculated using the standard curve in (a).
(c) The fluorescence intensities given by HEK cells in chambers a-f after treatment with TNFa as in
Figure 4c. Intensities (in arbitrary units, au, £ SD) were measured as described in Methods (no
background was subtracted in f) using 3 circuits and cells plated on the same day. The
concentrations of TNFa in chambers a-f were 5.1, 4.7, 3.4, 1.8, 0.8, and 0 ng/ml; they were
calculated using data in (a) and (b). *, **, and ***: the probability that the differences in intensity
seen in the pairs of samples indicated arose by chance was <0.05, <0.01, and <0.001, respectively
(one-way Anova, Tukey’s test).
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Supplementary Figure 8. Manufacture and operation of the circuit used to analyse bacterial
chemotaxis.

(a) Plan of the circuit used in Figure 5 (dimensions in mm). Blue lines outline the path taken by a 0.5-
mm hollow needle as it traversed (20 mm/sec) above a 40-mm cell-culture dish with a glass bottom
ejecting fluid (flow rate of 200 nl/sec) on to the surface. On printing, closely-spaced lines merge to
give two input conduits (spacing between center-lines of 9 mm, a central conduit (length 3.8 mm;
only a small part of this is imaged), and a flat sink drop (bottom).

(b) Bright-field view of the circuit. Rectangle: region imaged in (d).



(c) View through the side of the dish filled with FC40 showing the circuit in operation, when red and
blue dyes (instead of TB and TB + fluorescein) are being pumped through hollow needles into the
circuit.

(d) Fluorescence images of the region shown in (b). Prior to imaging, the dish was placed on a
confocal microscope, hollow needles inserted into the two input channels (see Fig. 5a), and TB or TB
+ fluorescein pumped into the circuit (using 2 syringes connected to one pump) at the rate indicated.
Insets: magnifications of regions indicated (colored arrows at the bottom point to highest
concentrations of TB and DMSO). After the junction, TB and TB + fluorescein flow side by side as
laminar streams. At a flow rate of 3 pl/h, there is time for considerable amounts of fluorescein to
diffuse to the left to create a shallow gradient; with 48 pl/h, there is less time for dye diffusion, and
this creates a steeper concentration gradient.

(e) Comparison of bacterial chemotaxis within an FF device with that obtained using a commercially-
available PDMS-based device (Bioflux, Fluxion Biosciences). The rose plot obtained with the FF
device reproduces that shown in Figure 5d, while that obtained with the commercial device is
derived from data collected by Oliveira et al.”®. Both plots were compiled using trajectories collected
in two separate fields of view over the first 6 h of the experiment. Each sector denotes the
probability density function of the angle from each trajectory’s origin to its final position, with
red/blue bins denoting movement towards/away from DMSO. The chemotactic response in the two
devices is similar.



SUPPLEMENTARY NOTES

Supplementary Note 1: Drop dimensions, contact angles, Laplace and hydrostatic pressures

Drop dimensions, and flow through FF circuits (often driven by differences in Laplace and
hydrostatic pressures) are now discussed with reference to Supplementary Figure 1, where G is the
contact angle.

The Laplace pressure across the drop interface depends on R; R can be calculated using
Pythagoras’ theorem.

h2+a?

(R—h)?+a?=R?=>R= ” 1
h and r can be determined using trigonometry:
h = R(1 — cosf) 2
a = Rsinf 3
a
h= pry (1 — cosB) 4
The volume, V,,,, and surface area, A, _surp, Of @ cap of a sphere (drop) are:
= ™ (342 + p2 , T (3R —
Veap = S (3a* + h?) pERPY— (B3R —h) 5
_ 2 2y _ 2mh? _ 2ma?(1-cos6)
Acap_surf = 2mRh _ h%+a? m(a® +h%) = 1-cosf sinZ @ 6
T2
V.4 €an also be expressed in terms of contact angle (6), drop height (h), and radius of wetted
footprint (a):
Vo = n(2—-3cosf+cos3 0) , 3 n(2-3cosf+cos®0) ad 7
cap 3(1—-cos6)3 h= _LB (1-cos@) 3 sin® 0

To determine the surface area of the drop wetting the culture dish (needed, for example,
when estimating cell-seeding numbers) using the volume of drop deposited, the wetted radius (a)
and area of the dish covered by the drop (Ayeseq) are:

1
a= [ 3Veqp Sin® @ ]3 3
m(2—3cosf+cos3 8)

2

3Veqp sin® 0 3
A =ma’=nm [ ] 9
wetted m(2—3cosf+cos3 0)
The surface area in contact with air or FC 40, Acap_surp, iS:
2
v in3 6 3
_ VeapSinT9__* 1 _cos0)
A n(2—3cosf+cos3 @)
cap _surf — sin2 @ 10

For drops in air with a contact angle of 50° (with volume in microliters):
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When under FC40 with a contact angle of 70°:

1

2
mm; Ayerreq = 2.7V, mm?; h = 0.64V3  mm 12

a=092V2,

Now consider a conduit. Its cross-sectional area, Agoss section, CaN be estimated from the blue
area of Supplementary Figure 1:

. 1 ,(0m a? (Om
Across section = TR (%) - a(R _.h) = ER (% - Sln29) = m (% — sm29)
— area of triangle
area of sector
13
Similarly, the arc length of the interface, Lsegment, is:
OnR Ora
Lsegment = 55 = 5o5ing 14

If two drops are connected by a conduit, the rate of fluid transfer between drops is
proportional to the pressure difference between them (which is due to differences in Laplace and
hydrostatic pressures) and the geometry of the conduit. The Laplace pressure (AP,) for a sphere, or
cap of a sphere, is given by

AP, =L 15

where v, R, and P are the interfacial tension, radius of curvature, and pressure. The pressure
difference between drops due to hydrostatic pressure is given by:

APhydrosi:atic = Apghh 16

where Ap is the density difference between the drop and surrounding fluid, and Ah the height
difference between drops. The Laplace and hydrostatic pressures are summed to provide the net
pressure difference driving flow. This approach can be extended to any number of drops to
determine relative pressures.

Now consider the circuit in Supplementary Figure 5.

2y

— 17
Rdrop

APinterface_drop =

Then, the smaller drop (with smaller radius of curvature) has a larger pressure difference across its
interface than the larger one. As drops are overlaid with different heights (hy, h,) of denser FC40
(density, p), the pressure at the base of a drop results from both hydrostatic and Laplace pressures.
The resultant pressure difference between the two drops at the base is

2 2
APdrops = ch4og(h1 - h4) + pwaterg(hs - h8) + R_]l/ - é 18

Next, consider conduit geometry. The cross section at any point along the conduit is
approximated by a segment of a circle; as one radius of curvature is negligible, the Laplace pressure
across the interface is



14
APconauic = Y 19
conduit
We estimate the radius of curvature (Rconquir) Of the inlet (where height is hg; Supplementary Fig. 5)
by assuming pressures at the base of a drop and conduit near the inlet are equal. The pressure drop
across the conduit interface, assuming conduit height is small relative to drop height, is given by

2
= Pbase(drop) - p(FC)g(hS + hl) = R_}ll - Ap(FC/wat(—zr)ghS 20

Reonduit

Once the radius of curvature of the conduit is known, the geometry of the cross section may be
calculated (results of example calculations are provided in Table 2).



Supplementary Note 2: Detail for Supplementary Figure 4c.

The approximately linear relationship between source drop volume and time in Figure 2d
requires an approximately constant flow rate through the conduit, and hence constant pressure in
the source drop (assuming the pressure change in the larger sink drop is negligible). However, as the
initial drop volume reduces, with a fixed pinning line, the Laplace pressure across the interface also
reduces due to the increase in curvature. When the overlaid fluid is denser than the drop fluid, this
reduction in Laplace pressure is countered by an increase in hydrostatic pressure. Supplementary
Figure 4c illustrates this effect, and more detail is provided here. The pressure and volume ratios are
defined as

Ppase of drop _Pbase(FC40) 21

Pressure ratio =
Pinitially at base of drop

V drop initially—Vdro
P y 14 22

Volume ratio =
14 drop initially

In Supplementary Figure 4c, the red dashed line indicates the change in pressure ratio when the
overlaid and drop fluids have the same density, and then only the Laplace-pressure change causes a
change in pressure ratio. The dashed and solid black lines represent the pressure ratio when the
source drops are either 5 or 18 ul and overlaid with denser FC40. For the 18-ul drop, the pressure
ratio is essentially constant (< 1% variation) until the volume reduces by ~25%. However, for the
smaller drop, the pressure ratio reduces by ~8% at a volume reduction of ~25%. Hence, larger drops
maintain a pressure ratio, and hence a steady flow rate, for a greater percentage of their original
volume, when overlaid with a denser fluid. When the overlay fluid is equal to or less dense than the
drop fluid, the pressure ratio — and hence flow rate — can only decrease as liquid flows from the
source drop. A similar consideration would apply to the sink drop in the case where its volume
change was not considered negligible.



Supplementary Note 3: software
This provides an example of the G-code program used to print the circuit in Figure 4b.

% use 0.5 mm external diameter dispensing tip — Created 14/1/2017 Prof. Walsh —
edmond.walsh@eng.ox.ac.uk

M30

G98 L1

G90

GO0 x0 y0 z-15
GO01y0 F20
GO1y-1.7

G01 z0

GIo1

GO1lyl1.7
G02x0y0i0j-1.8
GO01y-0.5
G02x0y0i0j-1.3
GO01y-0.5

G02 x0 y0i0j-0.8
GO1ly-1.3

G90

GO01 x0.25
GO01y18

GO01 x-0.25
GO01y0

GO01 x0

GO01y18

GO01z-5
G00vy24.3

GO0 x13.5
G01z0

GIo1

GO1y-1.8
G02x0y0i0j1.8
G01y0.5
G02x0y0i0j1.3
G01y0.5

G02 x0y0i0j0.8
GO1yl.4

G90

GO01 x13.25
GO01vy4.5

GO01 x13.75
G01y22.5
G01x13.5

GO01 x13.5
GO01y18.1

GO1 x8.55
GO01y18



G91
G02x0y0i-1.8
GO1 x-0.5

GO02 x0y0i-1.3
GO1x-0.5
G02 x0 y0i-0.8
G01 x-0.5

G90
GO01y18.1
GO1 X0
GO1y17.9
GO1x13.5
G91

GO1 x4.95
G01y0.1
G02x0y0i1.8
G01x0.5

GO2 x0y0il1.3
G01x0.5

G02 x0y0i0.8
GO1 x1
G01y0.1

G90
GO01x13.5
G01y13.6
GO1 x8.55
GO01y13.5
G91

G02 x0y0i-1.8
GO1 x-0.5

G02 x0y0i-1.3
GO01 x-0.5
G02 x0 y0i-0.8
GO01 x-0.5
G90
G01y13.6
GO1 X0
GO1y13.4
GO01x13.5
G01y9.1

GO1 x8.55
G01y9.0

G91
G02x0y0i-1.8
G01x-0.5

GO02 x0y0i-1.3
GO1x-0.5
G02 x0 y0i-0.8
GO1 x-0.5
G90

G01y9.1



G01x0
G01y8.9
G01x13.5
G01lvy4.6

GO1 x8.55
GO01vy4.5

GI1

G02 x0y0i-1.8
GO01 x-0.5

G02 x0y0i-1.3
GO01 x-0.5

G02 x0y0i-0.8
GO01 x-0.5

G90

G01lvy4.6

GO1 x-4.95
GO1y4.5

GI1

G02 x0y0i-1.8
G01 x-0.5

G02 x0y0i-1.3
G01 x-0.5

G02 x0y0i-0.8
GO1 x-1

G90

G0lvy4.4

GO01 x13.7

GO0 z-20

GO0 y50 x50
M99 (End subprogramme)



Description of Additional Supplementary Files

File Name: Supplementary Movie 1

Description: Printing an FF circuit in air. The movie runs in real time. The pen prints tissue-
culture medium containing blue dye on to the surface of a 6-cm polystyrene tissue-culture
dish. Figure 1d illustrates the last frame of this movie.

File Name: Supplementary Movie 2

Description: An FF circuit overlaid with FC40 can survive violent agitation. The movie runs in
real time. A circuit containing blue dye was printed on a 6-cm Petri dish, overlaid with FC40,
placed on a shaker, and the lid of the Petri dish removed. The movie begins when the shaker
was started; as the speed of shaking increases, waves form in the FC40 and increase in
height, and finally FC40 spills out of the dish.

File Name: Supplementary Movie 3

Description: Using Laplace pressure to drive flow through FF circuits in seconds. This time-
lapse movie is speeded up 20x or 120x as indicated. Figure 2b illustrates a frame from this
movie. Six identical circuits were printed on a 6-cm tissue-culture dish, and overlaid with 5
ml FC40. A plan of the circuit was now placed under the circuit (dimensions in cm), and then
removed. The movie begins when 20 ul tissue-culture media was added to each sink drop on
the right (only the last addition is seen). Next, 10, 8, 6, 4, and 2 ul red dye are pipetted
successively into left-hand drops (bottom to top). Differences in Laplace pressure drive dye
from left to right. Although dye was added first to the bottom left-hand drop, it is
nevertheless dye added last that reaches a sink first.

File Name: Supplementary Movie 4

Description: Flow driven largely by Laplace pressure. This time-lapse movie is speeded up
360x. The circuit had the plan illustrated in Figure 2a (left- and right-hand drops contained
10 and 20 pl, respectively), and was overlaid with FC40. The movie (side view) begins just
before 10 pl blue dye was manually pipetted into the left-hand drop; then, pressure
differences drive dye to the right. The footprint remains the same as the left-hand drop
shrinks, and the right-hand one grows.

File Name: Supplementary Movie 5

Description: A mixing circuit. This time-lapse movie is speeded up 60x, and initially there
was no FC40 overlay. A frame from this movie is illustrated in Figure 3a. The movie begins as
colored dyes are manually pipetted into peripheral drops, and then medium into the central
one. Differences in pressure drive dyes towards the central drop where they mix. Towards
the end of the movie, the circuit is overlaid with FC40.

File Name: Supplementary Movie 6

Description: A splitting circuit that uses gravity to drive flow. This time-lapse movie is
speeded up 5x, and there is no FC40 overlay. The circuit was printed on a horizontal 6-cm
Petri dish in air, blue dye was pipetted into the drop at the top, and the dish positioned
vertically; the movie begins as gravity is driving blue dye into the 8 drops at the bottom

File Name: Supplementary Movie 7



Description: A trident used for flow-focusing. This time-lapse movie is speeded up 10x. This
movie shows the operation of a circuit like the one described in Supplementary Figure 6
which reproduces a frame from this movie. Flow was initiated by pipetting 10 pl medium
(pink) or red and blue dyes into left-hand drops, before 30 pl was added to the sink

File Name: Supplementary Movie 8

Description: HEKs grow normally in a drop of medium overlaid with FC40. Frames from this
movie are shown in Figure 4a. About 600 HEKs were plated as a 4-ul drop on a 6-cm dish,
the drop overlaid with FC40, and cells grown for 24 h in a conventional CO2 incubator. The
dish was now mounted on a microscope in an atmosphere of CO2, and a time-lapse movie
made (phase-contrast images were collected every 10 min for 48 h, and the video plays at 7

fps).

File Name: Supplementary Movie 9

Description: Making the FF circuit in Figure 5a. This movie runs in real time. The circuit is
printed using DMEM + 10% FCS in air on a 4-cm tissue-culture dish with a glass bottom (tip
speed 20 mm/s, flow rate of 200 nl/s). Prior to use it is overlaid with 6 ml of FC40.

File Name: Supplementary Movie 10

Description: Air bubbles are automatically rejected by an FF circuit. The movie runs in real
time. The circuit is like that in Figure 5a. An external syringe pump drives red and blue dyes
through hollow needles (0.5 mm) at 100 pl/h into the circuit (FC40 overlay). Small and large
air bubbles were deliberately introduced into tubes feeding blue and red dyes. During the
first half of the movie, these bubbles are automatically rejected by the system; buoyancy
differences force them to pinch off from the aqueous circuit and rise to the surface of the
FC40, where they are lost to the atmosphere. During the second half of the movie, the
circuit operates normally.

File Name: Supplementary Movie 11

Description: P. aeruginosa performing chemotaxis. The time-lapse movie over hours of a
biofilm growing in a dish on an inverted microscope. A syringe pump drives flow through the
circuit as in Figure 5c-e to generate a steady DMSO gradient by diffusion. The surface-
attached bacteria preferentially bias pili-based twitching to move up the gradient until the
surface becomes crowded with cells, which ultimately slows movement. Here, the gradient
was visualized with Chicago Sky Blue 6B dye, which was imaged at the same time as cells
using bright-field microscopy. Background subtraction (performed in Fiji) allowed us to
isolate signal from the dye, which was post-processed to appear red.

File Name: Supplementary Movie 12

Description: Overlaying FC40 has no effect on the footprint of an FF circuit. The timelapse
movie is speeded up 2x initially, and 32x at the end. A Y-shaped circuit connected to a flat
drop is printed, and FC40 manually pipetted twice into the dish (so the circuit can no longer
be seen by eye). However, the circuit is revealed by injecting a red dye followed by a blue
dye into the arms (dyes flow to the sink). The footprint remains unchanged during the whole
process.
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